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Abstract
Mobile cloud computing augments smart-phones with computation capabilities by offloading computations to the cloud.

Recent works only consider the energy savings of mobile devices while neglecting the cost incurred to the tasks which are

offloaded. We might offload several tasks to minimize the total energy consumption of mobile devices; however, this could

incur a huge monetary cost. Furthermore, these issues become more complex in considering the multi-tenant cloud, which

is not addressed in literature adequately. Thus, to balance the trade-off between monetary cost and energy consumption of

the mobile devices, we need to decide whether to offload the task to the cloud or run it locally. In this article, first, we have

formulated a ‘MinEMC’ optimization problem to minimize both the energy as well as the monetary cost of the mobile

devices. The ‘MinEMC’ problem is proven to be NP-hard. We formulate a special case with an equal amount of resource

requirement by each task for which a polynomial-time solution is presented. Further various policies are proposed, the

cloud can employ to solve the general case. Then we proposed an efficient heuristic named ‘Off-Mat’ based on distributed

stable matching, the solution for which determines whether the tasks are to be offloaded or not under multi-constraints. We

also analyze the complexity of this proposed heuristic algorithm. Finally, performance evaluation through simulation

results demonstrates that the Off-Mat algorithm attains high-performance in computational tasks offloading and scale well

as the number of tenants increases.

Keywords Computation offloading � Distributed algorithm � Stable matching � Mobile cloud computing � Multi-tenancy

1 Introduction

Nowadays, mobile devices (e.g., tablets, smartphones, and

smartwatches) have become a necessary part of our daily

life as the most valuable and handy communication tools.

Mobile users accumulate rich experience of more sophis-

ticated mobile applications such as gaming, web surfing,

and navigation, that run on either the devices or distant

servers using wireless networks [1, 2]. However, with these

improvements, mobile devices still encounter many

resource challenges (e.g., shorter battery lifetime, memory,

storage, and processor performance) and communications

(e.g., network bandwidth and mobility) [3]. Mobile devices

typically have limited computational power and computing

resources when compared to desktop devices. Thus, the

essential, challenging issue for mobile devices is to

improve battery life while running complex applications.

To overcome the performance, energy and resource limi-

tation issues, the best possible solution is to adopt cloud

technology. As infrastructure-as-a-service (IaaS) model of

cloud offers storage, computing, and networking resources

to mobile clients (tenants) to deploy instances as virtual

machines (VMs) on servers of a data center. Many mobile

clients want to receive reliable services in a multi-tenant

cloud, while the provider intends to maximize their

revenue.

Recent work has recognized the mobile cloud comput-

ing as a promising computing infrastructure, where storage

and processing of data occurring outside of the mobile

device [1, 4]. Various cloud-integrated mobile frameworks

e.g. CloneCloud [5], ThinkAir [6], cloudlet [7], DIET [8]

are proven to be effective for scientific computing

applications.
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In mobile cloud computing research, the offloading

technique is gaining significant attention because it has

augmented the computation potential of mobile devices by

relocating computation to the cloud. To realize the com-

putation offloading, the elastic mobile applications of

mobile clients can be partitioned into the number of tasks.

Such tasks are broadly divided into two groups: offloadable

and non-offloadable group [33]. The non-offloadable group

runs locally because of the inter-dependencies between

tasks. On the other hand, the offloadable group contains

independent tasks and can be selected to run on clouds. The

significant advantage of the computation offloading tech-

nique is energy-saving and improved battery lifetime.

Figure 1 illustrates the basic mobile cloud computing

model, where mobile users, along with mobile devices, can

be connected to servers in multiple ways. One straight-

forward way is to connect the mobile devices to the

Internet via Wi-Fi access points. However, due to its range

limitation, a more flexible approach is to use the cellular

networks for long-distance connections. In cellular net-

works, the mobile users are connected to an LTE/3G/4G

network via devices such as Base Transceiver Station

(BTS) and Mobile Switching Center (MSC). Then, the data

is transmitted to the Internet. Such type of connection

provides much higher availability in comparison to Wi-Fi

because of its high coverage. After the connection estab-

lishment, the mobile applications discover a suitable cloud

service and send the computational tasks offloading request

to cloud and subsequently cloud response to the request. If

the tasks are offloaded to the cloud server, its computation

results will be returned to the mobile devices [29]. Nev-

ertheless, it persists a challenging task to minimize the

offloading decision time and to achieve a mutually

beneficial relationship between the tasks of multiple mobile

clients and cloud servers. Thus, the effectiveness of com-

putation is measured through four fundamental questions:

whether, what, when and where to offload.

Over the last years, different frameworks and schemes

have been introducing in offloading techniques [5–8] and

[10–14], such approaches either focused on battery lifetime

by reducing the energy consumption or the execution time

while offloading the compute-intensive tasks to a remote

server. In most of the existing frameworks [5, 9], mobile

devices directly send the computation offloading requests

to the cloud server. Then the server sends back the

offloading decision to the mobile devices. However, during

the decision-making, mobile clients have to wait for

offloading decisions from the cloud which may result in the

serious waste of time without determining whether the task

offloading is beneficial. Offloading of computational tasks

also includes communication cost and monetary cost for

accessing the cloud resources. If the total cost of task

execution at a cloud server exceeds the maximum com-

pletion time limit or the budget of mobile devices, that may

lead to the offloading failures. Also, most of the existing

works on task offloading are centralized and consider a

simple single-tenant environment, where the task of a

mobile client is allocated to one cloud server. Thus, it is

necessary to design an energy, monetary cost, and delay-

aware distributed approach for a multi-tenant environment.

Therefore, this work addresses the following significant

issues related to the decision of computation offloading

such as (i) How to design a framework to reduce the long

waiting time during the decision making of computational

task offloading in a multi-tenant environment? (ii) How to

design a distributed computation offloading strategy under

multi-constraints (i.e., completion time, budget, available

resources), (iii) How to achieve the trade-off between

energy consumption and monetary cost of offloading

requests, and (iv) How to use game theory heuristics to

maintain the dual preferences between the tasks of multiple

mobile clients and servers.

To address the above issues, in this work, we present a

novel distributed computation offloading framework

named ‘Off-Mat’ to improve the offloading decision under

multi-constraints and minimizing multi-tenant resource

contention. Our framework’s challenges are to design an

offloading strategy to effectively minimize the monetary

cost and energy consumption of offloading requests under

multiple constraints and propose an efficient,

stable matching mechanism to allocate the offloaded tasks

to servers based on their preferences. Concretely, the idea

of dual preferences enables the game players to express

different policies based on the ranked preference list sat-

isfying requirements. In contrast, the concept of stability is

applied to address the conflicts of interest among players.Fig. 1 Heterogeneous mobile cloud computing
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We present a stable matching based approach to solving the

computation offloading problem. More specifically, this

algorithm works into two phases: In the first phase, it

achieves the offloading decision and improves the response

time. The second phase performs a many-to-one distributed

stable matching to achieve a trade-off of preferences

between tasks and servers. The key contributions of this

work are as follows:

– Formulated ‘MinEMC’ problem using a 0-1 integer

linear programming (ILP) problem and theoretically

proven to be NP-Hard.

– Then, a special case is provided by relaxing the

conditions by assuming the same amount of resources

are needed by each task, and each of the mobile devices

has infinite energy capacity for which a polynomial

time optimal solution is proposed using the bipartite

weighted graph matching.

– To solve the general case, we propose a distributed

heuristic algorithm named Off-Mat algorithm, which

works in two phases: (i) Off: Offloading phase and (ii)

Mat: Matching phase. We also analyze the overall

complexity of the Off-Mat algorithm.

– Finally, we demonstrate our proposed approach by

numerical results and algorithmic analysis. The exper-

imental results validate the efficacy of the proposed

Off-Mat algorithm.

The rest of this work is arranged in following way: Sect. 2

discusses a summary of the existing literature on compu-

tation offloading and stable matching. Section 3 presents

the novel computational tasks offloading framework. The

system model is discussed in Sect. 4. In Sect. 5, problem

formulation is provided. In Sect. 6, we design algorithms to

resolve the special and general case of the MinEMC

problem. We then show the extensive simulations through

real-world parameters in Sect. 7. Finally, we summarized

the paper with future remarks in Sect. 8.

2 Related work

We have categorized the existing literature from two per-

spectives: The first part is focused on offloading schemes

while the other part is on stable matching. Along with the

related work, we have also highlighted their limitations to

draw motivations for this work.

2.1 Computation offloading

To fully utilize cloud potentials, the majority of researches

is focused on using distant cloud infrastructures with rich

resources to augment the abundant capabilities of mobile

devices. For example, the model of cloudlet [19, 20] was

introduced to utilize nearby devices as cloud servers. It has

attracted substantial research attention as it can deliver

computing services with minimum energy consumption

and delay. Several offloading schemes have been intro-

duced in [11, 12, 21, 22] to decrease the energy-saving

level of devices while meeting the constraint of completion

time. Wang et al. [10] proposed an application offloading

scheme for delay and energy trade-off by using the model

of a bipartite graph. Barbera et al. [30] studied the energy

cost, bandwidth, and data backup in the real-time system

for computation offloading. Huang et al. [31] proposed a

dynamic offloading scheme by using Lyapunov based

optimization for energy saving while fulfilling the execu-

tion time of applications. To ensure the energy fairness at

the device end, Song et al. [13] presented an energy-effi-

cient application offloading framework for traffic-energy

trade-off. For execution delay optimization, Xia et al. [14]

presented a threshold-based model for heterogeneous net-

works. It offloads the application if the forecasted execu-

tion delay is smaller than the acceptable delay; otherwise,

the application runs locally on mobile devices. In the work

of Huang et al. [32], two approaches are presented: the first

one is to manage the offloading users, and the other is the

estimate the execution delay for offloading decisions.

These approaches followed a traditional offloading tech-

nique, where the cloud makes the decision based on the

information received from mobile devices and either

focused on battery lifetime or the execution time while

offloading the applications to the cloud.

To minimize the delay between mobile clients and

cloud, the middleware or agent-based architecture is

introduced in the literature. To solve the task allocation

problem and reduce the overall consumption of energy, Nir

et al. [34] proposed a task scheduler model on the cen-

tralized broker. In [35] Liu et al. presented a wireless

resource scheduling based on back-off technique for

mobile agent-based architecture to further enhance the QoS

features of real-time streams. In comparison to traditional

offloading frameworks, the agent-based framework is

advantageous into two aspects: first, it can provide faster-

offloading decisions on the neighboring agents itself in

place of the remote cloud. Second, it collects the resource

utilization details on a periodic basis from the cloud to

accommodate the resource demand of mobile clients.

Hence it minimizes the number of offloading requests and

heavy computation workload directly to the cloud. Con-

cerning energy saving in a multi-user offloading environ-

ment, Meskar et al. [36] designed a deadline constraint-

based computation offloading approach. In [37, 38] Chen

et al. provided a computation based multi-user offloading

scheme to reduce the processing time and energy con-

sumption but not consider the completion time. Liu et al. in

[39] presented a multi-resource allocation strategy to

Cluster Computing (2021) 24:1793–1824 1795

123



optimize the system throughput and service time latency.

To optimize the resource allocation, in [40], Kuang et al.

proposed a quick response framework. In this framework,

the authors have considered the bandwidth constraint and

completion time to optimize energy saving. Haber et al.

