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Abstract
Cloud computing has attracted scientists to deploy scientific applications by offering services such as Infrastructure-as-a-

service (IaaS), Software-as-a-service (SaaS), and Platform-as-a-Service (PaaS). The research community is able to get

access to resources on-demand within a short period of time. But, as the demand for cloud resources is dynamic in nature,

this affects resource availability during scheduling. Hence, there is a need for efficient management of resources so that

tasks can be scheduled based on their execution requirements. To provide a solution, a resource prediction based

scheduling approach has been introduced in this paper which automates the resource allocation for scientific applications in

a virtualized cloud environment. This research work focuses on the design of an optimized prediction based scheduling

approach which maps the tasks of scientific application with the optimal VM by combining the features of swarm

intelligence and TOPSIS. The proposed approach minimizes the execution time, cost, and SLA violation rate in com-

parison to existing scheduling heuristics.

Keywords Resource prediction � Resource scheduling � Cloud environment � Virtual machine � Ensembling �
Machine learning � Quality of service

1 Introduction

Cloud computing offers unlimited resources to its users in

the form of services like Infrastructure-as-a-service (IaaS),

Software-as-a-service (SaaS), and Platform-as-a-service

(PaaS). Virtualization is a key process in cloud computing

that segregates the resources of a physical machine (PM) to

create more than one execution environment and enable the

concept of multi-tenancy. These peculiar characteristics of

the cloud environment lead to certain major challenges

such as load-balancing, fault-tolerance, and scheduling.

Task scheduling (TS) is a multi-objective NP hard opti-

mization problem whose objective is to achieve successful

mapping between tasks and VMs by minimizing the exe-

cution time, cost, and service level agreement (SLA) vio-

lations between cloud user and provider.

Virtualized cloud systems have become popular in

hosting complex scientific applications such as montage,

cybershake, inspiral, sipht, etc. Cloud clients deploy the

applications onto the VMs in the cloud with dedicated

resource requirements for performance guarantee, which is

specified in terms of Service Level Agreement (SLA). The

workload of VMs varies all the time and some may exhibit

weekly or seasonal variability. To guarantee good perfor-

mance at periods of peak demand, VMs processing

capacity is often over-provisioned. This leads to poor

scheduling and cloud providers are unable to exploit the

benefits out of cloud services. Thus, it is still a challenging

problem for cloud providers to schedule the virtualized

resource adaptively in order to handle variable workloads

without SLA violation. The significant prediction of

resource usage is essential to achieve optimal resource

scheduling for cloud computing [1]. Hence, prediction

based scheduling is the motivation behind this research

work.

This research work focuses on the design of an Opti-

mized Prediction based Scheduling Approach (OPSA)

which maps the tasks of scientific application with the
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optimal VM. The existing approaches have not focused on

predicting the set of resources required for executing a

scientific application and simultaneously scheduling the

resources based on the prediction in an optimized manner.

The proposed work takes the predicted set of resources as

input and schedules these scientific applications by the

efficient utilization of resources while simultaneously

reducing the SLA violations at runtime, thereby achieving

cost-effectiveness and desired performance. To handle the

problem of multi-objective task scheduling, a multi-criteria

decision making algorithm ‘‘TOPSIS‘‘ is incorporated.

TOPSIS is a mathematical multi-criteria decision based

algorithm which supports the working of swarm intelli-

gence algorithm by finding local optimum solutions. Here,

TOPSIS is used to compute the fitness value of tasks which

is further utilized by swarm intelligence algorithm to

schedule the tasks of scientific application.

2 Related work

Various researchers have proposed prediction and scheduling

techniques but to performprediction based scheduling is still a

challenging problem. Prediction is basically used to enhance

the effectiveness of scheduling algorithms. Zhiping et al. [2]

have proposed a Deep-Q network based online resource

scheduling framework that combines the capabilities of pre-

diction and scheduling. The authors have usedGoogle Cluster

Usage Traces for conducting the experiments. The focus of

paper is on twooptimizationobjectives namely taskmakespan

and energy consumption. Bo et al. [3] in their survey paper has

stated that cloud is a cost-efficient way to address the issue of

resource scarcity for meeting the peak demands of its users.

Resource utilization, cost, SLA violation are few major

challenges which researchers need to address. Fatemah and

Seyed [4] proposed an autonomic task scheduling algorithm

for executing the dynamic workloads in a cloud environment.

They used the combination of prediction technique ANFIS

and autonomous load balancing technique for minimizing the

response time and maximizing the utilization of available

cloud resources. Mahmood, and Kamran [5] introduced

BCFrameworkwith focus a onprovisioning and scheduling of

public cloud resources for big data. The proposed approach

minimizes the average tuple latency and public cloud resource

utilization cost but it does not consider a prediction model for

handling big data fluctuations. Haion et al. [6] proposed a

multi-prediction based scheduling approach which reduces

the task failures and increases the resource utilization for

hybrid workload in the cloud data center.

Table 1 summarizes the existing resource prediction

based scheduling approaches. This table presents the pre-

diction and scheduling techniques used, problem solved,

computational requirements, outcomes, and forthcoming

challenges. From the literature review, it can be inferred

that a lot of work has been done towards prediction based

scheduling of resources but none of the approaches is

application specific. Moreover, there is need to improve the

execution time, cost, and SLA violations as mentioned in

the challenges of the surveyed research work. Therefore,

there is a lot of scope to apply these approaches specifically

for scientific applications in cloud environment and

enhance the performance in terms of execution time, cost

and SLA violations.

