
A novel controller placement algorithm based on network portioning
concept and a hybrid discrete optimization algorithm for multi-
controller software-defined networks

Nasrin Firouz1 • Mohammad Masdari1 • Amin Babazadeh Sangar1 • Kambiz Majidzadeh1

Received: 22 September 2020 / Revised: 15 January 2021 / Accepted: 14 March 2021 / Published online: 11 April 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Software defined network (SDN) has shown significant advantages in numerous real-life aspects with separating the control

plane from the data plane that provides programmable management for networks. However, with the increase in the

network size, a single controller of SDN imposes considerable limitations on various features. Therefore, in networks with

immense scalability, multiple controllers are essential. Specifying the optimal number of controllers and their deployment

place is known as the controller placement problem (CPP), which affects the network’s performance. In the present paper, a

novel controller placement algorithm has been introduced using the advantages of nature-inspired optimization algorithms

and network portioning. Firstly, the Manta Ray Foraging Optimization (MRFO) and Salp Swarm Algorithm (SSA) have

been discretized to solve CPP. Three new operators comprising a two-point swap, random insert, and half points crossover

operators were introduced to discretized the algorithms. Afterward, the resulting discrete MRFO and SSA algorithms were

hybridized in a promoting manner. Next, the proposed discrete algorithm has been evaluated on six well-known software-

defined networks with a different number of controllers. In addition, the networks have been chosen from various sizes to

evaluate the scalability of the proposed algorithm. The proposed algorithm has been compared with several other state-of-

the-art algorithms regarding network propagation delay and convergence rate in experiments. The findings indicated the

effectiveness of the contributions and the superiority of the proposed algorithm over the competitor algorithms.

Keywords Software defined network � Controller placement � Delay � Network portioning � Discrete optimization

1 Introduction

In the last few years, following the rapid progression of

hardware and software, Internet users significantly

increased [1]. As a result of this leap, the amount of data

traffics remarkably increased, which requires the

management, controlling, and upgrading of the founda-

tional and infrastructure systems to fulfill the Internet’s

current demands [2–4]. Software-defined networks (SDN)

is among the most popular technologies, transforming the

traditional networking infrastructure into more adaptable,

agile, flexible, and manageable network topologies [5, 6].

A software-defined network is an attention-grabbing

network paradigm that decouples the control plane from

the data plane in network switches [7, 8]. In this frame-

work, control procedures are disconnected from the data

plane and address to the external device, named controller

[9, 10]. Therefore, developers are enabled to propose new

algorithms on the SDN controller, which could manage the

network and change its performance [11]. Figure 1 repre-

sents the three planes of SDN architecture, namely man-

agement, control, and data planes.

Switches exist in the data plane controllers, and man-

agement defines the plane policies and rules [12]. The

& Mohammad Masdari

M.Masdari@Iaurmia.ac.ir

Nasrin Firouz

n.firouz@iaurmia.ac.ir

Amin Babazadeh Sangar

bsamin2@liveutm.onmicrosoft.com

Kambiz Majidzadeh

K.majidzadeh@iaurmia.ac.ir

1 Department of Computer Engineering, Urmia Branch,

Islamic Azad University, Urmia, Iran

123

Cluster Computing (2021) 24:2511–2544
https://doi.org/10.1007/s10586-021-03264-w(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03264-w&domain=pdf
https://doi.org/10.1007/s10586-021-03264-w

controller controls and manages the traffic of the network

[8]. The switches’ data in the network is sent to the cor-

responding controller for further switching of the pro-

cessing [13]. The controllers in the software-defined

networks manage and control the available switches’ data

streams by installing new flow rules and policies on them

[14, 15]. However, especially in large-scale networks, a

single controller may not be possible for a trade-off among

the factors.

Furthermore, the performance of a single controller of

SDN has many limitations. Consequently, using multiple

controllers is a promising strategy to alleviate many factors

such as reliability, resiliency, scalability, availability,

minimum latency, and load balancing in a large-scale

network [16–19]. One of the particularly vital issues in the

SDN framework with multiple controllers is the controller

placement problem (CPP) [20]. The controller placement

problem involves two fields: the optimal number of con-

trollers to be deployed in SDN, and these controllers’

locations [21]. These characteristics affect the functionality

of the network. The controller placement problem has been

defined as an NP-hard problem [22]. It shows the number

of required controllers to address the controllers’ traffic

loads and their location in the SDN cost-effectively.

According to a series of factors, each switch would be

linked to one of the SDN controllers [23].

Nature-inspired meta-heuristic algorithms are the utmost

innovative and efficient approaches in solving complex

real-world problems [25–28]. These algorithms have been

applied to various problems and achieved promising

results. Equilibrium Optimizer [29], Black Widow Opti-

mization Algorithm [30], Seagull Optimization Algorithm

[31], Deer Hunting Optimization Algorithm [32], Shuffled

Shepherd Optimization [33], and Barnacles Mating Opti-

mizer [34] are instances of the newly-developed meta-

heuristic optimization algorithms. In the scope of software-

defined networks, these algorithms have been utilized in

numerous aspects embracing security, load balancing,

routing, switch migration, etc. [15, 35–41]. Various solu-

tions have been proposed for the controller placement

problem based on optimization algorithms described in

Sect. 2.

In the present paper, a novel meta-heuristic-based

algorithm was proposed for controller placement in a

software-defined network, which could provide dynamic

load balancing and latency. In the proposed controller

placement algorithm, the propagation latency between

controllers and switches, dynamic traffic load, and linking

switches to the best suitable controller were considered.

The propagation latency in the SDN network was a critical

factor since it affects network proficiency, especially in a

large-scale network.

The critical contributions of this paper are as follows:

• The MRFO was innovatively discretized.

• The SSA was solitarily discretized.

• The discrete SSA and MRFO algorithms were hybri-

dized using a multi-swarming concept.

• The greedy selection mechanism was employed in the

resulting discrete hybrid algorithm.

• The proposed algorithm was applied to the CCP

problem.

• Dijkstra’s algorithm was embedded in the proposed

algorithm to find the shortest routes between network

switches.

• The Haversine formula was utilized to calculate the

distance between the switches.

• The proposed controller placement algorithm was

assessed on six real-world software-defined networks.

• The results of the proposed algorithm were compared

with the state-of-the-art meta-heuristic-based

algorithms.

The rest of the present paper is organized as follows:

Sect. 2 is devoted to the related works. In Sect. 3, the

background algorithms comprising SSA, MRFO, and

Dijkstra’s shortest path algorithms are described. In

Sect. 4, the proposed controllers’ placement algorithm is

provided in detail for solving the CPP. Section 5 presents

the extensive conducted experiments to evaluate the

Fig. 1 The architecture of software-defined networks [24]

2512 Cluster Computing (2021) 24:2511–2544

123

performance of the proposed algorithm. Section 6 gives the

conclusions and future perspectives.

2 Related work

Extensive amounts of effort have been dedicated to the

controller placement in software-defined networks, sum-

marized in Table 1. Some of the studies have been pre-

sented in this section. In [42], Ateya et al. proposed a meta-

heuristic algorithm based on the chaotic Salp Swarm

Optimization Algorithm (SSOA) for improving the opti-

mizer performance. It dynamically determines the optimal

number of controllers and the optimal paths between

switches and the determined controllers in the large scale

SDNs. This scheme was compared in various scenarios

with other linear and metaheuristic algorithms for several

real topologies obtained from the zoo topology. Their

proposed method has brought improvements in terms of

network latency and reliability. However, various network

metrics such as latency, deployment cost, and system uti-

lization have been considered in the present method, which

requires more powerful hardware and higher running time.

Additionally, to calculate the deployment cost, there was a

requirement for more complex datasets and multiple

assumptions (which may lose their accuracy over time).

Therefore, the computational complexity was high, and the

precision could be conditional.

In [43], Gao et al. introduced a new algorithm for the

controller placement problem in SDNs. The introduced

algorithm considered controllers with capacity limitation,

latency between controllers, and the latency between

switches and controllers. In this scheme, a meta-heuristic

algorithm was proposed based on the PSO algorithm for

solving the problem, and the global latency is defined.

Experiments showed that although the proposed algorithm

minimized propagation latency, the controllers’ Fixative

traffic load was ignored. Besides, in the present paper, the

problem and the discretizing approach was not apparent.

Additionally, their proposed method was presented for the

capacitated SDN networks.

In the controller placement approach provided by Hu

et al. in [44], the focus was on defining the controllers’

place for a distributed control plane to save SDN’s energy.

That is formulated as a binary integer program (BIP). In

this model, the network’s energy consumption that serves

for the control traffic was reduced by a load of controllers

and delay of control paths. Based on the high complexity of

the BIP in wide-scale networks, the proposed IGCPA was

an improved genetic controller placement algorithm, which

Table 1 State-of-the-art of the controller placement in software-defined networks

Scheme Criteria Algorithm Networks Year Simulator

1 [42] Utility of

controllers

Salp swarm algorithm ARPANET, MREN, GetNet, Sprint, NFS, Claranet,

IBM, Oxford, FCCN, and AGIS

2019 MATLAB

2 [43] Propagation

latency

Particle swarm optimization Randomly generated networks 2015 VS (C??)

3 [44] Energy

consumption

Genetic algorithm Abilene, Janos-us, Pioro, and Zib 2016 MATLAB

4 [45] Latency-

workload

Hierarchical distributed

architecture

Campus map of Nanyang Technological University 2018 NS-3

5 [46] Latency Verna-based optimization Abilene, Savvis, Biznet, and Internet2 OS3E 2020 MATLAB-

Python

6 [47] Latency K-means Internet2 OS3E and ChinaNet 2017 MATLAB

7 [48] load balancing Rounding-based multi-area routing VL2 and fat-tree 2018 Mininet

8 [49] Latency-link

failure

Grey wolf optimization AT&t, BTNA, and Sprint 2020 Python

9 [50] Latency Hybrid particle swarm

optimization-simulated annealing

Surfnet, Forthnet, and TataNId 2020 Python

10 [51] Delay-load

balancing

Firefly algorithm A randomly generated network 2019 MATLAB

11 [52] Latency Particle swarm optimization and

Firefly algorithm

TataNld, Fouthnet, Deutsche, Geant, and RNP 2018 MATLAB

12 [53] Latency-load

balancing

NSGA-II NTT, Bisc, Garnet, Xspedius, Cernet, Litnet, Ntelos,

Bell Canada, and Bellsouth

2018 MATLAB

13 [54] Distance Cuckoo search Four randomly generated networks 2020 Java

Cluster Computing (2021) 24:2511–2544 2513

123

is used to find an efficient sub-optimal solution for the

power-aware CPP. The results indicated that IGCPA was

close to that of the optimal solution. However, they did not

consider the energy-aware issue on the data forwarding

plane for a complete energy-aware SDN. Moreover, their

method is still extensively complicated on large-scale

networks.