[42] modeled the optimization problem for energy effi-

ciency and computational cost of offloading task in a multi-

tier edge based cloud architecture. They have designed an

algorithm using branch & bound for finding the optimal

solution. Further, they have proposed a low-complexity

algorithm and an inflation-based approach for finding a

polynomial-time solution. Fang et al. [43] designed

scheduling schemes to enhance multi-tenant serving per-

formance for real-time mobile offloading systems. They

have implemented a system named ATOMS for computer

vision algorithms and proposed a Plan-Scheduling algo-

rithm to improve delay and mitigate resource contention.

Ghobaei-Arani et al. [44] presented an organized literature

survey of resource management techniques for fog com-

puting. They have designed a classical taxonomy to iden-

tify cutting edge methods and also discussed the open

issues. Lakhan et al. [45] provided a microservices based

mobile cloud platform and designed the application parti-

tioning based task assignment algorithm for robust execu-

tion of applications. Verma et al. [46] presented a robust

architecture for multimedia applications using mobile

cloud computing. Shakarami et al. [47] provided a sys-

tematic literature review on computation offloading based

on the game theory techniques for mobile edge environ-

ment. They have designed a classification to identify state-

of-the-art techniques and also discussed the open issues.

Nagasundari et al. [48] proposed a service selection

scheme for multi-user based computation offloading envi-

ronment. Further, they have exploited hidden markov

model and fuzzy KNN based mobility prediction via

cloudlet servers to enhance the framework. De et al. [49]

provided multi-level partial and full offloading approaches

using cloudlet, public, and private cloud servers. They have

further analyzed the delay and power consumption and

compared them with the existing offloading methods. For

multiplayer online gaming in the cloud, Ghobaei-Arani

et al. [50] provided an autonomous resource provisioning

architecture. They have designed an adaptive neuro-fuzzy

inference system based prediction model to handle work-

load fluctuations and designed a fuzzy decision tree

approach to determine the auto-scaling decisions. Derhab

et al. [51] designed a mobile cloud offloading framework

for the two-factor mutual authentication applications.They

have introduced a decision-making scheme for offloading

the authentication application along with its virtual smart

card, using energy cost, mobile device’s residual energy,

and security. Nir et al. [54] proposed a centralized broker-

node based architecture for task scheduling mobile cloud

computing. The experimental results demonstrated that the

offloading with optimization based technique results less

energy consumption and monetary cost in comparison with

the offloading without optimization using the centralized

scheduler. To provide incentives for fog nodes and mini-

mize the computational cost of mobile devices, Chen et al.

[55] provided a cost-effective offloading approach for

mobile-edge environment with the cooperation between the

remote cloud and fog nodes while considering task

dependency constraint. Hassan et al. [56] presented a

reinforcement learning-based SARSA approach to solve

the resource allocation issue in the edge and perform the

optimal offloading decision to reduce computing time

delay, system cost, and energy consumption. Hassan et al.

[57] proposed a deep Q-learning based code offloading

strategy in mobile edge for IoT applications. The proposed

approach has significantly improved the computation

offloading by minimizing the latency of service computing,

execution time, and energy consumption. Enayet et al. [58]

proposed a mobility-aware resource provisioning frame-

work, named Mobi-Het to enable remote execution of big

data tasks on the mobile cloud, which promises higher

efficiency in timeliness and reliability. Islam et al. [59]

developed an ant-colony based mobility and resource-

aware VM migration model for the mobile cloud-based

healthcare system in smart cities. Bedi et al. [60] proposed

a multi-cloud storage technique for resource-constrained

mobile devices to optimize mobile devices’ resources and

improve the performance of CPU usage, battery con-

sumption, and data usage. Durga et al. [61] designed an

efficient context-aware dynamic resource allocation that

utilizes the client present context information to meet the

performance requirements specified by user. Saleem et al.

[62] proposed a dynamic bitrate adaptation strategy using

stochastic optimization for maximizing the user’s QoE.

They have applied video assessment models and QoE

feature metrics for evaluation. Elashri et al. [63] provided

schemes for efficient offloading decision-making for soft

and weakly hard (firm) real-time applications while

ensuring the tasks schedulability. Milan et al. [64] designed

a bacterial foraging optimization based task scheduling

approach using for minimizing the idle time of VMs.

However, the aforementioned literature’s major limitation

is the non-existence of stability inducing offloading under

multi-constraints (i.e., completion time, budget, available

resources) while minimizing both the monetary cost and

energy consumption of mobile devices in the heteroge-

neous multi-tenant mobile cloud environment. The detailed

side-by-side comparison between the proposed approach

and the existing techniques discussed in Tables 1 and 2.
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2.2 Stable matching

The concepts of stable matching have been widely adopted

since 1962 when Gale and Shapley presented a deferred

acceptance algorithm in their pioneering work for solving

the college admission problem [25]. Such type of game

theory is successfully applied in many areas. Such as Kim

et al. [16] have used the Hospital/Residents based

Table 1 Comprehensive review of existing computation offloading approaches

Year Work Utilized technique Performance metrics Evaluation

tools

Advantages Disadvantages

2020 [45] Application

partitioning

Setup time, energy

consumption, response

time

Java,

REST

API

Reducing setup time and

response time

Lack of data privacy

mechanism

2020 [48] Fuzzy K nearest

neighbour

(KNN) and

Hidden Markov

Model

Computation cost MATLAB Cost effective service selection Overhead have not been

investigated

2020 [49] Multilevel full and

partial task

offloading

Power and delay

consumptions

MATLAB High power and delay efficiency Low scalability

2020 [51] Two-factor mutual

authentication

scheme

Efficiency against

different attacks

Ensure both secrecy and

authentication properties

High computational

complexity

2020 [56] Reinforcement-

learning-based

SARSA method

Minimizing system cost

in terms of energy

consumption and

computing time delay

– Reduced system cost, Better

decision making

Scalability issue

2020 [62] Lyapunov

optimization

Average video quality,

average bitrate level,

and switch frequency

NS-2 Maximize viewer QoE (quality

of experience) in adaptive

streaming

Heterogeneous wireless

environment is not

considered

2020 [63] Dynamic speed

scaling

Execution cost, energy

efficiency

Amazon

EC2

platform

Reduce the power costs,

Maximize the power saving

Static power consumption is

not considered

2020 [64] Bacterial foraging

optimization

Makespan, running time,

imbalance degree,

energy consumption

Cloudsim Low makespan, Less energy

consumption

Not evaluated on actual

environments

2019 [57] Deep Q-learning Execution time, latency,

energy consumption

MATLAB Support parallelism, Better

execution time and energy

Dynamic workloads are not

used

2019 [42] Branch-and-

Bound, convex

approximation

method

Computational cost,

energy consumption

– Hierarchical edge-clouds Problem of users mobility,

load balancing

2019 [43] Plan-Schedule

approach

Resource contention,

accuracy, delay

Micro

Testbed,

AWS

Testbed

Multi-tenant serving

performance is improved

Sub-second latency violations

due to waiting time in queue

2019 [50] ANFIS predictor

and Fuzzy

decision tree

Mean Square Error,

Cost, Response Time

CloudSim Accuracy, Reducing cost,

Reducing response time, High

correlation between ANFIS

and experimental data

Energy efficiency, throughput,

reliability are not considered

2019 [60] Multi cloud

storage approach

Battery consumption,

CPU usage and data

usage

Android

Emulator

Improve resource consumption

of mobile devices in both

stationary and mobility modes

Privacy, reliability have not

considered

2019 [61] Queuing theory Response time, energy

consumption,

throughput

CloudSim Improve service time and

quality of service

Overhead of the proposed

approach has not been

investigated, Multi-cloud

environment is not

considered
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stable matching to resolve the problem of cloud supported

smart TV migration. Many� to� one matching approach

is similar to the college admission problem [18], where a

student can be admitted to a university, on the other hand, a

university can admit many students. Similar to this prob-

lem, in [17], adopted a college admission based game in

which the small scale stations and macrocells (i.e., col-

leges) are seeking to enroll the users (i.e., students) with

given preferences. The other real-world applications of the

matching game are: assigning hostel rooms to students and

matching medical interns to hospitals etc. Based on the

notion of matching theory [23–25], the tasks of multiple

mobile client applications and the cloud servers can be

identified as the players of two sides in a many� to� one

matching game. In particular, one task of the mobile

application may be offloaded to one server; on the other

hand, one server can host many tasks of different mobile

apps depending on its resource availability. However, the

Table 2 Comprehensive review of existing computation offloading approaches

Year Work Utilized technique Performance metrics Evaluation

tools

Advantages Disadvantages

2018 [40] Dynamic programming Energy saving, request

response delay

Custom

simulator

Improve response time and

energy saving

User mobility,

scalability, and

heterogeneity have not

been considered

2018 [54] Centralized broker

node architecture

Energy consumption,

monetary cost

IBM ILOG

CPLEX

Minimized the total energy

consumption and cost

Task priority, network

congestion, and

execution redundancy

are not considered

2018 [58] Multi-layer

architecture

Throughput, load

standard deviation,

delay

Custom

testbed

Support heterogeneity and

mobility, Reduce scheduling

delay under high load

Not considering the task

priority and admission

control

2017 [55] Greedy offloading

policy, simulated

annealing technique,

brute force method

Response delay, User

budget, Service cost

MATLAB Minimize the application finish

time

Mobility, and

heterogeneity have not

considered

2017 [59] Ant colony

optimization

Completion time, VM

migration overhead,

resource over-

provisioning

Custom

testbed

Reduces the average task-

execution lifetime, VM

migrations Increase the total

number of task completed

Mobility aware task

execution time and

context-awareness

requires improvement

2017 [10] Heuristic-based Energy consumption,

execution delay

AMPL

CPLEX,

C??

simulator

Reduce energy consumption

and execution delay

Not evaluated using a

real-world scenario

2017 [36] Gauss-Seidel method Energy, number of

iterations needed,

Solution quality

– High performance compared to

a lower bound on total

energy-performance

Communication

overhead and user

mobility patterns are

not considered

2016 [38] Game theory System-wide

computation

overhead, Beneficial

users,

– Achieve superior computation

offloading performance and

scale well with the users

Scalability issue,

Decision making

capability requires

improvement

2016 [39] Markov decision

process

Throughput, service

latency

MATLAB Better performance over a

broad range of environments

User mobility,

multicloudlet setup

have not been

considered

2015 [37] Game theory Computing cost,

number of iterations,

number of messages

– Achieve efficient computation

offloading performance and

scale well with the system

size

The user mobility

patterns are not

considered

2020 Proposed Matching theory

(weighted bipartite

matching, and

stable matching)

Monetary cost, energy

consumption,

response time, delay,

budget, happiness

Custom

simulator

Multi-tenancy, stability,

reduces response time, and

monetary cost, high energy-

efficiency

Dynamic workloads are

not applied, more QoS

metrics are needed
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classical theory of stable matching cannot be directly

applied in computation offloading scenario as the tasks

have different demands of CPU, memory, bandwidth, and

storage, etc. and the servers have a different capacity

constraint. This problem becomes more complicated

because of the size and demand heterogeneity. To clarify

such an ambiguous situation, we have developed new

preference functions and propose a new distributed stabil-

ity concept based on a deferred acceptance algorithm and

proved its convergence as well as optimality results.

Thus, in the proposed work, the matching game

approach is adopted to solve the stable matching issues

between the workload i.e., tasks of mobile clients and the

cloud servers. This work maintains the trade-off of pref-

erences by creating individual preference set to model each

player’s interest and stability results as the solution rather

than optimality.