2.1 The main contributions of this research work
are

– In this proposed research work (OPSA), the predicted

CPU & memory usages have been taken as input.

– The application resource requirements for execution

have been compared against the availability of

resources on VMs.

– Applications are mapped to suitable VMs.

– The tasks of the mapped application were scheduled

using a combination of swarm intelligence and Tech-

nique for Order of Preference by Similarity to Ideal

Solution (TOPSIS).

– TOPSIS, a multi-criteria decision making algorithm,

has been used to compute the fitness value of the tasks

in the swarm algorithm to optimize the scheduling of

resources.

– The fitness values calculated by TOPSIS have been

assigned as local best (pbest) values of tasks.

– The task with the highest fitness value has been

considered as global best (gbest) and it has been

assigned to VM for execution and the process has been

repeated until all the tasks were scheduled.

The key objectives of the proposed approach have been

the reduction of execution time, cost, and SLA violation

rate. The proposed approach has been validated by com-

paring the results with existing scheduling heuristics.

2.2 Problem formulation

The objective of the task scheduling algorithm in this

researchwork is to solve the problem of scheduling n tasks of

a scientific application on a set of m heterogeneous VMs to

attain certain goals such as minimizing total execution time,

minimizing cost, and reducing SLA violations. So, there is a

need for an efficient scheduling algorithm which can take

into consideration multiple objectives. Many parameters

have been initialized as shown in Table 2 and various terms

used in problem formulation are given in Table 3.

The following objective problems are taken into account

for developing an optimal scheduling algorithm.
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2.2.1 Total execution time

The time taken by a job to execute on a particular VM is

known as execution time [13]. ETn is the execution time of

the jobs running in VMs on the nth node and is defined as

Eq. 1:

ETn ¼
Xvn

m¼1

Xjn

k¼1
ETnmk ð1Þ

where ETnmk is the execution time for k jobs running on m

VMs on the nth node. Hence, the total execution time (ET)

is Eq. 2:

ET ¼
XM

n¼1
ETn ð2Þ

where M is the total number of nodes.

2.2.2 Total execution cost

The cost of executing a job on a VM is computed by Eq. 3:

EC ¼ Processing cost per second � ETn ð3Þ

2.2.3 SLA violation (SLAV)

The end users state the QoS requirements to the Cloud

Service Providers (CSPs) in the form of Service Level

Agreements (SLAs) [14]. It is the responsibility of the

CSPs to make sure that an appropriate amount of resources

are allocated to an application in order to fulfill the users’

demands and minimize the SLA Violations (SLAV). The

formula to compute SLAV is given in Eq. 4:

SLAV ¼ prev Requested � prev Allocated

prev Requested
ð4Þ

here, prev Requested is the total amount of CPU MIPS and

memory bytes requested/required by a job for execution.

This is computed using the ensemble algorithm (Algorithm

1) which provides the predicted set of resources (CPU and

Memory). prevAllocated is the total amount of CPU MIPS

and memory bytes allocated for the execution. These two

parameters in the practical scenario are obtained using the

cloudsim classes ‘‘getAvailableMIPS()’’ and ‘‘getCurrent-

size()’’. The total amount of available CPU MIPS and

available memory is recorded and allocated using the

proposed prediction based scheduling algorithm (Algo-

rithm 2).

Table 2 Initialization parameters

Parameter Description

ETn Execution time of the jobs running in VMs on the nth node

ETnmk Execution time for k jobs running on m VMs on the nth node

EC Execution cost of a job on a VM on the nth node

SLAV Service Level Agreement Violation

previousRequested Total amount of CPU MIPS and memory bytes requested by a job for execution

previousAllocated Total amount of CPU MIPS and memory bytes already allocated to a VM to process a job

ACUn Average CPU utilization for nth node

JCTnmk CPU utilization of k jobs running on m VMs on the nth node

TCUn Total CPU utilization for the nth node

AMUn Average memory utilization for nth node

JMUnmk Memory utilization of k jobs running on m VMs on the nth node

TMUn Total memory utilization for the nth node

Table 3 Description of various terms

Terms

used

Description

VM Virtual Machine is an emulation of a computer system

Node A computer system where VMs are running

Job Jobs run in VM, which are created dynamically according to the job’s requirement. Jobs need to be allocated across the node pool
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2.2.4 Average CPU utilization

At any given time, for nth node, the CPU utilization ACUn

can be given as Eq. 5:

ACUn ¼
Xvn

m¼1

Xjn

k¼1
JCTnmk ð5Þ

where vn is the number of VMs running on the nth node and jn
is the number of jobs assigned to vn VMs. JCTnmk is the CPU

utilization of k jobs running on m VMs on the nth node. The

CPU utilization in percentage is calculated as Eq. 6:

ACUn %ageð Þ ¼
Pvn

m¼1
Pjn

k¼1 JCTnmk

TCUn
� 100 ð6Þ

where,

Total CPU UtilizationðTCUnÞ

¼ Clock Cycles per Instruction � InstructionCount
Clock Rate

2.2.5 Average memory utilization

At any given time, for nth node, the memory utilization

AMUn can be given as Eq. 7:

AMUn ¼
Xvn

m¼1

Xjn

k¼1
JMUnmk ð7Þ

where vn is the number of VMs running on the nth node

and jn is the number of jobs assigned to vn VMs. JMUnmk is

the memory utilization of k jobs running on m VMs on the

nth node. The memory utilization in percentage is calcu-

lated as Eq. 8:

AMUn %ageð Þ ¼
Pvn

m¼1
Pjn

k¼1 JMUnmk

TMUn
� 100 ð8Þ

where TMUn is the total memory utilization for the nth

node.

