
An efficient policy evaluation engine with locomotive algorithm

Fan Deng1 • Zhenhua Yu1 • Houbing Song2 • Rongyi Zhao3 • Qi Zheng3 • Zhenyu Li3 • Huansheng He3 •

Yixin Zhang3 • Fangzhi Guo3

Received: 27 March 2020 / Revised: 20 October 2020 / Accepted: 30 October 2020 / Published online: 26 November 2020
� Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The evaluation performance of PDP (policy decision point), especially in large-scale policy sets, is one of the most

significant challenges in XACML (eXtensible Access Control Markup Language). With high time-consuming and

extensive storage policies, large-scale policy sets are becoming more complicated when their evaluation performance need

to be improved. Based on numericalization and batch processing, a new locomotive algorithm is proposed to design and

implement a novel policy evaluation engine called XDPNBE that can efficiently deal with large-scale policy sets and make

authorization decisions in multiple circumstances. XDPNBE enables efficient decisions within an attributed-based access

control framework that has a strong promotion of evaluation performance. By simulating requests, XDPNBE is compared

with the Sun PDP, XEngine, HPEngine and SBA-XACML. Experimental results show that if the number of requests

reaches 10,000, the evaluation time of XDPNBE on the large-scale policy set with 120,000 rules is approximately 0.21%,

4.69%, 5.67% and 9.66% of that of the Sun PDP, XEngine, HPEngine and SBA-XACML, respectively.

Keywords Evaluation performance � Locomotive algorithm � Policy decision point (PDP) � XACML

1 Introduction

Attribute-based access control is a significant security part

in a SOA (Service Oriented Architecture) software system

that defines an access control paradigm whereby access

rights are granted to users who combine attributes together.

Access control is an important security mechanism for the

protection of sensitive information and authorization sys-

tem resources [1, 2]. The operating efficiency of an

authorization service is determined by the evaluation per-

formance of PDP (policy decision point) that is a vital

component in an access control model. PDP needs to load a

policy set composed of a large number of policies, whose

evaluation performance will fall into a serious degradation

with the scale of a policy set growing larger and larger.

This problem leads authorization service systems to a

challenging position [3]. A large-scale policy set is a major

bottleneck of improving PDP evaluation performance in an

authorization system because of its flexible construction,

uneasy description and containing massive polices [4].

XACML stands for ‘‘eXtensible Access Control Markup

Language’’, which not only suits the specific environment,

resource and application system, but also can fit the actual

requirements with versatility. XACML is one of the stan-

dard implements of attribute-based access control, and it

has great adaptability, compatibility and expressive ability

[5]. However, XACML cannot effectively detect conflicts

in a policy. Deng et al. solve this problem by presenting a

conflict detecting and eliminating engine termed XDPCE,

which not only can detect and eliminate conflicts within a

policy, but also has the same ability as a PDP [6]. In this

paper, a creative locomotive algorithm is designed based

on XDPCE. In a further way, to meet the demanding

evaluation of a web-based information system, the rising of

XACML’s scale and complexity is becoming more notable.

& Zhenhua Yu

zhenhuayu@xust.edu.cn

& Houbing Song

songh4@erau.edu

1 Institute of Systems Security and Control, School of

Computer Science and Technology, Xi’an University of

Science and Technology, Xi’an 710054, China

2 Department of Electrical, Computer, Software, and Systems

Engineering, Embry-Riddle Aeronautical University,

Daytona Beach, FL 32114, USA

3 School of Computer Science and Technology, Xidian

University, Xi’an 710071, China

123

Cluster Computing (2021) 24:1505–1524
https://doi.org/10.1007/s10586-020-03204-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7204-3654
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03204-0&domain=pdf
https://doi.org/10.1007/s10586-020-03204-0

The major measurements to solve this problem include

optimizing a policy set, formulating a policy evaluation

engine, and so on. International and domestic academics

and reporters have proposed extensive researches, and the

findings include formulating decision diagrams, policy

reordering, clustering strategies, numericalization, caching

mechanism, and so on [7]. Researchers have optimized an

XACML policy set from different perspectives, but the

related studies available mainly have the following two

problems [4, 7].

1. The status quo that requires a lot of storage space to

statically preprocess large-scale complicated policy

sets does not change.

2. The high time consumption of evaluating requests to

dynamically adjust large-scale complicated policy sets

is not alleviated.

Ngo et al. [8] present a solution called MIDD (Multi-

data-type Interval Decision Diagram) using data interval

partition aggregation together with new decision diagram

combinations. After that, they improve it by using the data

interval partition aggregation that can parse and transform

complex logical expressions in policies into decision tree

structures [9]. Niu et al. [10] adopt a multi-level caching

mechanism based on a statistical analysis to store fre-

quency called request-results, attributes and policy infor-

mation. Policy recording and clustering strategies are

adopted to optimize policy procession in [11]. Marouf et al.

[12] describe an adaptive approach for XACML policy

optimization by applying a clustering technique to policy

sets based on the K-means algorithm. A new approach

called ‘‘Satisfiability Modulo Theories (SMT)’’ can easily

lend itself to verification at run-time during authorization

query answering [13]. Qi et al. [14] optimize an XACML

policy by numericalization. Attribute numericalization

transforms textuary attributes of XACML policies into

numerical attributes. Azzam et al. [15] elaborate on a set-

based language that covers all the XACML components

and establish an intermediate layer to which policies are

automatically converted.

This paper makes the following contributions.

1. A novel policy evaluation engine is presented based on

numericalization, batch processing and secondary

classification.

2. A creative algorithm called locomotive algorithm is

studied that can efficiently improve the PDP evaluation

performance especially in large-scale complicated sets.

The rest of the paper is organized as follows. Related

works are reviewed in Sect. 2. Section 3 introduces the

framework of our proposed policy evaluation engine called

XDPNBE. Section 4 outlines our propositions including

numericalization, hash coding and a locomotive algorithm.

In Sect. 5, a numericalization method of policy sets is

described. We present a creative locomotive algorithm

combined with XDPCE, secondary classification and batch

processing in Sect. 6. Section 7 implements XDPNBE and

compares its performance with Sun PDP, XEngine,

HPEngine and SBA-XACML, respectively. Finally, we

conclude this paper in Sect. 8.

2 Related work

In this section, we review related works addressing PDP eval-

uation performance, including numericalization, secondary

classification and batch processing for XACML policies. Their

limitations are discussed to emphasize our contributions.

Qi et al. [14] establish a hash table for all strings in an

XACML policy, and map strings to numbers that effi-

ciently convert strings to more easily processed numbers.

However, this method consumes a lot of memory space. In

this paper, we numeralize different rules according to the

characteristics of different attributes of an XACML policy

set. For example, attributes are counted and assigned with

less changes, hash functions are used for attributes with

more changes, and strings are converted into a fixed-length

number for processing.

The SBA-XACML [15] reduces the complexity of policy

sets and the overhead of real-time policy evaluation. How-

ever, when a policy set is extremely large and complicated,

conflicts and redundancies will occur. A novel XACML

policy evaluation engine, namely XEngine [16], converts all

strings in an XACML policy to numerical values and the

hierarchical structure of an XACML policy into a flat

structure. Niu et al. [10] improve the XEngine and propose a

novel XACML policy evaluation engine called HPEngine.