3 Off-mat: framework for computational
tasks offloading

This section presents the ‘Off-Mat’ framework with

underlying assumptions, components, and their interaction.

3.1 Components of framework

The mobile multi-tenant cloud environment is depicted in

Fig. 1. It composes the crowd of mobile devices, elastic

mobile applications, computation-intensive tasks, access

points (APs), agents, and cloud servers. The mobile clients

operating mobile devices are geographically distributed

into different regions and lie in the coverage of APs. Each

mobile device has some tasks to be offloaded. The agents

are active near to the APs and connected to the cloud via

the high-speed wireline network. It handles the offloading

requests sent by mobile devices. In a multi-tenant cloud, it

provides shared computing resources to multiple mobile

clients. Cloud have sufficient resources (i.e., compute,

storage, and networking) to execute the requests in the

form of VMs, but at a time cloud can support limited

requests. Therefore, it requires the optimal decision-mak-

ing method to filter unnecessary requests. The Off-Mat

framework is represented in Fig. 2.

In this framework, we have designed middleware for

mobile devices as well as for agents. The device middle-

ware is composed of application partitioner, device pro-

filer, offloading manager, and local execution manager.

The application partitioner is responsible for partitioning

the dependent and independent tasks. The device profiler

gathers the information of device resources (i.e., energy,

used resources, etc.), currently executing tasks, network

resources, i.e., bandwidth. The offloading manager is used

to filter the incompetent tasks at the device end. The exe-

cution manager follows the decision of the offloading

manager. The middleware on the agent is composed of a

resource monitor, which periodically collects the servers’

resource information from the cloud. The task profiler

detects the invalid requests based on resource constraints.

The matching engine matches the offloadable tasks to

cloud servers while the remote execution manager follows

the decision of a matching engine. The middleware at the

agent minimizes the request delay and determine the final

execution of tasks to cloud servers. Figure 3 depicts the

sequence diagram of the computation offloading process.

3.2 Phases of framework

The 2-phase computation offloading framework work in

the following phases:

(i) Phase I- Off (Offloading): The offloading workflow

starts with the device partitioner that partitioned the

application into independent and dependent tasks and sent

it to the device profiler. The device profiler gathers the

meta-data of device and information such as: currently

executing applications, type of device, tasks, network

bandwidth, available energy and resources, and sends it to

the offloading manager.

Based on the available resource information, the

offloading manager decides whether the mobile device can

be benefited by the task offloading or not? Here it checks:

(i) whether the offloading energy is less than the local

energy or not and (ii) whether the required bandwidth is

lesser than the available bandwidth. If it satisfies the con-

straints, then it sends the request to the agent, otherwise,

the device profiler kept on collecting the information. The

agent periodically collects the cloud server information

from the resource monitor. If it receives tasks, then it

validates the constraints for maximum task completion

time, monetary cost, and cloud resources availability. In

case of failure, it filters the useless requests and sends an

offloading failure message to the device local execution

manager through its remote execution manager. To execute

the above process, both mobile and agent perform the

asynchronous procedures.

(ii) Phase II-Mat (Matching): If the tasks are offloadable,

then it negotiates with the distant cloud for reserving

resources for the given time periods and send the request to

the matching engine. The matching engine creates the

preference sets for mobile client tasks and servers and

applies the distributed matching. Then it sends the out-

comes to the remote execution manager. The remote exe-

cution manager is mainly responsible for sending the

offloadable tasks to the cloud servers and finally receiving

and returning the computation results to the device’s local

execution manager. Hence the agent is a critical component
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as it monitors the cloud servers information and filters the

device requests based on different parameters. It applies the

distributed algorithm to find out the stable matching

between tasks of mobile clients and servers. Thus it per-

forms the optimal resource allocation to minimize multi-

tenant resource contention. The workflow of the filtering

process is shown in Fig. 4. Next, we have analyzed and

formulated various task models to be used for this

framework.

Fig. 2 The Off-Mat computation offloading architecture

Fig. 3 Sequence diagram of computation offloading process
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4 System model

This section discusses the model of computation & mon-

etary cost and illustrate the matching concepts. The key

notations used in work are described in Table 3.

Let us assume a set of D mobile devices, denoted by

MD ¼ fD1;D2; :::g. For each mobile device, there are

several computational tasks for offloading, denoted by

T ¼ fti;1; ti;2:::; ti;jg, where ti;j refers to the jth task of

mobile device i. ri;j denotes the resources (i.e, memory,

CPU, storage, and bandwidth etc.) required by task j of

device i. Each computational task ti;j 2
SD

i¼1 MDi can be

run locally or offloaded to the kth server. We represent the

set of cloud servers by S ¼ fs1; s2; :::skg and the total

number of resource available at sk by Rk. We consider the

total available resource at the cloud servers as well as at the

devices are enough the execute all the computational tasks

of different applications. For each task ti;j, if it runs locally,

the energy consumption would be eloci;j . We also assume

Erem
i is the energy left at the mobile end. Let us denote

energy to offload task ti;j to server k as eoffi;j;k. Now, as we all

know that each server will have its own policy as to what

kind of tasks to execute. Policies here mean that whether

the cloud prefers the one which gives the highest revenue,

or it could be like preferring the larger task. These policies

are the ones that decide how much monetary cost is

incurred during offloading of the computational task to the

cloud. As we are using shared multi-tenant cloud resources

while maintaining isolation between the tasks offloaded.

We denote MCi;j;k as the cost incurred by task ti;j when

offloaded to server k.

4.1 Computation and communication task
models

Next, we have derived task models to compute energy

consumption and execution time.

Energy consumption analysis:

(i) Local energy consumption: If the task is decided to

run locally then the local energy consumption eloci;j can be

Fig. 4 Off-Mat workflow

Table 3 Main notations with descriptions

Symbol Description

ti;j jth task of mobile device i

MD Set of mobile devices

eloci;j
Energy to run the task ti;j locally

Ti Set of tasks at mobile device i

S Set of cloud servers

Ploc
i;j

Power used in local execution of task ti;j

Cloc
i:j

CPU cycles for task ti;j

Sloci;j
Execution speed of local device i

Ccloud
i;j;k

CPU cycles for task ti;j at cloud server sk

Scloudi;j;k
Execution speed of cloud server sk

eoffi;j;k
Energy to offload task ti;j to server k

esenti;j;k Sending energy

ereci;j;k Receiving energy

eidlei;j
Idle energy consumption

ri;j Resource required by ti;j

Rk Total number of available resources at sk

Bsend
i;j;k

Data bits uploaded

Brec
i;j;k Data bits received

zi;j;k Variable to denote if task ti;j is offloaded to cloud server k

MCi;j;k Monetary cost to offload ti;j to server k

MCtrans
i;j;k Data transfer cost for offloading the task Ti;j;k

MCVM
i;j;k Cost for running task ti;j on cloud VM

MCtrans
i;j;k The data transfer cost

Tloc
i;j

Time to locally execute task ti;j

Toff
i;j;k

Time to offload ti;j and get result back from server k

Trem
i Maximum allowed time to get tasks results in device i

Erem
i Residual energy at mobile device i

a Trade-off preference parameter

b Policy factor deciding cost per unit time for cloud servers

c Cost per megabyte (MB) in network

l Matching function
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computed by the power used during local execution Ploc
i;j ,

number of CPU cycles Cloc
i;j for task Ti;j

loc and execution

speed Sloci;j of local device.

eloci;j ¼
Cloc
i;j � Ploc

i;j

Sloci;j

ð1Þ

(ii) Offloading energy consumption: The energy costs of

offloading tasks to distance cloud can be calculated as the

sum of transmission energy i.e., sending energy esenti;j;k and

receiving energy ereci;j;k and eidlei;j is the idle energy con-

sumption waiting for the results from the cloud.

eoffi;j;k ¼esenti;j;k þ eidlei;j þ ereci;j;k ð2Þ

eoffi;j;k ¼Psend
i;j;k � Tsend

i;j;k þ Pidle
i;j � Tidle

i;j þ Prec
i;j;k � Trec

i;j;k ð3Þ

Execution time analysis:

(i) Local execution time: To run the task locally, the

local execution time can be determined as the ratio of CPU

cycles to execute task ti;j to the execution speed Sloci;j of

device.

Tloc
i;j ¼

Cloc
i;j

Sloci;j

ð4Þ

(ii) Remote execution time: If the task is granted to execute

on the distant cloud, then the remote execution time can be

determined by the CPU time consumption and transmission

time i.e., sending and receiving time.

Toff
i;j;k ¼

Bsend
i;j;k

rsendi;j;k

þ
Ccloud
i;j;k

Scloudi;j;k

þ
Brec
i;j;k

rreci;j;k

ð5Þ

where Bsend
i;j;k and Brec

i;j;k represents the data bits uploaded and

the data bits received respectively.

4.2 Monetary cost model

Monetary cost analysis: Each device has an offloading

budget for mobile cloud services set by mobile clients. The

monetary cost is the sum of data transferring cost and pubic

cloud services cost.

(i) Cost of data transferring: The data transfer cost for

offloading the task Ti;j;k can be expressed as:

MCtrans
i;j;k ¼ cðBsend

i;j;k þ Brec
i;j;kÞ ð6Þ

where c is the cost per megabyte (MB) in network i.e. 3G,

wifi etc.

(ii) Public cloud services cost:

The cost of public cloud services depends on service

type and its usage. For running task ti;j on cloud VM, It can

be expressed as follows:

MCVM
i;j;k ¼ b

Ccloud
i;j;k

Scloudi;j;k

ð7Þ

where b denotes the cost per time unit of using the cloud

instance which is the factor depending on the policy of the

cloud.

Hence the total monetary cost can be expressed as:

MCtrans
i;j;k þMCVM

i;j;k ð8Þ

¼ cðBsend
i;j;k þ Brec

i;j;kÞ þ b
Ccloud
i;j;k

Scloudi;j;k

ð9Þ

4.3 Matching concepts and preference functions

The matching of tasks to servers can be considered as an

outcome of a many-to-one matching game. Where multiple

tasks can be allocated to one server based on preference

functions and matching constraints. In this section, we have

defined the preliminaries to explain the concepts of

matching theory.

Definition 1 Given the set of tasks T and the set of servers

S, mathematically a matching function can be defined as

l : T [ S ) 2T[S such that:

– lðsÞ � T such that jlðsÞj � rs; 8s 2 S, where jlðsÞj
represents the collective resources of all tasks that are

matched to s.

– lðtÞ � S such that jlðtÞj ¼ rs, or jlðtÞj ¼ 0; 8t 2 T and

s 2 S; where jlðtÞj is the server resources of s that is

matched to t and jlðtÞj ¼ 0 means that task t is

unassigned.

– t 2 lðsÞ if and only if lðtÞ ¼ s, 8t 2 T and s 2 S;

Here, the definition describes that matching is defined to

be a many-to-one relation, where each cloud server is

matched to a subset of tasks. The objective of matching is

to obtain an efficient and stable matching. In such matching

game, each player specifies their preferences over the other

depending on its objective in the mobile cloud computing

environment.

Definition 2 A matching l can be blocked through a

agents pair (t, s) if there exists a (t, s) pair with t 62 lðsÞ
and s 62 lðtÞ then such kind of pair is termed as blocking

pair.

Definition 3 The obtained matching l is stable if (a) No

blocking pair is exist and (b) Each of the tasks are

embedded to cloud servers.