2.3 Fitness value formulation

In this researchwork, the problem formulation forminimizing

objective criterion mentioned in Eqs. 1–3 can be optimized.

The Relative Closeness Score (RCS) for each task is calcu-

lated using a multi-criteria decision making algorithm, TOP-

SIS [15, 16]. This algorithm will enhance the proficiency of

task scheduling by supporting multiple objectives. The RCS

value computed by TOPSIS is taken as Fitness Value (FV) of

the tasks for the proposed scheduling algorithm.

FVt1 = RCSt1

FVt2 = RCSt2

– –

– –

– –

FVti = RCSti

where RCS of tasks obtained using TOPSIS is RCSt ¼
RCSt1;RCSt2; . . .;RCSti which corresponds to the FV of

tasks FVt ¼ FVt1;FVt2; . . .;FVti, respectively. Fitness

Value (FV) is unique to problems and is used to calculate

particle efficiency. The search space represents the number

of particles in the population. Particles are randomly ini-

tialized and each particle has a FV obtained using TOPSIS.

The best results (i.e. FV) obtained so far by the particle is

the pbest of a particle, while gbest is FV of the best particle

in the search space. The TOPSIS algorithm for computing

RCS of tasks is elaborated in the next section.

3 Resource prediction based scheduling
framework

To achieve highly effective computations and the best

Quality of Service (QoS) of the cloud, it is vital to perform

the scheduling of tasks in an efficient manner. The map-

ping of the submitted applications and VMs are considered

to be successful if attained minimum execution time, cost,

SLA violations, and maximum utilization of resources has

been attained. To solve the problem of multi-objective task

scheduling an Optimized Prediction based Scheduling

Approach (OPSA) has been proposed in this paper.

This section details the framework of the proposed RPS

technique as portrayed in Fig. 1. This framework contains

three modules: deployment, prediction, and scheduler

which are explained further.

In the deployment module, the scientific application is

executed on the WorkflowSim (a cloud simulator for sci-

entific applications) [17]. Here, ‘‘Cybershake’’ and

‘‘Floodplain’’ are used as two different case studies in this

research work. The scientific applications considered here

are based on workflows and every workflow has a different

number of execution levels. When level 1 is completed, the

execution of level 2 is started, and so on. Therefore, each

workflow is divided into execution levels. The tasks at

every level have different execution requirements and

those execution requirements are gathered using Microsoft

Azure cloud instances and Algorithm 1 is used for future

resource usage prediction.

Once the application is deployed, a resource usage

dataset is generated and passed onto the prediction module

for further processing. The proposed method used the

simulation programming to the scientific application being
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deployed on the cloud and corresponding resource usage

data from the Microsoft Azure Cloud instances rented in

real time, then extracts data features to form the sample

dataset and finally makes the resource usage prediction.

The prediction module performs the preprocessing of data

so that there are no null values and converts the alphabetic

values to numeric for smooth processing. It also selects the

relevant features using a Genetic Algorithm, a meta-

heuristic feature selection approach. Finally, this module

predicts the usage of resources by implementing an

ensemble algorithm [18] as proposed in our previous

research work.

3.1 Machine learning models

Machine learning is a process of modeling and analyzing

learning processes that enhance system efficiency and

improve the performance of an application. Machine

learning can be categorized as supervised, unsupervised,

and reinforcement learning. Numerous applications of

machine learning involve only those tasks that can be

employed as supervised. It enables the systems to learn

from data, identify the hidden patterns, and make decisions

with the least human interference.

• Bayesian ridge regression: Bayesian ridge regression

(BRR) [19] model comprises special cases like t-test

and anova. This model was intended to fit parametric

regression models utilizing distinctive kinds of shrink-

age techniques. BRR is formulated as depicted in Eq. 9:

Y ¼ XBþ e ð9Þ

here, Y is the dependent variable, X is the independent

Variable, B is the regression coefficient, e is the Error.

B is calculated as: BOLS = (XT X) - 1 XT Y [OLS:

Ordinary Least Squares] where XTX = R and R is a

Correlation Matrix.

• Bayesian regularized neural network: The need for

lengthy cross-validation is eliminated or reduced by

Bayesian regularized neural networks (BRNN) [20, 21]

as they are better than standard back-propagation nets.

In this mathematical method of Bayesian regularization,

non-linear regression is converted to a ‘‘well-posed’’

statistical problem in the manner of ridge regression.

The formula to compute BRNN is shown in Eq. 10:

Yi ¼ g Xið Þ þ ei ¼
Xs

k¼1wkgk bk þ
Xp

j¼1
Xijb

k½ �
j

 !
þ ei;

i ¼ 1; . . .; n

ð10Þ

here, ei * N(0,r2e), s is number of neurons, wk is weight

of the kth neuron, k = 1,…….,s, bk is a bias for the kth

Fig. 1 Proposed RPS framework
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neuron, k = 1,…….,s, b½k�j is the weight of the jth input

to the net, j = 1,…….,p, gk(.) is the activation function,

gk(x) = (exp(2x ) -1)/(exp(2x) ? 1), The software will

minimize F = bED þ aEw whereED ¼
Pn

i¼1 ðyi � byiÞ
2
.

Error sum of squares, Ew is the sum of squares of net-

work parameters (weights and biases),

¼ b ¼ 1=ð2r2e ,a ¼ 1=ð2r2hÞ, r2h is a dispersion parame-

ter for weights and biases.