Compared to the direct numericalization in the XEngine, the

HPEngine dynamically refines policies based on a statistical

analysis of a policy optimization mechanism and transforms

the text form of a policy into a numerical form afterward. The

HPEngine is better in performance than the XEngine, though

the problem of ‘‘converting all strings into integers by the

same function’’ still exists.

Meng et al. [17] introduce a feature selection based

dual-graph sparse non-negative matrix factorization for the

local discriminative clustering (DSNMF-LDC). Redundant

and irrelevant features are eliminated through dimension-

ality reduction, and discriminative features are selected by

a dual-graph model. The local discriminative clustering is

utilized to divide the selected features to several categories.

Blockchain technology is exploited to define an access

control system that guarantees the auditability of policy

evaluation [18]. Policies and attributes are managed by

1506 Cluster Computing (2021) 24:1505–1524

123

smart contracts deployed on the blockchain. However, its

evaluation performance is limited by choosing the block-

chain protocol. Deng et al. [19] explore a novel distributed

PDP model based on a combination of two-stage clustering

and reordering to reduce the limitation of computational

performance of a single PDP.

Methods of numericalization proposed in [20] and [21]

only support one-to-one matching methods. For example,

resource 1 is represented by integer 1. These methods are too

simple to deal with complicated policy sets. JBoss XACML

[22] implements a package based on the Sun XACML, but

still uses the inefficient strategy matching pattern. AXES-

CONXACML [23] amplifies the load and cache functions in

an evaluation engine, and presents the policy reference and

multi-policies matching. Nevertheless, AXESCON

XACMLneedsmore improvements on the logic ofmatching

and indexing. In the aspect of indexing, Enterprise XACML

[24] is fruitful for its high-efficiency indexing structure, and

reduces the scope of policies to be retrieved, which may

cause duplicate index and multiple matching.

A locomotive algorithm combined with numericaliza-

tion, secondary classification and batch processing is

designed to avoid the problems above.

3 Policy decision engine XDPNBE

In this section, we present the overall architecture of our

approach. A policy evaluation engine called XDPNBE

(XiDian Policy Numericalization & Batch processing

Engine) is proposed. By loading policies, the XDPNBE can

evaluate access requests and return authorization results to

context processors and the PEP (Policy Evaluation Point).

The evaluation process of theXDPNBE includes twoparts:

1. Policy sets and requests are preprocessed with

numericalization;

2. A locomotive algorithm is designed to make autho-

rization decisions by employing secondary classifica-

tion and batch processing.

Numericalization of policy sets and requests simplifies

the matching procedure and is a significant foundation for

the locomotive algorithm. When requests arrive, the loco-

motive algorithm eliminates conflicts in policy sets by

using XDPCE [6] as preprocessing, and makes authoriza-

tion decisions efficiently by using secondary classification

and batch processing. The output of the XDPNBE can be

correctly generated owing to the locomotive algorithm with

massive requests. It can dramatically economize the time

of processing large-scale complicated policy sets. Our

propositions include numericalization, hash coding and a

locomotive algorithm. The structure of the XDPNBE is

described in Fig. 1.

4 Approach overview

Considering that most of attributes in rules are made of

character strings, there are two distinct methods to analyze

and optimize rules. One of them is dividing long strings

into shorter ones to improve analysis performance; the

other is a numericalization method of transforming

Secondary
Classification

Numericalization
 Preprocessing

Batch
Processing

Locomotive
Algorithm

Inquiry

Return

Result

Request

Fig. 1 Structure of XDPNBE

Cluster Computing (2021) 24:1505–1524 1507

123

character strings to numbers. We address attribute numer-

icalization on the basis of hash coding and hash function.

Among all the universal hash functions, the BKDRHash

function [25] has the most effective consequence in both

coding and application, and also has high evaluation per-

formance when character strings are getting longer. Under

such a circumstance, subject attributes are labeled simply

with integers on the account of its fixed limits of authority.

Resource and action attributes in large-scale complicated

policy sets are set to numbers using the BKDRHash

function.

We also propose a locomotive algorithm that takes every

sub table of a secondary classification policy set as a train

and each rule as a compartment. Based on the secondary

classification and batch processing, this algorithm can

successfully optimize rules and policies. In order to

improve efficiency by downsizing matching, we classify

policies according to their subject attributes and then

classify them according to their action attributes. Process-

ing requests in batches makes the locomotive algorithm

suitable for concurrent processing.

This paper aims at reforming policy sets and simplifying

the policy decision procedure, so that the evaluation per-

formance in large-scale policy sets can be improved. An

innovative locomotive algorithm is proposed to implement

an effective measurement.

5 Numericalization of policy sets

In [26], the numericalization values of attributes in a policy

is restricted by systems. The same attributes in the policy

must be successive integers, which not only increases the

cost of maintaining a policy, but also may affect the

attributes of the subsequent sequence when one attribute

needs to be added or deleted. Numericalization has impli-

cations and does not consider security issues. In [14], the

numericalization method uses hash functions to digitize

attributes of subject, action, resource and condition.

However, there are many types of hash function with dif-

ferent effects. There is no indication of which hash func-

tion to use, and a uniform hash function is used to handle

all attributes, without considering that the hash function

does not work well when processing attributes with dif-

ferent string length. Similarly, security issues are not

considered.

In this paper, a hash function is adopted to process

attributes with long string length, and attributes with short

string length is numbered. A zipper method is designed to

resolve conflicts. When a policy set is preprocessed, a hash

table is created for all the string attributes of subject,

resource, and action. In the actual situation, the string

length of a subject is short, while the string length of a

resource and action is relatively long. Therefore, a

numericalization method is used for subject attributes, and

a hash function is adopted for resource and action attributes

to map them to numbers, hence converting inefficient

character matching into efficient digital comparisons.

If policies have dynamic natures, we can also use

numericalization flexibly. For example, given ‘‘age[21’’

or ‘‘has been with the company for more than 6 months’’,

we can define that ‘‘age[21’’ is number 1 and ‘‘has been

with the company for more than 6 months’’ is number 2.

We can present a range by using numbers, giving a con-

crete analysis to concrete problems.

A batch processing is used to batch requests and then

they are handled in batches. The idea of pipelined pro-

cessor architecture are adopted. After the previous batch of

requests is numericalized, it will be matched, and the next

batch of requests is numericalized during the matching

process of the previous batch of requests, hence an

improvement of matching speed of requests in each batch.

5.1 Comparison and selection
of numericalization methods

A hash function is used to digitize strings and a zipper

method to resolve conflicts. The commonly used string

hash functions are BKDRHash, APHash, DJBHash,

JSHash, RSHash, SDBMHash, PJWHash, ELFHash, etc.

The results of evaluating these hash functions [25] are

shown in Table 1 [27].