Theorem 1 Stable matchings always exist for a set of

marriages.
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Proof This theorem can be proven through the classical

deferred acceptance algorithm (DAA) known as the Gale�
Shapley0s algorithm [25] for a stable marriage problem

[27]. It applies an iterative procedure and finds a stable set

of marriages. To begin with this procedure, let us assume a

set of players, say men propose to women based on their set

of preferences. It continues until there exists a man who is

available and not yet proposed to all women of his set.

Then he can propose to the highly preferred woman of his

set who also has not yet rejected his proposal. If the woman

is available, she holds the received proposal on a string to

ensure the possibility of some better proposal. If she

already received the proposal, then she rejects the least

preferred proposal. This procedure is repeated until no

further proposal can be formed since no men can propose

to the woman more than once. Once the last women receive

her proposal, the algorithm stopped and matched each

woman to the man (if there exist any) whose proposal she

is still holding in her string. The woman-oriented model

also operates in a similar fashion by changing the roles of

man and woman [26].

For general settings, the marriage model can be

extended to the college admissions problem [25], where

each college is looking for multiple students to admit, and

each student aspires to be matched with one college. It is a

prominent extension of many-to-one. The resource alloca-

tion problem in the cloud environment can be naturally cast

as a stable matching problem, which resolves the conflict-

ing interests amid all of the stakeholders and achieving

stability. Here, we can model mobile tasks as ‘students’

and servers as ‘colleges,’ where both are wishing to be

matched with each other. The preferences can be trans-

formed to distinct policies. Due to the size heterogeneity of

mobile tasks (i.e., CPU, memory, bandwidth, and storage,

etc.), the task allocation problem is modeled as a job-

machine stable matching problem [26], where machines

have heterogeneous capacities, and jobs have different

sizes. Each machine can contain multiple jobs ensuring the

total size of jobs should not exceed its total capacity. Each

machine possesses transitive preference with respect to all

the acceptable jobs whose size is smaller than the capacity

of machine. Equivalently, each job also possesses transitive

preference with respect to all the acceptable machines

having sufficient capacities to accommodate the job. The

job-machine model is a more general type of many-to-one

matching, and the problem of college admissions can be

seen as a special case where all the jobs are having same

size representing students [25, 26]. h

5 Problem formulation

The computational tasks offloading problem is formulated

over various decision variables. We define energy to run

task j at mobile device i locally as elocði;jÞ,energy for

offloading the task j from mobile device i to server k as

eoffði;j;kÞ. Let us define a variant,

zi;j;k ¼
1; if task is offloaded

0; otherwise

�

ð10Þ

The total energy consumed by tasks of different applica-

tions can be defined as

XT

j¼1

1�
XjSj

k¼1

zi;j;k

 !

eloci;j þ
XT

j¼1

XjSj

k¼1

zi;j;ke
off
i;j;k ð11Þ

The total energy consumption of mobile devices can be

defined as

XD

i¼1

XT

j¼1

1�
XjSj

k¼1

zi;j;k

 !

eloci;j þ
XD

i¼1

XT

j¼1

XjSj

k¼1

zi;j;ke
off
i;j;k ð12Þ

The total monetary cost by tasks at task ti;j can be defined

as

XjSj

k¼1

zi;j;kMCi;j;k ð13Þ

The total monetary cost at the mobile devices from all the

tasks can be defined as

XD

i¼1

XT

j¼1

XjSj

k¼1

zi;j;kMCi;j;k ð14Þ

Now, we formulate the overall objective function of

MinEMC problem as follows:

min
XD

i¼1

XT

j¼1

1�
XjSj

k¼1

zi;j;k

 !

eloci;j þ
XD

i¼1

XT

j¼1

XjSj

k¼1

zi;j;ke
off
i;j;k

þ a
XD

i¼1

XT

j¼1

XjSj

k¼1

zi;j;kMCi;j;k

 !

ð15Þ

subject to

XjSj

k¼1

zi;j;k � 1; 8ti;j 2
[D

i¼1

MDi ð16Þ

XT

j¼1

XjSj

k¼1

zi;j;kMCi;j;k �MCbudget
i ; 8i 2 ð1; 2; ::::DÞ ð17Þ
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1�
XjSj

k¼1

zi;j;k

 !

Tloc
i;j þ

XjSj

k¼1

zi;j;kT
off
i;j;k � Tmax

i

; 8i 2 ð1; 2; ::::DÞ; 8j 2 ð1; 2; ::::TÞ

ð18Þ

XT

j¼1

1�
XjSj

k¼1

zi;j;k

 !

eloci;j;k �Erem
i ; 8i 2 ð1; 2; ::::DÞ ð19Þ

XD

i¼1

XT

j¼1

zi;j;kri;j �Rk; 8sk 2 S ð20Þ

zi;j;k 2 f0; 1g; 8ti;j 2
[D

i¼1

MDi; 8sk 2 S ð21Þ

In the formulated problem, a is a trade-off preference

parameter, allowing the designer to weigh energy consump-

tion andmonetary cost differently. Equation 16 represents the

offloading decision variable zi;j;k need to be 0 or 1. Equa-

tion 17 guarantees that the monetary cost should be less than

the available budget. Equation 18 defines the total completion

time of the task can not exceed the threshold of maximum

completion time. Equation 19 ensures that the local energy to

run the tasks of mobile devices at di can not overreach the

residual energy of di. Equation 20 ensures all the resources

(i.e., CPU, memory, bandwidth, and storage, etc.) required by

mobile devices ri;j should not exceed the available limit of

resources represented byRk. Equation 21 denotes the value of

offloading decision variable zi;j;k should be 0 or 1. It also

ensures that the task tj of device i belongs to the set of mobile

devices MD and server sk belongs to the set of servers S.

6 Proposed algorithms

Firstly we discuss the complexity of the derived problem

and present a specialized case after relaxing some con-

straints and then proceed to solve the general case using

distributed algorithms. The proposed algorithm is an

improved version of Gale and Shapley’s DAA for many-to-

one matching and similar to the college-admission problem

[16]. At last, we discuss the complexity analysis of the

proposed algorithm.

6.1 Problem complexity

To derive the complexity of a defined problem, we use the

well known multiple knapsack problem [41].

Theorem 2 MinEMC problem is NP� Hard.

Proof Let’s derive the NP-hardness of the formulated

problem by assuming a special case, where eoffi;j;k ¼ 0 for

8i; j; k and Erem
i �

PD
i¼1

PA
j¼1

PT
k¼1 e

off
i;j;k. It means if we

ignore the offloading energy i.e. eoffi;j;k ¼ 0 and assuming

that each mobile device exhibit ample amount of energy to

run the tasks then the objective function in Equation (15)

will become to

XD

i¼1

XA

j¼1

XT

k¼1

zi;j;ke
loc
i;j;k ð22Þ

NP-hardness of the optimization problem can be proven

through a reduction from a well-known problem of multi-

ple knapsacks. Given a set I of n items with weight wi and

profit pi where wi and pi 2 ð1; 2; ::::nÞ and a set of m

knapsacks with capacity cj where cj 2 ð1; 2; ::::mÞ. Now the

optimization problem is to pick T disjoint items subsets

with weight wi, such that the overall profit pi of selected

items can be maximized. Each subset of items can be

allocated to a knapsack with capacity cj, which can not be

less than the total weight of selected items. Similar to the

problem of multiple knapsack, an another instance can be

created for the decision form of proposed optimization

problem to solve in polynomial time as follows: Given a set

of T of n tasks of mobile agents with required amount of

resources wi and energy to locally run the tasks pi where

wi and pi 2 ð1; 2; ::::nÞ and cloud servers set m with

available resources cj where cj 2 ð1; 2; ::::mÞ. Now the

multiple knapsack optimization problem is to choose

I disjoint subsets of tasks, such that the overall profit of the

selected tasks is maximized. More specifically, the profit

maximization problem of chosen items is equivalent to

maximize the derive objective function.

The reduction is polynomial. Due to the hardness of

multiple knapsack problem, hence we get the multiple

knapsack problem’s instances, which is analogous to

another instance of maximizing the objective function.

Thus the formulated optimization problem in Equation (22)

is NP-hard. h

6.2 Optimal solution for special case

Let us assume the special case, where the resources needed

to run each task in the mobile devices is equal, i.e., resi;j = r

and the residual energy is unlimited for eachmobile device; it

means that each mobile device can run all of its tasks locally

without energy constraints. Assuming this configuration, we

present a polynomial time solution via minimum weight

bipartite matching. Firstly, we build a bipartite graph

G(S1 [ S2, L), as shown in Fig. 5. The set of vertices, S1; S2 of

the graph and set of edges L, can be transformed as follows.

– There is a vertex vi;j corresponding to each task ti;j in S1.

That is each task has a vertex in S1, i.e., S1 = { vi;jj8ti;j 2
[n
i¼1MDi }
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– There is a vertex v
0
i;j corresponding to each task ti;j in S2

also. For each server k, we add |R/r| vertices in S2 and

denote them as v
00

k;k
0 . That is S2 comprises of vertices

corresponding to each task and |R/r| vertices for each

server, i.e., S2 = { v
0

i;jj8ti;j 2 [n
i¼1MDi }

S
{ v

00

i;jj8sk 2
S; 1� k� jR=rj }

– Considering any two vertices vi;j 2 S1 and

v
0

i;j 2 S2; 8i; j, a link ðvi;j; v
0

i;jÞ can be added to L and

give a weight of wi;j ¼ elocali;j to it.

– For any two vertices vi;j 2 S1 and v
00

k;k
0 2 S2; 8i; j; k; k

0
, a

link ðvi;j; v
00

k;k
0 Þ can be added to L and give a weight of

wi;j ¼ eoffi;j;k þ aMCi;j;k to it, i.e. L={ ðvi;j; v
0
i;jÞj8vi;j 2

S1and8v
0
i;j 2 S2 }

S
{ ðvi;j; v

00

k;k
0 Þj8i; j; k}.

Theorem 3 The MinEMC problem with the same resource

requirement for all the tasks and unbounded energy at the

mobile device could be transformed towards obtaining a

minimum-weighted bipartite matching in graph G(S1; S2; L).

Proof We show that any matching in a given graph G is a

feasible solution for proposed problem, i.e.

– if link ðvi;j; v
0
i;jÞ is included in matching, then

P
k ¼

1jSjxi;j;k ¼ 0 in our solution.

– if link ðvi;j; v
00

k;k
0 Þ is included in matching, then task ti;j

can be offloaded to run on server sk.

The constraints 19 and 20 and are satisfied as we have
Pn

i¼1

PT
j¼1 xi;j;k � jR=rj an unlimited energy as our relax-

ations. We now show that a feasible solution fzi;j;kg can be

transformed into a weighted matching in graph G as follows:

From constraint 16, we can say that for vertex vi;j, the total

matchings can only be one, i.e. either the link ðvi;j; v
0

i;jÞ if
PjSj

k¼1 xi;j;k ¼ 0 or ðvi;j; v
00

k;k
0 Þ if xi;j;k ¼ 1.Whichmeans atmost

one incoming link is chosen in matching. So, feasible solution

of proposed problem is transformed into a feasible matching.

We can prove that the weight acquired in a minimum

weighted matching bipartite matching problem is equiva-

lent to an optimal outcome. From Eq. 15 we get,

XD

i¼1

XT

j¼1

1�
XjSj

k¼1

zi;j;k

 !

eloci;j þ
XD

i¼1

XT

j¼1

XjSj

k¼1

zi;j;ke
off
i;j;k

þ a
XD

i¼1

XT

j¼1

XjSj

k¼1

zi;j;kMCi;j;k

 !