• Neural network: Neural networks (NN) are distin-

guished under various types such as artificial neural

network, recurrent neural network, recursive neural

network, and so on. These are statistical learning

models that deal with neurons similar to biological

neural networks [20]. These neurons are interconnected

to each other which exchange messages and the values

are calculated using supervised or unsupervised learn-

ing. The connections within the network can be

systematically adjusted based on the inputs and outputs

and we can process them using various propagation

techniques. NN is formulated as shown in Eq. 11:

Pj tð Þ ¼
Xn

i
Oi tð Þwij ð11Þ

here, Pj tð Þ is input to the neuron j, Oi tð Þ is output of the
predecessor neurons (used to calculate Pj), i is the

number of neurons in a level, w is the assigned weight

and t is the value of the neuron.

• Support vector machine: Support Vector Machine

(SVM) [22] is a machine learning algorithm which is

used for both regression and classification problems.

The main principle used is the optimal separation. The

one which is a good classifier is the one with the

maximum distance between data points of different

classes. The output of the algorithm is a hyperplane that

is used for categorizing new data. SVM is formulated as

depicted in Eq. 12:

mina;a�
1

2
a� a�ð ÞTQ a� a�ð Þ þ ZT ai � ai

�ð Þ ð12Þ

• Subject to 0� ai; ai�C; eT a� a�ð Þ ¼ 0; eT aþ a�ð Þ
¼ Cvhere, e is the unity vector, C is the upper bound,

Q is l by l positive semi-definite matrix, Qij ¼ yiyj

K xi; xj
� �

;Kxi; xj ¼ hðxiÞThðxjÞ.
• Decision tree (regression tree): Decision tree (DT) [23]

classifies instances by starting at the root of the tree and

moving through it till a leaf node. We will calculate the

probability of occurrence of all the events at each level

using the ID3 algorithm. This consists of a decision

node which specifies each attribute, edge which splits

one attribute into many. We also have a leaf node which

tells us about the target attribute and its probability of

occurrence. We also have a path that specifies the

attributes to make a final decision.

• For the given data: y 2 Rn; x 2 Rn�p; each observation

ðyi; xiÞ 2 Rpþ1; i = 1, ………, n. Suppose we have

partition of Rp into m regions R1, ………..,Rm. We

predict the response using a constant on eachRi.The

formulation for DT is shown in Eq. 13:

f xð Þ ¼
Xm

i¼1
Ci:1ðx2RiÞ ð13Þ

• Inorder to minimize
Pn

i¼1ðyi � f xið ÞÞ2 one needs to

choose: ð bCiÞ ¼ aveðyj : xj 2 RiÞ. Consider splitting

variable j 2 1; . . .:; p and splitting point S 2 R. Define

two half planes: R1 j; sð Þ ¼ fx 2 Rp : xj� sg and

R2 j; sð Þ ¼ fx 2 Rp : xj [ sg.
• Extreme learning machine: This model [24] is a

learning algorithm for the single hidden layer neural

networks used in classification and regression [25]. The

ELM used for single hidden layer feedforward neural

network training can adaptively set the hidden layer

node number and it can randomly assign the input

weights so that output layer weights obtained by the

least square method, the whole learning process com-

pleted with very little error(minimum number of error).

The training speed compared with the traditional BP

algorithm based on experiments is improved.

For N arbitrary distinct samples xi; tj
� �

2 Rn � Rm

Standard SLFNs with L hidden nodes and activation

function g(x) are mathematically modeled as Hb ¼ T

which is equivalent to Eq. 14,
XL

i¼ibiGðai; bi; xjÞ ¼ tj; j ¼ 1; . . .; N ð14Þ

here, ai is the input weight vector connecting the ith

hidden node and the input nodes, bi is the weight vector
connecting the ith hidden node and the output node, bi
is the threshold or impact factor of the ith hidden node

and H is hidden layer output matrix.

• Linear regression model: Linear Regression (LR) is the

most commonly used category of predictive analysis

[19]. It is used to show relationship between two or

more variables where there are two types of variables

one is dependent and the other is explanatory. LR is

formulated as depicted in Eq. 15:

Y ¼ bX þ Aþ e ð15Þ

here, b is slope of the line (predicted increase or

decrease for Y scores for each unit increasing X), X is

the independent variable, A is Y-intercept (level of Y

when X is 0) and e is the random error term.
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• Random forest: Random forest (RF) is a learning

method that works by developing a huge number of

choice trees at time of training and outputs the mean

forecast (regression) of the individual trees. The

formula for computing RF is shown in Eq. 16:

hk Xð Þ ¼ h Xjhkð Þ; k ¼ 1; . . .; n ð16Þ

here, hk: are independent identically distributed

random vectors, X is input variable, n is the number of

trees and h = {h1 (X),……..,hk (X)} ensemble of

classifiers.

The methods are available in R open source software

[26] which is licensed under GNU GPL. To obtain better

results, the parameters of the models need to be tuned. The

brief detail of the methods with the required packages and

their tuning parameters is described in Table 4.

The selected machine learning models are further

assembled using the proposed ensemble algorithm which is

discussed further.

3.2 Ensembling

Ensembling is the process of stacking multiple machine

learning models and improving the prediction accuracy or

decrease variance, by combining the capabilities of models.

The machine learning regression models are applied to the

generated dataset for predicting resource usage. These

models are further grouped based on the proposed

ensemble Algorithm 1.