In addition, in [45], Liyanage et al. presented a new

hierarchically distributed Software-Defined Vehicular

Network (HD-SDVN) framework with a controller place-

ment problem to optimize the placement of the controllers

regarding the delaying limitation in VANET. The frame-

work divides the control plane into the top level, deployed

on the Internet, and the bottom level, deployed at the Road

Side Unit (RSU) level. Incorporating the existing SDVN

framework and conventional Vehicular Ad-hoc Network

(VANET), they indicated that their controller placement

scheme could cause a lower latency than other possible

controller placement schemes. The presented a scheme that

obtained fair results concerning latency and workload in

regional networks. Besides, various delays (transmission

delay, queuing delay, contention delay, processing delay,

propagation delay) are calculated in the presented paper,

which is not necessarily required to be calculated all-in-

one. Therefore, it could be deduced that the presented

algorithm consumes a significant amount of time on cal-

culating these delays.

Furthermore, in [46], Singh et al. have addressed con-

troller placement in SDN by developing a new optimiza-

tion algorithm named Varna-Based Optimization (VBO) to

solve the capacitated controller placement problem. They

analyzed the solution based on the optimization and clus-

tering concept for CPP. Their simulation results indicated

that the solution based on the optimization had better

results than the clustering one, which minimized SDN’s

overall average latency. Its convergence rate was better

than PSO, TLBO, and Jaya algorithms. Also, VBO clas-

sified particles just in two classes, where each class had a

specific task and could be dynamically enhanced by

changing the number of classes during generations. The

proposed method had various superiorities over previous

methods; however, it was not usable for all SDN networks

and was provided for capacitated networks.

Besides, an approach is proposed by Wang et al. in [47]

to minimize latency between controllers and their switches.

They estimated qualitatively by considering the total

latency between switches and controllers. They also pro-

posed a partition method based on clustering to partition a

network into subnetworks to decrease the end-to-end

latency and the queuing latency of controllers. This algo-

rithm ensured that each partition could minimize the

maximum end-to-end delay between switches and con-

trollers. Multiple controllers are proposed to be established

into each subnetwork to reduce queuing latency by extreme

packet requests from switches. A series of simulations were

conducted using two real-world topologies from the Zoo

Topology to analyze the proposed algorithm’s perfor-

mance. The simulation results showed that the overall

latency decreased by multiple controllers deployed in

subnetworks compared with K-center and K-means. The

proposed algorithm was applied to only two networks,

making it irritable to evaluate the algorithm’s performance

accurately.

Moreover, in [48], Wang et al. presented a routing-based

algorithm to solve the controllers’ load balancing problem

in a software-defined network. They considered an effec-

tive mechanism for network status maintenance between

distributed controllers to increase their algorithm’s per-

formance and analyzing the estimation performance. The

simulation results showed that although their proposed

algorithm could not decrease link load balancing perfor-

mance, compared with the multi-thread successor of the

NOX (NOX-MT) solution, it could decrease the maximum

controller response time by 70% [55]. The proposed

algorithm could find proper controller placement to

decrease the response time and balance the network load;

however, the present paper’s main focus was on the routing

concept. Therefore, the experiments were mainly con-

ducted concerning the link load, and little attention has

been paid to other network parameters.

Furthermore, Singh et al. developed a novel optimiza-

tion algorithm called varna-based optimization (VBO) in

[46] and used it to solve the SDN controller placement

problem. The proposed algorithm’s main goal was to

minimize average network latency, defined as the VBO

algorithm’s objective. They evaluated the proposed algo-

rithm on Internet2 and Savvis SDN networks, and the

experimental results showed the superiority of the proposed

algorithm. The proposed algorithm minimized the average

network latency and had low complexity; however, the

experiments were insubstantial. Additionally, the algorithm

was applied to only two networks and did not compare with

state-of-the-art algorithms accurately. Besides, the dis-

cretizing method and operators were not transparent, and

the complexity was not discussed.

Moreover, in [11], Moradi et al. proposed a new con-

troller placement algorithm based on iterated local search

for SDN networks. In the proposed algorithm, network

deployment costs, including installing the controllers,

connecting switches to the controllers, and connecting

controllers to other controllers, were considered objective.

Also, the local search was used to find better solutions by

searching the neighbors. The proposed algorithm was

compared with CPLEX and SCIP solvers. Furthermore, the

performance of the algorithms was evaluated on several

random networks on a 20� 20 grid. The results

2514 Cluster Computing (2021) 24:2511–2544

123

demonstrated that the proposed algorithm was computa-

tionally efficient. In the proposed algorithm, there was a

vacancy for the meta-heuristic algorithm. Furthermore, the

proposed method was only tested on small networks and

compared with a few algorithms.

Besides, in [21], Schütz and Martins suggested an

approach to find optimal places for SDN controllers. The

suggested algorithm constrained propagation latency and

controller capacity. Also, it able to find the minimum

number of controllers and their locations. Once the con-

troller’s optimal number and location were found, the

suggested algorithm connected to a controller and balanced

the controllers’ load. The suggested algorithm was evalu-

ated on fifteen SDN network and balanced the load better

than competitor algorithms. Besides, it considered crucial

network parameters such as latency, capacity, and load

balance. It used a heuristic approach to find optimal places;

however, there was a lack of investigation into the impact

of using meta-heuristic algorithms in this study. Since

further improvements could be achieved by using meta-

heuristic algorithms.

Furthermore, in [52], Sahoo et al. provided a novel

controller placement algorithm for SDN networks. The

provided algorithm supplied a seamless backup technique

against single link failure, minimizing communication

delay using survivability. The particle swarm optimization

and Firefly algorithm were used in the provided algorithm

to achieve the targets mentioned above. Also, latency

between controllers, latency between switches and con-

trollers, and multi-path connectivity between the switches

and controllers were taken into accounts in the provided

algorithm. The performance of the provided algorithms

was evaluated on a set of publicly SDN networks. The

experimental results showed that the provided algorithm

improved the control path’s survivability and the network’s

performance effectively. The proposed algorithm used a

hybrid meta-heuristic optimization algorithm to solve the

CPP problem, bringing significant advantages. Further-

more, the proposed method was evaluated by various SDN

networks that tested the algorithm’s performance more

accurately. Nevertheless, the optimization algorithms used

in this paper (PSO and FFA) were old ones that might not

be efficient for today’s problems. The use of newer opti-

mization algorithms, newer improvement methods, newer

combining approaches, etc., would increase the algorithm’s

efficiency. Moreover, another predicament of this paper

was that the proposed algorithm was compared with a

small number of algorithms, which could not correctly

show the superiority of the proposed algorithm.

Additionally, Jalili et al. presented a novel controller

placement algorithm using NSGA-II for large-scale soft-

ware-defined networks [53]. In the presented algorithm,

maximum and average latencies and load balancing on

controllers were considered objective functions. Several

networks from the Topology Zoo evaluated the presented

algorithm, and the obtained results demonstrated the

superiority of the presented algorithm over the other sim-

ilar algorithms. The presented multi-objective controller

placement algorithm optimized the latency and balanced

controllers’ load using NSGA-II. The inverted generational

distance (IGD) metric was also used to evaluate the Pareto

Front obtained by the algorithms. Nonetheless, the NSGA-

II algorithm was older, and newer multi-objective algo-

rithms could be used instead. The Pareto Front obtained by

the proposed algorithm and the competitor algorithms did

not plot and compared efficiently. Moreover, although the

proposed algorithm was applied to several SDN networks,

it was compared with PSA and PSO algorithms, which did

not accurately express the proposed algorithm’s possible

superiority.

Moreover, in [54], Tahmasebi et al. suggested a novel

synchronization-aware controller placement algorithm for

WSN networks to optimize network performance. The

optimization process was done in the suggested algorithm

using the cuckoo search algorithm, which is a meta-

heuristic optimization algorithm. The performance of the

suggested algorithm was evaluated by comparing it with

simulated annealing and quantum annealing algorithms.

The results of the comparisons demonstrated that the sug-

gested algorithm outperformed competitor algorithms. In

the proposed algorithm, various network metrics were

considered. The method’s overall complexity and reliabil-

ity were good; however, it was applied to the WSN net-

works. The proposed algorithm could apply to SDN

networks with some modifications, and the newer meta-

heuristic algorithm could be employed instead of the

Cuckoo search algorithm.

Additionally, Nasiri and Derakhshan investigated the

SDN networks and presented a novel greedy method to

discover an optimal way to embed offline VNE into

OpenFlow networks and manage communications between

the virtual controllers and switches [56]. In the presented

paper, various metrics such as node capacity, link capacity,

revenue, cost, latency, CPU, and bandwidth resources were

considered. The performance of the presented method was

investigated in different environments regarding revenue,

cost, and delay.

In this paper’s presented method, most-recently devel-

oped powerful algorithms (MRFO and SSA) were recrui-

ted, and the simplicity and low complexity were the

authors’ priorities. Furthermore, the presented paper pro-

vides a comprehensive approach for all kinds of SDN

networks rather than a specific network range. Therefore,

the proposed algorithm was applied to various SDN net-

works in terms of its comprehensiveness and to evaluate

the algorithm’s reliability. The networks were selected

Cluster Computing (2021) 24:2511–2544 2515

123

from real-world SDN networks (Topology Zoo) with dif-

ferent sizes (small- and large-scales). Afterward, the pro-

posed algorithm was compared with various neoteric meta-

heuristic-based controller placement algorithms to

demonstrate the algorithm’s superiority.

3 Research background

3.1 Manta ray foraging optimization algorithm

Manta ray foraging optimization (MRFO) is a novel bio-

inspired optimization algorithm inspired by manta rays’

intelligent behaviors in nature [57]. MRFO was developed

to solve various optimization problems and was composed

of three phases: chain foraging, cyclone foraging, and

somersault foraging. These phases model the behaviors of

the manta rays mathematically and are described as

follows.