¼
XD

i¼1

XT

j¼1

XjSj

k¼1

zi;j;kðeoffi;j;k þ aMCi;j;kÞ

þ
XD

i¼1

XT

j¼1

1�
XjSj

k¼1

zi;j;k

 !

eloci;j :

ð23Þ

From our weights assignment, it can be observed that the

sum of weights with the minimum weighted matching

problem in a bipartite graph is equivalent to the optimal

solution of the proposed problem.

From this, it is concluded that the proposed special case

could be solved using polynomial time-optimal solution.

6.3 Designing algorithm for general case

Distributed algorithm for computation offloading: For the

first phase, we have designed the distributed algorithm for

computation offloading inspired by [28]. In the distributed

version, each node can asynchronously execute its computation.

The proposed algorithmwork in two procedures for a pair of the

mobile device and on the agent lies in the coverage area of the

mobile client i.e. MobileDevice() and Agent() as discussed in

Algorithm 1. The algorithm works in following phases:

The MobileDevice() procedure: This procedure is

performed for every mobile device.

1. Firstly, in line 5� 7 it initializes the EnergyList and

updates the information by available local energy elocalt

for each task of mobile device MD. The CostList is

used to rank the costs for each task t at MD based on

their monetary cost. After that it sums the respective

ranks and creates a OffloadList of tasks at each device.

2. It iteratively applies the constraints till the offloadList

becomes empty. From line 10� 11 it checks the

offloading energy, local energy, and required band-

width for task t. If it is satisfied, then it sends an offload

message for task t and wait for reply.

3. From line 12� 20, if the reply is accepted then it

updates Erem
i and remove the task from the OffloadList.

If the reply is rejected then it runs the task locally on

the device and updates Erem
i and removes the task from

the OffloadList else it doesn’t run the task.

4. If the OffloadList becomes empty then a stop message

is received.

The Agent() procedure: This procedure is performed for

every agent lies in the coverage area of mobile device MDFig. 5 Bipartite graph modelling for computational tasks offloading
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1. Wait for messages from mobile device MD

2. In line 28� 32, it accepts the message received from

MD and check the monetary cost, completion time

constraints and required resource constraints and if it

satisfied then send the ‘‘accepted message’’ else it

sends the ‘‘rejected message’’ to MD

3. After completing the procedure, a stop message is

received.

Distributed algorithm for stable matching Our objective

is to create the preference sets and to generate a

stable matching between tasks of different sizes as VMs

and cloud servers. We do that with the help of the policies

at both the server and the mobile end. As the model under

consideration uses a multi-tenant, we get tasks that are

sharing resources of the cloud instance. So, we have to

ensure that isolation is achieved. This can be done with the

help of having defined policies that give preference lists for

each of the sets. Let us identify our two sets here which are

used in matching, the solution for which will ensure that

both energy and monetary cost are minimized at the mobile

end.

Set of servers As defined in the model, we have k servers

labeled from 1 to k. Here we add a special server s0, which

helps us in matching. This s0 has no policies as to prefer

one task over other, i.e., all tasks are preferred equally, and

this server has a quota as infinity, which means this special

server accepts all the tasks proposing it. This special server

s0 is defined so that all the tasks which are matched to this

server are executed locally. All the other servers will have

their policies which they follow to give their preference for

the tasks along with their quota limitation.

Set of tasks As defined in the model, we have a set of

tasks from each of the mobile devices labeled as ti;j. These

tasks will have to ensure that their policy would try to

decrease overall energy consumption while reducing total

monetary cost as well.

The preferences sets for task and servers can be defined

as follows:

(i) Servers preference list function The multi-tenant

cloud provider, generally aims to consolidate the mobile

client workload onto a minimum number of hugely occu-

pied servers so that the idle servers can be switch-off to

minimize the operational cost and maximize the revenue.

Each server can accommodate multiple VMs based on

quota qmax of the maximum number of VMs. The servers

create their preferences based on the function called PSðsÞ
based on the policies they employed, where s denotes the

server. The preference set for servers with different policies

can be defined as:

policy 0 Server 0 employs a policy as all tasks are equal

irrespective of the incentive or the size of tasks, which

means s0 prefers all the tasks equally.

policy 1 Some server between 1 to k might choose to

follow this policy which is revenue-maximizing, which

means they choose those tasks which give maximum

incentives for them monetarily.

PSðsÞ ¼ nðIncentiveÞ ð24Þ

where Incentive is a monetary benefit for providing the

services.
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policy 2 Some server between 1 to k might choose to

follow this policy which is to choose maximum size tasks

first, which means they choose those tasks which have big

sizes. The reason for this might be if the task sizes are

large, then they might execute for a long time and earn

them more incentives while decreasing the maintenance

costs.

PSðsÞ ¼ nðtasksizeÞ ð25Þ

where tasksize is the size of the tasks under consideration.

This way, there can be a large variety of policies

depending on CPU, RAM, memory, which the servers can

employ depending on their situation to have maximum

incentives to serve the multi-tenant model.

The server always prefers to match with the tasks pro-

viding higher PSðsÞ.
(ii) Tasks preference list function From the perspective

of mobile clients and resource demand of tasks. The tasks

create their preferences based on the function called PTðtÞ,
where t denotes the task. Each task can be assigned to one

server. The tasks have one policy, which is to minimize

their monetary cost and total energy.

Mathematically the matching function for tasks can be

defined as follows: For server s0 :

PTðtÞ ¼ eloci;j ð26Þ

For servers 1 to k:

PTðtÞ ¼ eoffi;j;k þ aMCi;j;k ð27Þ

After this each task will have a preference list PTðtÞ which
sorts all the servers from 0 to k in ascending order of

preference.

The tasks always prefer to match with the server pro-

viding higher PTðtÞ.
Now we discuss our proposed algorithm, as shown in

Algorithm 2, which is inspired from the Gale and Shapley0s
DAA [25] for many-to-one stable matching.
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We execute this algorithm on each agent. It works as

follows: In (Phase 1.i) All servers and tasks exchanged

information and marked as unengaged. In Phase1.ii The

task computes their preference lists by using function

PTðtÞ. In Phase1.iii Every server computes its preferences

using function PSðsÞ. The matching algorithm then begins

with rounds in the course of which tasks send proposals,

servers reply with counter-proposals, and tasks either reject

or accept the proposal (Phase 2.i to Phase 2.viii). Each

server that collects a new proposal can reassess its chances

and consequently marked unengaged (Phase 2.i).

W(s) contains the list of those tasks that have proposed at

least once to server s. There is a dynamic list denoted as

D(s) again initialized to W(s) prior to receiving counter-

proposal from any server (Phase 2.ii). For each round,

every unengaged task further proposes to its highest

favorable server for which it hasn’t proposed yet(Phase

2.i). Each server collecting proposals includes the players

to its progressive proposer’s list and again initializes its

dynamic list (Phase 2.ii). With the help of the dynamic list,

it explores for its most favorable one, including only tasks

and releases a counter-proposal to such tasks.(Phase 2.iii).

Each task matches the received counter-proposals with its

preference list obtained with the servers; it has not pro-

posed yet (Phase 2.iv). If one of the servers is more pre-

ferred than the most desirable counter-proposal,

subsequently, the task rejects the proposals while carrying

on with proposing (Phase 2.iv, Phase 2.v). Else, the task

accepts its most favorable counter-proposal (Phase 2.iv).

For particular counter-proposal, if each of the tasks accepts

it, then they become engaged with the server. From the

whole computed set in which the set of tasks and cloud

servers were previously engaged are shattered, and all of

their corresponding players marked as unengaged (Phase

2.v). If at least one task doesn’t permit, subsequently the

server is set to be unengaged (Phase 2.v), Its dynamic list is

upgraded via eliminating tasks found rejected its counter-

proposal also currently engaged with some other server

(Phase 2.vi). The counter-proposals continue to execute

until no more server can issue any new counter-proposal

(Phase 2.vii). The ongoing round stops and the algorithm

get into a new round (Phase 2.viii). The algorithm termi-

nates when no additional tasks can be rejected. Hence the

outcome is stable matching.

6.4 Algorithm analysis

This section discusses a brief complexity analysis for the

proposed algorithms.

Theorem 4 The total run time complexity of the offloading

algorithm Algorithm1 is O(TlnT).

Proof We give different tasks in all the mobile devices as

input to the algorithm and get the decision for each of the

tasks as to offload, run locally, or get rejected by the

algorithm. The total run time complexity of the offloading

algorithm is O(TlnT), where T indicates the total number of

tasks, which is calculated as the sum of the number of tasks

in each of the mobile devices (MDs). The number of tasks

in one MD is calculated as the sum of tasks in each of its

applications.

Theorem 5 On the basis of proposals received from

players,the complexity of Algorithm2 is Oðk5Þ, where

k ¼ maxðT; SÞ.

Proof Let’s begin with an upper bound on the proposals

generated through the tasks of mobile devices, then an

upper bound for cloud servers are also considered. In at

most T proposals, each task has proposed to each of the

cloud servers. Hence, in at most T � S proposals, the tasks

have proposed to all cloud servers. For no more than S

counter-proposals, each cloud server has proposed to all of

the tasks. Moreover, each server counter proposes in each

round. Therefore, in at-most T � S� T , the cloud servers

released all of their counter-proposals. Hence, we can

derive that the proposals should not exceed T3 � S2. The

overall complexity of proposed algorithm is Oðk5Þ, where
k ¼ maxðT; SÞ.

We are using counter proposals to eliminate the problem

of complementaries. Now, once we obtain the solution to

our stable matching, we execute all the tasks which are

matched to s0 locally and offload all others to their own

cloud.

Theorem 6 Algorithm2 converges i.e., give a matching

outcome within a finite number of iterations.

Proof Following the initialization phase, we enter into a

matching phase for all the unengaged tasks. The matching

phase is composed of two different loops. The first one

represents proposals from tasks. For each iteration of this

exist an outer loop, there is a counter-proposal from the

servers to the set of tasks. Both loops terminate after

executing a finite number of iterations. During the phase of

counter-proposals, the following cases can arise:

Case 1 If an engaged server is still engaged, then its

dynamic list D(S) will remain unchanged. (As mentioned in

Phase 2.vi, only the list of all unengaged servers is

updated.)

Case 2 If an unengaged server has become engaged,

then its dynamic list will remain unchanged. (As mentioned

in Phase 2.vi, only the list of all unengaged servers are

updated)

Case 3 If an unengaged server is still unengaged. This

case may arise when a few of the tasks it counter proposed
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during Phase 2.iv and rejected its proposal, and either

(i) No task is engaged with another server or (ii) only a few

tasks are engaged. In (i) the list will be left unmodified only

while in (ii) it decreases.

Case 4 If an engaged server becomes unengaged. This

may be only possible if all tasks of the computed set accept

the counter-proposal of a server(s), then all the tasks and

servers who were engaged previously are marked unen-

gaged. Hence the dynamic list D(S) of the server will be

decreasing. Thus for all the above cases, the inner loop of

counter proposals will converge into finite steps.

Let’s consider the outer loop. Here the convergence due

to the finite number of cloud servers each task can propose

to and also another certainty that no task can propose more

than once to any of the servers. Hence the proposed

algorithm will definitely converge into a finite number of

iterations. h

7 Simulation setup and experimental results

First, we illustrate the simulation setup environment and

performance metrics. Then, we analyze the experimental

results to show the efficacy of the Off-Mat method. In the

experiments, we have compared the proposed algorithm

with some other methods. Finally, we discuss how our

proposed solution minimizes energy consumption, delay,

and monetary cost through the ‘Off-Mat’ framework for

multi-tenant mobile clients.