Table 4 Machine learning

regression models
Model name Method used Package required Tuning parameters

BRR bridge monomvn T = 1000, lambda2 = 1

BRNN brnn Brnn neurons = 2,mu = 0.005,mu_dec = 0.1,mu_inc = 10,

mu_max = 1e10,min_grad = 1e-10

SVM ksvm kernlab kernel = ‘‘rbfdot’’, type = ‘‘nu-svr’’

DT rpart None usesurrogate = 0, maxsurrogate = 0

ELM elm elmNN nhid = 10, actfun = ‘‘sig’’

LM lm None None

NN nnet Nnet maxit = 100, MaxNWts = 10,000

RF randomForest randomForest ntree = 500, mtry = 2
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This algorithm explains how the application require-

ments are obtained. It is an ensemble algorithm which

provides the best combination of machine learning models

and enhances the prediction accuracy. This ensembled

model is applied to the generated resource usage dataset

from Microsoft Azure for predicting future resource usage.

The output produced by the ensembled Algorithm 1 is used

as an input parameter in Algorithm 2 which further

schedules the resources in an optimized manner.
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In the proposed algorithm, a variety of combinations is

formed for different models and means accuracy acc is

calculated for each combination. The computed accuracy

rate is further compared with the best accuracy BestAcc

already generated. If the calculated acc is better than

BestAcc then BestAcc is replaced with the calculated acc

and the provided combination of models is returned as the

best model set to ensemble. The primary focus of the

proposed algorithm is to generate the best set of models

which can be assembled to enhance the performance of

regression models for predicting the usage of resources.

The working of the scheduler module depends upon the

output of the prediction module. In this module, the

availability of the resources is checked from the resource

pool. Then, the resources are scheduled efficiently based on

the usage requirements of the application for further pro-

cessing as discussed in Algorithm 2. The aim of this

scheduling algorithm is to improve the performance in

terms of execution time, cost, and SLA by efficiently

allocating the resources to the tasks.

3.3 Proposed algorithm

The objective of this algorithm is to find an optimal solu-

tion by considering multiple criteria. Therefore, the fea-

tures of swarm intelligence are combined with TOPSIS.

The former technique is very quick at determining the

optimal solutions and the latter helps to make a decision

based on multiple criteria. Swarm Intelligence is a simple

optimization technique that performs the parallel execution

of tasks to handle global optimization issues. It works with

a swarm of individuals also known as particles. Each par-

ticle is a representation of a candidate solution. Particles

observe basic conduct: imitate the performance of adjacent

particles and success achieved on its own. Therefore, the

location of a particle is determined by the best particle in

the neighborhood pbest and by the best solution found by

all the particles in the whole population gbest. TOPSIS is a

mathematical multi-criteria decision based algorithm

which supports the working of swarm optimization by

finding local optimum solutions. The traditional TOPSIS

approach tries to pick alternatives that have the shortest

distance from the ideal-positive solution at the same time

and the farthest distance from the ideal-negative solution.

The ideal-positive approach maximizes the benefits and

minimizes the cost, while the negative optimal solution

optimizes the cost criteria and the benefit criteria are

minimized. TOPSIS makes good use of information on the

attributes, offers a cardinal ranking of alternatives and does

not require individual attribute preferences. To apply

TOPSIS, the values of the attributes must be an integer

(either in increasing order or decreasing).

In this algorithm, the resources are scheduled on the

basis of a predicted set of resources by ensemble algorithm

[18]. Initially, the average CPU utilization ðAPcpÞ and

average memory utilization ðAPmemÞ requirement of a sci-

entific application is checked against the available CPU

and memory size of the firstIdleVm. If the CPU and

memory requirements of the application are less than the

available MIPS and current size of VM, then the applica-

tion is mapped to that particular VM. Further, to schedule

the tasks of mapped application, an optimization approach

is followed. Each particle is represented by means of

velocity ðviÞ and position ðpiÞ that can be obtained using

formula 17 and 18. Each particle determines its velocity

ðviÞ and position ðpiÞ according to its best position pbest

and the best particle position in each generation gbest. The

values assigned to each particle’s dimensions reflect the

computational resources allocated to VM. Therefore, a

particle reflects the mapping of the tasks and available VM

resources. The parameters are the tasks which are also

allocated to the available VMs.

Vi½kþ1� ¼ w � Vi k½ � þ c1 � rand1 � pbest � Pi k½ �
� �

þ c2

� rand2 � ðgbest � Pi k½ �Þ
ð17Þ

Pi½kþ1� ¼ Pi½k� þ Vi½kþ1� ð18Þ

where Vi½kþ1� is current velocity and Vi k½ � is the previous

velocity of particle i. Pi½kþ1� is current position and Pi½k� is

the previous position of the particle i. c1 and c2 are

acceleration coefficients whose value can be taken between

1 and 2. rand1 and rand2 are the random numbers whose

values lie between 0 and 1. In the traditional swarm opti-

mization algorithm, the random values ðrand1 and rand2Þ
are generated by a uniform distribution method in the range

of [0,1] (U[0,1]). The probability of each random value is

similar in the range. This random parameter plays an

important role in the overall performance, as it avoids

premature convergences, increasing the most likely global
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optima. Particle’s best position is denoted by pbest and the

position of the best particle in the entire population is

denoted as gbest. w is the inertia weight usually lie between

0 and 1. Fitness Value (FV) is used as an evaluation tool to

measure the performance of a particle. The FV for each

task is computed using TOPSIS algorithm which is

explained in Sect. 3.3. If the current fitness value of a task

is less than its pbest value, then current fitness value is

assigned as its pbest value and the same process is repeated

for all the tasks. Next, all the personal best values ðpbest)
are compared and the highest pbest value is assigned as the

global best value ðgbestÞ: Again, if the current gbest value
is less than the current fitness value, then current fitness

value is assigned as gbest value and the task with the

highest gbest value is given to VM for execution. The same

procedure is applied to the rest of the tasks of all the

mapped applications.

