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Abstract
Cloud Computing has become a reliable solution for outsourcing business data and operation with its cost-effective and

resource-efficient services. A key part of the success of the cloud is the multi-tenancy architecture, where a single instance

of a service can be shared between a large number of users, also known as tenants. Service selection for multiple tenants

presents a real challenge that has not been properly addressed in the literature so far. Most of the existing cloud services

selection approaches are designed for a single-user, and hence are inefficient when applied to the case of a large group of

users with different, and often, conflicting requirements. In this paper, we propose a multi-tenant cloud services evaluation

framework, whereby service selection is carried out per group of tenants that can belong to different service classes, rather

than per a single user. We formulate the cloud services selection for multi-tenants as a complex multi-attribute large-group

decision-making (CMALGDM) problem. Skyline method is initially applied to reduce the search space by eliminating the

dominated services regardless of tenants’ requirements. Tenants are clustered based on their profiles characterized by

different personal, service, and environmental features. Each tenant is assigned a weight to reflect its importance in the

decision-making. The weight of a tenant is determined locally based on its closeness to the group decision and globally by

combining its local weight with its corresponding cluster weight to reflect its total contribution to the overall decision-

making. The final ranking of the alternatives is guided by a dynamic consensus process to reach a final solution with the

highest level of agreement. The proposed framework supports multiple types of information, including deterministic data,

interval numbers, and fuzzy numbers, to realistically represent the heterogeneity and uncertainty of security information.
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1 Introduction

1.1 Motivation

Cloud computing is rapidly growing in popularity and has

become a reliable solution for outsourcing business data

and operations. Gartner, a well-known IT consulting firm,

claimed that by 2020, a corporate with ‘no-cloud’ policy

will be a thing of the past, with more than 83% of enter-

prise workloads will be in the cloud [1]. With this signif-

icant increase in cloud adoption and the large number of

services with similar functionalities, to evaluate and select

the cloud services that best fulfill user’s requirements

becomes difficult. And is even more challenging in the case

of multiple users with different services classes, and often

conflicting, requirements.

In practice, the number of cloud users is very large, and

multiple users may simultaneously require services with

the same functionalities but different requirements. This is

referred to as the multi-tenancy architecture [2], which is

one of the key parts to the success of the cloud model. It

offers the ability to share computing resources (e.g., net-

works, servers, storage, applications, and services) between

multiple users to reduce the operational cost and benefit

from the economy of scale. For instance, Salesforce has

more than 150,000 customers with a number of multi-te-

nancy instances to serve thousands of tenants at the same

time [3]. A tenant can represent different divisions that

belong to the same company or entirely different organi-

zations that serve multiple users with different objectives

and governance needs.
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Cloud tenants have their own requirements and risk

tolerance levels. For example, one tenant may require fast

response time regardless of service cost, while another

tenant may be primarily concerned with the security

functionalities of the service. On the other hand, public

cloud service providers, which serve a large number of

users, are less flexible to adapt to a particular user’s needs

[4]. Indeed, cloud providers offer various services packages

to satisfy customized requirements from different users.

For example, Salesforce [3] provides Sales CRM services

in different packages ranging from essentials targeting

small businesses to professional, enterprise, and unlimited

editions for large enterprises. Each service class corre-

sponds to a given quality of service (QoS) with several

different functionalities. Users with strict requirements can

opt for the advanced editions with premium features.

However, these users only account for a small part of all

users, and the majority of users opt for lightweight services

with limited QoS features. Most services in these packages

are provided with a standard security mechanism for all

tenants, which makes satisfying multiple tenants’ security

requirements a major challenge for cloud providers.

Moving from services selection for a single user to a

large group of users with different requirements adds more

complexity to the problem scope. Chen [5] termed this type

of decision-making problem as the complex multi-attribute

large-group decision-making (CMALGDM) problem,

which is characterized by the following four features: (a) a

large group (usually more than 20) decision-makers with

different importance weights and conflicting requirements;

(b) a decision-making environment with variable locations

and temporal information; (c) the interdependencies

between decision criteria; and (d) the uncertain and fuzzy

preferences information of the decision-makers. Existing

cloud services evaluation approaches are mostly designed

for a single user, thus might not be suitable for complex

levels of group decision-making. Additionally, given the

dynamic and multi-tenant cloud environment, reducing the

complexity of the computation process is of paramount

importance to effectively and efficiently respond to large

volumes of service requests.

There is a considerable amount of literature on cloud

services selection and evaluation. To name a few, Garg

et al. [6] proposed an AHP-based framework for ranking

cloud services based on the user’s QoS requirements. The

authors in [7] used the Best-Worst method to prioritize the

QoS criteria and the TOPSIS method to rank cloud services

alternatives. Ding et al. [8] evaluated the trustworthiness of

cloud services and employed a collaborative filtering

technique to deal with missing and unavailable data.

Hammadi et al [9] proposed a cloud services selection

framework based on SLA management consisting of pre-

interaction and post-interaction SLA evaluation processes

to support users in making informed decisions regarding

service suitability and continuity. The authors in [10]

addressed services selection problem in federated cloud

architecture using grade and joint probability distribution

techniques. Sun et al. [11] proposed a fuzzy user-oriented

cloud service selection system combining semantic

ontologies and MCDM techniques. A recent and extensive

literature reviews on cloud services evaluation methods can

be found in [12], [13].

Most of the existing research on cloud services evalua-

tion has largely focused on performance-related attributes.

Even when security is considered in the evaluation, it is

mostly treated as a single attribute that is often assigned a

subjective value in a purely qualitative categorization.

While there are still no acceptable frameworks for evalu-

ating the security level of cloud services, increased interest

in building such frameworks has been witnessed recently.

Taha et al. [14] proposed an AHP-based cloud services

security-driven approach using the cloud control matrix

(CCM) [15] security framework as evaluation criteria.

Modic et al. [16] proposed a cloud security assessment

technique, called Moving Intervals Process (MIP), aimed at

decreasing the time complexity of the assessment algo-

rithm by separating scores of services providers that can

exactly fulfill customers’ needs from those that are under-

provisioning or over-provisioning. Halabi and Bellaiche

[17] presented a security self-evaluation methodology for

cloud providers. Alabool and Mahmood [18] proposed a

framework for ranking and improving IaaS cloud providers

by identifying the weaknesses and less performing

attributes.

A small number of studies have considered the case of

group-based services selection. Wang et al. [19] presented

two approaches for cloud multi-tenant service-based sys-

tems (SBS) selection. One was aimed for build-time by

clustering services according to a precomputed tenants

clusters’ requirement. The other is for the runtime to

replace a faulty service based on the similarities with the

corresponding services in the same cluster. He et al. [20]

proposed MSSOptimiser to address the services selection

problem for multi-tenant SaaS. The approach models the

problem as a constraint optimization problem using a

greedy algorithm to find near-optimal solutions efficiently

and avoid large computation overhead. However, the pre-

vious works deal with the problem of services composition

as a multi-objective optimization problem, which is dif-

ferent from our approach that aims to find the single best

service using multi-attribute decision-making techniques.

Also, different tenants were assumed to have the same

importance weights, which can lead to erroneous results.

Only a few existing works take into account the concept

of users’ varied weights. In particular, Liu et al. [21] pro-

posed an approach for cloud service selection under group
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decision making by integrating both objective and subjec-

tive techniques for criteria and decision-makers’ weighting.

Statistical variance (SV) and simple additive weighting

(SAW) were used to account for correlation in performance

evaluation data and the decision-makers’ preferences,

respectively. As for decision-makers’ weights, similarity to

the group’s decision-based method was combined with

Delphi AHP to compute DMs’ weights. Decision-makers’

weights were partially based on their varying knowledge

levels, skills, and expertise to reflect their credibility in the

assessment of cloud services. However, in our approach,

we assume that the values for cloud service performances

are acquired directly by the cloud services providers or

third-parties, and users are only to give their requirements.

Therefore, parameters like knowledge levels, skills, and

expertise have little to no influence in the case of services

evaluation for multi-tenants. In addition, we adopt a

dynamic weight assigning method controlled by the con-

sensus level to yield a more accepted solution by the whole

group of tenants.

1.2 Our contributions

From a practical point of view, there are two fundamental

issues in supporting cloud services evaluation for multi-

tenants. One is how to effectively aggregate the subjective

and uncertain service performances and tenants’ require-

ments while considering their varying services classes and

features. The other is how to provide the best solutions with

a high level of consensus among the tenants. Given the

above problems, and based on previous studies, including

our former work [22], the major contributions of this paper

are summarized as follows.

(1) To improve the efficiency of the proposed solution,

we first employ the Skyline method [23]. Skyline

method permits to eliminate the dominated services

and only select the dominant and pertinent services

according to their QoS performances regardless of

users’ requirements. Thus, it enables to reduce the

search space in case of a large number of services

while having low complexity.