7.1 Simulation setup

In this study, all of the algorithms are executed on a local

terminal having an Intel Core i7 processor with 3.4GHz

and 8GB RAM using Java 14.0.2. Workload parameters

and simulation settings are summarized in Table 4. Similar

to the simulation settings of [40], we have used the real-

world parameters following the random uniform distribu-

tion. We have randomly generated mobile devices (n)

between 50 to 100 and the number of applications (M) per

device between 1 to 10. The total number of computational

tasks T is generated between 50 to 800. The data size of

tasks ðBsendÞ lies in the interval 10 kilobytes (KB) to 1

megabytes (MB), and the computation ðClocalÞ of executing
each task distributed in the range of 200 to 2000 mega-

cycles. Similarly, the mobile device CPU frequency ðSlocalÞ
is generated between 1 to 1.5 GHz at random, and the result

data size ðBrecÞ is set to 1 to 10 KB. We assume the data

receiving power consumption rate ðPrecÞ is between 257 to

325 MW, and data transmitting power consumption rate

ðPsendÞ is set to 257 to 325 MW. The data network charge

rate per MB(c) is set to $ 0.02 to 0.03 per MB. To simulate

a cloud data center, we have configured the hosts between

10 to 100. The characteristics of these servers are listed in

Table 5 [67]. Corresponding to Amazon EC2, the four

types of VM instances are used, and their characteristics

are described in Table 6 [67]. The CPU frequency of Cloud

VM ðScloudÞ is 3.4 GHz, and the charge rate of Cloud VM

ðbÞ is set to $ 0.84 per unit time. The active CPU power

consumption rate ðPlocalÞ is between 644 to 700 MW and

the idle CPU power consumption rate ðPidleÞ is set to 5 to

10 MW. The total number of agents is set between 2 to 10.

For modeling the agents, we set the available bandwidth

ðrsendÞ and ðrrecÞ between mobile devices and agents

between 100 to 800kbps. The maximum time limit ðTmaxÞ
is set from 1.0 to 2.0, and the total bandwidth ranges

between 10 to 20 Mbps. The total budget ðMCbudgetÞ is

between $100 to 3000. To characterize the task offloading

behaviour, we have adopted the ratio of load-input data

(LDR) [40], where the LDR = Bsend

Clocal. Thus if the LDR value

is high, then the task is compute-intensive and preferred for

remote execution in the cloud; otherwise, the task is

communication-intensive and suitable for local execution.

7.2 Performance metrics

The following performance metrics are applied to assess

the efficiency of the proposed ‘Off-Mat’ approach.

7.2.1 Request filtering

The goal of request filtering metric is to minimize the

offloading requests that cannot meet budget and deadline

constraints so that the offloading decision-making latency

can be improved. We have also analyzed the influence of

different LDRs on the filtering of requests.

7.2.2 Energy consumption

Energy consumption measures the amount of energy used

for serving the requests. To analyze the total energy con-

sumption, we have analyzed the local energy consumption

and offloading energy consumption.

7.2.3 Request delay

To measure the delay of request-response, we have used

the Ping tool to check the request transmission delay

between the mobile device and agent. It measures the time

of ICMP-request packets when sent from mobile device to

any agent or cloud server and then receiving the packets

sent back from the agent or cloud server.
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7.2.4 Monetary cost

The monetary cost denotes the sum of data transferring cost

and pubic cloud services cost. Each device has an

offloading budget for mobile cloud services set by mobile

clients. We have analyzed the monetary cost by varying the

budget of mobile clients and evaluating the total savings by

varying the offloading requests.

7.2.5 Fitness cost

We have used the weighted-sum-method (WSM) to find the

fitness function for Eq. (15). It applies an aggregation

function to transform a multi-objective function into one

scalar objective function. Using WSM, we have reformu-

lated Eq. (15) as follows:

minw1

XD

i¼1

XT

j¼1

1�
XjSj

k¼1

zi;j;k

 !

eloci;j þ
XD

i¼1

XT

j¼1

XjSj

k¼1

zi;j;ke
off
i;j;k

 !

þ w2

XD

i¼1

XT

j¼1

XjSj

k¼1

zi;j;kMCi;j;k

 !

ð28Þ

where w1 and w2 indicates the weights of the energy con-

sumption and monetary cost objectives, respectively, the

sum of both weight parameters is equal to 1. The objective

aims to reduce the fitness cost.

Table 4 Simulation setting
Parameter Value

Number of applications per device 1 to 10

Number of tasks (T) 50 to 800

Total mobile devices (D) 50 to 100

Number of cloud servers (S) 10 to 100

Number of agents 2 to 10

Number of VM instances 4

Task data size ðBsendÞ 10 KB to 1 MB

Task computation ðClocalÞ 200 to 2000 mega cycles

Mobile device CPU frequency ðSlocalÞ 1 to 1.5 GHz at random

Task result data size ðBrecÞ 1 to 10 KB

Data receiving power consumption rate ðPrecÞ 257 to 325 MW

Data transmitting power consumption rate ðPsendÞ 257 to 325 MW

CPU frequency of Cloud VM ðScloudÞ 3.4 GHz

Charge rate of Cloud VM ðbÞ $0.84 per unit time

Active CPU power consumption rate ðPlocalÞ 644 to 700 MW

Idle CPU power consumption rate ðPidleÞ 5 to 10 MW

Data transmission rate ðrsendÞ 100 kbps to 800 kbps

Data receiving rate ðrrecÞ 100 kbps to 800 kbps

Total bandwidth 10 to 20 Mbps

Data network charge rate per MB(c) $0.02 to 0.03 per MB

Maximum time limit ðTmaxÞ 1.0 to 2.0

Budget ðMCbudgetÞ $100 to 3000

Table 5 Configuration of hosts
Type of host Type of CPU No. of cores Frequency (MHz) RAM (GB)

HP ProLiant G4 Intel Xeon 3040 2 1860 4

HP ProLiant G5 Intel Xeon 3075 2 2660 4

Table 6 Configuration of VM instances

Type of VM CPU (MIPS) RAM (MB)

Micro 500 613

Small 1000 1740

Extra large 2000 1740

High-CPU medium 2500 870

1810 Cluster Computing (2021) 24:1793–1824

123



7.2.6 Throughput

Throughput indicates the total number of computational

tasks that receive their service in per unit time. We have

used average throughput time to analyze the performance

of different approaches. Throughput time depends on dif-

ferent parameters, such as network delays, processing

power, etc. If the optimization rate of the algorithm is

higher, then the throughput is faster.

7.2.7 Happiness performance

The happiness metric measures the advantage in resolving

the conflicts between the mobile devices tasks and cloud

servers using stable matching. We utilize the rank per-

centile of the selected partner, i.e., tasks or servers, to

measure the ‘‘happiness’’ of matching. For cloud servers,

happiness indicates the average rank obtained through the

matched number of tasks. By varying the total number of

tasks and servers, we evaluate happiness performance.

7.3 Baseline approaches

We have measured the performance of the Off-Mat algo-

rithm with the following two baseline algorithms:

– Traditional offloading: In the traditional offloading

framework, the mobile devices directly send the tasks

to a remote cloud. The remote cloud makes an

offloading decision and returns the decision results to

the mobile device. There are no agents in the offloading

framework.

– Agent-based offloading: It uses agents, where the

device sends its offloading request to the agent for

performing the offloading decision rather than the

distant cloud.

7.4 Experimental results

7.4.1 Impact of request filtering

In this experiment, we have evaluated the performance of

the Off-Mat algorithm with respect to the filtering of

offloading requests. The primary task of request filtering is

to reject the computational offloading requests that cannot

satisfy the budget and deadline constraints so that the

overall delay of decision making can be minimized. In

Fig. 6, we have shown the impact of request filtering by

varying the offloading requests. We have considered the

requests of different mobile users from 100 to 800, which is

equivalent to cases, i.e., case 1 to case 8, respectively.

From Fig. 6, it can be identified that the filtering process

performs better when the LDR value is low (LDR=1.0) as

most of the offloading tasks are communication-intensive

and suitable for local execution due to the completion time

constraint. Thus, in each scenario, it can be observed that

when the LDR value is high (LDR=1.5), then the task is

more likely to be offloaded due to its computation-inten-

sive nature.

7.4.2 Performance on energy consumption

In this experiment, we evaluate the energy consumption of

the three computation offloading approaches. For this

study, we consider that the available bandwidth is suffi-

cient, and all of the offloading tasks can be offloaded

directly to the cloud. From Fig. 7, it can be observed that

energy consumption rises with the increase of offloaded

tasks. In comparison to traditional and agent-based

offloading, the proposed approach outperforms and gives

better results. As all of the computational tasks can not get

advantage via remote execution because of lower LDR

value. While proposed ‘Off-Mat’ approach schedules the

computational tasks on the agents so that the mobile

devices consume the least amount of energy.

Further, we set the number of offloading requests to 800

and task size to 10KB. From Fig. 8, it can be identified that

the total energy consumption of the traditional offloading

scheme is approximately three times more than the agent-

based offloading. The reason behind this is the longer RTT

(round-trip-time) in traditional offloading. Thus it results in

more energy consumption than an agent-based scheme.

Our proposed approach gives better performance as the

device and agent check the constraints and only offload the

valid requests to the cloud. Hence it considers only the

beneficial offloading tasks for remote execution and saves

more energy.

7.4.3 Impact of request delay

Figure 9 shows the average request-response delay of the

proposed framework and compares its performance with

the traditional and agent-based offloading frameworks. In

this comparison, we send the ICMP-request packets

through the mobile devices to the agent or cloud and

receive back the computation results. For delay analysis,

we set the number of offloading requests to 300 and task

size to 10KB. In Fig. 9, it can be identified that the average

request delay of the proposed approach and agent-based

offloading approach is much shorter than the traditional

offloading approach. Specifically, the average request

delay for the agent is less than 10 ms, and the request delay

of the traditional offloading scheme is nearly 30 ms. In

contrast, the Off-Mat approach takes less than 5ms in

comparison to the other two frameworks. The reason

behind the better performance is that the agent is located
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one-hop near to the mobile devices. Thus the average

latency is much shorter than the cloud where the latency

increases due to the complex networks. Further, the Off-

Mat approach makes better decision making as it only

sends the valid offloading requests to the agent.

7.4.4 Performance on monetary cost

To analyze the monetary cost, we have varied the user

budget from 100$ to 3000$ and offloading tasks from 100

to 900. As depcited in Fig. 10, when the budget of mobile

devices increases for Off-Mat algorithms, the total cost of

offloading tasks will increase accordingly as the more

significant number of computation-intensive tasks are off-

loaded to the servers.

In Fig. 11, we have varied the user budget and set the

request size to 500. It can be identified that the total cost of

traditional offloading is nearly four times higher than the

Off-Mat approach. The reason behind the lower monetary

cost is the less number of offloaded tasks due to beneficial

offloading. In Fig. 12, we repeat the same experiment and

set the request size to 800. Finally, Figs. 13 and 14

demonstrate the total cost saving for the request size 500

and 800, respectively. From the figures, it can be identified

that the Off-Mat algorithm can save more cost than the

traditional and agent-based offloading algorithms.