3.1.1 Chain foraging

This phase of the algorithm models the observation and

movement of the mana rays toward plankton. Manta Rays

line up head-to-tail and form a foraging chain. The chain

was modeled as below:

Xd
i ðt þ 1Þ ¼ Xd

i ðtÞ þ r:ðXd
bestðtÞ � Xd

i ðtÞÞ þ a:ðXd
bestðtÞ � Xd

i ðtÞÞ i ¼ 1

Xd
i ðtÞ þ r:ðXd

i�1ðtÞ � Xd
i ðtÞÞ þ a:ðXd

bestðtÞ � Xd
i ðtÞÞ i ¼ 2. . .:N

�

ð1Þ

where, Xd
i is the position of ith manta ray, t indicates time,

d is the dimension, r is a vector with random numbers in [0,

1], Xd
bestðtÞ is the plankton with a high concentration in time

t, and a is a weight coefficient which was calculated as

follow:

a ¼ 2:r:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðrÞj j

p
ð2Þ

3.1.2 Cyclone foraging

This phase models the long foraging chain of the manta

rays formed to swim toward the food by a spiral. This

foraging chain was similar to the foraging strategy of the

Whale optimization algorithm [58]. However, in the

cyclone foraging strategy, each manta ray swims toward

the one in front of it using the manta rays’ spiral move-

ments. A manta ray moves toward one of the fronts-lines

and moves toward the food along a spiral path. Equa-

tion (3) models this behavior of the manta rays

mathematically.

Xd
i ðt þ 1Þ ¼ Xd

best þ r:ðXd
bestðtÞ � Xd

i ðtÞÞ þ b:ðXd
bestðtÞ � Xd

i ðtÞÞ i ¼ 1

Xd
bestðtÞ þ r:ðXd

i�1ðtÞ � Xd
i ðtÞÞ þ b:ðXd

bestðtÞ � Xd
i ðtÞÞ i ¼ 2. . .:N

�

ð3Þ

where T is the maximum number of iterations, and b is the

weight coefficient that could be defined as below:

b ¼ 2er1
T�tþ1

T � sinð2pr1Þ ð4Þ

where r1 in a random number in [0,1].

This cyclone foraging strategy has excellent exploitation

for a part of the search space that the plankton is in it, as

the manta rays search the problem space concerning the

food. The manta rays are forced to search for new positions

far from the current best manta ray to increase the explo-

ration. In MRFO, this is modeled by assigning a new

random position in the problem search to the manta rays as

their reference position. The following equation mathe-

matically models this strategy:

Xd
i ðt þ 1Þ ¼ Xd

rand þ r:ðXd
randðtÞ � Xd

i ðtÞÞ þ b:ðXd
randðtÞ � Xd

i ðtÞÞ i ¼ 1

Xd
randðtÞ þ r:ðXd

i�1ðtÞ � Xd
i ðtÞÞ þ b:ðXd

randðtÞ � Xd
i ðtÞÞ i ¼ 2. . .:N

�

ð5Þ

where Xrand in a random position in the search space and is

produced as follow:

Xd
rand ¼ lbd þ r:ðubd � lbdÞ ð6Þ

where lb and ub are the lower and upper bounds of the

search space, respectively.

3.1.3 Somersault foraging

In this phase, the best previously discovered individual was

considered a pivot, and the manta rays update their position

by swimming and turning around the pivot. Therefore, this

phase increases the exploitation capability of the MRFO.

Equation (7) models this behavior of the manta rays

mathematically.

Xd
i ðt þ 1Þ ¼ Xd

i ðtÞ þ S:ðr2:Xd
bestðtÞ � r3:X

d
i ðtÞÞ

þ b:ðXd
randðtÞ � Xd

i ðtÞÞi
¼ 1. . .:N ð7Þ

where S is the somersault factor, which decides the som-

ersault range of manta rays, r2 and r3 are random numbers

between ½0; 1�.
The flowchart of MRFO is illustrated in Fig. 2.

3.2 SSA algorithm

Salp swarm algorithm (SSA) is a robust nature-inspired

optimization algorithm developed by Mir Jalili et al. in

[59]. SSA has very low complexity and is inspired by the

Salp chain’s two foraging behaviors in nature. The salps

are very similar to jellyfish and use water to move toward

2516 Cluster Computing (2021) 24:2511–2544

123

food. In SSA, the salp swarm divides into two groups:

leader and followers. The leader is at the front of the chain

and guides the swarm. The remaining salps in the swarm

were considered as followers. The leader in the swarm

updates its position using Eq. (8).

X j
1 ¼

X j
best þ c1ðc2:ðub j � lb jÞ þ lb jÞ

X j
best þ c1ðc2:ðub j � lb jÞ þ lb jÞ

c3 � 0

c3\0

(
ð8Þ

where X j
1 is the jth dimension of the leader, Xbest in the

position of the best solution that is found so far, c2 and c3
are random numbers in ½0; 1�, and c1 balances exploration

and exploitation and was calculated as follow:

c1 ¼ 2e�ð tTÞ
2

ð9Þ

where t and T are the current and maximum number of

iterations, the follower salps update their positions using

Eq. 10.

X j
i ¼

1

2
ðX j

i � X j
i�1Þ ð10Þ

where X j
i is the jth dimension of the ith salp and i[1.

Figure 3 shows the flowcharts of SSA.

Fig. 2 Flowchart of the MRFO

algorithm

Cluster Computing (2021) 24:2511–2544 2517

123

4 Proposed controller placement solution

As mentioned in previous sections, controller placement is

one of the most critical issues in SDN networks. By

selecting the appropriate number of controllers and their

locations, the network delay could be significantly reduced,

and the network load could be distributed. In the current

paper, a new method was proposed for selecting the con-

trollers’ optimal location by using MRFO and SSA opti-

mization algorithms, which were discretized in a novel

way. The controller placement algorithm proposed in the

present paper consists of several pieces described in detail

in the following subsections.

4.1 Discrete MRFO algorithm

Even though the basic Manta ray foraging optimization

algorithm is suitable for solving continuous problems, the

controller placement problem is discrete. Therefore, in the

present paper, MRFO was modified by two new operators

to solve discrete problems. For this purpose, Eq. (1) was

replaced by a two-point swap operator with Xi and Xbest as

ins inputs. It is worth mentioning that the order of the

inputs is significant, and by exchanging the order of input

solutions, the results will be changed significantly. The

pseudocode of the two-point swap operator is presented in

Fig. 4.

In Fig. 4, SP1 and SP2 are swap points that were

selected randomly. Figure 5 illustrates the results of the

two-point swap operator.

In Fig. 5, the values of SP1 and SP2 are 2 and 5,

respectively. Besides, Eq. (3) was replaced with the two-

point swap operator with Xbest and Xi as its inputs. Fur-

thermore, Eq. (5) was replaced by a random insert opera-

tor. The pseudocode of this new operator was presented in

Fig. 6. The function of the random insert operator is

illustrated in Fig. 7.

In Fig. 6, NC is the number of controllers, RN is a

random integer number between ½1NC�, RP
�!

is a vector

with random numbers in ½1NC�, and randperm generates a

vector with RN random integer numbers in ½1NP�:
In Fig. 7, NC is 6, RN is 3, RP

�!
is ½2; 3; 5�, and as it can

be observed clearly in the figure, the points 2,3 and 5 are

replaced with random indices. Additionally, Eq. (7) was

replaced by Eq. (11).

X j
i ¼

X j
best

X j
r

R\1=3

1=3\R\2=3

RI 2=3\R\1

8><
>: ð11Þ

where R is a random number in ½0; 1�, Xr is a randomly

chosen solution from the current swarm, and RI is a ran-

dom index. Figure 8 depicts the pseudocode of the pro-

posed discrete MRFO.

Fig. 3 Flowchart of the SSA

algorithm

2518 Cluster Computing (2021) 24:2511–2544

123

4.2 Discrete salp swarm algorithm

Like the MRFO, the SSA algorithm is a continuous algo-

rithm designed to solve continuous problems. This sub-

section presents the proposed discrete SSA algorithm. In

the literature, discrete versions of the SSA algorithm have

been proposed by scholars [42, 60, 61]; however, the pre-

sented discrete version in this paper is a novel method that

has not been tapped before. For this purpose, Eq. (8) was

replaced by Eq. (12).

X j
i ¼

X j
r if c3[0:5

X j
best otherwise

�
ð12Þ

where c3 is a random number in ½0; 1�:
Moreover, Eq. (10) was replaced by the half points

crossover operator. Figure 9 presents the pseudocode of the

half points crossover operator.

The function of the half points crossover operator is

shown in Fig. 10. In this figure, NC is 6, HP is 3, CP1 is

[1, 2, 5], and CP2 is [2, 4, 5]. The pseudocode of the

proposed discrete SSA algorithm is provided in Fig. 11.

4.3 Dijkstra’s shortest path algorithm

In the proposed algorithm, Dijkstra’s shortest path algo-

rithm was used to find the shortest path between switches

in the SDN. The pseudocode of Dijkstra’s shortest path

algorithm is provided in Fig. 12 [62].

It should also be mentioned that the position of SDN

switches was expressed based on latitude and longitude.

Therefore, a particular mechanism was needed to find the

distance between the switches in kilometers. Various

methods, such as cosine-haversine formula [63], Pytha-

gorean theorem [64, 65], low of cosines [66], etc., were

Fig. 4 Pseudocode of the two-point swap operator

Fig. 5 Two-point swap operator

Fig. 6 Pseudocode of the random insert operator

Fig. 7 Random insert operator

Cluster Computing (2021) 24:2511–2544 2519

123

proposed to calculate the distance between two longitudes

and latitudes based on kilometers. In the proposed algo-

rithm, the cosine-haversine formula was used. In the

cosine-haversine formula, the distance was calculated as

follow:

d ¼ 2:r:arcsinð
ffiffiffiffiffiffiffiffiffi
harv

p
Þ ð13Þ

where the r is the earth’s radius, which varies from

6356.752 km at the poles to 6378.137 km at Ecuador.

Additionally, harv is the haversine function that was

defined as below:

Fig. 8 Pseudocode of the proposed discrete Manta ray foraging optimization algorithm

Fig. 9 Pseudocode of the proposed half points crossover operator

Fig. 10 Half points crossover

operator

2520 Cluster Computing (2021) 24:2511–2544

123

harv ¼ sinðIn1Þ2 þ cosðu1Þcosðu2ÞsinðIn2Þ2 ð14Þ

In1 ¼
u1 � u2

2
ð15Þ

In2 ¼
c1 � c2

2
ð16Þ

where u1 and c2 are latitude and longitude of the first

switch, u2 and c2 are latitude and longitude of the second

switch in radians, respectively. Also, Eq. (17) was used to

convert longitude and latitude from degree to radian.

latitude radianð Þ ¼ latitude degreeð Þ � p
180

longitude radianð Þ ¼ longitude degreeð Þ � p
180

ð17Þ

where, p ¼ 3:1415.

4.4 Problem formulation

In the current paper, the controller placement problem was

attentively scrutinized, and a novel method was proposed

to reduce the overall delay of the software-defined net-

works (SDNs) by splitting it into several sections. In this

case, the network is split into several sub-network, in

which each sub-network has a controller. To mathemati-

cally model the network partition and controller placement

problem, the following assumptions were taken into

account.