(2) To ensure the satisfaction of the requirements of

tenants belonging to different service classes, we first

compare the alternatives with each tenant’s require-

ments based on their associated service class. This

measures the similarity between the tenants’ require-

ments and service performances. Evaluation criteria

are expressed using different expression domains,

including numeric ones, linguistic ones, and interval

numbers. That is because, in practice, some security

attributes can be expressed in a deterministic way,

such as standard compliance applicability, which

takes as value the list of the different standards that

the cloud service provider complies with. But

because of the subjectivity or uncertainty, other

attributes are better expressed using fuzzy logic or

interval terms.

(3) Tenants are assigned different weights to reflect their

importance. Tenants are initially clustered according

to their profiles characterized by different personal,

service, and environmental features. Still, tenants in

the same cluster may have similar yet different

requirements and may belong to different service

classes. Therefore, weights are assigned locally

(relative to the cluster), objectively based on their

closeness to the group decision and subjectively

given their services classes. The global weight of the

tenant is the product of his local weight and the

weight of its cluster.

(4) The final selection is carried under the guidance of a

consensus control process. That is, in case the

conflict level between the tenants is too high,

tenants’ weights are adjusted through the execution

of a systematic procedure, to reduce or minimize the

discrepancy between the collective evaluation results

and each individual evaluation.

The rest of the paper is organized as follows. Section 2

presents some preliminary knowledge of the fuzzy set

theory and TOPSIS technique. Section 3 discusses the

proposed framework. Section 4 presents an illustrative

scenario for the application of our work. Section 5 presents

a comparative analysis. Section 6 concludes the paper.

2 Preliminaries

This section presents the main definitions related to some

of the attributes’ formats used in the evaluation, in par-

ticular: fuzzy numbers and interval numbers. Also, because

the proposed framework is based on the TOPSIS method,

we briefly introduce the steps of the TOPSIS method.

2.1 Fuzzy numbers

Fuzzy set theory was proposed by Zadeh [24] to represent

the membership degree of an object with respect to a

specific class. The notion of fuzzy numbers is formally

expressed as follows.

Definition 1 Let U be the universe of discourse, a fuzzy

subset Ã of U is defined by its membership function l A xð Þ,
where: A ¼ f x; l A xð Þð Þjx 2 Ug, and l A xð Þ : U ! 0; 1½ �.

Definition 2 The triangular fuzzy membership function,

which is broadly used to support fuzzy ranking in MCDM

models, is defined as �T ¼ a; b; cð Þ, where a\b\c,
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l �T xð Þ ¼

x� a

b� a
if a� x� b

c� x

c� b
if b� x� c

0 otherwise

8
>><

>>:

Definition 3 Let ~A ¼ a1; a2; a3ð Þ and ~B ¼ b1; b2; b3ð Þ be

two triangular fuzzy numbers, then:

(1)

~Aþ ~B ¼ a1 þ b1; a2 þ b2; a3 þ b3ð Þ

(2)

~A� ~B ¼ ða1 � b3; a2 � b2; a3 � b1Þ

(3)

~A� ~B ¼ a1b1; a2b2; a3b3ð Þ

(4)

~A= ~B ¼ ða1=b3; a2=b2; a3=b1Þ

(5) Euclidean distance:

d ~A; ~B
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
a1 � b1ð Þ2þ a2 � b2ð Þ2þ a3 � b3ð Þ2

h i
r

2.2 Interval numbers

Under many conditions, it is difficult to exactly quantify an

attribute value and is more suitable to represent the degree

of certainty by an interval. For example, the meantime of

incident recovery attribute can be expressed using exact

values like 80 hours or interval numbers like [80, 120]. The

basic operations on interval numbers are described below.

Definition 4 Given two nonnegative interval numbers a ¼
al; au
� �

; b ¼ bl; bu
� �

and a positive real number k� 0.

(1)

a ¼ b if and only if al ¼ bl and au ¼ bu

(2)

aþ b ¼ al þ bl; au þ bu
� �

(3)

ka ¼ ½kal; kau�

(4) Distance: d a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ððbl � alÞ2 þ ðbu � auÞ2Þ

q

Minimum function [25]

• If a \ b ¼ ; and au � bl then min a; bf g ¼ a

• If a ¼ b then min a; bf g ¼ a; bf g
• If al � bl � bu � au if bl � al � au � buð Þ then

min a; bf g ¼ a, else min a; bf g ¼ b

• If al\bl\au\bu if bl � al � bu � auð Þ then

min a; bf g ¼ a, else min a; bf g ¼ b.

2.3 TOPSIS technique

TOPSIS (Techniques for Order Preference by Similarity to

Ideal Solution) [26] is a ranking technique based on the

distance measure of an alternative from the ideal solution.

The method accounts for both the closeness distance from

the positive ideal solution (PIS) representing the best

alternative and the farthest distance from the negative ideal

solution (NIS) representing the worst choice. TOPSIS was

chosen as it best reflects the risk attitudes of decision-

makers and alternatives. The smaller the distance measure

from PIS, the higher the alternative preference to profit,

whereas the bigger the distance measure from NIS, the

higher the alternative preference to avoid risk [27]. This

approach is suitable for a security-driven evaluation of

cloud services as a risk avoider strategy, which seeks to

select the alternatives that best match all tenants’ require-

ments while at the same time avoiding as much risk as

possible. The traditional procedure to TOPSIS [26] is as

follows.

Step 1 Define the decision matrix. Let X be the decision

matrix denoting the performance of each alternative Ai; i ¼
1; 2; . . .;m with respect to criteria Cj; j ¼ 1; 2; . . .; n

ð1Þ

Step 2: Normalize the decision matrix. Let R ¼ ðrijÞm�n

be the normalized decision matrix, where:value in the

evaluation matrix

rij ¼
xij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 x
2
ij

q ; for benefit attributes ð2Þ

rij ¼ 1� xij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 x
2
ij

q ; for cost attributes:

Step 3: Compute the weighted normalized decision

matrix. Let wj

� �
is the weight of the criteria j indicating its

relative importance to the decision-maker, and
Pn

j¼1 wj ¼ 1.

Y ¼ ðyijÞm�n ¼ wj � rij ð3Þ

Step 4: Determine the positive (PIS) Aþand the negative

(NIS) A� ideal solution.

1106 Cluster Computing (2021) 24:1103–1121

123



Aþ ¼ yþ1 ; y
þ
2 ; . . .; y

þ
n

� �
and A� ¼ y�1 ; y

�
2 ; . . .; y

�
n

� �
;

yþj ¼ max
i

yij
� �

; y�j ¼ min
i

yij
� �

ð4Þ

Step 5: Calculate the distance from positive and nega-

tive ideal solutions.

Sþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j
yij � yþj

	 
2
r

ð5Þ

S�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j
yij � y�j

	 
2
r

Step 6: Determine the relative closeness to the ideal

solution

Ci ¼
S�i

S�i þ Sþi
ð6Þ

Step 7: Rank the alternatives according to the closeness

indexCi, the higher the value, the better.

3 The proposed method

We consider cloud services evaluation for a large group of

tenants as a complex multi-attribute large-group decision-

making (CMALGDM) problem. The proposed framework

consists of three main phases. The first phase defines the

problem structure in terms of alternatives, evaluation cri-

teria, and tenants’ requirements. The second phase is the

aggregation phase in which the evaluation matrices, criteria

weights, and tenants’ weights are computed. To efficiently

respond to a large group of tenants’ requests in a timely

manner, we first employ the Skyline method to reduce the

search space by removing the dominated web services

regardless of users’ requirements. Next, to enhance the

accuracy of the aggregation given the large number of

users, the k-means clustering algorithm is applied to clas-

sify users into more homogeneous groups according to

their different features. In each cluster, the similarities

between the tenants are maximized, and conflicts are

minimized. The tenant’s weights are determined based on

their local weights relative to their corresponding cluster

and that cluster’s weight. The third and last phase checks

the consensus degree and recommends the final ranking of

the alternatives. The consensus process serves as a guide

for adjusting the weights of tenants automatically and

dynamically to achieve a high level of agreement.

The overall process, shown in Fig. 1, can be summa-

rized as follows:

1. Cluster the tenants using the k-means algorithm based

on their profiles, including personal, services, and

environmental features. The output is k clusters;

2. Apply Skyline method to reduce the search space by

eliminating the dominated services regardless of users’

requirements;

3. Compute the evaluation matrices for each tenant to

determine the similarities between tenants’ require-

ments and services performances supporting multiple

QoS-classes;

4. Normalize the evaluation matrices;

5. Determine the weights of the criteria for each tenant

based on AHP as a subjective weighting technique and

entropy technique as an objective weighting method;

6. Compute the weighted normalized evaluation matrices;

7. Compute the tenants’ weights;

a. In each cluster, the weight of the tenant is calculated

objectively based on its closeness to the cluster

decision using the TOPSIS method and subjectively

depending on its service class;

b. Compute each cluster weight based on its closeness to

the overall group decision including all other clusters

using once again the TOPSIS method;

c. Obtain the global weight of each tenant by combining

its weight with its corresponding cluster weight;

8. Finally, the weights of the tenants are integrated with

their evaluation matrices and aggregated to obtain the

collective evaluation matrix;

9. The ranking is further guided by the consensus process.

If the consensus is above a predefined threshold, the

selection process is performed or else readapt the

weights of the tenants to converge to a higher level of

agreement.

