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Abstract
A workflow is a group of tasks that are processed in a particular order to complete an application. Also, it is a popular

paradigm used to model complex big-data applications. Executing complex applications in a distributed system such as

cloud or cluster implicates optimization of several conflicting objectives such as monetary cost, energy consumption, total

execution time of the application (makespan). Regardless of this trend, most of the workflow scheduling approaches

focused on single or bi-objective optimization problem. In this paper, we considered the problem of scheduling workflows

in a cloud environment as a multi-objective optimization problem, and hence proposed a multi-objective workflow-

scheduling algorithm based on decomposition. The proposed algorithm is capable of finding optimal solutions with a single

run. Our evaluation results show that, by a single run, the proposed approach manages to obtain the Pareto Front solutions

which are at least as good as schedules produced by running a single-objective scheduling algorithm with constraints for

multiple times.
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1 Introduction

Recently, workflow has become a popular paradigm to

model the execution process of big data application in

distributed environments such as clouds and clusters [1].

Since then, research on workflow scheduling has got much

attention with an objective of producing optimal execution

time. It is well-known that workflow scheduling in a

heterogeneous environment is NP-Complete [2]. Tradi-

tionally, optimizing the overall execution time (makespan)

of the workflow has been an important and common

objective of workflow scheduling. Many works in literature

have designed different heuristic algorithms to get the

schedule with minimized makespan. However, as using

cloud computing gains popularity, makespan optimization

is no longer the only objective to be considered for opti-

mization during workflow scheduling. Many other signifi-

cant objectives that can be recognized as important as

makespan have arisen such as cost, energy, reliability,

utilization, etc. Those objectives need to be taken into

consideration together with makespan during workflow

scheduling. Therefore, modern cloud workflow scheduling

algorithms must be able to optimize more than one

objectives at the same time.

Generally, the main concern for cloud computing cus-

tomers, when selecting virtual machine (VM) instances to

execute their workflows, is the monetary cost. Cloud VM

instances renting price is charged based on the computation

capacity which can be reflected directly to the CPU fre-

quency settings; for example, the pricing models adopted

by CloudSigma [3] and Elastichosts [4] charge customers

based on the selected CPU frequencies assigned to the VM

instances during the execution of each workflow task.

These VM instances’ CPU frequency parameters are set in

between maximum and minimum with a variation step

frequency. Customers are likely to choose VM instances

with lower price, but optimal makespan schedule will

remain a critical requirement that cannot be neglected. In

case of single objective optimization, VM instances run-

ning at high CPU frequency are a better choice for make-

span optimization, while VM instances running at low CPU
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frequency may be a better choice for cost optimization.

However, it is not easy to make an appropriate CPU fre-

quency selection if both objectives need to be taken into

consideration. In addition, it is not a wise idea to execute

all the tasks on the VM instances running only on high or

low CPU frequencies, because such strategy can not handle

the execution time difference of the workflow tasks and/or

the complexity caused by the data dependencies among

tasks. This strategy may also affect execution of each

individual task which may directly reflect to the total

makespan and the total monetary cost. Therefore, with such

pricing scheme, an interesting challenge that arise to the

customers will be how to properly select VM and tune their

CPU frequencies for each tasks so that makespan and the

cost of executing his/her application are minimized. The

objective of this paper is to provide the solution toward

such problem.

Makespan which is defined as the overall completion

time of the whole workflow can be divided into two parts:

summation of the execution time of the workflow tasks in

critical path and the data transfer time that comes from

tasks dependencies, especially when the two adjacent tasks

are scheduled on different VM instances. The latter

depends on the bandwidth of the transmission line, while

the former depends on the CPU frequency allocated to the

VM instance during the execution process of each task. In

this paper, we only focus on the variability of the CPU

frequency under fixed bandwidth. The renting cost of VM

instances depends on the execution time of each task and

the time unit charge rate which is normally decided by the

selected CPU frequency according to a certain pricing

models such as linear, superlinear and sublinear(more

information about those pricing models can be found in

[5]). Selecting high CPU frequency will result in smaller

execution time of each task, however, the cost reduction

achieved by this small execution time will not afford the

cost increased by selecting this CPU frequency. This is to

say, using VM instances with high processing capac-

ity(CPU frequency) may ensure the minimal completion

time of the workflow(makespan) under a high cost while

using VM instances with low processing capacity(CPU

frequency) may ensure minimal monetary cost under high

completion time. As a result, selecting VM’s CPU fre-

quency for the improvement of the total cost values cannot

be achieved without deteriorating the makespan values. So

in this context, cost and makespan are conflicting objec-

tives. Note that there is no single solution that can optimize

both objectives at the same time. In this case, decision-

makers may have to select the final preferred solution from

the Pareto optimal objective vectors. Therefore, approxi-

mating the set of all the Pareto optimal objective vector is

the appropriate way to deal with this multi-objective

optimization problem.

It is well-known that, solutions to a multi-objective

optimization problem under trivial situations could be an

optimal solution of a scalar optimization problem in which

the objective is an aggregation of all the objectives [6].

Therefore, the approximation of the Pareto Front(PF) can

be decomposed into a number of scalar objective opti-

mization sub-problems. To the best of our knowledge, none

of the majority of the current state of the art multi-objective

workflow scheduling algorithms [7–11] considered

decomposition.

Therefore, with cost and makespan minimization in

mind, in our previous work [12], we proposed a Workflow

Scheduling Algorithm Based on Decomposition(WSABD).

Given a scientific workflow with deterministic model of

execution time and communication time, and a set of

resources with variable CPU frequencies and cost,

WSABD starts with initialization step using CFMax [14],

then updates the functional values, finally, checks for the

satisfaction of stopping criteria. The update step will be

executed cyclically until the stopping criteria is satisfied.

Then the algorithm will return the set of Pareto Front

solutions. Different from the Evolution algorithm, WSABD

speeds up its runtime to generate final schedule by using a

search operation rather than overlapping mutations. The

main contribution of that paper [12] is to propose a novel

workflow scheduling algorithm with three variants, which

incorporates decomposition approaches in workflow

scheduling and uses search operation rather than mutations.

In this paper, we significantly extend our previous work

[12] by:

– Studying the performance of the algorithm when

different decomposition approaches are considered.

– Studying the performance of the algorithm when

different DAG structures are used.

– Studying the performance and the runtime of the

proposed algorithm when different pricing models are

used.

– Using the Hyper-volume indicator to investigate the

quality of the set of PF solutions generated by the

proposed algorithm.

– Studying the performance of the proposed algorithm

when different settings such as population, iteration

number, and the number of VMs are used.

– Studying the time complexity and the time overhead of

the proposed algorithm.

The rest of this paper is organized as follows: Sect. 2

presents the related works, Sect. 3 describes the system and

application model. Section 4 identifies the problem to be

solved. The proposed algorithm is described in Sect. 5.

Evaluation settings and findings are presented in Sect. 6.

Finally, Sect. 7 concludes this paper and summarizes the

future works.
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2 Related works

Workflow scheduling and resource provisioning have

become the fundamental research topic in the cloud com-

puting platform. A remarkable number of works have been

done to deal with optimization problems, such as single

objective, bi-objective or multi-objective optimization

problem. Among those focused on optimization of make-

span as a single objective, HEFT [15] is the lightweight

workflow scheduling heuristic for a heterogeneous envi-

ronment like a cloud. Given a set of VM instances, HEFT

ranks tasks according to their priority values, and then

schedules them one after another to these VMs, aiming at

minimizing the overall execution time of whole workflow

with the consideration of the data transfer time among

tasks. Because of its low complexity, HEFT has been

employed by other researchers to provide new workflow

scheduling algorithms [5, 14, 17–19]. With the objective of

mapping all the workflow tasks to the available VMs so

that makespan and cost are minimized, [20] proposed a bi-

objective algorithm which is a hybrid of HEFT and GSA

(Gravitational Search Algorithm).