7.4.5 Fitness cost performance

The fitness cost performance depends exclusively on the

preferences of weight parameters. Thus, after performing

some initial experiments, we found that the best perfor-

mance was obtained by assigning equal weights to each

objective. Figure 15 shows the analysis of average fitness

value for the different number of offloading tasks. It can be

identified that the Off-Mat scheme outweighs all baseline

algorithms. The reason for better performance is the opti-

mal number of offloaded tasks, which also reduces the

monetary cost in terms of data transfer cost and public

cloud cost. After the off-Mat, the agent-based approach

shows better performance for the fitness value.

7.4.6 Throughput performance

In Fig. 16, we analyze the average throughput time by

increasing the offloading tasks from 100 to 800.

It can be noticed that the Off-Mat scheme has demon-

strated maximum throughput time along with varying

number of offloaded tasks. Due to the earliest response

time of Off-Mat, it generates faster throughput, whereas the

response time of traditional and agent-based offloading is

higher, which results in low throughput (higher values).

Fig. 6 Effect of LDR on request filtering

Fig. 7 Total energy consumption analysis of offloading approaches Fig. 8 Total energy consumption analysis for request size 800
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Throughput time depends on various parameters, such as

delays in network, processing power, and hardware

resources. It is observed that while varying the number of

computational tasks, the net throughput of Off-Mat is

getting better and producing stable behavior over other

approaches.

7.4.7 Happiness performance

Figures 17, and 18 depict the happiness percentages of

tasks and servers, respectively. For this experiment, we

consider 10 cloud servers and increase the offloading tasks

ranging from 50 to 300. Cloud servers are initially empty,

and each can accommodate 10 VMs of different sizes. For

computational tasks, we apply different allocation policies,

and for servers, we perform a consolidation policy. To

measure the matching happiness, we use the average rank

of the matches, tasks, and servers.

Compared to the First-Fit benchmark algorithm, the

proposed distributed stable matching algorithm provides a

substantial improvement in servers’ performance. It

demonstrates the advantage in resolving the conflicts

between the mobile devices tasks and cloud servers using

stable matching. First-Fit only allows an individual uni-

form ranking of tasks for all listed servers; on the other

hand, the proposed distributed stable matching approach

permits cloud servers to reveal their preferences. Addi-

tionally, First-Fit is not able to match a task to a server with

inadequate capacity. It means no further rejection from

servers, while the proposed algorithm grants rejections if a

task is more preferable than other server’s tasks during its

entire execution. Distinctly, this enhances the task’s and

server’s happiness. Through the analysis of results, we find

that the computational tasks can obtain top 10% companion

on average while cloud servers are only able to acquire

their top 50% tasks. As the number of available VMs is too

small in comparison with total capacity of cloud servers,

Fig. 9 The average request delay

Fig. 10 Monetary cost with varying budget

Fig. 11 Monetary cost for request size 500

Fig. 12 Monetary cost for request size 800
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and most of the proposals from VMs’ can be directly

approved by cloud servers.

For large-scale simulations, we vary the number of

offloading tasks and servers and analyze overall happiness

performance. As shown in Fig. 19, the tasks get their top

6–8% preferences, while the cloud servers obtain their

13–18% preferences. Thus, we can observe that the Off-

Mat effectively analyzes the policies and able to resolve

the conflicts for large-scale scenarios.

7.5 Statistical analysis

To evaluate the reliability of the ‘Off-Mat’ approach, we

have applied statistical evaluations. The statistical analysis

is conducted to investigate whether the experimental

results are statistically significant, and not by coincidence

[52, 53].

For different applications, we have several types of

statistical tests suitable for heterogeneous data such as

homoscedasticity and normality. Thus, to perform the sta-

tistical test analysis, we use the StatService toolkit [68, 69],

which offers a smart model to select the best statistical test

according to the features of data. Based on the evaluation,

the suggested statistical test for data analysis is the T-test.

Thus, we conduct a paired T-test of the Off-Mat approach

and other baseline approaches using statistics calculators

available at social science statistics [70]. A T-test is con-

ducted by constructing the following hypotheses:

– Hypothesis 1: No difference is observed between Off-

Mat and baseline algorithms.

– Hypothesis 2: Significant difference is observed

between Off-Mat and baseline algorithms.

The primary purpose of this statistical analysis is to vali-

date that the obtained experimental results are statistically

significant and not by chance [52, 53]. We evaluate all

Fig. 13 Total saving when request size is 500

Fig. 14 Total saving when request size is 800

Fig. 15 Average fitness cost

Fig. 16 Throughput time for different approaches
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performance parameters using four standard statistical

tests, including total samples, mean value, standard devi-

ation (SD), t-value, p-value, and degrees of freedom (df).

Table 7 represents the statistical analysis of the paired

t-test. It shows the significance level of Off-Mat compared

with the other benchmark strategies concerning request

filtering, energy consumption, total delay, monetary cost,

total cost saving, throughput time, task happiness, and

server happiness. The objective of the t-test is to validate

the correctness of the stated hypothesis. To perform the

test, we use the significance level of p\0.05. It can be

observed from Table 7 that all the p-values are less than

0.05. Hence, it shows that there exist a significant differ-

ence between Off-Mat, and other benchmark approaches,

as indicated using t-values. As the significance level of

variance for all the performance parameters is less than

0.05 in the t-test, we can say that hypothesis 1 is discarded,

and hypothesis 2 is accepted.

In Table 8, we perform a comparison of Off-Mat with

all the algorithms for all the performance parameters using

the ANOVA test. ANOVA test performs multiple com-

parisons at once for each performance measure for all

benchmark approaches. It compares the mean value of two

or more groups to identify whether the difference is sta-

tistically significant. We apply the same hypothesis case

study that we have used earlier for the paired t-test. It can

be observed that the p-values with respect to all the

F-values such as 4.05 in total cost, 9.59 in total cost saving,

31.48 in energy consumption, 25.80 in total delay, 9.76 in

throughput time, 9.00 in request filtering, 7.26 in task

happiness, and 60.57 in server happiness are less than

significance p\ 0.05. Thus, we can conclude that the

hypothesis 1 is again rejected and hypothesis 2 is accepted.

It shows that the overall differences, compared with the

benchmark approaches, are statistically significant.

7.6 Overall analysis

To further analyze the efficiency of proposed Off-Mat

algorithm, we have compared the best, average, and worst-

case value of all performance parameters. These values

show the minimum, average, and maximum value for all

the experiments. We have used the following gap value

formula to identify the gap between the performance values

of different approaches.

Gap ¼ ðAverage case value� Best case valueÞ
Best case value

ð29Þ

The lower gap value of any performance parameter shows

that the average-case value of the offloading algorithm is

closer to the best-case value. Table 9 shows the different

values of the performance parameters. From the table, it

can be identified that the Off-Mat approach generates the

lowest gap values for request filtering, monetary cost,

Fig. 17 Task happiness

Fig. 18 Server happiness

Fig. 19 Overall happiness performance
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fitness cost, and second-best for energy consumption, total

delay, cost-saving, throughput-time, task happiness, and

server happiness.

Further, we analyze the improvement rate of proposed

Off-Mat over other baseline approaches. For this, we have

first analyzed the mean values of all performance param-

eters for all offloading approaches and calculated the

improvement rate using the following formula:

Improvement rateð%Þ ¼ Baseline � Off-Mat

Off-Mat
� 100

ð30Þ

The improvement rate measures the gain for any perfor-

mance parameter. For example reduction in the monetary

cost or energy consumption of the Off-Mat over other

offloading algorithms. For this, In Table 10, we have

recorded the mean values of overall performance results for

all experiments and calculate the improvement rate %, as

shown in Table 11. The Off-Mat approach shows 281.15%

and 118.97% energy consumption reduction over tradi-

tional and agent-based offloading approaches. Similarly,

for average request delay, Off-Mat shows 994.29% and

79.29% reduction over traditional and agent-based

offloading approaches. For cost analysis, results are

encouraging and show 320% and 200% reduction over

traditional and agent-based offloading approaches. In the

case of cost-saving, the Off-Mat maximizes the cost-saving

by 99.70% and 62.32% over traditional and agent-based

techniques. Overall, fitness cost is also reduced by

281.25% and 119.18% over traditional and agent-based

approaches. In the case of throughput time, the perfor-

mance is improved by 123.74% and 62.03% over the tra-

ditional and agent-based offloading scheme. We have

further analyzed the improvement for happiness metric and

obtained that compared with the First-Fit approach, the

Off-Mat shows 8.89% improvement for task happiness and

93.99% for server happiness. In Table 12, we have sum-

marized the overall performance of proposed and existing

schemes for different performance parameters.

7.7 Performance comparison with existing
approaches

To further show the characteristics and advantages of the

proposed study, we compare our results with some other

existing techniques, i.e., Multi-Tenant Mobile Offloading

[43], ENGINE [55], and Centralized broker-node based

offloading [54] of literature as discussed in Table 13.

Table 13 shows that [43] uses cloudlet-based offloading,

[55] uses fog-based offloading, and [54] uses broker-node

Table 7 Statistical comparison

of the Off-Mat approach for

computational tasks offloading

with benchmark approaches

Criteria Algorithm N Mean SD t-value p-value

Request filtering Off-Mat 20 112.5 61.2372

Before filtering 20 450 244.949 3.78076 0.002026

Energy consumption Off-Mat 20 86,792.1899 14,701.3749

Traditional 20 330,809.5898 83,753.5757 8.11658 \ 0.00001

Agent-based 20 190,049.3958 64,862.2789 4.39132 0.000615

Total delay Off-Mat 20 10.6279 0.5129

Traditional 20 1256.1705 690.1886 5.10429 0.00016

Agent-based 20 690.1886 1.0647 29.20413 \ 0.00001

Monetary cost Off-Mat 20 359.7386 251.8424

Traditional 20 1510.9021 1057.738 2.80114 0.01601

Agent-based 20 1079.2158 755.5271 2.39022 0.034122

Fitness cost Off-Mat 20 43,511.6861 7350.642

Traditional 20 165,890.2778 41,877.1359 8.14112 \ 0.00001

Agent-based 20 95,371.4714 32,432.4242 4.41082 0.000592

Cost saving Off-Mat 20 1154.5471 805.5585

Traditional 20 3.3836 2.1475 3.78083 0.00262

Agent-based 20 435.0699 301.8784 2.21276 0.047047

Throughput time Off-Mat 20 2.0712 0.8856

Traditional 20 4.6343 0.9257 5.65884 0.000059

Agent-based 20 3.3561 1.5478 2.03794 0.040912

Task happiness Off-Mat 20 81.55 4.7534

First-Fit 20 74.3 4.5651 2.6946 0.022521

Server happiness Off-Mat 20 65.4167 52

First-Fit 20 3.9296 1.5453 7.78303 0.000015
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based offloading. However, in the proposed approach, we

have used agent-based offloading. The agent-based

offloading makes faster decision making and improves the

total delay and energy consumption. With respect to

computing environment, [43] and [54] uses centralized

model while [55] and proposed scheme used distributed

computing environment. [43] and proposed approach sup-

port multi-tenancy and heterogeneity. [43, 55], and [54]