3.1 Problem Definition

Problem definition involves identifying the evaluation tar-

get and available alternatives, the tenants’ profiles, and the

evaluation criteria. The aim is to select the single best

service that fulfills tenants’ diverse requirements and sat-

isfy their negotiated service level.

In the security evaluation process, criteria specification

is a critical step. There is still no standard framework for

cloud security evaluation criteria. However, general secu-

rity standards and some specific cloud security frameworks

such as CSA Cloud Control Matrix (CCM) [15], are being

leveraged as evaluation criteria for security-based cloud

services evaluation. The CSA has additionally developed

the CAIQ initiative as a complement to the CCM frame-

work, providing a set of questions that act as requirements

to help consumers in assessing the compliance of cloud

service providers to the CCM. The answers to the ques-

tionnaire are made available in STAR repository [28].

Security requirements and preferences tend to be sub-

jective, imprecise, and uncertain, generally expressed in
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natural language rather than exact numbers. To account for

this heterogeneity, criteria values are modeled using dif-

ferent representation formats, namely: deterministic values,

linguistic assessments, fuzzy numbers, and interval data.

Both the ratings of alternatives, as well as the requirements,

are assessed using these different types of data. For

example, the meantime of incident recovery can be

expressed using exact values like 80 hours or interval

numbers like [80, 120]. Another example is the attribute of

user authentication and identity assurance level, which can

be described using a number denoting the level of assur-

ance from a scale of 1 to 4, for instance, or using linguistic

terms like poor, medium, or high.

The performance of cloud service providers can differ

given the different types of SLAs. Current service provi-

ders generally offer up to four SLA levels (i.e., silver,

bronze, gold, and platinum) or different service packages

(i.e., free, professional, enterprise, unlimited). Each service

class corresponds to a given quality of service with several

different functionalities. This also denotes the level of

security and privacy that can be achieved using the various

options provided by the cloud provider.

The evaluation problem can be formally defined as

follows: let Ai i ¼ 1; 2; . . .;mð Þ be the set of alternatives,

Cj j ¼ 1; 2; . . .; nð Þ the criteria, Sp p ¼ 1; 2; . . .;Qð Þ service

SLA classes, Tk k ¼ 1; 2; . . .;Vð Þ be the tenants,

Gg 1; 2; . . .; hð Þ the clusters of tenants, rqk rqk1; rq
k
2; . . .; rq

k
n

� �

the tenant’s requirement vector as per the criteria,

wk wk
1;w

k
2; . . .;w

k
n

� �
, the criteria weight vector provided by

each tenant, where
Pn

j¼1 wj ¼ 1, and kk is the weight of the

tenant Tk where
PV

k¼1 kk ¼ 1.

3.2 Examination

3.2.1 Step 1: Cluster the tenants based on their profiles

To increase the level of satisfaction of the tenants, we first

cluster them based on their profiles. Tenants profiles

include their personal features, service features, or envi-

ronmental features [29]. Compared with the existing

researches, the approach in this paper proposes to integrate

not only the tenants’ requirements but also other services

and environmental influence factors. Combining these

features will improve the computation method of user

features similarity, thus minimize conflicts.

Tenants’ personal features can comprise their industry

background, sector, personal requirements (e.g., service

Fig. 1 Multi-tenant services evaluation framework
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function, cost, duration, availability, response time, and

regulatory policies), and preferences (e.g. cost more

important than response time). Based on these require-

ments, a tenant can negotiate with the service provider to

customize the multi-tenancy service through service level

agreement (SLA). Service providers support multiple SLA

classes (e.g., silver, bronze, and gold), which depend on

how much a customer is willing to pay. Consequently,

tenants can also be categorized based on their SLA service

classes. Environmental features can be characterized by the

tenants’ location. For example, when the tenants using the

application are geographically distributed, it might be

better to cluster them based on their location. Thus,

resources can be allocated from a resource pool close to the

tenant.

Clustering the tenants will help in determining their

weights, which plays an important factor in the final results

of the evaluation. The clustering is performed using the K-

means algorithm (see Algorithm 1). This algorithm is

widely used for clustering because of its computational

simplicity. The result is h cluster h� 2ð Þ with Vg tenants in

each cluster Gg and
Ph

g¼1 Vg ¼ V . Tenants are denoted by

Tgk g ¼ 1; 2; . . .; h; k ¼ 1; 2; . . .;Vð Þ:For clarity, the cluster

index g is omitted in the steps related to computing the

evaluation matrices, criteria weights, and weighted nor-

malized evaluation matrices, since these steps do not

depend on which cluster the tenant belongs to. The clus-

ter’s index will be reintroduced when necessary (step 7).

The selection process can also be performed per group

of tenants (i.e., clusters) if deemed unnecessary to select

the single best service for all the tenants. In this case, it is a

simple group multi-attribute decision-making problem

(GDM). However, if it is necessary for all the tenants in

different clusters to select the same services, it becomes a

complex multi-attribute large-group decision-making

problem (CMALGDM). In the latter, tenants of different

clusters have an influence on the global decision making,

and thus their weights are not only computed with respect

to the corresponding cluster but also to the other clusters.

3.2.2 Step 2: Apply Skyline method to reduce search space

Skyline [23] method is a basic MCDM solution that per-

mits to extract the subclass of dominant services and

eliminate the dominated ones regardless of any user’s

requirements. This is because the optimal solution is nec-

essarily within the dominant services [30]. Skyline algo-

rithm is based on the relation of dominance (see Definition

5), which has very low complexity. This makes it suit-

able as an initial step, but the number of dominant services

can still be important, thus the need for a more accurate

MCDM solution to rank the remaining services based on

users’ profiles.

Definition 5 [23]. Given a set of functionally similar

services S ¼ s1; s2; . . .; smf g and a set of QoS parameter

Q ¼ q; q2; . . .; qnf g, we say that si dominates sj (sj 	 si)

If

8qk 2 Q; k 2 1; 2; . . .; nf g
qk sið Þ� qk sj

� �
for benefit criteria

qk sið Þ� qk sj
� �

for cost criteria

(

And

9qk 2 Q; k 2 1; 2; . . .; nf g
qk sið Þ[ qk sj

� �
for benefit criteria

qk sið Þ\qk sj
� �

for cost criteria

(

That is to say that a dominant service is better or equal

to another service for all QoS parameters, and strictly

better at least for one QoS parameter. As we consider

multiple QoS classes, for a service to be excluded it needs

to be dominated by other services in all the predefined

services classes.

3.2.3 Step 3 Compute the evaluation matrix for each
tenant

Let Xpdefines the performance of the alternatives according

to class p. We assume that the alternative performances can

be obtained from experts and third parties and hence, are

not influenced by tenants’ subjective and maybe untrusted

opinions.

ð7Þ

In most approaches, the decision matrix denoting the

performance of the alternatives or the preferences of the

decision-makers is directly used in the evaluation. How-

ever, we use a different approach, whereby we first
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compare the alternatives performances to each tenant’s

requirements corresponding to the same SLA class, as

shown in Eq. (8). This enables us to support the selection of

services for a group of tenants that may belong to different

services classes. The result at this stage is an evaluation

matrix Ek for each tenantk depicting the satisfaction of

tenants’ requirements against alternatives performances as

per the negotiated SLA class. The tenants’ requirements

RQk rqk1; rq
k
2; . . .; rq

k
n

� �
are also expressed using different

types of data (i.e., deterministic values, linguistic assess-

ments, fuzzy numbers, and interval data).

Note for a class-p, the comparison considers only the

performances of services pertaining to class p. For sim-

plicity, instead of including the superscript p in all of the

following equations to denote that the calculations are

performed on tenants and alternatives pertaining to the

same class, we omit the indices with the assumption being

still valid.

ð8Þ

The value of xijørq
k
j is computed as follows.

For deterministic values: Numeric:

xijørq
k
j ¼

xij

rqkj
ifrqkj 6¼ 0

xij otherwise

8
<

:
ð9Þ

Boolean:

xijørq
k
j ¼

xij ifrqkj ¼ 1

1 otherwise

�

ð10Þ

Set:

xijørq
k
j ¼

xij \ rqkj

�
�
�

�
�
�

rqkj

�
�
�

�
�
�

ifrqkj 6¼ ;

xij
�
�
�
� otherwise

8
>>><

>>>:

ð11Þ

For fuzzy triangular numbers:

ekij ¼ ekLij ; e
kM
ij ; ekUij

	 

¼ xijørq

k
j

It is calculated as per Eq. (4) in Definition 3.

For Linguistic values:

Linguistic terms can be transferred into triangle fuzzy

numbers (TFNs) using Table 1.