As cloud computing emerges, modern workflow

scheduling algorithms have to be able to optimize more

than one objective. Different researches have been carried

out to respond to this trend [8–11, 21, 22]. Mostly, multi-

objective workflow scheduling algorithms rely on finding

the Pareto set and then finding non-dominated solutions

from the Pareto set. Different from other usual objectives,

the work presented in [9] designed a new systematic

method that considers both task security demands and

interactions in securing task placement in the cloud. This

work proposed a heuristic algorithm that is based on task

completion time and security requirements. Most of the

multi-objective workflow-scheduling algorithms consid-

ered two to three objectives at once, [8] focused on the

optimization of Task Scheduling using a novel approach:

Dynamic dispatch Queues (TSDQ) and hybrid meta-

heuristic algorithms; And proposed two hybrid meta-

heuristic algorithms: One based on Fuzzy Logic with

Particle Swarm Optimization algorithm (TSDQ-FLPSO),

and other based on Simulated Annealing with Particle

Swarm Optimization algorithm (TSDQ-SAPSO).

The proposed algorithm approximates the optimal

solution by considering user-specified constraints on

objectives in a dual strategy: maximize the distance to the

user’s constraints for dominant solutions and minimize it.

Evolutionary algorithms are an excellent way to solve the

multi-objective optimization problem. However, they are

designed for non-constrained problems. With the aim of

investigating the proper task-VM mapping plan to mini-

mize the total financial cost and the degree of imbalance

under deadline constraints, the algorithm proposed in [23]

modifies NSGA-II (Non-dominated Sorting Genetic Algo-

rithm-II), and then makes it accept constraints. The modi-

fied version is used to solve the considered optimization

problem. Inspired by the hybrid chemical reaction opti-

mization algorithm, [24] proposed an energy-efficient

workflow scheduling algorithm Even-though the proposed

algorithm is for energy reduction, it also minimize the

makespan of the schedule. This study, come up with a

novel measure of determining the amount of energy to be

saved when considering a DVS-enabled environment.

Decomposition is a traditional multi-objective optimization

strategy that decomposes a multi-objective optimization

problem into a number of scalar optimization problems and

optimizes them simultaneously. [6] presented a multi-ob-

jective evolutionary algorithm that is based on the

decomposition techniques. However, this work is not

designed for workflow scheduling purposes.

Differentiating from the work presented above, this

paper proposes a workflow-scheduling algorithm based on

decomposition. Our algorithm uses a search operation to

get a new solution rather than overlapping mutations. To

generate the initial population our algorithm employs

CFMax [14].

3 System and application model

3.1 Application model

We assume the presence of cloud computing VM instances

that are charged based on the pay-as-you-go basis of the

CPU frequency used to execute each task in the workflow.

Each allocated VM instance is provisioned from the

beginning of the execution time of the task until its com-

pletion time. Information about data transfer between tasks

and execution time of tasks when the VM instances run at

their maximum CPU frequency is known in advance as

illustrated in Fig. 1 and Table 1 respectively. We also

consider a workflow application modeled as Directed

Acyclic Graph(DAG) G ¼ ðT ;DÞ, where T represents a set

of interdependent tasks T ¼ ft1; t2; ::; tng and D represents

a set of intermediate data to be transferred between two

adjacent tasks D ¼ fdijg (Fig. 1 for illustration). We use

predðtiÞ to determine a set of predecessors of task ti, and

SuccðtiÞ to determine a set of successors of task ti. If task ti
is adjacent to task tj, task ti is a parent of task tj, tj is a child

of task ti. Task tj can not start its execution before all its

parents are completed and transmitted all required data dij
to it. If a task is executed on the VM instance using a CPU

frequency lower than the maximum, its execution time can

be calculated by:
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ETðt;f Þ ¼ b � ðfmax
f

� 1Þ þ 1

� �
� ETðt;fmaxÞ ð1Þ

where ETðt;fmaxÞ is the execution time when task ti runs at the

maximum CPU frequency and the parameter b indicates

the impact of the CPU frequency on task execution time in

the range of 0 to 1. In this paper, we set b=0.4 by default.

3.2 System model

The heterogeneous VM instances operate on variant CPU

frequencies in between maximum and minimum value

(fmin; fmax) with a step fstep that determines the variability

level as illustrated in Table 2. Each VM instance is charged

according to the CPU frequency allocated to each task. We

adopted three pricing models presented in [19]. Let Cðm;f Þ
represent the price charged per time unit of a VM instance

m with CPU frequency f, Cðm;fminÞ represent the price

charged per time unit of a VM instance m running at

minimum CPU frequency fmin, and d represent the coeffi-

cient to tune the charging rate of the price according to f.

Fig. 1 DAG example with

communication time

Table 1 An example of

execution time
Tasks Id VM1 VM2 VM3

1 30 12 16

2 27 21 72

3 4 36 6

4 21 6 20

5 20 16 81

6 28 6 48

7 35 14 7

8 5 48 30

9 21 3 36

10 48 2 64

Table 2 An example of CPU frequency settings for 3 VMs

Machines MaxCPUfr MinCPUfr StepCPUfr

1 4200 2100 300

2 3600 2400 300

3 3000 2000 200
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Then, with the linear pricing model, Cðm;f Þ can be calcu-

lated as bellow:

Cðm;f Þ ¼ Cðm;fminÞ þ dm:
fi � fmin
fmin

ð2Þ

With Super-linear pricing model Cðm;f Þ can be calculated as

bellow:

Cðm;f Þ ¼ Cðm;fminÞ þ dm: 1þ fi � fmin
fmin

Þ � logðfr � fmin
fmin

� �� �

ð3Þ

With Sub-linear pricing model Cðm;f Þ can be calculated as

bellow:

Cðm;f Þ ¼ Cðm;fminÞ þ dm: log 1þ fi � fmin
fmin

� �
ð4Þ

Let also ECðt;m;f Þ denote the task execution cost on the VM

instance running at a frequency f. ECðt;m;f Þ is calculated as:

ECðt;m;f Þ ¼ ETðt;f Þ � Cðm;f Þ ð5Þ

The total cost to execute the whole workflow tasks is cal-

culated as:

TC ¼
X

8ðt;mÞ2S
ECðt;m;f Þ ð6Þ

where S is the schedule which describes the tasks-VM

mapping and the operating CPU frequency of each VM

instance.

4 Problem formulation and basics
of decomposition algorithm

In this paper we consider the problem of minimizing cost

and makespan as a multi-objective optimization problem

(MOP) which can be written as follows:

minimizeFðxÞ ¼ ðf1ðxÞ; :::; fmðxÞÞT

Subjecttox 2 X
ð7Þ

where X is the decision space (variable space), F:X ! Rm

consists of m values, m is the number of objective functions

and Rm is the the objective space.{FðxÞx 2 X} is a set

called attainable objective set. Mostly, the objectives in

Eq. 7 contradict each other. The only possible way to

balance them is to find the trade-off among them which can

be achieved by using Pareto optimality.

The aim of multi-objective optimization algorithms is to

find the trade-off between contradicting objectives. During

multi-objective workflow scheduling, there may be a big or

even infinite number of solutions. However, only non-

dominated solutions can be taken by decision-makers for

the selection of the final preferred solution. A solution Sa is

said to dominate a solution Sb if and only if Sa is better than

Sb in both objectives. Fðx0 Þ is said to be Pareto Optimal if

there is no solution x such that F(x) dominates Fðx0 Þ. This
means that any change in Pareto optimal values for the

satisfaction of one objective must lead to the change in at

least other objective. A set of all Pareto optimal solutions is

called Pareto Set(PS), and a set of all Pareto optimal

objective vectors is called Pareto Front(PF). Some mathe-

matical models have been developed to approximate PF.

However, it is well-known that Pareto Optimal solutions

for a multi-objective problem under slight conditions can

be the optimal solutions of a scalar optimization problem in

which objective is a combination of both the weight vectors

[6]. Hence, the approximation of the PF can be decom-

posed into a number of scalar objective optimization sub-

problems. In this paper, we adopted five decomposition

approaches: Weighted Sum (WS), Tchebycheff (TE),

Penalty Boundary Intersection (PBI), Modified Tcheby-

cheff (MTE) and NIMBUS, to decompose the problem of

approximation of the PF into a number of scalar opti-

mization problems.