3.4 TOPSIS- a multi-criteria decision making
algorithm

Several heuristic techniques such as Particle Swarm Opti-

mization (PSO), ANT Colony Optimization (ACO), Arti-

ficial Bee Colony (ABC), etc. have been utilized by various

researchers for optimizing single criteria based problems.

PSO is a stochastic evolutionary algorithm (EA) search

process, based on population, modeling the behavior of

bird flocks. This type of algorithm is suitable for solving

problems where a point of optimal solution is within

multidimensional parameter space. ACO is an optimization

technique in which the task is to find the best possible path

along with a graph. It basically works on the behavior of

the ants looking for a path between the source of food and

their colony. In ACO, the solutions are built on the basis of

two factors (a) attractiveness: desire to take move for state

transition and, (b) pheromone trail: social interaction

among agents to follow the path. ABC simulates the smart

foraging behavior of a swarm of honeybees. This algorithm

comprises of three main components (a) food sources: a

possible solution to the optimization problem, (b) em-

ployed foragers, and (c) unemployed foragers are the

number of possible solutions for the given optimization

problem. These optimization techniques lack the ability to

handle decision making based on multiple criteria. In order

to attain better optimized results for problems based on

multiple criteria, a multi-objective decision making algo-

rithm named ‘‘TOPSIS’’ is incorporated [15, 16]. This

method takes multiple factors into consideration while

computing the fitness value for tasks. Algorithm 3 depicts

the overall process followed by TOPSIS algorithm.

Initially, a decision matrix is constructed of size t � c,
where t are the number of tasks (alternatives) and c rep-

resents the number of criterion as shown in Table 5.

Next, the decision matrix is normalized using Eq. 19.

DMn  ðDM c½ � i½ �Þ=
X ffiffiffiffi

i2
p

ð19Þ

where i = {1,2,…,t}, j = {1,2,…,c} and (DMn j½ �½i�Þ are the
elements of the decision matrix corresponding to ith alter-

native and jth criteria. Further, the elements of ðDMn j½ �½i�Þ
are multiplied by inertia weight as shown in Eq. 20, pro-

vided by the decision maker as per the importance of cri-

teria in the scheduling process.

DMnw i½ � j½ �  DMn i½ � j½ � � inertiaweight½j� ð20Þ

Now, calculate the Attp and Attn, where Attp are the set

of attributes that have positive impact and Attn are those set

of attributes which have negative impact on the solution.

Next step is to evaluate the separation measure for Attp
and Attn for each attribute using Eqs. 21 and 22.

SM Attp½i�  ð
X

j

ðAttp c½ � � DMnw i½ � c½ �Þ2Þ
1
2 ð21Þ

SM Attn½i�  ð
X

j

ðAttn c½ � � DMnw i½ � c½ �Þ2Þ
1
2 ð22Þ
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Finally, compute the relative closeness score (RCS)

using Eq. 23 and update the velocity of tasks (particles) in

Algorithm 2 for determining the gbest value for

scheduling.

RCS½i�  SM Attn½i�=SMAttn i½ � þ SM Attp½i� ð23Þ

The final computed RCS is shown in Table 6. The score

is sent as FV for the tasks in Algorithm 2 for scheduling.

4 Experimental setup and results

The tools used to set up a testbed for experiments include

Netbeans IDE 8.2, CloudSim 3.0, WorkflowSim 1.0, Java

SDK 8, Microsoft Azure. WorkflowSim extends the fea-

tures of CloudSim that facilitates simulating cloud envi-

ronments by creating datacentres, hosts, VMs, cloudlets,

etc. This has been used to collect the resource usage

requirements of scientific applications. OpenStack, an open
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source software platform for cloud computing, is installed

on the server (HP DL380) to setup a cloud environment.

Further, four heterogeneous virtual machines are created

for parallel execution of application. The performance of

the proposed resource prediction model has been validated

in a cloud environment.

The characteristics of the VMs are mentioned in Table 7

which clearly indicates that all the four VMs have different

configurations which creates a distributed environment for

deploying applications. The resource usage of the VMs

before deploying the application is shown in Table 8.

4.1 Scenario 1: Cybershake scientific application

CyberShake represents the aleatory variability in wave exci-

tation through conditional hypocenter distributions and con-

ditional slip distributions, and it characterizes the epistemic

uncertainty in thewavefield calculations in terms of alternative

3D seismic-velocity models [27]. There are four different

CyberShake applications namely cyber30, cyber50, cyber100,

and cyber1000, which vary in number of instances. The

resource usage requirement of these applications is shown in

Table 9. The application requirements have been obtained

using theprediction algorithm(Algorithm1). In this algorithm,

the previous usage of resources alongwith application size and

various other factors has been taken into input. Finally, based

on the historical data and by applying our ensemble algorithm,

the application resource requirements are predicted.

The proposed prediction based scheduling approach has

been compared with the existing heuristics namely

DataAware, FCFS, MaxMin, MinMin, and MCT on the

basis of execution time and cost. The results are also val-

idated on the basis of SLA violation rate and the compar-

ative analysis is shown between proposed and existing

scheduling approaches.

4.1.1 Results: Cybershake scientific application

• Case 1: execution time

The performance of proposed approach has been analyzed

with Cybershake application with 30, 50, 100 and 1000

tasks. The time taken by existing and proposed scheduling

approach for executing cyber30, cyber50, cyber100 and

cyber1000 can be seen in Fig. 2.