For Interval values:

xij ¼ xlij; x
u
ij

h i
; rqkj ¼ rqklj ; rq

ku
j

h i

ekij ¼ eklij ; e
ku
ij

h i
¼

xlij

rqklj
;
xuij

rqkuj

" #

ð12Þ

3.2.4 Step 4. Normalize the evaluation matrix

To ensure comparability of criteria given their different

types (i.e., cost and benefit) and dimensions (i.e., time

scale, space scale, etc.), we use the following equations

[25] to normalize each value in the evaluation matrix.

where

For deterministic values

rkij ¼

ekij
maxje

k
ij

for benefit attributes

minje
k
ij

ekij
for cost attributes

8
>>><

>>>:

ð13Þ

For fuzzy triangular numbers:

rkij ¼ rkLij ; r
kM
ij ; rkUij

	 

¼

rkLij ¼
ekLij

maxj e
kU
ij

; rkMij ¼
ekMij

maxj e
kU
ij

; rkUij ¼
ekUij

maxj e
kU
ij

benefit criteria

rkLij ¼
minj e

kL
ij

ekUij
; rkMij ¼

minj e
kL
ij

ekMij
; rkUij ¼

minj e
kL
ij

ekUij
costcriteria

8
>>><

>>>:

For Interval values:

rkij ¼ rklij ; r
ku
ij

h i
¼

rklij ¼
eklij

maxje
ku
ij

; rkuij ¼
ekuij

maxje
ku
ij

benefit criteria

rklij ¼
minje

kl
ij

ekuij
; rkuij ¼

minje
kl
ij

eklij
cost criteria

8
>>><

>>>:

ð14Þ

Table 1 Linguistic variables and their corresponding TFNs

Linguistic variables Alternatives performances

The best (0.8, 0.9, 1)

Better (0.7, 0.8, 0.9)

Very good (0.6, 0.7, 0.8)

Good (0.5,0.6, 0.7)

Normal (0.4,0.5,0.6)

Bad (0.3,0.4,0.5)

Very bad (0.2,0.3,0.4)

Worse (0.1,0.2,0.3)

The worst (0,0.1,0.2)
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3.2.5 Step 5. Determine criteria weights

The weight of criteria wk
j (where

Pn
j¼1 w

k
j ¼ 1) with respect

to each tenant are computed using subjective and objective

methods to obtain more accurate and less sensitive results

to users’ preferences or unreasonable criteria prioritization.

3.2.5.1 Step 5.1. Compute subjective criteria weights

AHP [31] pairwise comparison approach can be utilized for

the assignments of subjective weights wsk
j

	 

to the criteria

reflecting their degree of importance in view of a particular

tenant. That is, each pair of criteria is compared from a

scale of 1 (equal) to 9 (extremely important), and the

weight of a criterion is obtained from the eigenvector

denoting its importance to a particular tenant.

3.2.5.2 Step 5.2. Compute objective criteria weights

The entropy method [32] uses the maximum entropy theory

proposed by Shannon [33] to provide the objective

weighting of evaluation criteria. It determines the crite-

rion’s weight based on the information transmitted by that

criterion. That is, if a particular criterion has similar values

for all the alternatives, then this criterion has little impor-

tance in the decision-making. In contrast, the criterion that

alternatives are most dissimilar on should have the highest

importance weight since it transmits more information and

helps to differentiate between the different alternatives.

Integrating objective weights with subjective weights helps

in adjusting the weights to make them more reliable.

The projected outcomes of a criterion Cj;Pij is defined

as:

Pij ¼
xij

Pm
i¼1 xij

ð15Þ

The entropy is calculated as follows:

ETj ¼ � 1

lnm


 �
Xm

i¼1

Pij lnPij ð16Þ

The degree of diversification of the information pro-

vided by the criterion j is

dj ¼ 1� ETj ð17Þ

The entropy weight is then:

wo
j ¼

dj
Pn

j¼1 dj
ð18Þ

3.2.5.3 Step 5.3. Compute the final combined criteria

weights wk
j ¼ awo

j þ bwsk
j ,where

aþ b ¼ 1: ð19Þ

The coefficient aandb can be adjusted based on the specific

needs of the decision-makers to reflect the influence of

subjective and objective weights on the decision-making.

3.2.6 Step 6. Compute the weighted normalized

decision matrix

The weighted normalized decision matrix Yk is computed

using each tenant’ individual criteria weight vector wk
j

	 


as follows.

where

Yk ¼ ykij

	 


m�n
¼ wk

j � rij ð20Þ

3.2.7 Step 7. Determine the weights of each tenant

In the proposed approach, the cloud services selection is

performed per group of tenants; thus, we need to consider

the ideal decision pertaining to the overall group. There-

fore, tenants’ weights constitute an important factor that

can change the outcome of the decision-making process.

Tenants’ weights are computed using both subjective and

objective methods. Subjective weights can represent, for

example, the importance of the tenant based on his SLA

class since tenants from different classes can belong to the

same cluster (or other factors deemed necessary by the

decision-makers), Whereas the objective weight denotes

his closeness to the overall group’s decision.

The weights of tenants are determined in two stages:

locally relative to the cluster and globally by combining

tenant’s weight with its corresponding cluster weight. The

basic steps of the procedure can be summarized as follows:

We first determine the local tenant’s weight in the cluster

based on its closeness to the cluster decision using the

TOPSIS method. This weight is combined with subjective

weights, as explained earlier. Next, we determine cluster

weight with respect to other clusters in an objective way

using once again the TOPSIS method. Finally, by com-

bining the local weight of the tenant and its corresponding

cluster, we obtain the global weight of the tenant.

Note that the K-means algorithm suffers from the

problem of outliers. Assigning weights to the tenants in an

objective manner based on their closeness to group
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decision using the TOPSIS method as proposed in [27],

will reduce the influence of outliers since the calculation of

the weight maximizes the tenant’s weight only if it aligns

with the group decision and minimizes it otherwise.

At this step, it is important to differentiate between

tenants belonging to different clusters. Therefore, we will

reintroduce the superscript g for the cluster index, which

was omitted before for clarity reasons. Then, the weighted

normalized decision matrix is defined as follows.

ð21Þ

3.2.7.1 Step 7.1. Compute tenant’s local objective

weight To compute the tenant’s local objective weight,

we follow the approach proposed in [27] using the TOPSIS

technique. The idea is to rank the tenants based on their

closeness to the cluster ideal decision. That is the closeness

distances from the positive ideal solution (PIS) and the

negative ideal solution (NIS).

Obtain the group positive (PIS) and negative ideal

solution (NIS)

The group’s positive ideal solution (PIS) is obtained by

averaging all individual decisions, which will be used as a

reference for the cluster’s ideal decision.

Y�g ¼ y�gij

	 


m�n
¼ 1

Vg

XVg

k¼1

ygkij ð22Þ

The negative ideal solution (NIS) represents the maximum

separation from the ideal solution divided into two parts the left

negative and the right negative ideal solution. It represents the

maximum separation from the group’s decision. By employing

this method, we would prevent outliers from having a big

influence on the decision making of the group.

Y�lg ¼ y�lg
ij

	 


m�n
¼ min

1� k�Vg

ygkij

	 


Y�rg ¼ y�rg
ij

	 


m�n
¼ max

1� k�Vg

ygkij

	 
 ð23Þ

Calculate the distance from the positive and negative

ideal solutions

Sþgk ¼
Xm

i¼1

Xn

j¼1

d ygkij ; y
�g
ij

	 


S�lgk ¼
Xm

i¼1

Xn

j¼1

d ygkij ; y
�lg
ij

	 


S�rgk ¼
Xm

i¼1

Xn

j¼1

d ygkij ; y
�rg
ij

	 


ð24Þ

Calculate the closeness coefficient

Clgk ¼ S�lgk þ S�rgk

Sþgk þ S�lgk þ S�rgk
ð25Þ

The objective weight of each tenant is determined as

follows:

kogk ¼
Clgk

PVg

k¼1 Cl
gk

ð26Þ

3.2.7.2 Step 7.2. Compute tenant’s combined local

weight Objective weights can be combined with subjec-

tive weights ksgk to represent the importance of the tenant

based on his SLA class (or other factors deemed necessary

by the decision-makers).

kgk ¼ ukogk þ vksgk; where uþ v ¼ 1; ð27Þ

The coefficient uandv can be adjusted based on the

specific needs of the decision-makers to reflect the influ-

ence of subjective and objective features on the final

weight.

3.2.7.3 Step 7.3. Determine each cluster’s

weight Depending on the current request, if users and

tenants of different clusters can select different services,

this step can be skipped, and the best services are selected

based on the requirements of tenants in each cluster sepa-

rately. In this case, it is a simple group multi-attribute

decision-making problem (GDM). However, if it is deemed

necessary for all the tenants in different clusters to select

the same services, it becomes a complex multi-attribute

large-group decision-making problem (CMALGDM). The

difference is that tenants of different clusters have an

influence on the global decision making, and thus their

weights are not only computed with respect to the corre-

sponding cluster but also to the other clusters.

The cluster weight is also determined based on the

distance to the overall group decision using also the

TOPSIS method proposed in [27]. The steps are similar to

how we previously computed tenant’s local objective

weight (step 7.1), but while using the overall decision

matinspired by the approach proposedrices of each cluster.

The decision matrix of a cluster is represented as follows.

where
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Bg ¼ bgij

	 


m�n
¼
XVg

k¼1

ygkij ð28Þ

The group’s positive ideal solution considering all the

clusters is computed as follows.