Table 1 Comparisons of hash function performance

Hash function Data1 Data2 Data3 Data4

BKDRHash 2 0 4774 481

APHash 2 3 4754 493

DJBHash 2 2 4975 474

JSHash 1 4 4761 506

RSHash 1 0 4861 505

SDBMHash 3 2 4849 504

PJWHash 30 26 4878 513

ELFHash 30 26 4878 513

Hash function Data1

score

Data2

score

Data3

score

Data4

score

BKDRHash 96.55 100 90.95 82.05

APHash 96.55 88.46 100 51.28

DJBHash 96.55 92.31 0 100

JSHash 100 86.42 96.83 17.95

RSHash 100 100 51.58 20.51

SDBMHash 93.1 92.31 57.01 23.08

PJWHash 0 0 43.89 0

ELFHash 0 0 43.89 0

1508 Cluster Computing (2021) 24:1505–1524

123

In Table 1, data 1 is the number of 100,000 random

letters and numbers hash collision. Data 2 is the number of

100,000 meaningful English sentence hash conflicts. Data 3

is the number of collisions between the hash value of data 1

and 1,000,003 (a large prime number) stored in the linear

table. Data 4 is the number of conflicts stored in the linear

table after the hash value of data 1 and 10,000,019 (a larger

prime number). After the evaluation, the scores of the four

data can be obtained. Quadratic mean is used to compute

the average score as shown in Eq. (1).

Qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
_i¼1 x

2
i

n

r

¼
ffi

x21 þ x22 þ . . .þ x2n
n

r

ð1Þ

According to the Eq. (1), the average score of the four

data are 92.64 for BKDRHash, 86.28 for APHash, 83.43

for DJBHash, 81.94 for JSHash, 75.96 for RSHash, 72.41

for SDBMHash, 21.95 for PJWHash, and 21.95 for ELF-

Hash by means of squared average.

It can be found that the effect of BKDRHash is the most

prominent in both the actual effect and the coding imple-

mentation. Therefore, the BKDRHash function is selected

for numericalization and used to solve the hash value of a

string, where a is a string and s is a seed, as shown in

Eq. (2).

hashðaÞ ¼ ð
X

n
a½n� � snÞmod231 ð2Þ

We consider the size of a policy set for the test, where

seed is 31. The hash function of Eq. (2) is used to create a

hash table for resource and action attributes. Subject

attributes are numbered from zero. If a different subject

attribute comes, its number is added to the previous num-

ber. A rule is quantified as\N, HashCode1, HashCode2,

environment attribute, 0|1[form, and a request is quan-

tified as\N, HashCode1, HashCode2, environment

attribute[form.

5.2 Conflict handling

For resolving conflicts, a classic zipper approach is adop-

ted. For some hash addresses that are shared by multiple

key values, a single-linked list is established for them.

When a conflict occurs, a single-linked list corresponding

to its hashed address is searched for to handle the conflict,

as shown in Fig. 2.

For example, rules in the three commonly used XACML

policy sets LMS [28], VMS [29], and ASMS [30] are

quantified. Tables 2, 3, and 4 show the partial results of

quantifying rules in the policy sets of LMS, VMS and

ASMS.

In Tables 2, 3, and 4, the mapping relationships after the

quantification of all the attributes are stored in hash tables,

so the time complexity of their digitization and restoration

is O(1). Although it makes a string comparison to receive a

request attribute map and consumes some time resources,

its time loss is negligible compared with a large number of

string comparisons in the entire policy set. At the same

time, because memory always needs to maintain a hash

table that maps a string attribute to an integer value, it

consumes memory space resources, so in essence this is a

method of trading time for space. However, with the

reduction of the cost of computer memory and the strong

demand of a system for improving PDP evaluating per-

formance, this method of exchanging space for time is

particularly in line with the development of a system.

Fig. 2 Zipper method

Table 2 Numericalization

results of LMS policy set
Subject Resource Action

0 322,933 65,113

4 281,754 978,696

5 738,000 144,155

Table 3 Numericalization

results of VMS policy set
Subject Resource Action

0 44,643 41,224

1 198,123 940,356

2 738,000 441,544

Table 4 Numericalization

results of ASMS policy set
Subject Resource Action

0 73,800 537,537

1 0 915,229

2 738,000 537,537

Cluster Computing (2021) 24:1505–1524 1509

123

6 Policy decision method based
on a locomotive algorithm

On the basis of numericalization, a locomotive algorithm is

designed to make policy decisions. The algorithm combi-

nes XDPCE, secondary classification and batch processing

to optimize PDPs. XDPCE is used as preprocessing to

eliminate conflicts. Secondary classification determines the

required matching rules by the method of indexing. Con-

sidering the reality of large data traffic, we select batch

processing to increase throughput by finding multiple

requests in batches that helps achieving the goal of

improving the average efficiency.

6.1 Locomotive algorithm

In order to improve the speed of making decisions, every

sub table of the secondary classification is regarded as a

train and each rule as a compartment. The first request for

each category matches the locomotive, that is, the subject

and action attribute class. A new node is created as a mark

to make sure that the same type of passenger (request)

belongs to the same train (the sub table) by using the

characteristics of the vertical classification (if there is no

match in each sub table, it shows that there is no corre-

sponding rule in the policy set). After that, the requests of

the same category (in batches) will be retrieved directly

from the train, which means that the search area will be

greatly reduced from the front to the rear of the vehicle. On

average, the time to find the locomotive is equal to the

matching time of the subject attribute class plus that of the

action attribute class. The total matching process is shown

in Fig. 3.

A secondary table is used to store category information

after a policy set is secondary classified, and a request

table is employed to store the category information after

requests are classified. The locomotive algorithm is shown

in Algorithm 2.

6.2 Classification

We improve the PDP evaluation performance by matching

the irrelevant policies as few as possible to reduce the

scope of the required traversal of a policy set in the process

of matching requests one by one. Our method is based on

the classification of subject attributes and divide a policy

set into several subclasses according to subject attributes of

each policy. Thus, a request is distributed to one of sub-

classes, avoiding a traversal of other unrelated subclasses.

6.2.1 Secondary classification based on action attributes

If a matching object is composed of two attributes randomly,

its possible number of class is the product of two attributes.But

if we determine one of the attributes first and then determine

theother one, the number of theobject is the sumof thenumber

of two attributes only. Correspondingly, if there are multiple

attributes, we first consider the attribute combinations except

the first attribute as the second attribute, and then process

requests on the second attribute. The common attributes of

both policies and requests are subject, action, resource and

condition. Among them, action attributes are the most com-

plicated; subject attributes are followed by a fewer number of

resource attributes; condition attributes sometimes have no

value and the total number is the least. Therefore, policies are

classified according to their subject and action attributes in

order. It is difficult to mergemultiple action attributes into one

class because the values of action attributes are not regular and

discontinuous. In different rules, subject attributes are often

different if the corresponding action attributes are distinct. In

order to avoid redundancies, each action attribute is regarded

as a classification foundation. To sum up, the result of sec-

ondary classification in this paper is that subject and action

attributes are both classification bases, and the classification

results are shown in Fig. 4.
Fig. 3 Matching process of

requests based on locomotive

algorithm

1510 Cluster Computing (2021) 24:1505–1524

123

6.2.2 Comparisons on classifications basis of action
attributes and resources attributes

Suppose that the total number of subject attributes is X and

the number of subject attribute classes is x, the total

number of action attributes is Y, and the total number of

resource attributes and condition attributes is Z. After

subject attributes are divided into x classes, the number of

subject attributes contained by each subject attribute class

is X/x, and the time that matching the specific subject

attribute is changed from O(X) to O(X/x) ? O(x). Since the

product of X/x and x is constant, the difference (X=x� xj j)
is smaller and the sum (X=xþ x) is bigger. Therefore, we

make x = X/x, that is, we suppose that x and X/x are both

approximately equal to
ffiffiffiffi

X
p

. It can also be deduced that the

time complexities of matching the subject attribute class

and the action attributes are O(x) and O(Y), respectively,

the time complexity of specifying subject in the subject

attribute class is O(X/x), and the time complexity of

matching resource attributes and condition attributes is

O(Z). The total matching time is the sum of O(x), O(Y),

O(X/x) and O(Z).