4.1 Weighted sum approach

This approach considers a concave combination of differ-

ent objectives. Let k ¼ ðk1; :::; kmÞT represent the weight

vector, i.e., ki � 0 for all i ¼ 1; ::;m and
Pm

i¼1 ki ¼ 1. The

Pareto optimal point of the Eq. 7 can be calculated as

follows:

minimize gwsðxjkÞ ¼
Xm
i¼1

kifiðxÞ

Subject to x 2 X

ð8Þ

where gwsðxjkÞ is used to express that k is a coefficient

vector in the objective function, x represents the values of

the variables to be optimized (cost and makespan in our

case), k is used as a weight vector that facilitates the

approach to generate a set of different Pareto optimal

vectors. This approach will mostly work well as long as the

PF is convex (concave in the case of maximization).

However, in real-world not all Pareto Front vectors are

concave or convex. In case of non-concave this approach

will hardly work. To overcome these deficiencies, some

efforts have been made to incorporate other techniques

such as �� constraint into this approach.

4.2 Tchebycheff approach

The scalar optimization problem can be represented as

follows:
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minimize gteðxjk; zÞ ¼ max
1� i�m

fkijfiðxÞ � zijg

Subject to x 2 X
ð9Þ

where z� ¼ ðz�1; :::; z�mÞ
T

is a reference point ,i.e.,

z�i ¼ minðffiðxÞðx 2 XÞgÞ for each i ¼ 1; :::;m. For each PF

point z� generated by Eq. 9 there is a weight vector k that

emphasizes that z� is an optimal solution. Therefore, by

alternating the weight vector, this approach will generate

multiple different Pareto optimal solutions.

4.3 Modified Tchebycheff approach

The scalar optimization problem can be represented as

follows:

minimize gmteðxjk; zÞ ¼ max
1� i�m

f1
ki
jfiðxÞ � zijg

Subject to x 2 X

ð10Þ

where z� ¼ ðz�1; :::; z�mÞ
T

is a reference point ,i.e.,

z�i ¼ minðffiðxÞðx 2 XÞgÞ for each i ¼ 1; :::;m. For each PF

point z� generated by Eq. 10 there is a weight vector k that

emphasizes that z� is an optimal solution. Like TE

approach, alternating the weight vector will cause the MTE

approach to generate multiple different Pareto optimal

solutions (more information about this approach can be

found in [25]).

4.4 Penalty-based boundary intersection

The scalar optimization problem can be represented as

follows:

minimize gpbiðxjk; zÞ ¼ d1 þ hd2

Subject to x 2 X

where d1 ¼
kðFðxÞ � zÞTkk

kkk
and d2 ¼ kFðxÞ � ðzþ d1kÞk

ð11Þ

where x is a vector containing the variables of both

objectives to be optimized (in this paper we consider cost

and makespan), k is a weight vector, z represents the ref-

erence point which corresponding to the minimal values for

both objectives considered(cost and makespan), h is a

penalty parameter that has to be greater than 0, d1 is the

distance between z� and y, d2 is the distance between

F(x) and line L. It worths mentioning that PBI and TE use

the same set of evenly distributed weight vectors when the

number of considered objectives is two. However, PBI has

more advantages over TE.

– The resultant optimal solutions generated by PBI are

much more uniformly distributed than those generated

by TE, especially when the number of the weight

vectors is not large.

– For TE, when x dominates y it is still possible that

gte ¼ ðxjk; z� ¼ gte ¼ ðyjk; z�Þ. However, this is a rare

case for PBI.

To achieve these advantages, penalty factor values have to

be set. It is well known that a too large or too small number

of penalty factors will decline the performance of this

approach.

4.5 NIMBUS approach

Miettinen et al. [26] describes NIMBUS as an interactive

classification-based multi-objective optimization approach.

It uses the same principle as other decomposition algo-

rithms. The scalar optimization problem can be represented

as follows:

minimize gnbsðxjk; zÞ ¼ max
1� i�m

fðkiðfiðxÞ � ziÞÞ;

ðkjðfiðxÞ � z�j ÞÞg þ p
Xm
i¼1

kifiðxÞ

Subject to x 2 X

ð12Þ

where z is the ideal objective vector, z� is the aspiration

levels for the objective function, p[ 0 is a relatively small

scalar bounding trade-off, and k is a weight vector used to

scale up or down the values of the considered objectives.

More details about WS, TE and PBI approaches can be

found in [6] and more details about NIMBUS can be found

in [27].

Based on the models and assumptions above, we present

the multi-objective workflow scheduling algorithm, which

generates schedules and properly tunes the CPU frequency

for each task so that makespan and total cost of the sub-

mitted workflow are minimized.
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5 The proposed algorithm

This section describes the Workflow Scheduling Algorithm

Based on Decomposition (WSABD), a multi-objective

algorithm proposed to solve the problem described in Sect.

4.

5.1 Algorithm description

As presented in algorithm 2, WSABD takes seven elements

(W, VMs, SC, N, WV, T, A) as input. Those input elements

are described as follows: W(Workflow) is a set of tasks

with known execution time and communication time, VMs

is a set of resources with CPU frequencies and associated

prices, SC is a fixed number of iterations used as the

stopping criteria, N is the number of sub-problems con-

sidered, WV is a uniform distribution of N Weight Vectors:

k1:::kN (N=2), T is the number of weight vectors in the

neighborhood of each weight vector, A is a decomposition

approaches(selected from the set of decomposition

approaches) that is used to compute and compare new

solutions. In our case, A can be one of those five approa-

ches: WS, TE, MTE, PBI and NIMBUS. WSABD returns

EP as the output, where EP is a set of non-dominated

solutions. The proposed algorithm consists of three main

steps: Initialization, Update and checking the stopping

criteria.
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RWðt;m;f Þ ¼ TCðt;m0
;f
0 Þ � TCðt;m;f Þ ð13Þ

In our previous study [28], we proposed a workflow

scheduling algorithm with two variants (CFMax, CFMin).

Like all other studies that focused on optimizing workflow

scheduling objectives under user’s deadline [13, 16, 31],

the purpose of our former study [28] was to minimize the

users’ monetary expenditure for the submitted workflow

application under a given deadline. The experimental

results of our proposal show that CFMax performs better

than CFMin. To satisfy the user’s deadline regardless of the

total cost, CFMax starts with a makespan-aware scheduling

algorithm (such as HEFT, MIN-MIN, MCT, or MAXMIN

like in [14]) and schedules each task to the appropriate VM

instance using the maximum CPU frequency. To guarantee

the cost reduction, a reduction-weight(RW) table is created

to measure the cost reduction impacted by the task reas-

signment and CPU frequency re-allocation. The values are

inserted into RW table according to Eq. (13), where

TCðt;m0;f 0Þ represents new task’s cost after changing the CPU

frequency, and TCðt;m;f Þ represents the cost of executing the

tasks on the VM instance under current CPU frequency. To

take a re-assignment decision, the combination of VM

instance and CPU frequency that produces the maximum

value in RW table is selected as the winner.

In the first step of WSABD, we initialize the inputs,

CFMax is used to generate the initial population (line 4 of

Algorithm 2). In the second step, we update the initialized

variables by iteratively changing vector variables and

iteration settings. We compute new solutions according to

the updated settings and update new solutions according to

the decision from a designated decomposition approach. In

the third step, we check if stopping criteria is satisfied then

return the Non-Dominated solutions (namely, EP), other-

wise go to step two.

In detail, step one (from lines 1 to 6) consists of ini-

tialization of the input variables such as the number of

weight vectors in the neighborhood (T), weight vector

122 Cluster Computing (2021) 24:115–139
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indexes B, VM instance information, DAG information.