• The location of all network switches was given and was

consistent.

• The length, bandwidth, and traffic through the link were

recognized.

• The numbers and locations of controllers could be

changed.

• The communication links were given and were

consistent.

The controller placement problem with a different

number of sub-networks is demonstrated in Fig. 13. The

SDN networks could be shown by a graph G ¼ ðS;EÞ,
which S ¼ fs1; s2; . . .; sng is the set of switches, and E is

the set of communication links between switches. The S

was formulated as:

Fig. 11 Pseudocode of the proposed discrete SSA algorithm

Fig. 12 Dijkstra’s shortest path algorithm

Cluster Computing (2021) 24:2511–2544 2521

123

S ¼

X1 Y1

X2 Y2

..

. ..
.

Xn Yn

2
6664

3
7775
n�2

ð18Þ

where the n is the number of switches. Besides, the set of

links between switches could be illustrated by a NS� NS

matrix as below:

E ¼

l1;1 l1;2
l2;1 l2;2

. . . l1;n

. . . l2;n

..

. ..
.

ln;1 ln;2

..

. ..
.

. . . ln;n

2
6664

3
7775
NS�NS

ð19Þ

where NS is the number of switches in the network, and the

elements of the matrix were defined as follows [67]:

li;j ¼
1 if there is a link between ith and jth switches
o otherwise

�

ð20Þ

Fig. 13 Controller placement

problem with different number

of controllers

2522 Cluster Computing (2021) 24:2511–2544

123

In addition, C ¼ fc1; c2; . . .; cNCg is the set of con-

trollers that were installed in the network. The controllers

were a sub-set of the switches that were selected as con-

trollers. Firstly, the set of controllers was selected ran-

domly. Afterward, the set is modified by the proposed

optimization algorithm to minimize network latency. The

process was encoded, the procedure of which is shown in

Fig. 14.

In Fig. 14, the numbers are the IDs of the switches that

were selected as controllers. In other words, the 15th, 24th,

3rd, and 10th switches were selected as controllers. The

network latency was calculated following the selection of

an appropriate sub-set of switches as controllers. The

process of calculating the latency is described in

subsect. 4.5.

After selecting the controllers, each switch determines

the nearest controller using Dijkstra’s shortest path

15 24 3 10

Fig. 14 Encoding the controller selection process

Fig. 15 The controller

placement process

Cluster Computing (2021) 24:2511–2544 2523

123

algorithm and sends its data to the nearest controller. It

should be noted that there may be more than one path for

data transfer between a switch and the nearest controller,

which is also selected by Dijkstra’s shortest path algorithm.

Figure 15 illustrates the proposed controller placement

process.

4.5 Objective function

Various competing objective functions were proposed in

the literature to evaluate controller placement approaches.

In the current paper, the average switch to controller

latency was considered as an objective function. The

average switch to controller latency is an eminent and

widely-used evaluation criterion for controller placement

Fig. 16 Pseudocode of the proposed PHCPA controller placement algorithm

Fig. 17 Duplicated indexes in

the controller sets

2524 Cluster Computing (2021) 24:2511–2544

123

used extensively in the literature [22, 68–70]. Equa-

tion (21) defines the average switch to controller latency.

FðCðpÞÞ ¼ 1

jSj
X
u2S

ðmin
v2C

Lu;vÞ ð21Þ

where |S| is the number of switches, and Lu;v is the mini-

mum latency between switch u and controller v. The

latency could be calculated by Eq. (22) [71].

Lu;v ¼
du;v

2 � 108
ð22Þ

where du;v is the shortest path length between the switch u

and the controller v.

4.6 The proposed hybrid controller placement
algorithm

This subsection presents the proposed hybrid controller

placement algorithm (PHCPA). The hybridization mecha-

nism is a renowned mechanism to increase the optimization

algorithms’ efficiency and overcome their shortcomings,

such as low convergence rate, trapping in the local opti-

mums, poor exploration/exploitation capability, etc.

[25, 26, 72]. As previously mentioned, the proposed con-

troller placement algorithm is a network segmentation

algorithm, which is considered an optimization problem.

The main goal of PHCPA is to minimize the delay in the

network by selecting an appropriate subset of switches as

controllers. Initially, a random subset of switches was

selected as controllers by Eq. (23).

Fig. 18 Pseudocode of CheckX function

Fig. 19 Diagram of the

proposed system

Table 2 Details of the software-defined networks

Network Type Geo extent Geolocation Layer No. switched No. links

1 ATT North America COM Country USA IP 25 57

2 BICS COM Continent Europe IP 33 48

3 Bell Canada COM Country? Canada, USA IP 48 65

4 Palmetto Net COM Region North Carolina, South Carolina, USA Fiber 45 70

5 IRIS Networks COM Region Tennessee, USA IP 51 64

6 SURFNET REN Country Netherlands IP 50 73

Cluster Computing (2021) 24:2511–2544 2525

123

Xi ¼ floorðrv!� NSÞ þ 1 ð23Þ

where rv! is a vector with NC random numbers in ½0; 1�, NC
is the number of controllers, NS is the number of network

controllers, and floor is a function that rounds the decimal

number to the nearest smaller integer. Following the gen-

eration of random sunsets of controllers, the subsets were

modified by the proposed hybrid discrete MRFO-SSA

algorithm to find the best subset of controllers to minimize

the network delay. In each round of the proposed PHCPA

algorithm, the solutions were divided into two swarms;

discrete MRFO modified the first swarm controller sets.

Discrete SSA modified the solutions in the second swarm.

Figure 16 presents the pseudocode of PHCPA. In modi-

fying controller sets, it is possible to place duplicate

indexes in a set. For instance, Fig. 17 represents this situ-

ation in using a two-point swap operator.

It is evident from Fig. 17 that in the resulting set, the

index seven was duplicated, and the number of controllers

was reduced from 6 to 5. A mechanism was needed to solve

this unacceptable situation. Therefore, the CheckX function

was proposed in the PHCPA algorithm to check the con-

trollers’ set, the pseudocode of which is illustrated in

Fig. 18. Furthermore, the diagram of the proposed system

is provided in Fig. 19.

4.7 Computational complexity

This subsection discusses the computational complexity of

the proposed algorithm. The proposed algorithm consists of

three main parts: calculating the distances between

switches, finding the shortest path between switches,

finding the optimal controller places.

The computational complexity of the distance calcula-

tion step is OðS2Þ, where S is the number of switches. The

complexity of the basic Dijkstra’s algorithm, which finds

the shortest path between two points, is OðSþ E � logðSÞÞ.
Therefore, the computational complexity of calculating the

shortest path between all switches is OðS� ðS� 1Þ�
ðSþ EÞ � logðSÞÞ, where the E is the number of the net-

work’s communication links.

The computational complexity of finding optimal con-

troller places could be argued in three partial parts (i.e.,

initialization, discrete SSA, and discrete MRFO). The

complexity of the initialization is OðN2Þ, where N in the

number of solutions. The computational complexity of the

proposed discrete SSA algorithm is OðR� N � NCÞ,
where R is the number of iterations, and NC is the number

Table 3 The specifications of the test environment

Name Value

Hardware

CPU Core i7

Frequency 2.7 GHz

RAM 8 GB

Hard drive 750 GB

Software

Operating system Windows 10

Language MATLAB R2017a

Table 4 The parameter values of the algorithms

Algorithm Parameter value

Proposed solution Alpha 50

Beta 0.2

a1, a2, a3 and a4 0.25,0.5,0.75,1

Threshold 10

MRFO a 2r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðrÞj j

p
r1, r2, r3, and r rand

x rand

s 2

MFO a 1

b - 1 to - 2

MVO WEPMin 0:2

WEPMax 1

p 6

SCA r1, r2, r3 and r4 rand

SSA c1, c2, c3 rand

WOA r1, r2, and p rand

a 2 to 0

C 2� r2

*Rand function generates a random number in [0,1]

Fig. 20 ATT North America network

2526 Cluster Computing (2021) 24:2511–2544

123

of controllers. The complexity of the proposed discrete

MRFO algorithm is also OðR� N � NCÞ.
It should be noted that the proposed controller place-

ment algorithm is a multi-swarm algorithm, the solutions of

which were divided into two swarms in each iteration, and

each swarm was updated with one of the discrete algo-

rithms. Therefore, the overall computational complexity of

the optimal location discovery of the controller selection

part could not be calculated accurately. However, since the

computational complexity of discrete SSA and MRFO

algorithms was almost similar, the complexity of this part

was approximately equal to OðR� N3 � NCÞ.

5 Experimental result

This section presents a bulk of experiments’ results to

evaluate the proposed algorithm’s performance and sub-

stantiate the previous section’s contributions. The experi-

ments were conducted on six real-world networks (see

Table 2), and the results of the proposed algorithm was

compared with the results of several newfangled algo-

rithms containing the Moth-Flame Optimization algorithm

(MFO) [73], Manta-Ray Foraging Optimization algorithm

(MRFO) [57], Multi-Verse Optimizer (MVO) [74], Sine

Cosine Algorithm (SCA) [75], Salp Swarm Algorithm

(SSA) [59], and Whale Optimization Algorithm (WOA)

[58]. Furthermore, due to the random nature of the

Table 5 Statistical results of the

algorithms obtained on the ATT

North America network over 30

independent runs in terms of

network delay

Minimum delay Maximum delay Average delay Standard deviation

NC ¼ 3

MFO 4.89907E?03 5.76801E?03 5.00768E?03 2.43932E?02

MRFO 4.89907E?03 4.93297E?03 4.90230E?03 1.01982E?01

MVO 4.89907E?03 5.40630E?03 4.91936E?03 1.01447E?02

SCA 4.89907E?03 4.97006E?03 4.91247E?03 2.01728E?01

SSA 4.89907E?03 5.08041E?03 4.92379E?03 4.49382E?01

WOA 4.89907E?03 4.94743E?03 4.91182E?03 1.89237E?01

Proposed solution 4.71658E103 4.71658E103 4.71658E103 1.86624E212

NC ¼ 4

MFO 2.69808E?03 3.02845E?03 2.94601E?03 9.79129E?01

MRFO 2.80408E?03 3.02845E?03 2.94957E?03 7.71242E?01

MVO 2.69808E?03 3.07096E?03 2.99703E?03 8.64070E?01

SCA 2.77865E?03 3.04947E?03 2.98215E?03 8.08606E?01

SSA 2.83129E?03 3.07096E?03 3.01078E?03 4.83404E?01

WOA 2.72351E?03 3.07096E?03 2.94257E?03 1.08698E?02

Proposed solution 2.66546E103 2.66546E103 2.66546E103 0.00000E100

NC ¼ 5

MFO 1.99229E?03 2.16847E?03 2.08075E?03 4.73380E?01

MRFO 1.79142E?03 2.10336E?03 2.00583E?03 7.62164E?01

MVO 1.99229E?03 2.22521E?03 2.06352E?03 6.31692E?01

SCA 1.97195E?03 2.12353E?03 2.04684E?03 4.03719E?01

SSA 1.97195E?03 2.12685E?03 2.05341E?03 3.91505E?01

WOA 1.97195E?03 2.07657E?03 2.03394E?03 3.44417E?01

Proposed solution 1.74550E103 1.74550E103 1.74550E103 6.99841E213

The best results are written in bold

Fig. 21 Bar graphs of the maximum delay obtained by the algorithms

on the ATT North America network

Cluster Computing (2021) 24:2511–2544 2527

123

Fig. 22 Convergence rates of the algorithms on the ATT North

America network

Fig. 23 Box plots of the algorithms on the ATT North America

network

2528 Cluster Computing (2021) 24:2511–2544

123

optimization algorithms mentioned above, each algorithm

was run 30 times independently, and the results were pre-

sented statistically/visually.