6.2.3 Efficiency of secondary classification

The main index used in this paper is to classify the rules of

policy sets according to the subject attributes. For example,

the rules with E0001 * E0010 subject attributes belong to

the same subject attribute class. When a request is received,

it is necessary to identify the subject attribute class,

determine the subject attributes, and match it one by one

until the same rule is matched. The matching time of

subject attribute is T0. We have

T0 ¼ xþ X=xþ YZ ð3Þ

where x is the time used to determine the subject attribute

class of the request, X/x is the time used to determine the

specific subject in a subject attribute class, and YZ is the

time used to match the remaining attributes (action,

1iA

2 jA

nkA

11

12

1i

A
A

A

21

22

2 j

A
A

A

1

2

n

n

nk

A
A

A

Policy Set

Fig. 4 Secondary classification of decision sets

Cluster Computing (2021) 24:1505–1524 1511

123

resource and condition). Secondary classification is to

match the action attributes after the subject attribute class

is fixed, determine the subject in the subject attribute class,

and match the resource attributes and the condition attri-

butes. The total secondary classification index time is Tn, as

shown in Eq. (4).

Tn ¼ xþ X=xþ Y þ Z ð4Þ

Equation (4) shows the matching sequence used in

secondary classification. After the subject attribute class

and the action attributes are successfully matched, the

search scope is reduced to the sub table, whose attributes

include subject, resource and condition of the corre-

sponding subject attribute class. Compared with the subject

index, the time that secondary classification index saves is

shown in Eq. (5).

T0 � Tn ¼ YZ � Y � Z ð5Þ

6.3 Batch processing for requests

In the optimization of PDPs, it is common to improve the

efficiency of making decision by improving the speed of

single decision processing. Considering the large network

coverage in the information age, people’s demand for

Internet operation is much higher than before, which leads

to many concurrency problems. We envisage that when

requests are dense and similar enough, the decision making

method can be improved by batch processing, that is, when

multiple regular requests arrives concurrently, they can be

processed in batch according to their connections. This

method bypasses the single processing time optimization,

and takes the unit time processing number as the working

efficiency reference standard. Assuming that the speed of

single processing is the same, if the throughput is

increased, the decision time can be optimized. In order to

process multiple associated requests, requests need to be

categorized.

6.3.1 Criteria for requests classification

In this paper, requests are classified by finding the corre-

lation or similarity of attributes. We have considered the

subject and resource attributes as classification bases (using

the condition attribute is not significant), but for an actual

system, it is difficult to send multiple requests for the same

subject in a short time (not only more than one here, but a

certain base number). As to resource attributes, they are

difficult to repeat as a single resource (not suitable for

batch processing), and the base number is small (the batch

processing space is very limited). On the contrary, the

action attributes are often repeated in a system’s request,

and the secondary classification of the previous text has

classified the policy sets according to action attributes, so

action attributes are finally chosen as criteria for the clas-

sification of requests and the basis for batch processing.

The classification of rules follows the classification method

of a policy set. If and only if the subject attributes belong to

the same class (avoiding that requests in the same group are

divided into different classes of policy sets and speeding up

on the basis of the subject attribute index) and the action

attributes are completely equal (since the numericalization

attribute values are used), two policies can belong to the

same class. Using the vertical classification of policy sets,

the result of classification is shown in Fig. 5.

6.3.2 Time analysis of related algorithms

We assume that the number of pending requests per unit

time is B, and the number of categories after the request

classification is b.

6.3.2.1 Subject attribute index The time used to match

the subject attribute class under average case is x/2, and the

time used to specify the subject is X/(2*x) = x/2, and the

time used to match other attributes is Y/2*Z/4 = YZ/8. The

total matching time is x ? YZ/8.

6.3.2.2 Secondary classification based on action attri-
butes The time used to find the locomotive under average

case is Ts, as shown in Eq. (6).

Ts ¼ Bx=2þ BY=2 ð6Þ

1B

2B

3B

nB

Request Set

Fig. 5 Vertical classification of requests

1512 Cluster Computing (2021) 24:1505–1524

123

The time used to match the specific rules is Tm, as shown

in Eq. (7).

Tm ¼ B�ðX=xÞ=2þ BZ=4 ¼ Bx=2þ BZ=4 ð7Þ

The total matching time is T1, as shown in Eq. (8).

T1 ¼ BY=2þ Bxþ BZ=4 ð8Þ

6.3.2.3 Batch processing in request classification In order

to show the conditions, advantages and disadvantages of

batch processing more directly, we discuss the average

time, maximum time and minimum time of its usage. Next,

the average time is used to illustrate the influence of the

similarity of requests on the batch processing algorithm.

Average case The classification time of requests Tc is

b2=2. The time used to find the locomotive Ts is bx/2 ? bY/

2. The index time in the table after the secondary classi-

fication Tm is Bx/2 ? BZ/4. The total matching time T2-
(average) is the sum of Tc, Ts and Tm, as shown in Eq. (9).

T2ðaverageÞ ¼ b2=2þ b xþ Yð Þ=2þ B x=2þ Z=4ð Þ ð9Þ

Worst case (b = B) The time used to match the action

attributions is B2=2, and other time is the same as the time

in method 1. Adding to the matching time of the action

attribute, the total matching time is T2(worse), as shown in

Eq. (10).

T2ðworseÞ ¼ B2=2þ BY=2þ Bx=2þ BZ=4 ð10Þ

Best case The best case is the case when b = 1. Ignoring

the locomotive matching time (there is only one locomo-

tive), T2(best) is as shown in Eq. (11).

T2 bestð Þ ¼ Bþ Bxþ BY=2þ BZ=4 ð11Þ

6.3.2.4 Mathematical proof of effectiveness of batch pro-
cessing In order to test the effectiveness of the batch

processing method and find out the applicable conditions, a

lemma is introduced and its proof is given.

Lemma 1 Classify requests using batch processing can

enhance the efficiency of policy decision when

b\ B=b� 1ð Þ Y þ xð Þ.

Proof To analyze the effect of classifying requests using

batch processing, let r denote T1 � T2.

If and only if r[0, batch processing is effective.

Next, we prove that r[0 when b\ B=b� 1ð Þ Y þ xð Þ.
Since T1 ¼ BY=2þ Bxþ BZ=4 and T2 ¼ b2=2þ

b xþ Yð Þ=2þ B x=2þ Z=4ð Þ, we have

r ¼ T1 � T2 ¼ BY=2þ Bxþ BZ=4� b2=2� bx=2

� bY=2� Bx=2� BZ=4 ¼ ½ðB=b� 1ÞðY þ xÞ � b�b=2

Since b\ B=b� 1ð Þ Y þ xð Þ, we have.

ðB=b� 1ÞðY þ xÞ � b[0.

According to the definition of b, we have b[0.

Thus, r[0 when b\ B=b� 1ð Þ Y þ xð Þ.
Similarly, b\ B=b� 1ð Þ Y þ xð Þ when r[0.