have formulated either single objective or bi-objective

optimization problem, while proposed approach is a multi-

objective approach. The proposed Off-Mat

scheme supports beneficial offloading via request filtering,

which ensures the offloading under budget and maximum

completion time constraint. Thus it improves the delay,

monetary cost, and energy consumption performance. To

improve stability, the Off-Mat provides task and server

happiness parameters while other approaches have

neglected such functionality. The overall time complexity

of the Off-Mat approach is O(TlnT) for offloading phase

and OðT3 � S2Þ for allocation phase. It takes 2T messages

to reach any offloading decision. The proposed Off-Mat

approach is based on the concept of matching theory

Table 8 ANOVA test for all

benchmark algorithms
Source of variation SS df MS F p-value

ANOVA test for total cost

Between groups 4.73E?6 2 2.36E?6 4.05128 0.035262

Within groups 1.05E?7 57 5.84E?5 – –

Total 1.52E?7 59 – – –

ANOVA test for cost saving

Between groups 4.73E?6 2 2.36E?6 9.59669 0.001456

Within groups 4.44E?6 57 2.46E?5 – –

Total 9.17E?6 59 – – –

ANOVA test for energy

Between groups 2.40E?11 2 1.20E?11 31.48128 \ 0.00001

Within groups 8.00E?10 57 3.81E?09 – –

Total 3.20E?10 59 – – –

ANOVA test for total delay

Between groups 8.19E?6 2 4.09E?6 25.80103 \ 0.00001

Within groups 3.33E?6 57 1.58E?5 – –

Total 1.15E?6 59 – – –

ANOVA test for fitness cost

Between groups 6.03E?10 2 3.01E?10 31.6673 \ 0.00001

Within groups 2.00E?10 57 9.53E?8 – –

Total 8.03E?10 59 – – –

ANOVA test for throughput-time

Between groups 26.2778 2 13.1389 9.76397 0.001004

Within groups 28.2587 57 1.3457 – –

Total 54.5364 59 – – –

ANOVA test for request filtering

Between groups 472500 2 236250 9 0.001504

Within groups 551250 57 26250 – –

Total 1023750 59 – – –

ANOVA test for task happiness

Between groups 157.6875 1 157.6875 7.26085 0.022521

Within groups 217.175 38 21.7175 – –

Total 374.8625 39 – – –

ANOVA test for server happiness

Between groups 540.0208 1 540.0208 60.57554 0.000015

Within groups 89.1483 38 8.9148 – –

Total 629.1692 39 – – –
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applying the weighted-bipartite matching and

stable matching in a distributed environment, which shows

the novelty and advantages of the proposed Off-Mat

strategy over the other existing schemes as illustrated in

Table 13.

8 Conclusions and future work

This study analyzes the computational tasks offloading

problem for mobile multi-tenant clouds. We first formu-

lated it into an ILP model by using the objectives of energy

and monetary cost under multi-constraints. The proposed

Off �Mat framework effectively minimizes the request-

response time and improves the offloading performance. It

also balances the trade-off of energy and monetary cost.

We have first proved the problem complexity of the pro-

posed optimization problem. Subsequently we proceed to

solve the special case which is formed after relaxing certain

conditions and solved it in polynomial time. Then we went

ahead to solve the generalized case, where we have per-

formed offloading and calculated the preferences for each

of the servers and tasks selected by agents and perform a

stable matching based heuristic. In general, the complexity

Table 9 Overall analysis of

algorithms
Performance parameter Algorithm Best Average Worst Gap

Request filtering Off-Mat 400 225 50 0.4375

Agent-based 200 112.5 25 0.4375

Energy consumption Off-Mat 55,922.9688 86,792.18991 102,148.1484 0.551995392

(mJ) Traditional 234,876.432 330,809.5898 473,269.652 0.40844097

Agent-based 78,292.144 190,049.3958 243,732.4364 1.427438899

Monetary cost Off-Mat 23.34430714 359.7385983 714.0379762 14.41012102

(Dollar) Traditional 98.04609 1510.902113 2998.9595 14.41012102

Agent-based 70.03292143 1079.215795 2142.113929 14.41012102

Total delay Off-Mat 10.0134 10.62787125 11.3998 0.061364896

(ms) Traditional 281.927 1256.170525 2232.1265 3.455658823

Agent-based 21.927 22.8296 24.423 0.041163862

Cost saving Off-Mat 2285.962024 1154.547116 76.65569286 0.494940378

(Dollar) Traditional 7.2464 3.383601429 1.0405 0.533064497

Agent-based 857.8860714 435.0699194 29.96707857 0.492858162

Fitness cost Off-Mat 51,187.90763 43511.68611 28,078.51854 0.149961619

Traditional 237,112.9264 165,890.2778 117,929.7594 0.300374382

Agent-based 122,207.7185 95,371.47137 39,497.17443 0.219595353

Throughput time Off-Mat 1.240315963 2.071245499 3.666171 0.669933761

(ms) Traditional 3.792454 4.634334966 6.40927 0.221988445

Agent-based 1.735666333 3.356124856 5.7844075 0.933623296

Task happiness (%) Off-Mat 88.3 81.55 75 0.076443941

First-Fit 80 74.3 68 0.07125

Server happiness (%) Off-Mat 69.5 65.41666667 60 0.058752998

First-Fit 55 52 50.8 0.054545455

Table 10 Mean values of

overall performance results of

all experiments

Performance parameter Off-Mat Traditional Agent-based First-Fit

Energy consumption (mJ) 86792.189 330,809.589 190,049.395

Average request delay (ms) 2.561 28.025 5.8025

Monetary cost (Dollar) 359.7386 1510.9021 1079.2158

Cost saving (Dollar) 1154.5471 3.3836 435.0699

Fitness cost 43511.686 165,890.277 95,371.471

Throughput time (ms) 2.0712 4.6343 3.3561

Task happiness (%) 81.55 74.3

Server happiness (%) 65.4167 3.9296
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of the Off �Mat approach is analyzed and evaluated

through extensive experiments. Simulation results verify

that the ‘Off-Mat’ achieves superior performance com-

pared with the other computation offloading strategies.

8.1 Future directions and open challenges

The applicability of the proposed solution can be explored

in real-time systems and extended in the following main

directions.

1. Mobile edge computing (MEC): MEC extends the

application services and cloud capabilities to the edge

of the network. It can be achieved through the dense

deployment of servers or small-cell (pico, femto) base

stations (BS) equipped with storage and computation

resources. Mobile edge environment ensures efficient

network operation and service distribution, minimize

latency, and offers an enhanced service user experi-

ence. Despite the benefits of MEC, there are still major

challenges such as the real-time mobile applications

are extremely time-sensitive and energy-sensitive.

Thus due to the dynamics of edge networks, the long

execution times of such applications can lead to high

energy consumption. Therefore, there is a requirement

to design an efficient MEC framework for computation

offloading [56].

2. Fog computing: Fog computing extends the cloud

model to the network edge to enable Internet of Things

(IoT) based services. For future Internet, the mobile

fog technology is an integral framework of fog

computing supporting seamless mobile computing

and latency-enabled services. Nonetheless, the critical

challenges for mobile fog-based computation offload-

ing are: (i) Which process or module of the application

to be offloaded? (ii) How to offload computation?, and

(iii) Where to offload? Moreover, the geographical

distribution, mobility, and heterogeneity of mobile

devices also impose some additional challenges in

mobile-fog [57].

3. Multi-Tier Edge-Clouds: To accomplish low end-to-

end latency, multi-tier edge-clouds pushes units of

computation i.e., cloudlets to the edge of the network

in the coverage area. Hence, some recent works have

adopted a hierarchical cloudlets arrangement in differ-

ent edge-tiers. In such architecture, the higher tiers

comprises some more powerful edge cloudlets. So,

whenever any case of overloading occur, the higher

tiers can receive migration demands from the lower-

tier cloudlets. Thus, the cost and energy-efficiency

issues in hierarchical edge-clouds is an open problem

and well suited with the 5G business models [42].

4. Fault-tolerance: During run-time network contexts

such as strength of the signal, bandwidth, latency,

etc. are periodically changed, and short-term failures

can occur for short-time span. Hence, the failure aware

partitioning of offloading applications during run-time

is a critical component [45].

5. Privacy and Security: A compromised mobile device

can perform malicious activities without the user’s

knowledge, encompassing the access of sensitive

information. In consequence, the offloading of mobile

applications to the remote server requires a more

secure environment. In fact, mobile offloading offers a

computation mechanism. Thus, due to the limited

security of the mobile OS, partial or full offloading,

Table 11 Improvement in Off-

Mat algorithm over other

approaches

Performance parameter Traditional Agent-based First-fit

Energy consumption

Improvement % of Off-Mat over ?281.15% 118.97%

Average request delay

Improvement % of Off-Mat over ?994.29% ?79.29%

Monetary cost

Improvement % of Off-Mat over ?320% ?200%

Cost saving

Improvement % of Off-Mat over ?99.70% ?62.31%

Fitness Cost

Improvement % of Off-Mat over ?281.25% ?119.18%

Throughput time

Improvement % of Off-Mat over ?123.74 ?62.03%

Task happiness

Improvement % of Off-Mat over ?8.89%

Server happiness

Improvement % of Off-Mat over ?93.99%
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allows us to run security applications in a more robust

and secure environment [51]. However, privacy leak-

age, network attack, information theft during data

transmission are some of the open issues during the

computation offloading [65].

6. Deep learning-based offloading: Deep learning enables

mining & processing of a variety of unstructured data

collected through smartphones. So that more intelligent

cognitive and robust services can be offered to the

MEC systems. Thus, some of the popular deep learning

techniques such as CNN, GRU, RNN, and LSTM can

offer cognitive services for network functions, traffic,

load, including other system measures for enhancing

the quality of service (QoS). However, designing a user

mobility prediction using deep learning algorithm

enabling some decision-making mechanisms is one of

the open problems for computation task offloading and

migration [65].

7. Blockchain: Data integrity violation is one of the

drawbacks of computation offloading. Most of the

classical integrity preservation methods are mostly rely

on the central entity and not necessarily convenient for

the 5G network due to the single point of failure.

Blockchain is become an emerging disruptive para-

digm which guarantees data completeness. Thus, the

blockchain is a promising future for data integrity

preservation during the computation offloading [66].
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Table 13 Off-Mat comparison with the existing works

Features Existing offloading methods Proposed approach

Multi-tenant mobile

offloading [43]

ENGINE [55] Centralized broker-node based

offloading [54]

Working

model

Scheduling methods are

proposed to enhance serving

performance for multi-

tenant mobile offloading

systems

Computation is offloaded in a

mobile-edge computing

environment considering

user budget and service cost

Centralized broker-node based

task scheduling is developed

to minimize the energy

consumption and monetary

cost

Agent based distributed

computation offloading

strategies are proposed for

mobile multi-tenant

clouds

Offloading

type

Cloudlet-based Fog-based Broker-node based Agent-based

Computing

environment

Centralized Distributed Centralized Distributed

Performance

parameters

Accuracy, delay Task completion time Energy consumption, monetary

cost

Energy consumption, delay,

monetary cost, total

saving, happiness

Multitenancy U � � U

Heterogeneity U � U U

Task and

server

preferences

� � � U

Heuristic Clock synchronization,

Approximate sorting, Deep

reinforcement learning

Greedy technique, Simulated

annealing, Brute Force

Linear programming Matching theory (weighted

bipartite matching, and

stable matching)

Budget � U � U

Maximum

completion

time

U � U U

Request

filtering

� � � U

Offloading

complexity

Not considered O(T) Not considered O(TlnT)

Resource

allocation

complexity

Not considered Not considered Not considered OðT3 � S2Þ

Message

complexity

Not considered Not considered Not considered 2T
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