The time taken by RPS approach for executing Cyber30

is 30.18 ms while the existing heuristics DataAware,

FCFS, MaxMin, MCT and MinMin executed the applica-

tions in 62.59 ms, 84.005 ms, 125.76 ms, 71.63 ms and

49.04 ms, respectively. Similarly, for Cyber50, Cyber100

and Cyber1000, the proposed approach took 42.63 ms,

53.70 ms and 73.03 ms respectively. In comparison, the

DataAware approach executed Cyber50, Cyber100 and

Cyber1000 in 76.83 ms, 83.78 ms, and 94.45 ms respec-

tively. Further, FCFS executed Cyber50 in 137.08 ms,

Cyber100 in 154.46 ms and Cyber1000 in 189.99 ms.

Also, the execution time taken by MaxMin is 154.73 ms,

155.16 ms and 169.81 ms for Cyber50, Cyber100 and

Cyber1000, respectively. Next, MCT accomplished the

execution of Cyber50, Cyber100 and Cyber1000 in

85.37 ms, 95.36 ms and 150.40 ms, respectively. At last,

MinMin executed Cyber 50 in 63.41 ms, Cyber100 in

93.89 ms and Cyber1000 in 103.49 ms.

The results shown in Fig. 2 clearly states that the pro-

posed prediction based scheduling approach took far less

execution time when compared to existing scheduling

approaches. The overall execution time is curtailed by

35.59% using the proposed approach.

• Case 2: cost

With every action during the application execution there is

a cost associated with it, for example- cost for resource

usage, data transfer cost, and execution cost. The cost

incurred by existing and proposed approaches is depicted

in Fig. 3. The cost obtained by the proposed approach for

executing 30 jobs of Cybershake is 144.54 INR which is

least amongst existing scheduling heuristics whereas,

MaxMin attained the highest cost of 602.21 INR. For

executing 50 jobs, RPS approach obtained cost of 204.16

INR while MaxMin executed the jobs with highest cost of

740.92 INR, FCFS with 656.40 INR. Similarly, for exe-

cuting 100 & 1000 jobs of cybershake the proposed RPS

approach incurred the minimal cost of 257.14 INR and

349.72 INR whereas MaxMin (742.98 INR) and FCFS

(909.75 INR) obtained the highest cost to execute 100 &

1000 jobs of cybershake. Hence, the proposed approach is

better than the existing approaches as it has minimum

execution cost.

Table 5 Decision matrix
Cloudlet ID Time Cost

30 0.11 8028.03

13 137.03 4478.1

20 25.11 130.13

18 29.22 142.46

16 46.15 193.25

14 47.44 197.33

22 31.06 148.27

21 1.36 4.08

19 1.36 4.08

17 1.53 4.59

2 198.22 4668.46

15 1.53 4.59

23 1.43 4.29

26 23.99 126.88
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• Case 3: SLA violation rate

It is very important that there should be minimal violation

of SLAs so that cloud providers are able to retain their

users. Another major goal of the proposed approach was to

reduce the SLA violation. The results of the SLA violation

rate can be seen in Fig. 4.

FCFS has the highest SLA violation rate of 10.32%,

followed by DataAware and MCT with 5.44% and 2.25%.

The MaxMin and MinMin have very minute difference

between SLA violation, the former attained 1.14% while

the latter obtained 1.70%. The proposed approach has

0.91% of SLA violation rate, which is the least amongst

existing scheduling approaches. It can be clearly seen that

the proposed approach has the minimum rate of SLA

violation. Therefore, the proposed prediction based

scheduling approach is better than the existing approaches.

4.2 Scenario 2: floodplain scientific application

Floodplain application [28, 29] is committed to developing

an accurate simulation for frequent surges in storms at

North Carolina’s coastal regions. Currently, a four model

system is deployed which comprises of different models

namely Hurricane Boundary Layer which is focused on

winds, ADCIRC is for surges in the storms, SWAN and

Wavewatch III are directed towards waves generated by

winds at near-shore along with oceans. To achieve accu-

racy in analysis and floodplain mapping in a given region,

broader coverage of parametric space is needed which also

Table 6 Relative closeness

score
Cloudlet ID Run time Start time Finish time Cost Score

30 0.11 0.1 0.21 8028.03 0.4761452

13 137.03 0.21 137.24 4478.1 0.3840374

20 25.11 137.24 162.35 130.13 0.9160464

18 29.22 137.24 166.46 142.46 0.9027774

16 46.15 137.24 183.39 193.25 0.8494419

14 47.44 137.24 184.69 197.33 0.8454663

22 31.06 162.35 193.41 148.27 0.8968708

21 1.36 193.41 194.77 4.08 0.9957131

19 1.36 194.77 196.13 4.08 0.9957131

17 1.53 196.13 197.66 4.59 0.9951354

2 198.22 0.21 198.43 4668.46 0.2794519

15 1.53 197.66 199.19 4.59 0.9951354

23 1.43 198.43 199.86 4.29 0.9954752

26 23.99 183.39 207.39 126.88 0.9196805

Table 7 Configuration of VMs

VM vm_id Ram Storage capacity Processor name Mips Bw(GBps) OS Vmm Graphics card

VM1 1 4 GB 58 GB i7 7700 k 1000 19.9 CentOS Xen Nvidia GeForce G7X 1080

VM2 2 8 GB 256 GB i7 8700 k 1000 21.2 Windows KVM AMD Radeon Pro WX7100

VM3 3 16 GB 500 GB i7 6700 k 1000 37.0 CentOS Xen AMD Radeon Pro 560

VM4 4 32 GB 500 GB i7 7900x 1000 41.6 CentOS KVM NvidiaQuadro M620

Table 8 Resource usage of VMs

VM Average CPU usage Average memory usage

VM1 38.31% 12.56%

VM2 35.45% 28.06%

VM3 43.69% 35.89%

VM4 45.61% 40.87%

Table 9 Resource usage requirement of Cybershake

Application Average CPU required Average memory required

cyber_30 48.03% 50.89%

cyber_50 52.07% 56.06%

cyber_100 62.61% 62.48%

cyber_1000 78.15% 59.38%
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describes the characteristics of storms. The application’s