If and only if r[0, we see that the batch processing is

effective. Among them, Y is the number of action attribute

types, B/b is the average number of requests per category.

6.4 Cache and real-time matching

When dealing with requests in batch processing, we

inevitably have to face a waiting time problem. Assuming

that a group of requests are accepted in one second, a

system should wait for one second before processing the

first request, and if the time we actually save is less than the

waiting time, it shows that the method of batch processing

is a failure.

6.4.1 Shortening waiting time and caching instead
of waiting

The first request does not need to wait for all subsequent

requests within the limited time, but when the request is

matched with the new request, the request of the waiting

area is read into the policy set and then changed to a new

request. This can make the waiting time more averaging

and avoid some requests waiting a long time. This method

caches the values of subject and action attributes in a

system, and the request is directly matched with the cache,

without waiting. The significance of batch processing is

that it can improve efficiency in the case of high data

repeatability and large amount of data. Batch processing

should only be used when conditions are met. In real-time

matching, each new action class needs to be compared

more than once; The cache saves the waiting time and

takes up a part of space. From a macro point of view, when

the action attributes in requests are repeated a lot, it is

suitable for real-time matching. And when the action

attributes are not concentrated, it is suitable for cache

matching.

6.4.2 Efficiency comparison between caching and real-time
matching

The difference between the caching and real-time matching

is mainly reflected in the time of matching action attributes.

The average time of matching action attributes in caching

is Y2=2, and the average time of action attribute matching

in real time is b2=2 (This value may have errors due to the

distinct type density in the requests). Real-time matching

requires the previous request to wait for the next request.

Cluster Computing (2021) 24:1505–1524 1513

123

Definition 1 Waiting time Tw..refers to the average

interval between two consecutive requests received by a

system.

The average time of action attribute matching in real

time is b2/2 ? Tw. When the condition is known, the

matching method with shorter average time is more effi-

cient, and the time difference is Tb is shown in Eq. (12).

Tb ¼ Y2=2� b2=2� Tw ð12Þ

When Tb is greater than zero, the real-time matching is

adopted, otherwise the caching mechanism (secondary

classification) is adopted.

6.5 Summary

In reality, the batch processing method can be suitably used

to improve the PDP evaluation performance in practical

systems, and can obtain preferable performance (i.e.

improving the speed of decision-making to a great extent)

in the case that a large number of requests arrive simulta-

neously, or that the arriving requests have the same subject

attributes and action attributes.

7 Experimental results and analysis

In order to verify that the method based on a locomotive

algorithm can improve the PDP evaluation performance,

we introduce the policies adopted in experiments, the

method of generating test policies and the experiments in

which comparisons of the evaluation performance of the

policy decision engine XDPNBE with that of the Sun PDP

[31], XEngine [16], HPEngine [32], and SBA-XACML

[15] are made in this section.

The experiments are carried out on a laptop computer

running Windows 10, with Intel (R) Core (TM) i7-6700HQ

2.6 GHz processor and 16 GB of RAM. To eliminate the

performance factors of implementation languages, the

XDPNBE, XEngine, HPEngine and SBA-XACML are

implemented in Java since the Sun PDP is written in Java.

7.1 Experimental policies

In order to simulate practical application scenarios, we

select four policy sets from practical systems to test.

Library Management System (LMS) [28] provides access

control policies by which a public library can use Web to

manage books. Virtual Meeting System (VMS) [29] pro-

vides access control policies by which Web conference

services can be managed. Auction Sale Management Sys-

tem (ASMS) [30] provides access control policies by which

items can be bought or sold online. The Continue-a policy

is taken and converted from [33].

The numbers of rules in the LMS, VMS, ASMS and

Continue-a are 3000, 6000, 9000 and 12,000, respectively.

We consider these four policy sets as the small-scale policy

sets. We expand the numbers of rules in the LMS, VMS,

ASMS and Continue-a to 30,000, 60,000, 90,000 and

120,000, respectively. The new obtained policy sets are

referred to as the ELMS, EVMS, EASMS and EContinue-

a. We consider the new four policy sets as the large-scale

policy sets.

7.2 Generation of test requests

In order to improve the coverage of the test, Martin and Xie

[34] analyzed policies by Change-Impact to automatically

generate access requests conforming to Change-Impact.

They put forward that conflicting policies or rules can be

obtained by conflict detection tools according to the fact

that different policies or different rules in the same policy

could make inconsistent results of evaluation for the same

request. Besides, correlative access requests can be con-

structed for testing according to the conflicting policies or

rules.

According to Wei et al. [35], access requests can be

automatically generated to test the correctness of the PDP

as well as the configured policies. They proposed that the

Context Shema that is defined by the XML Schema of the

XACML describes all the structures of the access requests

that might be accepted by the PDP, or all the valid input

requests. They put forward that their developed X-CRE-

ATE can generate possible structures of access requests

according to the Context Shema of the XACML. The

policy analyzer obtains possible input values of every

attribute from a policy. The policy manager adopts the

method for random allocation to distribute the obtained

input values into structures of access requests. Simple

Combinatorial is another test scheme generating access

requests according to all the possible combinations of

attribute values of subject, action and resource in the

XACML policies.

Inspired by the above, we use composite transformation

and context Shema to simulate actual access requests

according to the actual requirements of performance

testing.

7.3 Policy evaluation engines

Nowadays, the PDP [36] termed Sun PDP [31] has been

widely used that can evaluate access requests selectively

according to the internal rule matching mechanism [37].

We adopt the Sun PDP to evaluate requests as a decision

engine in our following experiments. There are two main

1514 Cluster Computing (2021) 24:1505–1524

123

reasons for our choosing the Sun PDP. One is that the Sun

PDP is the first and the most widely deployed implemen-

tation of XACML evaluation engines. It has become the

industrial standard. The other is that the Sun PDP is open

source that provides convenience.

XEngine [16] can convert text XACML policies into

numerical policies, transform numerical policies from

complex structures to canonical structures, convert

numerical policies into tree-type data structures and effi-

ciently process requests.

HPEngine [32] uses a statistical analysis mechanism to

create caches for attributes, policies, and request results

which are frequently invoked to achieve the goal of

reducing the size of the policy and optimizing the matching

method.

SBA-XACML [15] is a semantic-based language that

establishes an intermediate layer for a policy automatic

transformation. It contains formal semantics and algo-

rithms that use mathematical operations to provide an

effective policy evaluation.

In practical applications, reducing the time spent in

matching policy sets is a principal issue to improve the

evaluation performance of PDPs. In our experiments, we

compare the evaluation performance of our proposed

XDPNBE with that of the Sun PDP, XEngine, HPEngine

and SBA-XACML.

Fig. 6 Variation of evaluation time of XDPNBE before and after batch processing

Cluster Computing (2021) 24:1505–1524 1515

123

7.4 Performance tests and comparisons

In order to make the experimental results more convincing,

we conduct four experiments as follows.

1. Performance evaluation of XDPNBE before and after

batch processing.

2. Comparisons of evaluation performance on the small-

scale policy sets.

3. Comparisons of evaluation performance on the large-

scale policy sets.

4. Self-comparisons of evaluation performance of

XDPNBE on the small-scale and large-scale policy

sets.