B� ¼ b�ij

	 


m�n
¼ 1

h

Xh

g¼1

bgij ð29Þ

The left negative and right negative ideal solution for all

the cluster are:

B�l ¼ b�l
ij

	 


m�n
¼ min

1� g� h
bgij

	 

ð30Þ

B�r ¼ b�r
ij

	 


m�n
¼ max

1� g� h
bgij

	 


The distances from the positive and negative ideal

solution for each cluster are:

Sþg ¼
Xm

i¼1

Xn

j¼1

d bgij; b
�
ij

	 

ð31Þ

S�lg ¼
Xm

i¼1

Xn

j¼1

d bgij; b
�l
ij

	 


S�rg ¼
Xm

i¼1

Xn

j¼1

d bgij; b
�r
ij

	 


3.2.8 Calculate the closeness coefficient

Clg ¼ S�lg þ S�rg

Sþg þ S�lg þ S�rg
ð32Þ

The weight of each cluster is determined as follows:

kg ¼
Clg

Ph
g¼1 Cl

g
ð33Þ

3.2.8.1 Step 7.4. Compute the global weight of each

tenant The global tenant weight kk is the combination of

its weight relative to its cluster and the weight of the cluster

itself.

kk ¼ kgk � kg ð34Þ

3.2.9 Step 8. Aggregation of individual evaluation matrices

Now all individual tenant evaluation matrix can be

aggregated using each tenant weight to form the group

collective evaluation matrix.

Y ¼
XV

k¼1

kkY
gk ð35Þ

3.3 Ranking

3.3.1 Step 9 Consensus Control

Cloud services evaluation for multiple tenants aims to find

the most profitable solution for the whole group of tenants.

However, given the different and often conflicting tenants’

requirements, the decision-making process may lead to

solutions that will not be well accepted by some tenants.

Therefore, a consensus reaching process is necessary to

monitor the agreement degree and guide the overall deci-

sion-making process. Several consensus models have been

proposed in the literature, which generally differ in the

mechanism adopted to guide the discussion process and the

type of consensus measures utilized [34]. The mechanism

adopted to guide the discussion refers to the use of a

feedback process that provides decision-makers with some

advice to modify their preferences. Other methods choose

to automatically update the preferences or the weights of

the experts to bring them closer to consensus without the

need for human intervention [34]. This model is more

favorable for our approach enabling the on-demand char-

acteristic of cloud services.

As for the consensus measures, it is mainly calculated

based on the distances between experts’ preferences or the

distances to the collective preference [34]. In this paper, we

adopt the latter, i.e., the distance between individual

decisions and the collective group decision. If the con-

sensus is at an acceptable level, the final ranking of alter-

natives is carried out. To have a more granular view on the

progress of the consensus process, we measure both the

conflict degree and the agreement degree using the

weighted sum aggregation operator and the standard of

deviation, respectively. The consensus analysis is applied

on the top L alternatives. That is because in real-world

situations the number of services can be very large, while

also having a larger number of tenants. Therefore, there is

no need to have a high consensus between all tenants on all

available alternatives. The consensus analysis covers the

top L alternatives as well as a single selected one.

3.3.1.1 Step 9.1 Measure the degree of consensus Let Dki

be the distance between the individual evaluations of each

alternative to the overall collective evaluation.

Dk i½ � ¼
Xn

j¼1

d yki½ �j; y i½ �j

	 

ð36Þ

where i½ � represents the alternative ranked in the ith

position.
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The conflict degree measures the difference between the

individual tenants’ evaluation matrices Yk and the group

collective evaluation Y on an alternative is

Conf i½ � ¼
XV

k¼¼1

kkDk i½ � ð37Þ

Accordingly, the conflict degree on the top L alterna-

tives can be defined as follows.

Conf ¼ 1

L

XL

i¼1

Conf i½ � ð38Þ

As for the consensus degree, it is calculated based on the

deviation between the different tenants’ evaluation and the

collective evaluation of each alternative.

The standard of deviation is computed as follows.

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

V � 1

XV

k¼1

D2
ki

 !v
u
u
t ð39Þ

The consensus degree on each alternative is defined as

Coni ¼ 1� ri ð40Þ

The overall group consensus on the top L alternatives

Cons ¼ 1

L

XL

i¼1

Cons i½ � ð41Þ

If the consensus degree is acceptable (above a prede-

fined threshold) and the conflict degree is small enough

(usually under 0.1), the final ranking and selection of the

alternatives are performed. Otherwise, update the weights

of the tenants to reach a better consensus level.

3.3.1.2 Step 9.2. Update the weights of the tenants The

consensus of the group decision between the tenants is

handled in an automatic way such that the tenants’ weights

are adjusted to reach a high level of agreement without the

need for human intervention. Also, it is very time con-

suming and expensive to have to interact with the tenants to

modify their requirements throughout the process, which

can take several iterations before finally reaching an

acceptable level. On the other hand, the automatic

approach doesn’t use a feedback mechanism and instead

adjusts the weights of the decision-makers. The basic idea

is that the weights of the decision-makers with more

extreme opinions (i.e., have a larger distance from the

group opinion) are reduced to minimize the conflict degree

of the group. Algorithm 2 shows the process for weights

adjustments inspired by the approach proposed in [35].

3.3.2 Step 10. Determine the overall ranking of alternatives

When the consensus level and conflict level are acceptable,

we perform the overall assessment of each alternative by

measuring its closeness to the ideal solution using the

collective evaluation matrix.

The positive ideal solution (PIS) Aþ and negative ideal

solution A� are determined as fol-

lows.Aþ ¼ yþ1 ; y
þ
2 ; . . .; y

þ
n

� �
and A� ¼ y�1 ; y

�
2 ; . . .; y

�
n

� �
,

yþj ¼ max
i

yij
� �

; y�j ¼ min
i

yij
� �

ð42Þ

Then, we calculate the distance of alternatives from PIS

Sþi ¼
Xn

j¼1

dðyij; yþj Þ ð43Þ

S�i ¼
Xn

j¼1

dðyij; y�j Þ

Based on the distances, the relative closeness to the ideal

solution is calculated as follows.

Cli ¼
S�i

S�i þ Sþi
ð44Þ
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The alternatives are ranked in descending order

according to the closeness coefficient Cli and the best one

is selected.

4 Illustrative example

While the number of cloud tenants, as well as services, tend

to be large in the real-word, for simplicity we consider the

case of evaluation of six possible cloud services alterna-

tives for five tenants according to five security criteria

namely: authentication level (C1), level of uptime (C2),

logs retention period (C3), third party authentication sup-

port (C4), and certifications and compliances (C5). These

criteria are expressed using different format types includ-

ing real numbers, boolean, interval numbers, and fuzzy

numbers. The descriptions and format type of the criteria

are listed in Table 2. For the linguistic terms, their corre-

sponding fuzzy numbers are depicted in Table 1 (Sec-

tion 3). We assume that each service offers two QoS

classes, gold and silver. Table 3 outlines the performances

of the alternatives according to the services classes.

Table 4 presents the requirements of tenants, having the

first tenant in gold class and the remaining in the silver

class.

Following the steps of the proposed framework, we

cluster the tenants based on their profiles (step 1). The

characteristics considered in the clustering are tenants’

requirements and their service class. The results of apply-

ing the k-means algorithm for two clusters (h = 2) are

clusters G1 = {T1, T3, T5}, and G2 = {T2, T4}.

We apply the Skyline method to reduce the number of

services to retain only the dominant ones, as explained in

step 2 of the framework. A1, A2, A3, A4, and A5 are not

dominated by any other services. Note that the service A5

is dominated by A2, A3, and A4 in the gold package but is

not dominated by any other service in the silver package

and thus, is a Skyline service. The alternative A6 is dom-

inated by the services A1, A2, A3, and A4 in all service

classes. Therefore, A6 is excluded. The Skyline services

(i.e., the dominant services) that are considered for the

ranking are A1, A2, A3, A4, A5.

Following the steps (3) to (6) as proposed in the

framework, we obtain the integrated criteria weights by

combining objective criteria weights using the entropy

model and subjective criteria weights using the AHP

technique, presented in Table 5. We suppose that the

objective weights and subjective weights have equal

importance (a = b = 0.5) in computing the integrated cri-

teria weights. Table 6 shows the weighted normalized

evaluation matrix for each tenant.

Next, to aggregate the individual evaluation matrices,

we need to compute the weights of the tenants, as discussed

in step 7. We first calculate the local tenant’s weight (rel-

ative to its cluster) based on the closeness of the tenant’s

individual evaluation from its corresponding cluster ideal

solution. Table 7 shows the distances of each tenant from

its corresponding cluster’s positive ideal solution (PIS)

shown in column S*, and separation from the negative

ideal solution (NIS) shown in column S-r (max) and S-l

(min), as well as the closeness coefficient Cl, the local

weight kl, clusters weights, and the combined global

weight of each tenant. Table 8 presents the aggregated

collective decision matrix of the group of tenants as per

step 8.