After the population is initialized using CFMax, the indi-

vidual cost and makespan are calculated as objective

function values. Line 4 in algorithm 2 says that FV stands

for objective function values. Among them the minimum

one is selected as the initial reference point z. Note that T

plays an important role in limiting the search operation to a

certain extent. The second step (from line 7 to 26) consists

of two sub-steps. In the first sub-step (from line 7 to 15),

we update the individual(y0) by searching either the mini-

mized cost or the minimized makespan based on the

position index of the individual in the population. If the

index of the individual in the population is even, we get

new individual by minimizing cost otherwise we get new

individual by minimizing makespan. Then the new cost and

the new makespan are calculated according to the new

individual values and renamed as (FVðy0Þ). Finally, the

reference point is updated according to (FVðy0Þ). In the

second sub-step (from line 16 to 26), the solutions of the

individual’s neighbors are updated. As shown in the algo-

rithm 1, in this stage we use one of the approaches defined

in Eqs. (8), (9) and (11). For each selected approach, we

calculate the g�ðy0kk j; zÞ and g�ðx jkk j; zÞ. Before resetting

the current cost-makespan(xj) value to be equal to the new

individual y0, the two values are compared first. If the new

values (g�ðy0kk j; zÞ) are less or equal to the current values

(g�ðx jkk j; zÞ), update is allowed otherwise the current

values are kept and the algorithm continues. EP is also

updated according to the new values of FVðy0Þ. The second
step(the update step) is repeated until the stopping criteria

is satisfied then the final EP is returned.

5.2 WSABD complexity

WSABD algorithm has three main parameters: population

size (PopSize), the number of neighbors (T) and the number

of iterations (iterNum). PopSize corresponds to the number

of single objective sub-problems that the algorithm

decomposes such multi-objective problem into, and indi-

cates search breadth of the algorithm. T can be expressed as

a sub-problem by using the number of adjacent subprob-

lems. iterNum represents search depth of the algorithm.

Suppose that there exists a workflow with N tasks and VMs

available resources with C selections of CPU frequency on

average. According to Algorithm 2, the update step needs

iterNum times. Each time Popsize individuals in population

have to be updated in turn. In the process of updating each

individual, the solutions of its T neighbors will be recal-

culated by Algorithm 1. Therefore, the time complexity of

WSABD is: iterNum � PopSize�MaxðT ;N � VMs� CÞ,
where N � R� C is the number of computations required

to construct the RW table.

6 Evaluation

In order to evaluate the performance of the proposed

algorithm, we perform two types of experiments by using

different parameter settings (as presented in Sect. 6.1) in

each experiment. The first experiment learns the variability

of cost and makespan values under fixed parameters set-

tings (the number of VMs, the number of iterations, pop-

ulation size and the number of neighbors), and the second

one learns the variability of the cost and makespan values

under changeable parameter settings. We mainly focus on

three types of evaluations including optimization results,

runtime results and HyperVolume(HV) results. For the first

experiment, we presented all the three types of results,

while for the second experiment we just focus on the HV

results. The results and their discussions are presented in

the subsections below Fig. 2.

6.1 Evaluation settings

The algorithm presented in Sect. 2 and its simulation tools

are implemented in Java. A PC with 4-core Intel i5-

7300HQ @2.5GHz CPU and 8GB-RAM is used as an

experimental environment. Each simulated resource runs at

a CPU frequency in the range between maximum and

minimum, with a variation step, selected randomly as

shown in Table 2. We considered three pricing models

described in section [5], with cmin and d presented in

Table 3 as in our previous work [14]. We also considered

three real workflows (Montage, Inspiral, and Epigenomics)

which are different in structure. [30] described Montage as

a type of workflow that is created by the NASA/IPAC

Infrared Science Archive as an open toolkit that can be

used to generate custom mosaics of the sky from input

images in the Flexible Image Transport System (FITS)

format. [30] described LIGO Inspiral Analysis (also

known as LIGO or Inspiral in short) as a type of workflow

that is created to analyze data from the coalescing of

compact binary systems such as binary neutron stars and

black holes. The same work described Epigenomics as a

type of workflow that is created by the USC Epigenome

Center and Pegasus Team to automate various operations

in genome sequence processing. The considered workflows

are defined by DAX files which follow DAX XML speci-

fications. We download the DAX files describing a

1000-node Montage workflow, a 1000-node Inspiral

workflow and 997-node Epigenomics workflow from the

website of Pegasus workflow Generator [29] and use them

as the inputs of the scheduling algorithm in our simulator.

For the optimization experiments, we set the input

parameters such as population size, the number of neigh-

bors, the number of the iterations and the number of VMs
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as 20, 5, 2000 and 15 respectively. WSABD is applied to

each workflow with the parameters defined above.

6.2 Performance results

To evaluate the performance of the proposed algorithm, we

considered Hyper-Volume indicator, one of the perfor-

mance indicators used to measure the single score to

indicate the quality of a set PF solutions acquired by the

proposed algorithm using different settings. For a 3D data,

this score is equal to the volume covered by the PF and the

selected reference point R. However, in case of 2D (shown

in Fig. 3), it refers to the area covered by the PF set and the

selected reference point R. The HV enclosed by the PF and

reference point R is calculated as follows:

HVðPF;RÞ ¼ [v2PFvolumeðvÞ ð14Þ

where volume(v) is the area bounded by the solution v in

PF and R. For the minimization problem, the larger the HV

is,the closer the solution set obtained by the algorithm is to

the lower left corner of the coordinate axis, the better the

convergence of the algorithm and the distribution of the

solution set are. When the HV values are stable, the solu-

tion set obtained by the algorithm is not changed, and the

algorithm is convergent.

6.3 Fixed parameter settings

6.3.1 Optimization results

In this section we present and discuss the optimization

results of the proposed algorithm. Given the parameters

and the settings described above, CFMax is firstly

Fig. 2 Structure of the considered workflows (Source: [29])

Table 3 cmin and d values
Pricing model cmin d

Linear 9.24 3.33

Superlinear 9.29 4.44

Sublinear 2.78 12

Fig. 3 Calculation of HV results
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executed, then cost and makespan results are collected. The

results generated by CFMax are also the initial population

for WSABD. WSABD can approximate optimal solutions

(set of PF solutions) at the end of a single run. Note that

WSABD is made of five decomposition approaches. As

long as the iteration number is not yet satisfied and all

possibilities are not tried yet, the algorithm will continue to

generate new solutions. The experimental results are shown

in Figs. 4, 5, 6 7, 8, 9, 10, 11 and12.

Note that users can determine the solutions that suit their

needs based on some constraints such as budget and/or

deadline. Based on the optimization results presented in

these figures, the key findings of this subsection can be

summarized as follows:

– The overall optimization results show that Montage

produces small value results of cost and makespan

while Epigenomics produces high-value results.

– When the considered parameter settings are applied to

Montage and Inspiral for linear and superlinear pricing

models, WSABD-TE achieves high makespan than

other algorithms.

– When the pricing model is sublinear, no algorithm

achieves the same results as the others.

– In case of sublinear pricing model, cost and makespan

results generated by our algorithm start higher than the

ones generated by CFMAX.

6.3.2 Runtime results

To evaluate the runtime of WSABD, the algorithm will run

100 times with each decomposition approach under

aforementioned environments and settings, then the aver-

age time consuming will be calculated as the runtime

result. The runtime results are shown in Figs. 13, 14 and

15.

Based on the runtime results presented in those figures,

the key findings of this subsection can be summarized as

follows:

– The overall runtime results demonstrate that when

DAGs are Montage and Inspiral, WSABD-TE’s run-

time is higher than the runtime of other decomposition

approach options.

– For Epigenomics, the runtime of WSABD-PBI

becomes higher when the pricing models are linear

and superlinear, but it becomes second lower when the

pricing model is sublinear.

– For Montage, lower runtime can be achieved by

WSABD-WS for linear pricing model, WSADB-MTE

for superlinear pricing model and WSABD-PBI for

sublinear pricing model.