7.4.1 Performance evaluation of XDPNBE
before and after batch processing

In order to highlight the efficiency after batch processing of

requests, we evaluate the performance with or without

batch processing of requests in the access control process

of XDPNBE by contrast. We generate 1000, 2000, …,

Fig. 7 Comparisons of evaluation time on small-scale policy sets

1516 Cluster Computing (2021) 24:1505–1524

123

10,000 access requests randomly to measure the evaluation

time of the PDP. For the four policy sets of the LMS, VMS,

ASMS and Continue-a, the variation of the evaluation time

of XDPNBE before and after batch processing with the

number of access requests is shown in Fig. 6.

From Fig. 6, we observe that

Whether requests are batch processed or not, the

evaluation time of the XDPNBE increases when the

number of access requests grows.

The growth rate of XDPNBE after batch processing is

less than that of XDPNBE before the requests are batch

processed.

For the policy sets of LMS, VMS, ASMS and Continue-

a, the XDPNBE with batch processing of requests can

effectively reduce evaluation time.

7.4.2 Comparisons of evaluation performance on small-
scale policy sets

We compare our proposed XDPNBE with the Sun PDP,

XEngine, HPEngine and SBA-XACML in terms of eval-

uation time for the four small-scale policy sets LMS, VMS,

ASMS, and Continue-a, respectively. We randomly gen-

erate 1000, 2000, …, 10,000 access requests to record the

Fig. 8 Comparisons of matching speed for small-scale policy sets

Cluster Computing (2021) 24:1505–1524 1517

123

evaluation time and matching speed of these policy eval-

uation engines. The variations of the evaluation time of

each policy evaluation engine with the amount of requests

are shown in Fig. 7.

From Fig. 7, we conclude that

Compared with the Sun PDP, XEngine, HPEngine and

SBA-XACML, XDPNBE is the most efficient engine in

all experimental conditions.

For the same policy set, as the size of the policy set

increases, the growth rate of evaluation time of

XDPNBE grows much more slowly than that of the

Sun PDP, XEngine, HPEngine and SBA-XACML.

In view of the policy set Continue-a containing 12,000

rules, when the amount of requests reaches to 10,000, the

evaluation time of XDPNBE is approximately 3.12%,

27.25%, 31.47% and 33.34% of that of the Sun PDP,

XEngine, HPEngine and SBA-XACML, respectively.

For the small-scale policy sets, the variations of the

matching speed of each policy evaluation engine with the

amount of requests are shown in Fig. 8.

From Fig. 8, we conclude that

Fig. 9 Comparisons of evaluation time on large-scale policy sets

1518 Cluster Computing (2021) 24:1505–1524

123

Compared with the Sun PDP, XEngine, HPEngine and

SBA-XACML, XDPNBE is the fastest engine in the

matching speed of rules.

For the same policy set, with the increase of the number

of requests, the matching speed of the XEngine,

HPEngine and SBA-XACML does not change signifi-

cantly, while XDPNBE has a significant improvement on

the matching speed of rules.

7.4.3 Comparisons of evaluation performance on large-
scale policy sets

We compare the proposed XDPNBE with the Sun PDP,

XEngine, HPEngine and SBA-XACML in terms of eval-

uation time for the four large-scale policy sets ELMS,

EVMS, EASMS and EContinue-a, respectively. We ran-

domly generate 1000, 2000, …, 10,000 access requests to

record the evaluation time and matching speed of these

policy evaluation engines. The variations of the evaluation

time of each policy evaluation engine with the amount of

requests are depicted in Fig. 9.

From Fig. 9, we conclude that

Fig. 10 Comparisons of matching speed for large-scale policy sets

Cluster Computing (2021) 24:1505–1524 1519

123

1. As the amount of requests rises, XDPNBE spends less

evaluation time than the other three policy evaluation

engines.

2. For the same policy set, as the size of the policy set

increases, the growth rate of evaluation time of

XDPNBE grows much slower than that of the Sun

PDP, XEngine, HPEngine and SBA-XACML.

3. In view of the policy set EContinue-a containing

120,000 rules, if the number of requests reaches to

10,000, the evaluation time of XDPNBE is approxi-

mately 0.21%, 4.69%, 5.67% and 9.66% of that of the

Sun PDP, XEngine, HPEngine and SBA-XACML,

respectively.

For the large-scale policy sets, the variations of the

matching speed of each policy evaluation engine with the

amount of requests are depicted in Fig. 10.

From Fig. 10, we conclude that

1. As the amount of requests rises, XDPNBE is faster in

the matching speed of rules than the other three policy

evaluation engines.

2. For the policy set ELMS, with the increase in the

number of requests, the matching speed of Sun PDP,

XEngine, HPEngine and SBA-XACML is stable and

lower than that of XDPNBE, while the matching speed

of XDPNBE is gradually decreasing and tends to be

stable. In the policy sets EVMS, EASMS and ECon-

tinue-a, the matching speed of these four engines is

basically stable, and XDPNBE has obvious advantages.

7.4.4 Self-comparisons of evaluation performance
of XDPNBE on small-scale and large-scale policy sets

We conduct self-comparison experiments of XDPNBE in

terms of evaluation time for both the three small-scale

policy sets and three large-scale policy sets. We randomly

generate 1000, 2000, …, 10,000 access requests to record

the evaluation time and matching speed of XDPNBE. The

variations of the evaluation time of XDPNBE with the

amount of requests for both the small-scale and large-scale

policy sets are visualized in Fig. 11.

From Fig. 11, we conclude that

For the small-scale and large-scale policy sets, the

evaluation time of XDPNBE grows approximately

linearly as the amount of requests rises.

For the three small-scale policy sets, the variations of the

evaluation time of XDPNBE are nearly the same as the

amount of requests rises.

For the large-scale policy sets, as the size of the policy

set rises, the growth rate of evaluation time of XDPNBE

gets faster.

The variations of the matching speed of XDPNBE with

the amount of requests for both the small-scale and large-

scale policy sets are visualized in Fig. 12.

From Fig. 12, we conclude that

1. XDPNBE runs faster in the matching speed of large-

scale policy sets than that of small-scale policy sets.

2. For the three small-scale policy sets, the more requests

arrive, the faster the matching speed of XDPNBE will

Fig. 11 Self-comparisons of evaluation time

1520 Cluster Computing (2021) 24:1505–1524

123

be. However, for the large-scale policy sets, the

matching speed of XDPNBE gradually tends to be

stable. It means that when a large-scale policy set

reaches a certain size, the increasing rate of matching

speed of XDPNBE reaches a bottleneck and maintains

stability.

8 Conclusions

A policy evaluation engine termed XDPNBE is presented

in this paper, which not only can improve the PDP evalu-

ation performance in a safer way, but also can be used for

concurrent processing. XDPNBE is based on a locomotive

algorithm that combines ideas of XDPCE, secondary

classification and batch processing.

Before making policy decisions based on the locomotive

algorithm, a numericalization method is employed to pre-

process policy sets and real-time requests. In the numeri-

calization part, we adopt the BKDRHash function to

process data with long string length and a zipper method to

resolve conflicts. The locomotive algorithm takes every sub

table of the secondary classification policy set as a train and

each rule as a compartment, which classifies policies

according to their subject and action attributes succes-

sively, then increases throughput by finding multiple

requests in batches and helps to improve the average effi-

ciency especially at concurrency.