It is worth mentioning that all experiments were carried

out in the same environment with specifications expressed

in Table 3. The number of solutions and the maximum

number of iterations in the algorithms were set to 50 and

200, respectively. The other parameter values of the algo-

rithms are shown in Table 4, which are the algorithms’

default values. Moreover, reaching the maximum number

of iterations was considered as a stopping criterion.

5.1 Experiments on ATT North America network

This subsection presents the obtained results by the algo-

rithms on the ATT North America network. As provided in

Table 2, this network possesses twenty-two switches and

fifty-seven links between them. Figure 20 illustrates the

network and the position of the switches.

The statistical results of the algorithms obtained on this

network for a different number of controllers are presented

in Table 5. The bar graphs of the maximum delay obtained

by the algorithms are represented in Fig. 21.

It can be deduced from Table 5 and Fig. 21 that the

proposed algorithm achieved better results than other

competing algorithms in terms of minimum, maximum,

average delay, and standard deviation of obtained results

on three different numbers of controllers in the network.

For further investigation of the algorithm’s performance,

the algorithms’ best convergence rates for different

Fig. 24 The BICS network

Table 6 Statistical results of the

algorithms obtained on the

BICS network over 30

independent runs in terms of

network delay

Minimum delay Maximum delay Average delay Standard deviation

NC ¼ 3

MFO 7.62891E?03 9.18170E?03 7.74809E?03 3.57502E?02

MRFO 7.62891E?03 7.76427E?03 7.66786E?03 6.00839E?01

MVO 7.62891E?03 7.90206E?03 7.65630E?03 7.11758E?01

SCA 7.62891E?03 7.76427E?03 7.68111E?03 6.58999E?01

SSA 7.62891E?03 7.90206E?03 7.67229E?03 8.13971E?01

WOA 7.62891E?03 7.77210E?03 7.65847E?03 5.64859E?01

Proposed solution 7.32801E103 7.32801E103 7.32801E103 0.00000E100

NC ¼ 4

MFO 5.00117E?03 5.33001E?03 5.02991E?03 8.00776E?01

MRFO 4.94928E?03 5.01219E?03 4.99782E?03 1.39307E?01

MVO 5.00117E?03 5.12409E?03 5.02935E?03 5.11534E?01

SCA 4.84776E?03 5.12409E?03 4.99923E?03 4.57347E?01

SSA 4.94133E?03 5.12409E?03 5.02739E?03 5.90763E?01

WOA 4.95011E?03 5.12409E?03 5.00239E?03 3.26732E?01

Proposed solution 4.84776E103 4.84776E103 4.84776E103 1.00066E212

NC ¼ 5

MFO 3.59052E?03 3.73254E?03 3.66766E?03 4.29993E?01

MRFO 3.59052E?03 3.79270E?03 3.71041E?03 5.63543E?01

MVO 3.59052E?03 3.81460E?03 3.67786E?03 7.17170E?01

SCA 3.59968E?03 3.79828E?03 3.69391E?03 6.17855E?01

SSA 3.54151E?03 3.82040E?03 3.66487E?03 6.77810E?01

WOA 3.54151E?03 3.75345E?03 3.64412E?03 6.42126E?01

Proposed solution 3.43070E103 3.43070E103 3.43070E103 1.39968E212

Cluster Computing (2021) 24:2511–2544 2529

123

numbers of controllers were compared, and the results are

illustrated in Fig. 22.

According to the graphs of Fig. 22, it can be observed

that the proposed solution converged earlier and found a

better solution than other algorithms. Moreover, Fig. 23

represents the box plots of the algorithms on the ATT

North America Network. It can be concluded from the box

plots of Fig. 23, the proposed algorithm outperformed the

competitor algorithms and had a lesser random state.

5.2 Experiments on BICS network

The BICS software-defined network has thirty-three

switches and forty-eight links, which are shown in Fig. 24.

The details of the BICS network are stated in Table 2. This

subsection presents the results of experiments on this

network.

The statistical results of the algorithms obtained from

this network for the different number of controllers are

presented in Table 6. Besides, the bar graphs of the max-

imum delay obtained by the algorithms are represented in

Fig. 25.

According to the results of Table 6 and Fig. 25, the

proposed algorithm outperformed competitor algorithms

and decreased the minimum, maximum, and average

delays of the network on three different numbers of con-

trollers. Additionally, Fig. 26 shows the convergence rates

of the algorithms for the different numbers of controllers.

The simulation results expressed that the proposed

solution achieved better results in a shorter time than

competitor algorithms. Additionally, the algorithms’ box

plots on this network are provided in Fig. 27 for more-in-

depth comparisons. These box graphs showed that com-

peting algorithms’ results were very scattered, especially at

NC ¼ 5, which was more complicated. Notwithstanding,

the proposed algorithm results in all three scenarios were

more consistent, which could be stated that the proposed

algorithm was better than competing algorithms.

Fig. 25 Bar graphs of the maximum delay obtained by the algorithms

on the BICS network

Fig. 26 Convergence rates of the algorithms on the BICS network

2530 Cluster Computing (2021) 24:2511–2544

123

5.3 Experiments on Bell Canada network

This subsection evaluates the algorithms’ performance on

the Bell Canada network and provides the statistical and

visual results. The Bell Canada network consists of forty-

eight switches in Canada and the USA and sixty-five

communication links. The geolocation of the switches and

the details of the links are exhibited in Fig. 28.

The statistical results of the algorithms obtained on this

network for a different number of controllers are presented

in Table 7. Moreover, the bar graphs of the maximum delay

obtained by the algorithms are represented in Fig. 29.

The statistical results of Table 7 demonstrated that all

algorithms found the optimal places of controllers of the

network with three controllers. Nonetheless, by increasing

the number of network controllers, the algorithms lost their

efficiency and could not find the optimal places. This

phenomenon can be due to the fact that the increase in the

number of controllers surges the complexity of finding

optimal places. However, by examining the results of

Table 7 and the graphical results of Fig. 29, it can be

concluded that the proposed algorithm performed better

than competitor algorithms and reduced the delay of the

network by finding optimal places for deploying the con-

trollers. Like previous subsections, the algorithms’ con-

vergence rate was investigated, and the results are provided

in Fig. 30 for the different number of controllers.

It could be inferred from the algorithms’ results that the

proposed solution outperformed the competitor algorithms

and reduced network delay on the Bell Canada network.

Furthermore, Fig. 31 illustrates the box plots of the

Fig. 27 Box plots of the algorithms on the BICS network

Fig. 28 The Bell Canada network

Cluster Computing (2021) 24:2511–2544 2531

123

algorithms on this network. In the guise of the box graphs

of Fig. 31, the proposed method’s network latency was less

than other algorithms. The difference between the algo-

rithms increased with the growing complexity (raising the

number of controllers).

5.4 Experiments on Palmetto Net network

Herein, the experimental results of the algorithms on the

Palmetto Net network are presented. The Palmetto Net

network is a regional network and has forty-five switches

with seventy links. Figure 32 represents the Palmetto Net

network.

Table 8 presents the statistical results of the algorithms

on the Palmetto Net network. The results are provided for

three different numbers of controllers: 3, 4, and 5. Besides,

Fig. 33 illustrates the bar graphs of the worst results of the

algorithms on this network.

Table 8 and Fig. 33 express that the proposed solution

algorithm found better places to establish controllers and

significantly reduced network delay. For having a more in-

depth evaluation algorithm, the converge rate analysis was

done for the algorithms, and the results are provided in

Fig. 34. The graphs of Fig. 34 corroborated Table 8 and

imparted the superiority of the proposed algorithm.

Additionally, for a more detailed examination of the

algorithms, the algorithms’ box plots on the Palmetto Net

network are presented in Fig. 35. Box plots of Fig. 35

confirmed the statistical results of Table 8, bar diagrams of

Table 7 Statistical results of the

algorithms obtained on the Bell

Canada network over 30

independent runs in terms of

network delay

Minimum delay Maximum delay Average delay Standard deviation

NC ¼ 3

MFO 1.27271E104 1.43490E?04 1.28374E?04 3.57320E?02

MRFO 1.27271E104 1.29823E?04 1.28019E?04 7.29135E?01

MVO 1.27271E104 1.39273E?04 1.28776E?04 3.54145E?02

SCA 1.27271E104 1.29161E?04 1.27825E?04 5.80453E?01

SSA 1.27271E104 1.30494E?04 1.27983E?04 9.12127E?01

WOA 1.27271E104 1.29019E?04 1.27813E?04 5.61810E?01

Proposed solution 1.27271E104 1.27271E104 1.27271E104 3.73249E212

NC ¼ 4

MFO 8.20088E?03 9.23515E?03 8.78858E?03 3.94639E?02

MRFO 8.20088E?03 9.12972E?03 8.66577E?03 2.84317E?02

MVO 8.18164E?03 9.22955E?03 8.81791E?03 3.49735E?02

SCA 8.22794E?03 9.19873E?03 8.74866E?03 3.10148E?02

SSA 8.16546E?03 9.19873E?03 8.56902E?03 3.40545E?02

WOA 8.11478E?03 9.15080E?03 8.56192E?03 2.70457E?02

Proposed solution 8.07990E103 8.15020E103 8.08693E103 2.16371E101

NC ¼ 5

MFO 6.03077E?03 6.61245E?03 6.18162E?03 1.48477E?02

MRFO 6.00638E?03 6.31909E?03 6.18143E?03 1.09967E?02

MVO 6.01923E?03 6.32641E?03 6.14745E?03 8.83645E?01

SCA 6.09740E?03 6.35779E?03 6.19970E?03 9.26544E?01

SSA 6.01103E?03 6.53077E?03 6.14597E?03 1.19036E?02

WOA 6.01103E?03 6.38567E?03 6.17269E?03 9.96717E?01

Proposed solution 5.37059E103 5.42683E103 5.37394E103 1.26787E101

Fig. 29 Bar graphs of the maximum delay obtained by the algorithms

on the Bell Canada network

2532 Cluster Computing (2021) 24:2511–2544

123

Fig. 30 Convergence rates of the algorithms on the Bell Canada

network

Fig. 31 Box plots of the algorithms on the Bell Canada network

Cluster Computing (2021) 24:2511–2544 2533

123

Fig. 33, and convergence diagrams of Fig. 34 and revealed

the proposed algorithm’s superiority.