– For Inspiral, lower runtime can be achieved by

WSABD-NIMBUS for both linear and superlinear

pricing models, and by WSABD-NIMBUS for sublin-

ear pricing model.

Fig. 4 Montage optimization

results (Linear model)
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– For Epigenomics, lower runtime can be achieved by

WSABD-MTE for both linear and sublinear pricing

models, and by WSABD-WS for superlinear pricing

model.

6.3.3 HV results

With the same parameters settings as used for optimization

and runtime experiments, we also evaluated performance

Fig. 5 Montage optimization

results (Superlinear model)

Fig. 6 Montage optimization

results (Sublinear model)
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of the proposed algorithm based on the HV results of each

algorithm. It worths mentioning that the CFMAX results

will mostly be in the lower left corner of the coordinate

axis compared to the results of the proposed algorithm,

which gives CFMAX the ability to dominate in many

cases. If the results of CFMAX are the best, we also search

Fig. 7 Inspiral optimization

results (Linear model)

Fig. 8 Inspiral optimization

results (Superlinear model)
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for other best results excluding CFMAX. We tabulated all

the results obtained in Table 4 and the best results are in

bold.

– The results generated by CFMAX dominate the results

generated by our algorithm in 7/9 cases.

Fig. 9 Inspiral optimization

results (Sublinear model)

Fig. 10 Epigenomics

optimization results (Linear

model)
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– When the results generated by CFMAX are excluded,

the results generated by WSABD-TE dominate the

results generated by other variants in 4 cases (two cases

when DAG is Montage and two more cases when DAG

is Inspiral), followed by WSABD-WS (3 cases when

DAG is Epigenomics). Both WSABD-TE and

WSABD-PBI have equal number of cases (WSABD-

TE has one case when DAG is Montage and WSABD-

PBI has one case when DAG is Inspiral). WSABD-

NIMBUS didn’t achieve best solution in any case.

Fig. 11 Epigenomics

optimization results

(Superlinear model)

Fig. 12 Epigenomics

optimization results (Sublinear

model)
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Fig. 13 Runtime results

(Montage)

Fig. 14 Runtime results

(Inspiral)
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6.4 Variation of other parameter settings

In the second experiment, we used the same parameter

settings. However, only one of them will be changed each

time while all others remain at their default values as in the

previous experiment. We let the number of VMs change

from 5 to 35 with a variation step of 5, population size

change from 5 to 30 with a variation step of 5, the number

of neighbors change from 2 to 7 with a variation step of 1,

deadline ratio change from 1.5 to 4 with a variation step of

0.5 and iteration number change from 500 to 3000 with a

variation step of 500. The HV results for variation of the

number of VMs, variation of population size, variation of

the number of neighbors and variation of the number of

iterations are presented in Tables 5, 6, 7 and 8 respectively.

For each table, we omit the HV results generated by the

parameter settings corresponding to those we used in the

previous experiment, which can be found in Table 4.

Global ranking of the performance of HV results cannot be

used to make the final decision about the best variant,

because the performance of the algorithm depends on the

parameter settings of the environment and the structure of

the DAG processed. Therefore, we also analyze HV results

of each individual variant, re-rank based on DAG structure.

Fig. 15 Runtime results

(Epigenomics)

Table 4 HV results

VMs

number

DAG Pricing

model

CFMax WSABD-

WS

WSABD-TE WSABD-

PBI

WSABD-

MTE

WSABD-

NIMBUS

20 Montage Linear 883.6580748 945.1748272 952.2814573 962.8265572 971.9816618 941.9516815

Superlinear 3123.68134 2991.146019 3002.836243 2998.052127 2958.494405 2963.747069

Sublinear 2424.833044 2114.245207 2267.72918 2145.37271 2287.652909 2209.138739

Inspiral Linear 428303.1905 395642.8858 394394.1149 397720.2619 394918.0159 373603.8355

Superlinear 1194755.019 1100360.469 1105248.901 1108718.658 1113435.646 961463.6799

Sublinear 1099927.187 976499.5293 979471.3129 954825.5295 1014434.873 961894.0812

Epigenomics Linear 3.15E108 2.98E108 2.97E?08 2.96E?08 2.98E?08 2.73E?08

Superlinear 3.94E?08 4.06E108 4.03E?08 3.98E?08 3.95E?08 3.88E?08

Sublinear 4.56E108 4.05E108 4.05E?08 3.83E?08 4.01E?08 4.01E?08

Bold is used to highlight the leading HV results
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Table 5 Variation of the number of VMs

VM

number

DAG Pricing

model

CFMax WSABD-

WS

WSABD-TE WSABD-

PBI

WSABD-

MTE

WSABD-

NIMBUS

5 Montage Linear 1247.084295 1331.774162 1331.594375 1332.769794 1334.936818 1212.870389

Superlinear 1579.335783 1598.19786 1574.420988 1544.757726 1568.625954 1534.394471

Sublinear 2343.289093 2349.954767 2345.160123 2319.480024 2380.470293 2220.571114

Inspiral Linear 544575.2546 565386.1234 564267.9693 563371.6132 567490.5052 527709.9506

Superlinear 622235.2558 615815.0179 604150.6882 609200.3701 608607.1543 593304.5555

Sublinear 1146498.215 1126936.618 1108407.286 1103098.19 1077409.642 1006983.177

Epigenomics Linear 4.55E?08 4.68E?08 4.69E?08 4.62E?08 4.69E108 4.68E?08

Superlinear 3.44E?08 3.68E?08 3.73E108 3.60E?08 3.71E?08 3.68E?08

Sublinear 8.49E?08 8.45E?08 8.50E108 7.82E?08 8.49E?08 8.46E?08

10 Montage Linear 817.3749734 870.0314652 880.7707218 879.2516886 877.7201896 862.8290109

Superlinear 2401.197162 2370.917929 2419.20799 2412.914858 2364.955866 2363.055243

Sublinear 1150.10072 1004.04987 1093.475487 1074.932167 1048.907581 1083.424953

Inspiral Linear 417343.374 401843.6834 435455.0984 428311.2236 442193.3487 413116.6943

Superlinear 927579.9332 907432.9248 921190.096 911315.146 934132.2835 899642.8796

Sublinear 640463.7563 542602.8079 528278.4526 551145.5922 554588.9421 567511.7769

Epigenomics Linear 2.62E108 2.49E?08 2.57E108 2.49E?08 2.55E?08 2.30E?08

Superlinear 3.25E108 3.15E?08 3.23E?08 3.10E?08 3.25E108 2.79E?08

Sublinear 8.52E108 7.49E?08 7.58E108 7.25E?08 7.58E?08 7.18E?08

15 Montage Linear 2961.954857 2860.979754 2949.46585 2975.396053 2970.230368 2960.888966

Superlinear 5827.342632 5279.122252 5738.927605 5671.819275 5717.463902 5693.015831

Sublinear 2889.434558 2553.959551 2570.490599 2624.907426 2520.411522 2585.641249

Inspiral Linear 1046581.971 944171.3817 1006686.569 1000297.435 1007994.738 998591.1995

Superlinear 2020266.922 1837528.629 1936523.739 1899646.448 1933480.354 1955569.489

Sublinear 1259329.84 1061019.924 1062464.059 1088559.34 1049582.763 1074929.971

Epigenomics Linear 6.06E108 5.36E?08 5.53E?08 5.29E?08 5.56E108 5.49E?08

Superlinear 5.42E108 4.75E?08 4.90E?08 4.47E?08 4.96E108 4.24E?08

Sublinear 1.19E109 1.05E?09 1.05E109 1.03E?09 1.05E?09 1.02E?09

25 Montage Linear 4414.477666 4144.004822 4433.941367 4145.395336 4402.309872 3610.920274

Superlinear 4237.857051 3731.262105 4183.670513 3597.404424 4163.056544 2690.204646

Sublinear 9560.173569 9206.284594 9239.23521 9219.547329 9186.324666 8970.889719

Inspiral Linear 1692277.785 1631752.23 1698485.246 1572322.941 1679245.759 1311889.926