At the final stage, consensus analysis is performed to

check the degree of agreement among the tenants on the

alternatives as discussed in step 9. Assume that the

threshold of conflict level is at 0.1, and the consensus level

is at 0.75. Table 8 depicts the conflict level and consensus

level over each of the alternatives. By using Eqs. (38) and

(41) we obtain the overall group conflict level (Conf =

0.19) and consensus level (Cons = 0.78) on all the alter-

natives (L = 5), respectively. Since the conflict level above

the predefined threshold ([ 0.1), we need to update the

weights of tenants as defined in step (9.2) with setting

r ¼ 2. At each iteration, tenants’ weights are calculated

based on their contribution to the overall group consensus

and based on which the collective evaluation matrix,

Table 2 Criteria used for cloud services evaluation, their description, and format type

Evaluation criteria Description of criteria Format type

Authentication level (C1) The assurance level of the authentication mechanism

used for accessing the service

Triangular fuzzy numbers

Level of uptime (C2) The period of time during which the service was available Interval

Logs retention period (C3) The period of time during which logs are available for analysis Number

Third party authentication support (C4) The availability of a third-party authentication support Boolean

Certifications and compliances (C5) The list of the standards and certifications that the service complies with Set
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consensus level, and conflict level are recalculated. This

procedure terminates after the 11th iteration, where the

overall conflict level is under the threshold (0.09). Figure 2

shows the results of the iterative process depicting the

overall conflict level and consensus level along with the

collective evaluation of each alternative (Table 9). It shows

that the conflict level is decreasing throughout the weight

updating process dropping from 0.19 To 0.09. The final

accepted overall collective evaluation of alternatives and

ranking are presented in Table 10, having A4 as the best

alternative. Note that the ranking of the best three alter-

natives from the group is always the same (A4[A1[
A3) regardless of the changes in tenants’ weights in this

case.

Figure 3 depicts the changes in tenants’ weights. It

indicates that the fifth tenant’s weight increases while

others decrease with the decline of the group conflict level.

5 Comparative analysis

To investigate the effectiveness of the proposed approach

for cloud services selection for multiple tenants, we make

(1) a quantitative comparison with other established multi-

Table 3 Performance of

alternatives with respect to the

criteria and service classes

C1 C2 C3 C4 C5

Gold

A1 High (0.5, 0.7, 0.9) [99.9–100] 356 Yes {HIPAA, ISO 27001, PCI}

A2 Medium (0.3, 0.5, 0.7) [99.95–100] 365 No {HIPAA, ISO 27001, SOC, PCI}

A3 Very high (0.7, 0.9, 1) [99.99–100] 356 No {HIPAA, ISO 27001, SOC, PCI}

A4 Very high (0.7, 0.9, 1) [99.95–100] 365 Yes {HIPAA, ISO 27001, SOC}

A5 Medium (0.3, 0.5, 0.7) [99.95–100] 356 No {ISO 27001}

A6 Medium (0.3, 0.5, 0.7) [99.9–100] 356 No {HIPAA, ISO 27001}

Silver

A1 High (0.5, 0.7, 0.9) [99.9–100] 230 Yes {HIPAA, ISO 27001, PCI}

A2 Medium (0.3, 0.5, 0.7) [99.95–100] 180 No {HIPAA, ISO 27001, SOC, PCI}

A3 High (0.5, 0.7, 0.9) [99.95–100] 230 Yes {HIPAA, ISO 27001, SOC, PCI}

A4 High (0.5, 0.7, 0.9) [99.9–100] 356 Yes {HIPAA, ISO 27001, SOC}

A5 Medium (0.3, 0.5, 0.7) [99.95–100] 356 No {ISO 27001}

A6 Medium (0.3, 0.5, 0.7) [99.9–100] 180 No {HIPAA, ISO 27001}

Table 4 Tenants services

classes and requirements with

respect to the criteria

C1 C2 C3 C4 C5

Gold

T1 Very high (0.7, 0.9, 1) [99.95–100] 356 Yes {HIPAA, ISO 27001, SOC, PCI}

Silver

T2 High (0.5, 0.7, 0.9) [99.9–100] 230 No {HIPAA, ISO 27001, PCI}

T3 Medium (0.3, 0.5, 0.7) [99.95–100] 180 Yes {ISO 27001}

T4 Very high (0.7, 0.9, 1) [99.9–100] 230 No {HIPAA, ISO 27001}

T5 Medium (0.3, 0.5, 0.7) [99.9–100] 180 Yes {HIPAA, ISO 27001}

Table 5 Subjective, objective, and integrated weights of the criteria

in view of each tenant

C1 C2 C3 C4 C5

Objective criteria weights 0.031 0 0.028 0.841 0.101

T1

Subjective 0.23 0.15 0.16 0.18 0.28

Integrated 0.13 0.08 0.09 0.51 0.19

T2

Subjective 0.17 0.17 0.15 0.24 0.26

Integrated 0.10 0.09 0.09 0.54 0.18

T3

Subjective 0.36 0.14 0.17 0.12 0.22

Integrated 0.19 0.07 0.10 0.48 0.16

T4

Subjective 0.28 0.15 0.18 0.16 0.23

Integrated 0.16 0.08 0.10 0.50 0.16

T5

Subjective 0.24 0.17 0.17 0.15 0.26

Integrated 0.13 0.09 0.10 0.50 0.18
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criteria decision-making (MCDM) methods based on rank

conformance analysis and conflict level analysis, and (2) a

qualitative comparison with the state-of-the-art group-

based cloud services evaluation methods.

5.1 Comparison with other MCDM methods

5.1.1 Rank conformance analysis

To evaluate the performance of an MCDM method, we can

evaluate the conformity of its ranking results with other

MCDM methods. To this end, we compare the results

obtained from the proposed method with other well-

established MCDM methods, namely: Analytical Hierar-

chy Process (AHP) [31], Weighted Sum Approach (WSA)

[21], Grey Relational Analysis (GRA) method [36], and the

traditional TOPSIS method [26]. We consider the same

data input used in the previous example, from service

performances (Table 3), tenants’ requirements (Table 4),

to criteria weights (Table 5). We obtain the ranks of ser-

vices using the above-mentioned methods under similar

constraints. Figure 4 depicts the comparison results.

We can observe a close degree of similarity between the

ranks of the proposed method and the other MCDM

methods. As shown in Fig. 4, 60% (i.e. 3/5) of considered

methods show full consensus on the top two alternatives

(A4 and A3). Whereas, 80% (i.e. 4/5) of the considered

methods show agreement on the third-best alternative (A1).

There are some differences in results between the proposed

method and the other MCDM methods. This is because the

calculation of the ideal reference indexes in the proposed

method takes into account the requirements of the tenants

and their weights, as opposed to other methods that did not

consider these factors. In the real world, it is not always

reasonable to assume that all tenants have the same weight

and importance level. As discussed before, tenants have

different requirements and can belong to different service

classes. Still, all methods including the proposed method

show agreement on the top three alternatives. From the

results, it can be concluded that the performance of the

proposed method is up to par with other MCDM methods.

5.1.2 Tenants consensus level on alternatives evaluation

In this part, we assess the consensus level between the

tenants on alternatives ratings using different MCDM

methods (AHP, WSA, GRA, traditional TOPSIS). For this

purpose, we consider the same datasets from the previous

example. We obtain the ratings of services using different

Table 6 Weighted normalized evaluation matrices

C1 C2 C3 C4 C5

T1

A1 (0.05,0.07,0.12) [0.07583,0.07595] 0.09 0.51 0.14

A2 (0.03,0.05,0.09) [0.07587,0.07595] 0.09 0.00 0.19

A3 (0.06,0.09,0.13) [0.07590,0.07595] 0.09 0.00 0.19

A4 (0.06,0.09,0.13) [0.07587,0.07595] 0.09 0.51 0.14

A5 (0.03,0.05,0.09) [0.07587,0.07595] 0.09 0.00 0.05

T2

A1 (0.03,0.06,0.10) [0.08548,0.08565] 0.06 0.54 0.18

A2 (0.02,0.04,0.08) [0.08552,0.08565] 0.05 0.54 0.18

A3 (0.03,0.06,0.10) [0.08552,0.08565] 0.06 0.54 0.18

A4 (0.03,0.06,0.10) [0.08548,0.08565] 0.09 0.54 0.12

A5 (0.02,0.04,0.08) [0.08552,0.08565] 0.09 0.54 0.06

T3

A1 (0.05,0.09,0.19) [0.06859,0.06870] 0.06 0.48 0.16

A2 (0.03,0.06,0.15) [0.06863,0.06870] 0.05 0.00 0.16

A3 (0.05,0.09,0.19) [0.06863,0.06870] 0.06 0.48 0.16

A4 (0.05,0.09,0.19) [0.06859,0.06870] 0.10 0.48 0.16

A5 (0.03,0.06,0.15) [0.06863,0.06870] 0.10 0.00 0.16

T4

A1 (0.06,0.10,0.16) [0.07579,0.07595] 0.07 0.50 0.16

A2 (0.04,0.07,0.12) [0.07583,0.07595] 0.05 0.50 0.16

A3 (0.06,0.10,0.16) [0.07583,0.07595] 0.07 0.50 0.16

A4 (0.06,0.10,0.16) [0.07579,0.07595] 0.10 0.50 0.16

A5 (0.04,0.07,0.12) [0.07583,0.07595] 0.10 0.50 0.08

T5

A1 (0.03,0.06,0.13) [0.08548,0.08565] 0.06 0.50 0.18

A2 (0.02,0.04,0.10) [0.08552,0.08565] 0.05 0.00 0.18

A3 (0.03,0.06,0.13) [0.08552,0.08565] 0.06 0.50 0.18

A4 (0.03,0.06,0.13) [0.08548,0.08565] 0.10 0.50 0.18

A5 (0.02,0.04,0.10) [0.08552,0.08565] 0.10 0.00 0.09

Table 7 The distance of

tenant’s individual evaluation

from (PIS)/ (NIS), the closeness

coefficient, and the local and

global tenants’ weights

Cluster Tenant S* S�l S�r Cl k local Cluster weight k global

G1 T1 0.6290 0.3569 0.9408 0.6735 0.3344 0.4908 0.1641

T3 0.4861 0.8393 0.3920 0.7169 0.3559 0.2529

T5 0.3769 0.2390 0.3859 0.6238 0.3097 0.1747

G2 T2 0.3030 0.3402 0.3021 0.6794 0.4966 0.5092 0.2563

T4 0.2740 0.3021 0.3040 0.6887 0.5034 0.1520
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MCDM methods, as well as the proposed method under