5.5 Experiments on IRIS network

The IRIS network is another regional software-defined

network, which was speared in Tennessee and the USA.

The IRIS network has fifty-one switches and sixty-four

communicational links among them (see Table 2). Fig-

ure 36 plots the IRIS network and the details of switches

and links of it.

The calculated minimum, maximum, and average delays

obtained by the algorithms on the IRIS network are stated

in Table 9. Furthermore, Fig. 37 demonstrated the bar

graphs of the maximum network delay obtained by the

algorithms.

As shown in Table 9 and Fig. 37, the proposed algo-

rithm achieved better results than other competing algo-

rithms in terms of minimum, maximum, average delay, and

standard deviation of obtained results on three different

numbers of controllers in the network. Besides, for a more

in-depth evaluation of the algorithms’ performance, the

algorithms’ best convergence rates for different numbers of

Fig. 32 The Palmetto Net network

Table 8 Statistical results of the algorithms obtained on the Palmetto Net network over 30 independent runs in terms of network delay

Minimum delay Maximum delay Average delay Standard deviation

NC ¼ 3

MFO 1.44611E?03 1.56112E?03 1.47934E?03 2.72078E?01

MRFO 1.44611E?03 1.49695E?03 1.46465E?03 1.96586E?01

MVO 1.44611E?03 1.51418E?03 1.47676E?03 2.13208E?01

SCA 1.44611E?03 1.49331E?03 1.46896E?03 1.83495E?01

SSA 1.44611E?03 1.51418E?03 1.46818E?03 2.45536E?01

WOA 1.44611E?03 1.48945E?03 1.45661E?03 1.68394E?01

Proposed solution 1.37381E103 1.37381E103 1.37381E103 0.00000E100

NC ¼ 4

MFO 8.91431E?02 9.64610E?02 9.42772E?02 2.19623E?01

MRFO 8.87096E?02 9.64091E?02 9.33757E?02 2.33985E?01

MVO 8.86522E?02 9.69537E?02 9.35537E?02 2.64041E?01

SCA 8.84674E?02 9.68244E?02 9.21847E?02 2.23344E?01

SSA 8.81320E?02 9.69537E?02 9.28403E?02 2.80014E?01

WOA 8.68546E?02 9.64610E?02 9.26136E?02 3.45958E?01

Proposed solution 8.29219E102 8.29219E102 8.29219E102 3.49921E213

NC ¼ 5

MFO 5.69360E?02 6.42896E?02 6.11257E?02 2.08642E?01

MRFO 5.75789E?02 6.43437E?02 6.12968E?02 2.31472E?01

MVO 5.71628E?02 6.43660E?02 6.19196E?02 2.67308E?01

SCA 5.88314E?02 6.38955E?02 6.14010E?02 1.87298E?01

SSA 5.71710E?02 6.47601E?02 6.07425E?02 2.31739E?01

WOA 5.71169E?02 6.41659E?02 6.07435E?02 2.22237E?01

Proposed solution 5.52983E102 5.52983E102 5.52983E102 4.51746E214

2534 Cluster Computing (2021) 24:2511–2544

123

controllers were compared, the results of which are illus-

trated in Fig. 38.

The convergence rate graphs of Fig. 38 represent that

the proposed solution discovered better solutions in a

shorter time compared to other state-of-the-art algorithms.

Figure 39 presents the box plots of the algorithms on the

IRIS network. Regarding these box diagrams, it could be

easily comprehended that competitor algorithms achieved a

different network latency level in the independent runs,

unlike the proposed algorithm, which refutes these algo-

rithms’ effectiveness. However, by examining the box

diagrams, it could be claimed that the proposed algorithm

was reliable and could reduce network latency.

5.6 Experiments on SURFNET network

In this subsection, the algorithms were evaluated on a giant

software-defined network to examine the algorithms’

scalability. Finally, the algorithms were investigated in

terms of their performance as well. The last network was

the SURFNET network, which had fifty switches and

seventy-three communicational links. The details of this

network are presented in Table 10 and Fig. 40.

The minimum, maximum, and average network delay of

the algorithms on the SURFNET network for three dif-

ferent numbers of controllers are represented in Table 10.

Moreover, Table 10 provides the standard deviations of the

results of the algorithms. Additionally, Fig. 41 depicts the

maximum delays of the network obtained by the algorithms

using bar graphs.

According to Table 10 and Fig. 41, it could be seen that

the proposed algorithm demonstrated a significant differ-

ence from the competitor algorithms and achieved better

results. The best convergence rates of the algorithms on the

different number of controllers are presented in Fig. 42.

Likewise, the box plot graphs of the algorithms for the

SURFNET network are exhibited in Fig. 43. Concerning

the box graphs of Fig. 43, it could be perceived that the

proposed algorithm had a significant difference from the

competitor algorithms and depreciated the network latency

as much as possible. Furthermore, it was observed that the

results of the proposed algorithm were more coherent

compared to the results of other algorithms, which is an

indicator of the proposed algorithm’s superiority.

The algorithms’ experimental results on various soft-

ware-defined networks revealed the proposed controller

Fig. 33 Bar graphs of the

maximum delay obtained by the

algorithms on the Palmetto Net

network

Cluster Computing (2021) 24:2511–2544 2535

123

Fig. 34 Convergence rates of the algorithms on the Palmetto Net

network
Fig. 35 Box plots of the algorithms on the Palmetto Net network

2536 Cluster Computing (2021) 24:2511–2544

123

Fig. 36 The IRIS network

Table 9 Statistical results of the

algorithms obtained on the IRIS

network over 30 independent

runs in terms of network delay

Minimum delay Maximum delay Average delay Standard deviation

NC ¼ 3

MFO 1.58010E?03 1.60090E?03 1.58394E?03 7.40214E?00

MRFO 1.58010E?03 1.60090E?03 1.58472E?03 8.09729E?00

MVO 1.58010E?03 1.59779E?03 1.58419E?03 6.87558E?00

SCA 1.58010E?03 1.62511E?03 1.59133E?03 1.33278E?01

SSA 1.58010E?03 1.59853E?03 1.58643E?03 8.15688E?00

WOA 1.58010E?03 1.60505E?03 1.58344E?03 7.31950E?00

Proposed solution 1.56925E103 1.56925E103 1.56925E103 4.66561E213

NC ¼ 4

MFO 8.91702E?02 1.05764E?03 9.83354E?02 4.01508E?01

MRFO 8.78431E102 1.02059E?03 9.61357E?02 3.93573E?01

MVO 8.92278E?02 1.02059E?03 9.76144E?02 4.32017E?01

SCA 9.01764E?02 1.00806E?03 9.49383E?02 3.63860E?01

SSA 9.32590E?02 1.02059E?03 9.74307E?02 2.59789E?01

WOA 9.05409E?02 1.02178E?03 9.77150E?02 3.27428E?01

Proposed solution 8.78431E102 8.78431E102 8.78431E102 9.40384E214

NC ¼ 5

MFO 5.90395E?02 6.69925E?02 6.19809E?02 2.17945E?01

MRFO 5.93953E?02 6.45621E?02 6.20318E?02 1.26785E?01

MVO 5.90580E?02 6.52745E?02 6.26911E?02 1.84837E?01

SCA 5.87022E?02 6.52745E?02 6.21648E?02 1.65607E?01

SSA 5.94564E?02 6.52745E?02 6.27372E?02 1.72738E?01

WOA 5.87433E?02 6.50855E?02 6.17669E?02 1.56475E?01

Proposed solution 5.84060E102 5.90580E102 5.84443E102 1.58134E100

Fig. 37 Bar graphs of the maximum delay obtained by the algorithms

on the IRIS network

Cluster Computing (2021) 24:2511–2544 2537

123

Fig. 38 Convergence rates of

the algorithms on the IRIS

network

2538 Cluster Computing (2021) 24:2511–2544

123

placement algorithm’s efficiency for the real-world SDN

networks with a different number of controllers.

6 Conclusion

The present paper addressed the controller placement

problem (CCP) in software-defined networks (SDNs) and

imparted a novel algorithm called PHCPA. The PHCPA

used the network portioning concept and the hybrid Manta-

Ray Foraging Optimization algorithm (MRFO) with Salp

Swarm Algorithm (SSA). Minimizing network propagation

latency was the main objective of the current paper.

The MRFO and SSA algorithms were powerful nature-

inspired meta-heuristic algorithms recently developed to

solve various incessant problems. However, given that the

CCP is a discrete problem, the MRFO and SSA algorithms

were discretized by the two-point swap, random insert, and

half points crossover operators. Afterward, they were

hybridized to enhance their search capabilities, and their

deficiencies such as slow convergence and trapping into

local optimums would be eliminated. Henceforth, the

resulting discrete hybrid optimization algorithm, was

adopted for the controller placement problem. Subse-

quently, the PHCPA was applied to six real-world soft-

ware-defined networks embracing topology-zoo to

investigate the proposed algorithm’s performance. In the

experiments, the PHCPA was compared with state-of-the-

art meta-heuristic-based algorithms regarding the best,

worst, and average network propagation obtained by the

algorithms. Additionally, the results’ standard deviations of

the algorithms’ independent runs were compared.

Moreover, for a more in-depth investigation of the

algorithms’ performance, the algorithms’ convergence rate

was also compared. It is worth mentioning that the

experiments on each software-defined network were repe-

ated on three different numbers of controllers for further

performance evaluations. The experimental results verified

the effectiveness of the contributions and superiority of the

proposed controller placement algorithm.

The proposed algorithm had a supreme convergence rate

and preeminent exploration and exploitation capabilities.

Nonetheless, it took more CPU time and required addi-

tional storage space. For future research, enthusiasts could

recruit other algorithms or apply other metrics along with

the propagation latency.