Superlinear 1593085.544 1540460.673 1570713.261 1320910.099 1573269.118 1111451.554

Sublinear 3762062.36 3563251.04 3639362.112 3581036.748 3630198.274 3568024.582

Epigenomics Linear 4.74E?08 5.50E?08 5.51E108 5.42E?08 5.50E?08 5.31E?08

Superlinear 3.09E?08 4.74E?08 4.81E108 4.60E?08 4.77E?08 3.83E?08

Sublinear 9.17E?08 1.04E?09 1.06E109 1.03E?09 1.05E?09 1.01E?09

30 Montage Linear 5099.614878 4947.479908 5020.113031 4833.768677 5018.678465 4483.113871

Superlinear 5527.008735 5362.682444 5313.070334 5166.430444 5285.642257 5044.792911

Sublinear 5147.575707 4731.989333 4748.439223 4803.845634 4841.885255 4712.334711

Inspiral Linear 1168629.64 1020846.074 1088272.174 1022862.923 1097265.552 965468.1694

Superlinear 2167845.683 2096505.83 2067228.915 1968980.149 2077915.646 1865157.6

Sublinear 2127034.814 1908153.801 1901642.177 1895052.666 1938057.106 1912167.417

Epigenomics Linear 3.52E108 3.42E?08 3.42E?08 3.43E?08 3.43E108 3.40E?08

Superlinear 5.22E?08 5.40E108 5.35E?08 5.37E?08 5.38E?08 5.31E?08

Sublinear 9.10E108 8.71E?08 8.68E?08 8.74E108 8.61E?08 8.68E?08
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6.4.1 Variation of the number of VMs

– The overall HV results for VMs number variation show

that each variant can at least achieve the best results in

some case.

– The general results are collected for each decomposi-

tion approach and ranked as follows: WSABD-TE the

first with 21/54 cases, WSABD-MTE the second with

16/54 cases, WSABD-PBI the third with 7/54 cases,

WSABD-WS the fourth with 6/54 cases and lastly

WSABD-NIMBUS with 4/54 cases. Among 54 cases,

CFMAX achieves best results in 35 cases (where 11/18

cases are from Montage, 13/18 cases are from Inspiral

and 11/18 cases are from Epigenomics).

– For Montage, the variants are ranked as follows:

WSABD-TE the first with 8/18 cases, WSABD-PBI

the second with 4/18 cases, WSABD-MTE the third

with 3/18 cases, WSABD-WS the fourth with 2/18

cases and finally WSABD-NIMBUS the last with 1/18

cases.

– For Inspiral, the variants are ranked as follows:

WSABD-TE the first with 7/18 cases, WSABD-WS,

WSABD-TE and WSABD-NIMBUS the second with

3/18 cases each and finally WSABD-PBI the last with

2/18 cases.

– For Epigenomics, the variants are ranked as follows:

WSABD-TE the first with 10/18 cases,WSABD-MTE

the second with :6/18 cases, WSABD-WS, WSABD-

PBI the third with 1/18 case each and finally WSABD-

NIMBUS the last with 0/18 case.

6.4.2 Variation of population size

– Based on the general results, variants are ranked as

follows: WSABD-WS the first with 15/36 cases,

WSABD-TE the second with 9/36 cases, WSABD-

MTE the third with 7/36 cases, WSABD-PBI the fourth

with 5/36 cases and lastly WSABD-NIMBUS with 0/36

case. Among 36 cases, CFMAX achieves best results in

28 cases (where 8/12 cases are from Montage, 12/12

cases are from Inspiral and 8/12 cases are from

Epigenomics).

– For Montage, the variants are ranked as follows:

WSABD-WS,WSABD-TE, WSABD-PBI, WSABD-

MTE the first with 3/12 cases for each of them and

finally WSABD-NIMBUS the last with 0/12 case.

– For Inspiral, the variants are ranked as follows:

WSABD-MTE the first with 4/12 cases, WSABD-

WS, WSABD-TE the second with 3/12 cases for each,

WSABD-PBI the third with 2/12 cases and finally

WSABD-NIMBUS the last with 0/12 case.

– For Epigenomics, the variants are ranked as follows:

WSABD-WS the first with 9/12 cases, WSABD-TE the

second with 3/12 cases, and finally WSABD-PBI,

WSABD-MTE and WSABD-NIMBUS the last with

0/12 case for each of them.

6.4.3 Variation of the number of neighbors

– Based on the general results, the variants are ranked as

follows: WSABD-MTE the first with 16/45 cases,

WSABD-WS the second with 15/45 cases, WSABD-

TE the third with 9/45 cases, WSABD-PBI the fourth

with 6/45 cases and lastly WSABD-NIMBUS with 0/45

case. Note that both WSABD-WS and WSABD-PBI

achieve the best result in one case(when the number of

neighbours is 3 for Epigenomics with linear pricing

model). Among 45 cases, CFMAX achieves best result

in 36 cases (where 9/15 cases are from Montage, 15/15

cases are from Inspiral and 12/15 cases are from

Epigenomics).

Table 5 (continued)

VM

number

DAG Pricing

model

CFMax WSABD-

WS

WSABD-TE WSABD-

PBI

WSABD-

MTE

WSABD-

NIMBUS

35 Montage Linear 1337.971372 1206.179901 1254.350379 1263.218441 1246.454869 1205.529621

Superlinear 4554.544231 4287.503439 4253.011201 4299.82844 4296.877946 3964.328632

Sublinear 3085.152368 2650.593517 2714.196532 2764.402922 2887.64218 2892.714978

Inspiral Linear 493805.0204 388199.319 428930.6055 428931.2975 428923.9006 390933.8616

Superlinear 1590869.126 1373787.974 1549350.757 1543306.776 1540391.023 1292495.994

Sublinear 1424939.914 1291413.199 1274342.18 1231318.114 1300694.294 1305097.688

Epigenomics Linear 5.58E108 5.17E?08 5.20E108 5.15E?08 5.19E?08 4.94E?08

Superlinear 5.02E108 4.14E?08 4.31E108 4.18E?08 4.24E?08 3.70E?08

Sublinear 1.08E109 8.45E?08 9.80E?08 8.63E?08 1.01E109 7.63E?08

Bold is used to highlight the leading HV results
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– For Montage, the variants are ranked as follows:

WSABD-MTE the first with 8/15 cases, WSABD-TE

the second with 3/15 cases, WSABD-WS and WSABD-

PBI the third with 2/15 cases for each of them, and

finally WSABD-NIMBUS the last with 0/15 case.

– For Inspiral, the variants are ranked as follows:

WSABD-WS, WSABD-TE and WSABD-MTE the first

with 4/15 cases for each of them, WSABD-PBI the

second with 3/15 cases each and finally WSABD-

NIMBUS the last with 0/15 case.