similar constraints. We assess the consensus level between

the tenants on alternatives ratings based on the conflict

degree. The conflict degree is calculated based on the

distance between the individual tenants’ evaluation matri-

ces and the group collective evaluation on each alternative

(see Eqs. (36–38)). The smaller the conflict degree the

better it is. Fig. 5 depicts the conflict level between tenants

on each alternative and the total conflict level on all

alternatives.

We can observe from the results a high total conflict

degree using other MCDM approaches, namely (0.19)

using AHP, (0.22) using WSA, (0.2) using GRA, and

(0.39) using traditional TOPSIS method. This is because

the evaluation of alternatives using these methods does not

consider tenants’ requirements or their different weights.

The total conflict level is lower using the proposed method,

(0.18) before applying the dynamic consensus (at iteration

0) and is at the lowest level (0.1) after applying the

dynamic consensus process, compared to other methods.

Also, as shown in Fig. 5, the conflict level is the lowest

Table 8 Collective decision

matrix of the group of tenants
C1 C2 C3 C4 C5

A1 (0.04396, 0.07553, 0.13932) [0.07846, 0.078761] 0.06794 0.50716 0.16747

A2 (0.02637, 0.05395, 0.10836) [0.07850, 0.07861] 0.05676 0.26423 0.17539

A3 (0.04692, 0.07882, 0.14143) [0.07851, 0.07861] 0.06794 0.42353 0.17539

A4 (0.04692, 0.07882, 0.14143) [0.07847, 0.07861] 0.09741 0.50716 0.15209

A5 (0.02637, 0.05395, 0.10836) [0.07850, 0.07861] 0.09704 0.26423 0.08597
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40%
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70%

80%

90%

100%

iter 0 iter 1 iter 2 iter 3 iter 4 iter 5 iter 6 iter 7 iter 8 iter 9 iter 10 iter 11

A 1 A 2 A 3 A 4 A 5 Conflict level Consensus level 

Fig. 2 Group conflict level, consensus level, and the overall collective evaluation of alternatives over the tenants’ weights updating process

Table 9 The standard of

deviation, consensus, and final

ranking of each alternative at

the initial iteration

Iteration 0 Standard of deviation r Consensus Conflict level Alternative rating Ranking

A1 0.0738 0.92 0.06 0.9146 2

A2 0.3429 0.66 0.30 0.5674 4

A3 0.2708 0.73 0.18 0.7931 3

A4 0.0771 0.92 0.07 0.9490 1

A5 0.3554 0.64 0.31 0.5093 5

Table 10 The standard of

deviation, consensus, and final

ranking of each alternative at

the 11th iteration

Iteration 11 Standard of deviation r Consensus Conflict level Alternative rating Ranking

A1 0.0785 0.92 0.04 0.8835 2

A2 0.3487 0.65 0.18 0.3414 5

A3 0.2884 0.71 0.04 0.8823 3
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using the proposed method, not only in total but also on

each alternative. Thus, we can observe an improvement in

the consensus degree between tenants on services evalua-

tion using the proposed method. From the results, we can

conclude that the proposed method performs significantly

better than the individual methods. Further, the results are

more reliable and trustworthy as they are based on the

consensus of improved results because of the consideration

of tenants’ requirements and their weights in the evalua-

tion, in addition to performing a dynamic consensus

process to reach a final solution with the highest level of

agreement.

5.2 Comparison with related work

The proposed framework addresses cloud services selec-

tion for a large group of tenants sharing service instances

with different, and often conflicting, requirements. A

number of studies have considered the case of group-based

services selection. Wang et al. [36] proposed a multi-user

web service selection method using the Kuhn-Munkres

algorithm to select the global optimal solution for multiple

users. Wu et al. [37] proposed a time-aware recommen-

dation algorithm for runtime service selection. The Long

Short-Term Memory (LSTM) model was used to learn and

predict preferences and features before recommending

services for users. He et al. [20] addressed the services

selection problem for multi-tenant SaaS as a constraint

optimization problem using a greedy algorithm. The pre-

vious works deal with the problem of services composition

as a multi-objective optimization problem, which is dif-

ferent from our work, which aims to find the single best

cloud service for multiple tenants.

Among the works considering the problem of single

cloud service selection for multiple users, Yadav and

Goraya [38] proposed a two-way ranking method

(TRCSM). Cloud services were evaluated based on their

offered QoS attributes value, while cloud users were

evaluated based on three behavioral attributes: service

transaction, turnover, and duration. The authors in [39] also

proposed a bidirectional cloud services selection frame-

work (MECSM), which evaluates both the cloud provider

and consumer in parallel during service mapping. AHP

method was used to rank the service providers and the

RFM (Recency, Frequency, and Monetary) model was used

to rank the consumers. Wang et al. [19] proposed two

approaches for cloud multi-tenant service-based systems

(SBS) selection. One was aimed for build-time by clus-

tering services according to a precomputed tenants clus-

ters’ requirement. The other is for the runtime to replace a

faulty service based on the similarities with the corre-

sponding services in the same cluster. The authors aimed at

improving the efficiency of services selection for multiple

tenants by first clustering the tenants based on their

requirements, and then clustering cloud services based on

the representative requirements of tenants in each cluster.

In contrast to the previous works, our study is motivated

by service selection considering security-related require-

ments. Ensuring the satisfaction of the security require-

ments of the tenants is of utmost importance. To achieve

this, we compare cloud service alternatives with each

tenant’s requirements based on their associated service

class. This measures the similarity and matching degree

Fig. 3 Group conflict level with the changing of tenants’ weights

Fig. 4 Comparison of the proposed method with other MCDM

methods on cloud services ratings

Fig. 5 Conflict level analysis between tenants on alternatives using

different methods
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between the tenants’ requirements and service perfor-

mances. But in the same time, to improve the efficiency of

the approach, we first applied the Skyline method [23] to

reduce the search space by removing the dominated web

services. Tenants were then clustered based on their fea-

tures. Another important issue not addressed in the above-

mentioned works is tenants’ weights. Different tenants

were assumed to have the same importance weights and

belong to the same service classes. However, in practice

tenants are characterized by different personal, service, and

environmental features. Even by clustering tenants, tenants

in the same cluster may still have similar yet different

requirements and may belong to different service classes.

Therefore, assigning weights to tenants is important in

order to reflect their respective contributions in the deci-

sion-making.

Only a few existing works take into account the concept

of users’ varied weights. In particular, Liu et al. [21] pro-

posed an approach for cloud service selection while con-

sidering decision-makers’ weights. Decision-makers’

weights were based on their similarity to the group’s

decision and their reliability considering different factors

such as knowledge levels, skills, and expertise. However,

in our approach, we assume that cloud service performance

values are obtained directly by the cloud services providers

or third-parties, and users are only to give their require-

ments. Thus, parameters like knowledge levels, skills, and

expertise have little to no influence in our case. Instead,

tenants were characterized by different personal, service,

and environmental features.

Each of the proposed methods has its advantages and

disadvantages. Overall, compared with the existing

researches, the approach in this paper focuses on two

issues. One is how to effectively aggregate the subjective

and uncertain service performances and tenants’ require-

ments while considering their varying services classes and

features. The other is how to provide the best solutions with

a high level of consensus among the tenants. To improve

the efficiency of the proposed solution and reduce com-

putation overhead, the Skyline method [23] is first applied

to eliminate the dominated services and only select the

dominant and pertinent services. Tenants are clustered

based on different personal, service, and environmental

features. Weights are then assigned to tenants locally based

on their closeness to the cluster decision and their services

classes, and globally considering their corresponding

cluster’s weight. The final ranking of alternatives is carried

under the guidance of a consensus process, which adjusts

tenants’ weights dynamically to yield a more accepted

solution by the whole group of tenants.