Fig. 39 Box plots of the algorithms on the IRIS network

Cluster Computing (2021) 24:2511–2544 2539

123

Table 10 Statistical results of

the algorithms obtained on the

SURFNET network over 30

independent runs in terms of

network delay

Minimum delay Maximum delay Average delay Standard deviation

NC ¼ 3

MFO 1.33371E?03 1.44684E?03 1.35117E?03 3.19392E?01

MRFO 1.33371E?03 1.36337E?03 1.34614E?03 1.00880E?01

MVO 1.33371E?03 1.37982E?03 1.35093E?03 1.54867E?01

SCA 1.33371E?03 1.38727E?03 1.34997E?03 1.41367E?01

SSA 1.33371E?03 1.36337E?03 1.34782E?03 8.67835E?00

WOA 1.33371E?03 1.35819E?03 1.34309E?03 1.05775E?01

Proposed solution 1.26047E103 1.26047E103 1.26047E103 0.00000E100

NC ¼ 4

MFO 7.96421E?02 9.57431E?02 8.53894E?02 3.13870E?01

MRFO 8.10903E?02 8.76235E?02 8.48505E?02 1.85395E?01

MVO 7.98521E?02 9.03170E?02 8.40918E?02 2.61239E?01

SCA 7.98523E?02 8.85960E?02 8.45893E?02 2.33396E?01

SSA 8.04298E?02 8.73481E?02 8.38339E?02 1.96535E?01

WOA 8.12041E?02 8.74741E?02 8.40571E?02 1.30140E?01

Proposed solution 7.77989E102 7.77989E102 7.77989E102 2.28865E213

NC ¼ 5

MFO 5.67905E?02 6.21245E?02 5.93875E?02 1.41006E?01

MRFO 5.81933E?02 6.20279E?02 6.01817E?02 1.09614E?01

MVO 5.82399E?02 6.17876E?02 5.95729E?02 9.47058E?00

SCA 5.54172E?02 6.20303E?02 5.94877E?02 1.60709E?01

SSA 5.75014E?02 6.14520E?02 5.93925E?02 1.05462E?01

WOA 5.67905E?02 6.11856E?02 5.90484E?02 1.09693E?01

Proposed solution 5.23083E102 5.23083E102 5.23083E102 7.82446E214

Fig. 40 The SURFNET network
Fig. 41 Bar graphs of the maximum delay obtained by the algorithms

on the SURFNET network

2540 Cluster Computing (2021) 24:2511–2544

123

Fig. 42 Convergence rates of the algorithms on the SURFNET

network
Fig. 43 Box plots of the algorithms on the SURFNET network

Cluster Computing (2021) 24:2511–2544 2541

123

References

1. Al-Qerem, A., et al.: IoT transaction processing through coop-

erative concurrency control on fog–cloud computing environ-

ment. Soft. Comput. 24(8), 5695–5711 (2020)

2. Masdari, M., et al.: Bio-inspired virtual machine placement

schemes in cloud computing environment: taxonomy, review, and

future research directions. Cluster Comput. (2019). https://doi.

org/10.1007/s10586-019-03026-9

3. Masdari, M., Khoshnevis, A.: A survey and classification of the

workload forecasting methods in cloud computing. Cluster

Comput. 23, 2399–2424 (2019)

4. Al-Sharif, Z.A., et al.: Live forensics of software attacks on

cyber–physical systems. Future Gener. Comput. Syst. 108,
1217–1229 (2020)

5. Iqbal, S., et al.: Minimize the delays in software defined network

switch controller communication. Concurr. Comput.: Pract. Exp.

(2020). https://doi.org/10.1002/cpe.5940

6. Bhushan, K., Gupta, B.B.: Distributed denial of service (DDoS)

attack mitigation in software defined network (SDN)-based cloud

computing environment. J. Ambient Intell. Humaniz. Comput.

10(5), 1985–1997 (2019)

7. Hu, F., Hao, Q., Bao, K.: A survey on software-defined network

and openflow: from concept to implementation. IEEE Commun.

Surv. Tutor. 16(4), 2181–2206 (2014)

8. Shaghaghi, A., et al.: Software-Defined Network (SDN) Data

plane security: issues, solutions, and future directions. In:

Handbook of Computer Networks and Cyber Security,

pp. 341–387. Springer, Cham (2020)

9. Singh, S., Jha, R.K.: A survey on software defined networking:

architecture for next generation network. J. Netw. Syst. Manag.

25(2), 321–374 (2017)

10. Rawat, D.B., Reddy, S.R.: Software defined networking archi-

tecture, security and energy efficiency: a survey. IEEE Commun.

Surv. Tutor. 19(1), 325–346 (2016)

11. Moradi, A., Abdi Seyedkolaei, A., Hosseini, S.A.: Controller

placement in software defined network using iterated local

search. J. AI Data Min. 8(1), 55–65 (2020)

12. Abuarqoub, A.: A review of the control plane scalability

approaches in software defined networking. Future Internet 12(3),
49 (2020)

13. El Kamel, A., Youssef, H.: Improving switch-to-controller

assignment with load balancing in multi-controller software

defined WAN (SD-WAN). J. Netw. Syst. Manag. (2020). https://

doi.org/10.1007/s10922-020-09523-2

14. Jalili, A., Keshtgari, M., Akbari, R.: A new framework for reli-

able control placement in software-defined networks based on

multi-criteria clustering approach. Soft Comput. 24(4),
2897–2916 (2020)

15. Singh, A.K., et al.: Heuristic approaches for the reliable SDN

controller placement problem. Trans. Emerg. Telecommun.

Technol. 31(2), e3761 (2020)

16. Fan, Y., Ouyang, T., Yuan, X.: Controller placements for

improving flow set-up reliability of software-defined networks.

In: Urban Intelligence and Applications, pp. 3–13. Springer,

Cham (2020)

17. Sminesh, C., Kanaga, E.G.M., Sreejish, A.: A multi-controller

placement strategy in software defined networks using affinity

propagation. Int. J. Internet Technol. Secured Trans. 10(1–2),
229–253 (2020)

18. Killi, B.P.R., Rao, S.V.: Poly-stable matching based scalable

controller placement with balancingconstraints in SDN. Comput.

Commun. (2020). https://doi.org/10.1016/j.comcom.2020.02.053

19. Sminesh, C., Grace Mary Kanaga, E., Sreejish, A.: Augmented

affinity propagation-based networkpartitioning for multiple

controllers placement in software defined networks. J. Comput.

Theor. Nanosci. 17(1), 228–233 (2020)

20. ul Huque, M.T.I., Jourjon, G., Gramoli, V.: Revisiting the con-

troller placement problem. In: 2015 IEEE 40th Conference on

Local Computer Networks (LCN). IEEE (2015)

21. Schütz, G., Martins, J.: A comprehensive approach for optimizing

controller placement in Software-Defined Networks. Comput.

Commun. (2020). https://doi.org/10.1016/j.comcom.2020.05.008

22. Heller, B., Sherwood, R., McKeown, N.: The controller place-

ment problem. ACM SIGCOMM Comput. Commun. Rev. 42(4),
473–478 (2012)

23. Muluye, W.: A review on software-defined networking dis-

tributed controllers. Int. J. Eng. Comput. Sci. 9(2), 24953–24961
(2020)

24. Yao, Z., Yan, Z.: A trust management framework for software-

defined network applications. Concurr. Comput.: Pract. Exp.

32(16), e4518 (2020)

25. Barshandeh, S., Piri, F., Sangani, S.R.: HMPA: an innovative

hybrid multi-population algorithm based onartificial ecosystem-

based and Harris Hawks optimization algorithms for engineering

problems. Eng. Comput. (2020). https://doi.org/10.1007/s00366-

020-01120-w

26. Barshandeh, S., Haghzadeh, M.: A new hybrid chaotic atom

search optimization based on tree-seedalgorithm and Levy flight

for solving optimization problems. Eng. Comput. (2020). https://

doi.org/10.1007/s00366-020-00994-0

27. Masdari, M., Barshande, S., Ozdemir, S.: CDABC: chaotic dis-

crete artificial bee colony algorithm for multi-level clustering in

large-scale WSNs. J. Supercomput. 75(11), 7174–7208 (2019)

28. Masdari, M., Barshandeh, S.: Discrete teaching–learning-based

optimization algorithm for clustering in wireless sensor networks.

J. Ambient Intell. Humaniz. Comput. (2020). https://doi.org/10.

1007/s12652-020-01902-6

29. Faramarzi, A., et al.: Equilibrium optimizer: a novel optimization

algorithm. Knowl.-Based Syst. 191, 105190 (2020)

30. Hayyolalam, V., Kazem, A.A.P.: Black widow optimization

algorithm: a novel meta-heuristic approach for solving engi-

neering optimization problems. Eng. Appl. Artif. Intell. 87,
103249 (2020)

31. Dhiman, G., Kumar, V.: Seagull optimization algorithm: theory

and its applications for large-scale industrial engineering prob-

lems. Knowl.-Based Syst. 165, 169–196 (2019)

32. Brammya, G., et al.: Deer hunting optimization algorithm: a new

nature-inspired meta-heuristic paradigm. Comput. J. (2019).

https://doi.org/10.1093/comjnl/bxy133

33. Kaveh, A., Zaerreza, A.: Shuffled shepherd optimization method:

a new meta-heuristic algorithm. Eng. Comput. (2020). https://doi.

org/10.1108/EC-10-2019-0481

34. Sulaiman, M.H., et al.: Barnacles Mating Optimizer: a new bio-

inspired algorithm for solving engineering optimization prob-

lems. Eng. Appl. Artif. Intell. 87, 103330 (2020)

35. Mohanty, S., et al.: A simulated annealing strategy for reliable

controller placement in software defined networks. In: 2020 7th

International Conference on Signal Processing and Integrated

Networks (SPIN). IEEE (2020)

36. Abuabara, R.I., et al.: Cost-effective Tabu search algorithm for

solving the controller placement problem inSDN. In: Pattern

Recognition Applications in Engineering, pp. 109–130. IGI

Global, Hershey (2020)

37. Griffin, L., Zuccarelli, L.: Software defined network optimization

using quantum computing. Google Patents 2020

38. Li, Y., Sun, W., Guan, S.: A multi-controller deployment method

based on PSO algorithm in SDN environment. In: 2020 IEEE 4th

Information Technology, Networking, Electronic and Automa-

tion Control Conference (ITNEC). IEEE (2020)

2542 Cluster Computing (2021) 24:2511–2544

123

https://doi.org/10.1007/s10586-019-03026-9
https://doi.org/10.1007/s10586-019-03026-9
https://doi.org/10.1002/cpe.5940
https://doi.org/10.1007/s10922-020-09523-2
https://doi.org/10.1007/s10922-020-09523-2
https://doi.org/10.1016/j.comcom.2020.02.053
https://doi.org/10.1016/j.comcom.2020.05.008
https://doi.org/10.1007/s00366-020-01120-w
https://doi.org/10.1007/s00366-020-01120-w
https://doi.org/10.1007/s00366-020-00994-0
https://doi.org/10.1007/s00366-020-00994-0
https://doi.org/10.1007/s12652-020-01902-6
https://doi.org/10.1007/s12652-020-01902-6
https://doi.org/10.1093/comjnl/bxy133
https://doi.org/10.1108/EC-10-2019-0481
https://doi.org/10.1108/EC-10-2019-0481

39. Akbar Neghabi, A., et al.: Nature-inspired meta-heuristic algo-

rithms for solving the load balancing problem in the software-

defined network. Int. J. Commun. Syst. 32(4), e3875 (2019)

40. Liao, W.-C., et al.: System and method for joint power allocation

and routing for software defined networks. Google Patents 2019

41. Xu, Y., et al.: Dynamic switch migration in distributed software-

defined networks to achieve controller load balance. IEEE J. Sel.