instance executes in about a day, hence demanding large

computational and storage resources. There are four dif-

ferent sizes of Floodplain applications namely flood10,

flood20, flood30, and flood50, which vary in number of

jobs. The resource usage requirement of Floodplain

application with different number of jobs like 10, 20, 30,

and 50 is shown in Table 10.

The proposed prediction based scheduling approach has

been compared with the existing heuristics namely

DataAware, FCFS, MaxMin, MinMin, and MCT on the

basis of execution time and cost. The results are also val-

idated on the basis of SLA violation rate and the compar-

ative analysis is shown between proposed and existing

scheduling approaches. The proposed RPS approach has

been executed and tested on Microsoft Azure Cloud by

incorporating Azure Scheduler. Firstly, a resource group

has been set up in the cloud where VMs have been created

for executing scientific applications. Further, the jobs of

scientific applications have been uploaded in the scheduler

job collections directory for execution. Finally, the

resources are scheduled efficiently to the application for

further processing as discussed in Algorithm 2.

4.2.1 Results: floodplain scientific application

• Case 1: execution time

The performance of the proposed scheduling approach has

been analyzed for floodplain application with 10, 20, 30,

and 50 jobs where every single job can comprise of hun-

dred to thousand tasks. It is evident from Fig. 5 that the

proposed scheduling approach has minimal execution time

(20.65 ms) for flood application with 10 jobs, whereas

Max–Min has the maximal execution time of (68.65 ms).

The performance of the proposed approach is also verified

by incrementing the size of application to 20, 30, and 50

jobs.

The proposed approach obtains the least execution time

of (32.106 ms) for 20 jobs, while FCFS attains the highest

execution time (73.68 ms). Similarly, for 30 and 50 jobs

the proposed approach has the lowest execution time

(48.84 ms) and (62.719 ms), wherein MCT and Max–Min

give the highest execution time (91.36 ms) and

(109.53 ms), respectively. The experimental results shown

in Fig. 5 clearly states that the execution time taken by the

proposed prediction based scheduling approach is far less

than the execution time taken by existing scheduling

approaches.

• Case 2: cost

With every action during the application execution there is

a cost associated with it, for instance- cost for execution,

resource usage and data transfer. The cost incurred by

existing and proposed approaches is depicted through

Fig. 6. The proposed approach obtained the cost of 98.87

INR for executing flood application with 10 jobs which is

least amongst existing approaches, whereas Max–Min

scheduling approach incurred highest cost of 328.71 INR.

Fig. 2 Execution time comparison of existing and proposed scheduling approach
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Similarly, the cost incurred by proposed RPS approach for

20, 30 and 50 jobs is 153.73 INR, 233.85 INR and 300.31

INR respectively. On the contrary, FCFS attained the

maximum cost of 352.80 INR for flood application with 20

jobs, MCT incurred highest expense of 437.45 INR for

flood application with 30 jobs and Max–Min obtained the

cost of 524.45 INR for flood application with 50 jobs,

respectively. It is apparent that for all the different sizes of

application the proposed approach have least execution

cost, therefore the proposed RPS approach is better in

comparison to existing scheduling heuristics.

Fig. 3 Cost comparison of existing and proposed scheduling approach

Fig. 4 SLA Violation rate comparison of existing and proposed scheduling approach
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• Case 3: SLA violation rate

It is very important that there should be minimal violation

of SLAs so that cloud providers are able to retain their

users. Another major goal of the proposed approach was to

reduce the SLA violation. FCFS has the highest SLA

violaton rate of 8.21%, followed by DataAware and MCT

with 6.04% and 2.19%. Thr MaxMin and MinMin have

very minute difference between SLA violation, the former

attained 1.92% while the latter obtained 1.13%. The pro-

posed approach has 0.74% of SLA violation rate, which is

least amongst existing scheduling approaches.

The graphical representation of the above mentioned

results is depicted using Fig. 7. It can be clearly seen that

the proposed approach has the minimum rate of SLA

violation. Therefore, the proposed prediction based

scheduling approach is better than the existing approaches.

5 Conclusion and future scope

This research work focused on the importance of optimized

prediction based scheduling approach for scientific appli-

cations in a cloud environment. It elaborated the charac-

teristics chosen through the feature selection approach and

discusses a cloud testbed that was set up for testing and

validating the proposed approach. The results of the pro-

posed prediction based scheduling approach are validated

for ‘‘Cybershake’’ and ‘‘Floodplain’’ scientific applications

along with existing scheduling heuristics. The proposed

OPSA approach outperforms the existing approaches in

terms of execution time, cost and SLA violation rate. In the

future, the proposed research work can be extended for

different applications such as montage, epigenomics,

weather prediction, and predicting anomalies.

Table 10 Resource usage

requirement of Floodplain
Application Average CPU required Average memory required (MB)

flood10 2.39% 4.4

flood20 4.695% 8.162

flood30 8.72% 11.008

flood50 14.33% 14.23

Fig. 5 Execution time comparison of existing and proposed scheduling approach
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