Acknowledgements This work was supported in part by the National

Natural Science Foundation of China under Grant No. 61873277 and

61702408, in part by the Natural Science Foundation of Shaanxi

Province in China under Grants Nos. 2019JM–020, 2019JM–162 and

2020JM–526, in part by the Science Research Plan Project of Edu-

cation Department of Shaanxi Province under Grant 18JK0507, and in

part by the Innovation Group for Interdisciplinary Computing Tech-

nologies, School of Computer Science and Technology, Xi’an

University of Science and Technology.

References

1. Yaseen, Q., Jararweh, Y., Panda, B., Althebyan, Q.: An insider

threat aware access control for cloud relational databases. Clust.

Comput. 20(1), 2669–2685 (2017)

2. Zhu, N.-F., Cai, F.-B., He, J.-S., Zhang, Y.-X., Li, W.-X., Li, Z.:

Management of access privileges for dynamic access control.

Clust. Comput. 22(1), 8899–8917 (2019)

3. Habib, M.A., Ahmad, M., Jabbar, S., Khalid, S., Chaudhry, J.,

Saleem, K., Rodrigues, J., Khalil, M.S.: Security and privacy

based access control model for internet of connected vehicles.

Fut. Gener. Comput. Syst. 97(1), 687–696 (2019)

4. Cheminod, M., Durante, L., Seno, L., Valenza, F., Valenzano, A.:

A comprehensive approach to the automatic refinement and

verification of access control policies. Comput. Security 80(1),
186–199 (2019)

5. Gadouche, H., Farah, Z., Tari, A.: A correct-by-construction

model for attribute-based access control. Clust. Comput. 23(1),
1517–1528 (2020)

6. Deng, F., Zhang, L.-Y.: Elimination of policy conflict to improve

the PDP evaluation performance. J. Netw. Comput. Appl. 80(4),
45–57 (2017)

7. Butler, B., Jennings, B.: Measurement and prediction of access

control policy evaluation performance. IEEE Trans. Netw. Serv.

Manag. 12(4), 526–539 (2015)

8. Ngo, C., Makkes, M.X., Demchenko, Y., Laat, C.D.: Multi-data-

types interval decision diagrams for XACML evaluation engine.

In: Proc. 11th IEEE Int. Conf. Privacy Security Trust,

pp. 257–266 (2013)

Fig. 12 Self-comparisons of matching speed

Cluster Computing (2021) 24:1505–1524 1521

123

9. Ngo, C., Demchenko, Y., Laat, C.D.: Decision diagrams for

XACML policy evaluation and management. Comput. Secur.

49(5), 1–16 (2015)

10. Niu, D.-H., Ma, J.-F., Ma, Z., Li, C.-N., Wang, L.: HPEngine:

hign performance XACML policy evaluation engine based on

statistical analysis. J. Commun. 35(8), 206–215 (2017)

11. Sun, P.-J.: XACML policy evaluation optimization research

based on attribute weighted clustering and statistics recording. In:

Proc. 14th IEEE Int. Conf. Inf Autom., pp. 1190–1195 (2017)

12. Marouf, S., Shehab, M., Squicciarini, A., Sundareswaran, S.:

Adaptive reordering and clustering-based framework for efficient

XACML policy evaluation. IEEE Trans. Serv. Comput. 4(4),
303–313 (2011)

13. Turkmen, F., Demchenko, Y.: On the use of SMT solving for

XACML policy evaluation. In: Proc. 2016 IEEE Int. Conf. Cloud

Computing Technology Science (CloudCom), pp. 539–544

(2017)

14. Qi, Y., Chen, J., Li, Q.-M.: XACML policy evaluation opti-

mization method based on redundancy elimination and attribute

numericalization. Comput. Sci. 43(2), 163–168 (2016)

15. Mourad, A., Jebbaoui, H.: SBA-XACML: set-based approach

providing efficient policy decision process for accessing web

services. Expert. Syst. Appl. 42(1), 165–178 (2015)

16. Liu, X., Chen, F., Hwang, J.H., Xie, T.: Designing fast and

scalable XACML policy evaluation engines. IEEE Trans. Com-

put. 60(12), 1802–1817 (2011)

17. Meng, Y., Shang, R., Jiao, L., Zhang, W., Yuan, Y., Yang, S.:

Feature selection based dual-graph sparse non-negative matrix

factorization for local discriminative clustering. Neurocomputing

290(1), 87–99 (2018)

18. Francesco Maesa, D.D., Mori, P., Ricci, L.: A blockchain based

approach for the definition of auditable Access Control systems.

Comput. Secur. 84(1), 93-119‘ (2019)
19. Deng, F., Lu, J., Wang, S.Y., Pan, J., Zhang, L.Y.: A distributed

PDP model based on spectral clustering for improving evaluation

performance. World Wide Web 22(1), 1555–1576 (2019)

20. Deng, F., Zhang, L.-Y., Zhang, C., Ban, H., Wan, C., Shi, M.,

Chen, C., Zhang, E.: Establishment of rule dictionary for efficient

XACML policy management. Knowl. Based Syst. 175(1), 26–35
(2019)

21. Ma, X., Kang, K., Lu, W.-S., Xu, L., Chen, C.: Management of

access privileges for dynamic access control. Clust. Comput.

22(1), 12539–12550 (2019)

22. JBoss XACML [Online]. https://jboss.org/jbosssecurity/down

load/index.html

23. AXESCON XACML [Online]. https://axescon.com/ax2e/

24. Enterprise XACML [Online]. https://code.google.com/p/enter

prise-java-xacml/

25. Introduction and performance comparison of classical string hash

function [Online]. Available: https://blog.csdn.net/djinglan/arti

cle/details/8812934

26. Wang, X., Liao, X., Huang, H., Guo, S.: Topology control in

lossy wireless sensor networks with delay constraint. In: Proc.

IEEE Wireless Communications Net. Conf., pp. 958–963 (2013).

27. Available: https://blog.csdn.net/djinglan/article/details/8812934

28. Traon, Y.L., Mouelhi, T., Pretschner, A., Baudry, B.: Test-driven

assessment of access control in legacy applications. In: Proc.

2008 Int. Conf. Software Testing Verification and Validation,

pp. 238–247 (2008).

29. Mouelhi, T., Fleurey, F., Baudry, B., Traon, Y.: A model-based

framework for security policy specification, deployment and

testing. In: Proc. 11th Int. Conf. Model Driven Engineering

Languages and Syst., pp. 537–552 (2008).

30. Mouelhi, T., Traon, Y.L., Baudry, B.: Transforming and selecting

functional test cases for security policy testing. In: Proc. 2009 Int.

Conf. Software, pp. 171–180 (2009).

31. Sun’s XACML implementation [Online]. https://sunxacml.sour

ceforge.net/

32. Niu, H., Ma, J.F., Li, C.N., Wang, L.: HPEngine: high perfor-

mance XACML policy evaluation engine based on statistical

analysis. J. Commun. 35(8), 205–215 (2014)

33. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.:

Verification and change-impact analysis of access-control poli-

cies. ICSE 1(1), 196–205 (2005)

34. Martin, E., Xie, T.: Automated test generation for access control

policies via Change-Impact Analysis. In: Proc. Int. Workshop.

Software Engineering for Secure Syst., pp. 5–6 (2007).