Areas Commun. 37(3), 515–529 (2019)

42. Ateya, A.A., et al.: Chaotic salp swarm algorithm for SDN multi-

controller networks. Eng. Sci. Technol. 22(4), 1001–1012 (2019)

43. Gao, C., et al.: A particle swarm optimization algorithm for

controller placement problem in software defined network. In:

International Conference on Algorithms and Architectures for

Parallel Processing. Springer (2015)

44. Hu, Y., et al.: The energy-aware controller placement problem in

software defined networks. IEEE Commun. Lett. 21(4), 741–744
(2016)

45. Liyanage, K.S.K., Ma, M., Chong, P.H.J.: Controller placement

optimization in hierarchical distributed software defined vehicu-

lar networks. Comput. Netw. 135, 226–239 (2018)

46. Singh, A.K., Maurya, S., Srivastava, S.: Varna-based optimiza-

tion: a novel method for capacitated controller placement prob-

lem in SDN. Front. Comput. Sci. 14(3), 143402 (2020)

47. Wang, G., et al.: An effective approach to controller placement in

software defined wide area networks. IEEE Trans. Netw. Serv.

Manag. 15(1), 344–355 (2017)

48. Wang, H., et al.: Load-balancing routing in software defined

networks with multiple controllers. Comput. Netw. 141, 82–91
(2018)

49. Kanodia, K., et al.: CCPGWO: A meta-heuristic strategy for link

failure aware placement of controller in SDN. In: 2020 Interna-

tional Conference on Inventive Computation Technologies

(ICICT). IEEE (2020)

50. Kanodia, K., et al.: HPSOSA: a hybrid approach in resilient

controller placement in SDN. In: 2020 International Conference

on Emerging Trends in Information Technology and Engineering

(ic-ETITE). IEEE (2020)

51. Li, Y., Sun, W., Guan, S.: A firefly inspired controller placement

algorithm in software defined network. In: 2019 IEEE 2nd

International Conference on Computer and Communication

Engineering Technology (CCET). IEEE (2019)

52. Sahoo, K.S., et al.: On the placement of controllers in software-

defined-WAN using meta-heuristic approach. J. Syst. Softw. 145,
180–194 (2018)

53. Jalili, A., Keshtgari, M., Akbari, R.: Optimal controller placement

in large scale software defined networks based on modified

NSGA-II. Appl. Intell. 48(9), 2809–2823 (2018)

54. Tahmasebi, S., et al.: Cuckoo-PC: an evolutionary synchroniza-

tion-aware placement of SDN controllers for optimizing the

network performance in WSNs. Sensors 20(11), 3231 (2020)

55. Tootoonchian, A., et al.: On controller performance in software-

defined networks. In: 2nd {USENIX} Workshop on Hot Topics in

Management of Internet, Cloud, and Enterprise Networks and

Services (Hot-ICE 12) (2012)

56. Nasiri, A.A., Derakhshan, F.: Assignment of virtual networks to

substrate network for software defined networks. Int. J. Cloud

Appl. Comput. (IJCAC) 8(4), 29–48 (2018)

57. Zhao, W., Zhang, Z., Wang, L.: Manta ray foraging optimization:

an effective bio-inspired optimizer for engineering applications.

Eng. Appl. Artif. Intell. 87, 103300 (2020)

58. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv.

Eng. Softw. 95, 51–67 (2016)

59. Mirjalili, S., et al.: Salp Swarm Algorithm: a bio-inspired opti-

mizer for engineering design problems. Adv. Eng. Softw. 114,
163–191 (2017)

60. Masdari, M., et al.: Optimization of airfoil Based Savonius wind

turbine using coupled discrete vortex method and salp swarm

algorithm. J. Clean. Prod. 222, 47–56 (2019)

61. El-Ashmawi, W.H., Ali, A.F.: A modified salp swarm algorithm

for task assignment problem. Appl. Soft Comput. (2020). https://

doi.org/10.1016/j.asoc.2020.106445

62. Xia, C., et al.: Path planning and energy flow control of wireless

power transfer for sensor nodes in wireless sensor networks.

Turk. J. Electr. Eng. Comput. Sci. 26(5), 2618–2632 (2018)

63. Robusto, C.C.: The cosine-haversine formula. Am. Math. Mon.

64(1), 38–40 (1957)

64. Sierpinski, W.: Pythagorean Triangles, vol. 9. Courier Corpora-

tion, Chelmsford (2003)

65. Weisstein, E.W.: Pythagorean Theorem. https://mathworld.wol

fram.com/ (2006)

66. Johnson, R.: Spherical Trigonometry. West Hills Institute of

Mathematics. https ://www.math.ucla.edu/ robjohn/math/sphere

trig.pdf

67. Liao, J., et al.: Density cluster based approach for controller

placement problem in large-scale software defined networkings.

Comput. Netw. 112, 24–35 (2017)

68. Lange, S., et al.: Heuristic approaches to the controller placement

problem in large scale SDN networks. IEEE Trans. Netw. Serv.

Manag. 12(1), 4–17 (2015)

69. Yoon, S.-K., et al.: Controller placement algorithms in software

defined network—a review of trends and challenges. In: MATEC

Web of Conferences. EDP Sciences (2017)

70. Qi, Y., et al.: Towards multi-controller placement for SDN based

on density peaks clustering. In: ICC 2019- 019 IEEE Interna-

tional Conference on Communications (ICC). IEEE (2019)

71. Wang, G., et al.: A K-means-based network partition algorithm

for controller placement in software defined network. In: 2016

IEEE International Conference on Communications (ICC). IEEE

(2016)

72. Masdari, M., Khezri, H.: Efficient VM migrations using fore-

casting techniques in cloud computing: a comprehensive review.

Cluster Comput. (2020). https://doi.org/10.1007/s10586-019-

03032-x

73. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-

inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249

(2015)

74. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer:

a nature-inspired algorithm for global optimization. Neural

Comput. Appl. 27(2), 495–513 (2016)

75. Mirjalili, S.: SCA: a sine cosine algorithm for solving opti-

mization problems. Knowl.-Based Syst. 96, 120–133 (2016)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing (2021) 24:2511–2544 2543

123

https://doi.org/10.1016/j.asoc.2020.106445
https://doi.org/10.1016/j.asoc.2020.106445
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/
https ://www.math.ucla.edu/ robjohn/math/spheretrig.pdf
https ://www.math.ucla.edu/ robjohn/math/spheretrig.pdf
https://doi.org/10.1007/s10586-019-03032-x
https://doi.org/10.1007/s10586-019-03032-x

Nasrin Firouz was born in 1983,

obtained her B.Eng. degree in

Computer Software Engineering

from Islamic Azad University,

Khoy Branch, Iran, in 2008. She

has received her M.Eng. degree

in Computer Architecture Engi-

neering from Islamic Azad

University, Tabriz Branch, Iran,

in 2011. Currently, she is

working toward the Ph.D.

degree in Software systems

Engineering at the Islamic Azad

University, Urmia branch, Iran.

Her research is focused on

software defined network, optimization and network virtualization.

Mohammad Masdari received

his B.Tech. degree in Computer

Software Engineering from

Islamic Azad University, Qaz-

vin Branch, Iran, in 2001, and

M.Tech degree in Computer

Software Engineering from

Islamic Azad University, South

Tehran Branch, Tehran, Iran, in

2003. He received his Ph.D.

degree in Computer Software

Engineering from Islamic Azad

University, Science and

research branch, Tehran, Iran, in

2014. Since 2003, he worked a

faculty member of Islamic Azad University, Urmia branch, Iran.

Presently he is an Assistant Professor in the Department of Computer

Engineering of Islamic Azad University, Urmia branch, Iran. His

research interests include Distributed Systems and Network Security.

Amin Babazadeh Sangar fin-

ished PhD of Information Sys-

tems in 2014 at Universiti

Teknologi Malaysia (Leading

University in Innovation,

Entrepreneurship and Technol-

ogy). His PhD research is

mainly focused on Business

Intelligence Systems and

through a qualitative research

on case study companies he

reached a useful method for

measuring success of BI sys-

tems. During my PhD he awar-

ded Fellowship and Scholarship

from Malaysian Ministry of Higher educations.

Kambiz Majidzadeh was born in

Urmia, Iran, in 1980. He

received the B.Sc. degree in

software engineering from the

Islamic Azad University of

Khoy, Khoy, Iran, in 2002, and

the M.Sc. degree in computer

networking and the Ph.D.

degree in information technol-

ogy from Baku State University

(BSU), Baku, Azerbayijan in

2005 and 2009, respectively.

His research interests are very

large-scale integration design

and computer networking.

2544 Cluster Computing (2021) 24:2511–2544

123

	A novel controller placement algorithm based on network portioning concept and a hybrid discrete optimization algorithm for multi-controller software-defined networks
	Abstract
	Introduction
	Related work
	Research background
	Manta ray foraging optimization algorithm
	Chain foraging
	Cyclone foraging
	Somersault foraging

	SSA algorithm

	Proposed controller placement solution
	Discrete MRFO algorithm
	Discrete salp swarm algorithm
	Dijkstra’s shortest path algorithm
	Problem formulation
	Objective function
	The proposed hybrid controller placement algorithm
	Computational complexity

	Experimental result
	Experiments on ATT North America network
	Experiments on BICS network
	Experiments on Bell Canada network
	Experiments on Palmetto Net network
	Experiments on IRIS network
	Experiments on SURFNET network

	Conclusion
	References