– For Epigenomics, the variants are ranked as follows:

WSABD-WS the first with 9/15 cases, WSABD-MTE

the second with 4/15 cases, WSABD-TE the third with

2/15 cases, WSABD-PBI the fourth with 1/15 case and

finally WSABD-NIMBUS the last with 0/18 case. Note

that both WSABD-WS and WSABD-PBI achieve the

Table 6 Variation of population size

Population

size

DAG Pricing

model

CFMax WSABD-

WS

WSABD-

TE

WSABD-

PBI

WSABD-

MTE

WSABD-

NIMBUS

15 Montage Linear 883.6581 946.0799 940.4845 962.595 947.1697 940.7039

Superlinear 3123.681 2970.281 2976.019 3014.735 2849.032 2975.399

Sublinear 2424.833 2024.071 2164.851 2050.897 2257.574 2255.457

Inspiral Linear 428303.2 388126.7 387917.1 398900.7 390977.9 370856.3

Superlinear 1194755 1097187 1104004 1112183 1066077 978949.7

Sublinear 1099927 933906.5 950408.5 907990.1 984129.4 937200.3

Epigenomics Linear 3.15E108 2.98E?08 2.98E108 2.90E?08 2.97E?08 2.70E?08

Superlinear 3.94E?08 4.06E108 4.04E?08 3.81E?08 4.01E?08 3.84E?08

Sublinear 4.56E108 4.04E108 4.04E?08 3.56E?08 3.99E?08 4.00E?08

25 Montage Linear 2261.237 2337.112 2337.527 2332.029 2281.359 2307.218

Superlinear 3069.102 3018.627 2952.456 2898.38 2872.828 2883.886

Sublinear 2500.781 2379.387 2392.144 2273.449 2418.745 2310.326

Inspiral Linear 425992.3 396660 396378.9 393939.6 395238.4 387715

Superlinear 1171308 1100271 1105440 1075313 1059324 1022338

Sublinear 1166485 1021267 1023967 1025877 1106652 1028845

Epigenomics Linear 2.21E108 2.03E?08 2.03E108 1.91E?08 2.03E?08 1.85E?08

Superlinear 3.51E?08 3.61E108 3.60E?08 3.32E?08 3.58E?08 3.55E?08

Sublinear 7.43E108 6.97E108 6.83E?08 6.34E?08 6.91E?08 6.67E?08

30 Montage Linear 883.6581 958.8003 959.1056 959.7215 958.0858 934.4328

Superlinear 3123.681 3072.5 3006.892 2951.017 2924.345 2936.537

Sublinear 2424.833 2304.005 2317.63 2200.089 2344.32 2238.63

Inspiral Linear 428303.2 398970 398690 396247.3 397506.4 390017.5

Superlinear 1194755 1123590 1128915 1098372 1080989 1044219

Sublinear 1099927 958191 957398.4 961597.7 1042006 965892

Epigenomics Linear 3.15E108 2.97E?08 2.98E108 2.86E?08 2.97E?08 2.79E?08

Superlinear 3.94E?08 4.06E108 4.05E?08 3.76E?08 4.03E?08 4.00E?08

Sublinear 4.56E108 4.10E108 4.00E?08 3.49E?08 4.02E?08 3.90E?08

35 Montage Linear 883.6581 962.2531 974.5004 958.4175 967.8415 944.0039

Superlinear 3123.681 3056.053 3032.034 2916.34 3077.496 2871.608

Sublinear 2424.833 2278.059 2361.796 2232.877 2208.966 2251.576

Inspiral Linear 428303.2 399660.9 404355 394493.6 399492.2 389252.4

Superlinear 1194755 1158030 1141958 1089811 1142178 1077164

Sublinear 1099927 1005478 943538.8 962780.1 1026846 980392.3

Epigenomics Linear 3.15E108 2.98E108 2.97E?08 2.89E?08 2.98E?08 2.77E?08

Superlinear 3.94E?08 4.05E108 4.03E?08 3.82E?08 4.03E?08 4.01E?08

Sublinear 4.56E108 4.09E108 3.97E?08 3.65E?08 4.02E?08 3.90E?08

Bold is used to highlight the leading HV results
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Table 7 Variation of the number of neighbors

Neighbors DAG Pricing model CFMax WSABD-WS WSABD-TE WSABD-PBI WSABD-MTE WSABD-NIMBUS

2 Montage Linear 3040.53132 2697.280552 2948.654647 2732.246694 2853.8945 2394.681853

Superlinear 2759.08683 1908.699626 2412.42815 1870.23911 2009.671301 1424.692537

Sublinear 8218.84184 6221.312891 7031.707494 6266.861459 6526.449425 5574.150734

Inspiral Linear 1336699.57 1181193.908 1244320.503 1170358.829 1216864.051 1115077.959

Superlinear 1223801.33 788417.1595 1031857.147 797840.6922 831862.6803 803636.7236

Sublinear 3498478.51 2577095.922 3048801.547 2564464.287 2732370.41 2852250.295

Epigenomics Linear 4.39E108 3.87E?08 3.96E?08 3.80E?08 3.97E108 3.91E?08

Superlinear 2.72E108 2.18E?08 2.22E108 1.80E?08 1.92E?08 2.22E?08

Sublinear 1.03E109 8.66E?08 8.68E108 7.78E?08 8.05E?08 8.61E?08

3 Montage Linear 946.434864 1029.490087 1014.823159 1024.710356 1011.308631 1010.008642

Superlinear 3130.8442 2984.690854 2989.248121 2854.238075 3010.185078 2970.497435

Sublinear 2529.84178 2139.921424 2348.483098 2392.217321 2388.17169 2370.863019

Inspiral Linear 426927.354 398961.7415 390587.0772 398031.8257 391146.4367 382131.1995

Superlinear 1203271.76 1107946.499 1115842.89 1075316.586 1114661.583 1053146.718

Sublinear 1253555.32 1168460.331 1102384.507 1144635.045 1129196.652 1120640.019

Epigenomics Linear 2.13E108 1.95E108 1.94E?08 1.95E?08 1.89E?08 1.89E?08

Superlinear 2.44E?08 2.48E108 2.45E?08 2.44E?08 2.48E?08 2.43E?08

Sublinear 2.85E108 2.34E108 2.29E?08 2.15E?08 2.29E?08 2.31E?08

4 Montage Linear 1110.55893 1180.48101 1175.728567 1190.111283 1173.49076 1184.895124

Superlinear 3145.01442 3001.871145 3010.981361 3019.507982 3030.00758 2939.576142

Sublinear 2466.16037 2264.993307 2272.054294 2189.084681 2303.107632 2250.299429

Inspiral Linear 459051.484 421666.5766 421114.7429 428240.9922 425797.5249 418423.3825

Superlinear 1222987.4 1137931.868 1128564.267 1135471.927 1138138.822 1112831.535

Sublinear 1206443.25 1078749.485 1084737.85 1050926.635 1109165.156 1048416.973

Epigenomics Linear 2.29E108 2.10E?08 2.10E?08 2.04E?08 2.12E108 2.08E?08

Superlinear 3.47E?08 3.56E108 3.55E?08 3.48E?08 3.51E?08 3.52E?08

Sublinear 5.34E108 4.81E108 4.79E?08 4.57E?08 4.76E?08 4.75E?08

6 Montage Linear 3134.35665 3215.795809 3206.770446 3208.951946 3215.996905 3198.308583

Superlinear 3162.83676 3068.140801 3046.08706 3031.895568 3022.267191 3017.771168

Sublinear 2445.40401 2170.238152 2280.271262 2158.42557 2317.430956 2228.858601

Inspiral Linear 473155.01 445152.8263 441403.0503 442621.3362 438093.9456 422766.313

Superlinear 1222983.26 1134335.786 1126451.555 1135651.166 1125929.036 1089597.349

Sublinear 1114788.47 1002299.947 1003071.393 964367.8298 1015476.533 985671.2818

Epigenomics Linear 2.04E108 1.86E?08 1.86E?08 1.75E?08 1.87E108 1.58E?08

Superlinear 3.01E108 3.10E108 3.08E?08 2.84E?08 3.04E?08 2.89E?08

Sublinear 3.63E108 3.15E108 3.08E?08 2.66E?08 3.06E?08 3.08E?08

7 Montage Linear 954.410295 1022.020154 1021.26312 1033.006167 1040.571356 1022.875328

Superlinear 3073.43762 2957.893611 2959.794842 2947.326943 2960.190193 2917.250429

Sublinear 2504.37396 2128.098181 2357.25422 2212.654175 2370.485052 2308.201677

Inspiral Linear 748322.35 713761.7613 715261.0099 718044.848 715488.0597 696852.6661

Superlinear 1222987.4 1150691.52 1128291.34 1136938.403 1136352.44 1009529.753

Sublinear 1119034.64 968026.3072 977332.5364 974127.8329 1020832.533 968845.3049

Epigenomics Linear 2.65E108 2.47E?08 2.47E?08 2.38E?08 2.48E108 2.19E?08

Superlinear 4.07E?08 4.18E108 4.16E?08 3.92E?08 4.14E?08 4.08E?08

Sublinear 3.93E108 3.38E108 3.34E?08 2.98E?08 3.37E?08 3.37E?08

Bold is used to highlight the leading HV results
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Table 8 Variation of the number of iterations