35. Wei, S., Yen, I.L., Bastani, F., Bao, T., Thuraisingham, B.: Role-

based integrated access control and data provenance for SOA

based net-centric systems. IEEE J. Magazines 9(6), 940–953

(2016)

36. Kateb, D.E., Mouelhi, T., Traon, Y.L., Hwang, J.H., Xie, T.:

Refactoring access control policies for performance improve-

ment. In: Proc. Int. Conf. Performance Engineering, pp. 323–334

(2012).

37. Ramli, D.P.K., Nielson, H.R., Nielson, F.: The logic of XACML.

Formal Aspects Compon. Software 7253(2), 205–222 (2012)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Fan Deng received the B.S.,

M.S., and Ph.D. degrees from

Xidian University, Xi’an,

China. He is a lecturer at the

School of Computer Science

and Technology, Xi’an Univer-

sity of Science and Technology,

Xi’an, China. His research

interests are information secu-

rity, software security, and

compiler infrastructure.

Zhenhua Yu received the B.S.

degree and M.S. degree from

Xidian University, Xi’an,

China, in 1999 and 2003,

respectively, and the Ph.D.

degree from Xi’an Jiaotong

University, Xi’an, China, in

2006. He is currently a Profes-

sor with the Institute of System

Security and Control, School of

Computer Science and Tech-

nology, Xi’an University of

Science and Technology, Xi’an,

China. He has authored more

than 20 technical papers for

conferences and journals, and holds two invention patents. His

research mainly focuses on cyber-physical systems and system

security.

1522 Cluster Computing (2021) 24:1505–1524

123

http://jboss.org/jbosssecurity/download/index.html
http://jboss.org/jbosssecurity/download/index.html
http://axescon.com/ax2e/
http://code.google.com/p/enterprise-java-xacml/
http://code.google.com/p/enterprise-java-xacml/
https://blog.csdn.net/djinglan/article/details/8812934
https://blog.csdn.net/djinglan/article/details/8812934
https://blog.csdn.net/djinglan/article/details/8812934
http://sunxacml.sourceforge.net/
http://sunxacml.sourceforge.net/

Houbing Song (M’12–SM’14)

received the M.S. degree in civil

engineering from the University

of Texas, El Paso, TX, USA, in

2006, and the Ph.D. degree in

electrical engineering from the

University of Virginia, Char-

lottesville, VA, USA, in 2012.

In 2017, he joined the Depart-

ment of Electrical, Computer,

Software, and Systems engi-

neering, Embry-Riddle Aero-

nautical University, Daytona

Beach, FL, USA, where he is

currently an Assistant Professor

and the Director of the Security and Optimization for Networked

Globe Laboratory (SONG Lab). He has served on the Faculty of West

Virginia University, from 2012 to 2017. In 2007, he was an Engi-

neering Research Associate with the Texas A&M Transportation

Institute. He is the editor of six books, including Big Data Analytics

for Cyber-Physical Systems: Machine Learning for the Internet of

Things (Elsevier, 2019), Smart Cities: Foundations, Principles, and

Applications (Hoboken, NJ: Wiley, 2017), Security and Privacy in

Cyber-Physical Systems: Foundations, Principles, and Applications

(Chichester, U.K.: Wiley-IEEE Press, 2017), Cyber-Physical Sys-

tems: Foundations, Principles and Applications (Boston, MA: Aca-

demic Press, 2016), and Industrial Internet of Things:

Cybermanufacturing Systems (Cham, Switzerland: Springer, 2016).

He is the author of more than 100 articles. His research interests

include cyber–physical systems, cybersecurity and privacy, the

Internet of Things, edge computing, big data analytics, unmanned

aircraft systems, connected vehicle, smart and connected health, and

wireless communications and networking. Dr. Song is a Senior

Member of the ACM. He was a recipient of the Navigation and

Surveillance Technologies (ICNS) Conference, the very first recipient

of the Golden Bear Scholar Award, the highest campus-wide recog-

nition for research excellence at the West Virginia University Institute

of Technology (WVU Tech), in 2016, the prestigious Air Force

Research Laboratory’s Information Directorate (AFRL/RI) Visiting

Faculty Research Fellowship, in 2018, and the Best Paper Award

from 2019 Integrated Communication. He has served as an Associate

Technical Editor for the IEEE Communications Magazine and a

Guest Editor for the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS (J-SAC), IEEE INTERNET OF THINGS

JOURNAL, IEEE TRANSACTIONS ON INDUSTRIAL INFOR-

MATICS, and IEEE NETWORK.

Rongyi Zhao is a senior at the

School of Computer Science

and Technology, Xidian

University, Xi’an, China. He

won the third class scholarship.

His research interests are

authentication & authorization

and software security.

Qi Zheng is a senior at the

School of Computer Science

and Technology, Xidian

University, Xi’an, China. She

won National Encouragement

Scholarship, the first class

scholarship in college of soft-

ware, second prize of Mathe-

matical Modeling Contest of

Xidian University, second prize

of creative group in the second

Internet plus innovation and

entrepreneurship competition

and second prize of the fifteenth

HUAWEI cup ACM/ICPC pro-

gramming competition of Xidian University. Her research interests

are information security and software security.

Zhenyu Li is a senior at the

School of Computer Science

and Technology, Xidian

University, Xi’an, China. He

won the first and second class

scholarship and the third prize

of 2018 ‘‘Huawei Cup’’ Pro-

gramming Competition. He was

awarded the outstanding student

and outstanding graduate. His

research interests are informa-

tion security and access control.

Huansheng He is a senior at the

School of Computer Science

and Technology, Xidian

University, Xi’an, China. His

research interests are informa-

tion security and access control.

Cluster Computing (2021) 24:1505–1524 1523

123

Yixin Zhang is a senior at the

School of Computer Science

and Technology, Xidian

University, Xi’an, China. She

won the second and third class

scholarship. Her research inter-

ests are authentication &

authorization and access

control.

Fangzhi Guo is a senior at the

School of Computer Science

and Technology, Xidian

University, Xi’an, China. His

research interests are access

control and authentication &

authorization.

1524 Cluster Computing (2021) 24:1505–1524

123

	An efficient policy evaluation engine with locomotive algorithm
	Abstract
	Introduction
	Related work
	Policy decision engine XDPNBE
	Approach overview
	Numericalization of policy sets
	Comparison and selection of numericalization methods
	Conflict handling

	Policy decision method based on a locomotive algorithm
	Locomotive algorithm
	Classification
	Secondary classification based on action attributes
	Comparisons on classifications basis of action attributes and resources attributes
	Efficiency of secondary classification

	Batch processing for requests
	Criteria for requests classification
	Time analysis of related algorithms
	Subject attribute index
	Secondary classification based on action attributes
	Batch processing in request classification
	Mathematical proof of effectiveness of batch processing

	Cache and real-time matching
	Shortening waiting time and caching instead of waiting
	Efficiency comparison between caching and real-time matching

	Summary

	Experimental results and analysis
	Experimental policies
	Generation of test requests
	Policy evaluation engines
	Performance tests and comparisons
	Performance evaluation of XDPNBE before and after batch processing
	Comparisons of evaluation performance on small-scale policy sets
	Comparisons of evaluation performance on large-scale policy sets
	Self-comparisons of evaluation performance of XDPNBE on small-scale and large-scale policy sets

	Conclusions
	Acknowledgements
	References