Iterations DAG Pricing model CFMax WSABD-WS WSABD-TE WSABD-PBI WSABD-MTE WSABD-NIMBUS

500 Montage Linear 599.3740905 645.6761404 608.9243021 679.0471441 629.2245782 641.551717

Superlinear 1540.363275 1132.438952 1112.003655 1441.25312 1079.011736 1114.039896

Sublinear 2448.101375 1876.854374 1919.497952 2168.111257 1909.319637 1913.945616

Inspiral Linear 384537.6762 351692.6357 332026.0286 353976.2256 338943.9989 340882.8981

Superlinear 985692.799 885689.8978 836745.3736 901044.7966 823353.7722 802569.1562

Sublinear 1050135.31 921088.2103 895515.7364 906129.5746 906539.6029 898875.473

Epigenomics Linear 3.08E108 2.90E108 2.90E?08 2.89E?08 2.90E?08 2.65E?08

Superlinear 3.84E?08 3.96E108 3.92E?08 3.87E?08 3.85E?08 3.76E?08

Sublinear 3.83E108 3.32E108 3.32E?08 3.09E?08 3.20E?08 3.29E?08

1000 Montage Linear 1110.611705 1173.509429 1169.356136 1189.391551 1175.979261 1166.488039

Superlinear 3123.68134 2980.536835 2970.725872 2998.052127 2885.824027 2948.00095

Sublinear 2424.833044 2114.245207 2232.737602 2145.37271 2237.635544 2209.138739

Inspiral Linear 428303.1905 395642.8858 392376.1649 397720.2619 393405.3703 384382.162

Superlinear 1194755.019 1100304.562 1105248.901 1108718.658 1104875.358 949301.2155

Sublinear 1099927.187 976499.5293 977469.6956 954825.5295 1009623.671 961771.8474

Epigenomics Linear 3.15E108 2.98E108 2.97E?08 2.96E?08 2.98E?08 2.72E?08

Superlinear 3.94E?08 4.06E108 4.03E?08 3.98E?08 3.95E?08 3.88E?08

Sublinear 4.56E?08 4.05E108 4.05E?08 3.83E?08 4.01E?08 4.01E?08

1500 Montage Linear 932.5621587 994.7965555 1001.215471 1011.646898 1007.917859 990.7716783

Superlinear 3123.68134 2983.702381 3002.836243 2998.052127 2976.58609 2947.853385

Sublinear 2424.833044 2114.245207 2267.72918 2145.37271 2327.061524 2209.138739

Inspiral Linear 428303.1905 395642.8858 394394.1149 397720.2619 394919.6828 375874.31

Superlinear 1194755.019 1100309.06 1105248.901 1108718.658 1105380.218 981304.7862

Sublinear 1099927.187 976499.5293 979471.3129 954825.5295 1010063.677 961808.7982

Epigenomics Linear 3.15E108 2.98E108 2.97E?08 2.96E?08 2.98E?08 2.73E?08

Superlinear 3.94E?08 4.06E108 4.03E?08 3.98E?08 3.95E?08 3.88E?08

Sublinear 4.56E108 4.05E108 4.05E?08 3.83E?08 3.99E?08 4.01E?08

2500 Montage Linear 907.8168617 969.7367758 976.4550295 986.9439745 986.118392 966.180143

Superlinear 3123.68134 2991.807938 3002.836243 2998.052127 3006.657693 2962.363467

Sublinear 2424.833044 2114.245207 2267.72918 2145.37271 2310.521636 2209.138739

Inspiral Linear 428303.1905 395642.8858 394394.1149 397720.2619 394979.5101 383424.4574

Superlinear 1194755.019 1100465.336 1105248.901 1108718.658 1122584.305 961982.7268

Sublinear 1099927.187 976499.5293 979471.3129 954825.5295 1014096.155 961648.1593

Epigenomics Linear 3.15E108 2.98E108 2.97E?08 2.96E?08 2.98E?08 2.73E?08

Superlinear 3.94E?08 4.06E108 4.03E?08 3.98E?08 3.95E?08 3.88E?08

Sublinear 4.56E108 4.05E108 4.05E?08 3.83E?08 4.03E?08 4.01E?08

3000 Montage Linear 950.7167304 1012.75331 1019.381153 1029.770381 1029.286097 1009.969241

Superlinear 3123.68134 2992.767981 3002.836243 2998.052127 2993.490941 2966.301806

Sublinear 2424.833044 2114.245207 2267.72918 2145.37271 2270.05881 2209.138739

Inspiral Linear 428303.1905 395662.5404 394394.1149 397720.2619 394804.1418 373939.2554

Superlinear 1194755.019 1100465.336 1105248.901 1108718.658 1131151.106 965240.6034

Sublinear 1099927.187 976499.5293 979471.3129 954825.5295 1015524.828 962223.8243

Epigenomics Linear 3.15E108 2.98E108 2.97E?08 2.96E?08 2.98E?08 2.73E?08

Superlinear 3.94E?08 4.06E108 4.03E?08 3.98E?08 3.95E?08 3.88E?08

Sublinear 4.56E108 4.05E108 4.05E?08 3.83E?08 4.03E?08 4.01E?08

Bold is used to highlight the leading HV results
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best result when the number of neighbours is 3 under

linear pricing model.

6.4.4 Variation of the number of iterations

– Based on the general results the variants are ranked as

follows: WSABD-WS and WSABD-PBI the first with

16/45 cases for each of them, WSABD-MTE the third

with 12/45 cases, WSABD-TE the fourth with 2/45

cases and lastly WSABD-NIMBUS with 0/45 case.-

Note that both WSABD-WS and WSABD-MTE

achieve the best result in one case(when the number of

iterations is 2500 for Epigenomics with linear pricing

model). Among 36 cases, CFMAX achieves best result

in 28 cases (where 8/12 cases are from Montage, 12/12

cases are from Inspiral and 8/12 cases are from

Epigenomics).

– For Montage, the variants are ranked as follows:

WSABD-PBI the first with 8/15 cases, WSABD-MTE

the second with 5/15 cases, WSABD-TE the third with

2/15 cases, finally WSABD-WS, WSABD-NIMBUS

the last with 0/15 case.

– For Inspiral, the variants are ranked as follows:

WSABD-PBI the first with 8/15 cases, WSABD-MTE

the second with 6/15 cases, WSABD-WS the third with

1/15 case, finally WSABD-TE, WSABD-NIMBUS the

last with 0/15 case.

– For Epigenomics, the variants are ranked as follows:

WSABD-WS the first with 15/15 cases WSABD-MTE

the second with 1/15 case and finally WSABD-TE,

WSABD-PBI and WSABD-NIMBUS the last with 0/15

case.Note that both WSABD-WS and WSABD-MTE

achieve the best result when the number of iterations is

2500 under linear pricing model.

7 Conclusion

In this paper, the problem of minimizing the makespan and

monetary cost of a submitted workflow is considered and

modeled as a multi-objective optimization problem. A

novel workflow scheduling algorithm based on decompo-

sition is proposed to assist in the tuning of the CPU fre-

quency for each task so that both makespan and cost can be

minimized. The evaluation results on optimization show

that in different conditions, all the variants of the proposed

algorithm can at least perform well in some cases. And the

runtime evaluation results show that different parameter

settings cause runtime variability for all the tested cases.

However, the proposed algorithm still has room for further

improvements. The use of cloud and/or cluster computing

requires the optimization of more than two objectives at the

same time. On one hand, multiple objectives have to be

considered to further test the capability of the proposed

algorithm. On the other hand, the algorithm complexity

shall be lowered to provide better scalability. Future works

could consider different algorithms to initialize the popu-

lation of the proposed algorithm besides CFMAX. Addi-

tionally, the efficiency of the proposed algorithm could be

tested under a real cloud platform.
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