6 Conclusion

In this paper, we presented a cloud services evaluation

framework for multi-tenants supporting different QoS

classes. The proposed framework considers three essential

aspects: the different and heterogeneous preferences and

requirements of the tenants and their respected importance

level, the subjective and fuzzy nature associated with the

security evaluation process, and the consensus degree of

the decision-making results. Future research will explore

the support of dynamic evaluation environment in terms of

variable services alternatives and cloud tenants, as new

tenants may come and existing tenants may leave, also new

services may be introduced, and existing services in use

may fail. Thus, the framework needs to be flexible and

scalable.

References

1. J. Bennett, ‘‘Why a no-cloud policy will become extinct,’’ Gart-

ner Available at https://www.gartner.com/smarterwithgartner/

cloud-computing-predicts/

2. Badger, L., Patt-corner, R., Voas, J.: NIST cloud computing

synopsis and recommendations. Nist Spec. Publ. 800(146), 81
(2012)

3. Salesforce. [online]. https://.salesforce.com

4. Hawedi, M., Talhi, C., Boucheneb, H.: Multi-tenant intrusion

detection system for public cloud (MTIDS), vol. 74. Springer,

New York (2018)

5. Chen, X.H.: Complex large-group decision-making methods and

application. Press, Beijing, Sci (2009). in Chinese
6. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of

cloud computing services. Futur. Gener. Comput. Syst. 29(4),
1012–1023 (2013)

7. Kumar, R.R., Kumari, B., Kumar, C.: CCS-OSSR : A framework

based on hybrid MCDM for optimal service selection and ranking

of cloud computing services’’. Cluster Comput. 3, 1–17 (2020)

8. Ding, S., Yang, S., Zhang, Y., Liang, C., Xia, C.C.C.: Combining

QoS prediction and customer satisfaction estimation to solve

cloud service trustworthiness evaluation problems. Knowledge-

Based Syst. 56, 216–225 (2014)

9. Hammadi, A., Hussain, O.K., Dillon, T., Hussain, F.K.: A

framework for SLA management in cloud computing for

informed decision making. Cluster Comput. 16(4), 961–977

(2013)

10. Sundara, M.A.S., Avudaiappan, P.T.: Priority-based prediction

mechanism for ranking providers in federated cloud architecture.

Cluster Comput. 22(s4), 9815–9823 (2019)

11. Sun, L., Ma, J., Zhang, Y., Dong, H., Hussain, F.K.: Cloud-

FuSeR: fuzzy ontology and MCDM based cloud service selec-

tion. Futur. Gener. Comput. Syst. 57, 42–55 (2016)

12. Sun, L., Dong, H., Hussain, O.K., Hussain, F.K., Chang, E.:

Cloud service selection: state-of-the-art and future research

directions. J. Netw. Comput. Appl. 45(October), 134–150 (2014)

13. Alabool, H., Kamil, A., Arshad, N., Alarabiat, D.: Cloud service

evaluation method-based multi-criteria decision-making: a sys-

tematic literature review. J. Syst. Softw. 139, 161–188 (2018)

14. Taha, A., Trapero, R., Luna, J., Suri, N.: AHP-based quantitative

approach for assessing and comparing cloud security. In: Proc. -

1120 Cluster Computing (2021) 24:1103–1121

123

https://www.gartner.com/smarterwithgartner/cloud-computing-predicts/
https://www.gartner.com/smarterwithgartner/cloud-computing-predicts/


2014 IEEE 13th Int. Conf. Trust. Secur. Priv. Comput. Commun.

Trust. 2014, pp. 284–291 (2015)

15. Cloud Controls Matrix. [Online]. https://cloudsecurityalliance.

org/group/cloud-controls-matrix/

16. Modic, J., Trapero, R., Taha, A., Luna, J., Stopar, M., Suri, N.:

Novel efficient techniques for real-time cloud security assess-

ment. Comput. Secur. 62, 1–18 (2016)

17. Halabi, T., Bellaiche, M.: Towards quantification and evaluation

of security of Cloud Service Providers. J. Inf. Secur. Appl. 33,
55–65 (2017)

18. Mohammad, H., Ahmad, A., Bin, K.: A novel evaluation

framework for improving trust level of Infrastructure as a Ser-

vice. Cluster Comput. 19(1), 389–410 (2016)

19. Wang, Y., He, Q., Zhang, X., Ye, D., Yang, Y.: Efficient QoS-

aware service recommendation for multi-tenant service-based

systems in cloud. IEEE Trans. Serv. Comput. 1374, 1–14 (2017)

20. He, Q., Han, J., Yang, Y., Grundy, J., Jin, H.: QoS-driven service

selection for multi-tenant SaaS. In: Proc. - 2012 IEEE 5th Int.

Conf. Cloud Comput. CLOUD 2012, pp. 566–573 (2012).

21. Liu, S., Chan, F.T.S., Ran, W.: Decision making for the selection

of cloud vendor: an improved approach under group decision-

making with integrated weights and objective/subjective attri-

butes. Expert Syst. Appl. 55(2016), 37–47 (2016)

22. Maroc, S., Zhang, J.B.: Cloud services security evaluation for

multi-tenants. In: 2019 IEEE Int. Conf. Sig. Proces, Com. and

Comp. (ICSPCC) (2019).

23. Skoutas, D., Sacharidis, D., Simitsis, A., Kantere, V., Sellis, T.K.:

Top-k dominant web services under multi-criteria matching. In:

EDBT, ACM Inte. Conf. Procd., vol. 360, pp. 898–909 (2009).

24. Zadeh, L.A.: Fuzzy sets. Inf. Contr. 8, 338–353 (1965)

25. Aghajani-Bazzazi, A., Osanloo, M., Karimi, B.: Deriving pref-

erence order of open pit mines equipment through MADM

methods: application of modified VIKOR method. Expert Syst.

Appl. 38(3), 2550–2556 (2011)

26. Yoon, K., Hwang, C.L.: TOPSIS (Technique for order preference

by similarity to ideal solution)-A multiple attribute decision

making (1980)

27. Yue, Z.: A method for group decision-making based on deter-

mining weights of decision-makers using TOPSIS. Appl. Math.

Model. 35(4), 1926–1936 (2011)

28. STAR.: Security trust assurance and risk [online]. https://cloud

securityalliance.org/.

29. Ma, H., Hu, Z., Yang, L., Song, T.: User feature-aware trust-

worthiness measurement of cloud services via evidence synthesis

for potential users. J. Vis. Lang. Comput. 25(6), 791–799 (2014)

30. Alrifai, M., Skoutas, D., Risse, T.: Selecting Skyline Services for

QoS-Based Web Service Composition, pp. 11–20. ACM, New

York (2010)

31. Saaty, T.L.: Decision Making with Dependence and Feedback:

The Analytic Network Process, 2nd edn. RWS Publications,

Pittsburgh (2001)

32. Xu, X.H., Zhang, L.Y., Wan, Q.F.: A variation coefficient simi-

larity measure and its application in emergency group decision-

making. Syst. Eng. Proc. 5, 119–124 (2012)

33. Shannon, E.: The mathematical theory of communication. Bell

Syst. Tech. J. 27, 379–423 (1948)

34. Palomares, I., Estrella, F.J., Martı́nez, L., Herrera, F.: Consensus

under a fuzzy context : taxonomy, analysis framework AFRYCA

and experimental case of study. Francisco J. Estrella 20, 252–271
(2014)

35. Ben-Arieh, D., Chen, Z.: Linguistic-labels aggregation and con-

sensus measure for autocratic decision making using group rec-

ommendations. IEEE Trans. Syst. Man, Cybern. Part A Syst

Hum. 36(3), 558–568 (2006)

36. Wang, S., Hsu, C., Liang, Z.: Multi-user web service selection

based on multi-QoS prediction. Inf Syst Front. 16, 143–152

(2014)

37. Wu, X., Fan, Y., Zhang, J. Lin, H., Zhang, J.: QF-RNN: QI-

matrix factorization based RNN for time-aware service recom-

mendation. In: Proc. - 2019 IEEE Int. Conf. Serv. Comput. SCC

2019 - Part 2019 IEEE World Congr. Serv., pp. 202–209 (2019).

38. Yadav, N., Goraya, M.S.: Two-way ranking based service map-

ping in cloud environment. Futur. Gener. Comput. Syst. 81,
53–66 (2018)

39. Major, N., Goraya, S., Singh, D.: Satisfaction aware QoS-based

bidirectional service mapping in cloud environment. Cluster

Comput. 7 (2021).

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Sarah Maroc is a Ph.D. candi-

date in the College of Computer

Science and Technology at

Beijing University of Technol-

ogy, China. She received the

Master degree in computer sci-

ence from the Oran University

of Sciences and Technology,

Algeria, in 2014. Her research

interests include cloud comput-

ing, service computing, net-

work, and information security.

Jian Biao Zhang received the

Ph.D. degree in computer sci-

ence from the Northwestern

Polytechnic University of Xian,

China. He engaged in Postdoc-

toral research in computer net-

work and security at Beihang

University. He is currently a

Professor and the vice director

of the Department of Informa-

tion Security at Beijing Univer-

sity of Technology, China. He

has participated in many

national research projects and

published several papers in

international journals and conferences. His research interests include

trusted computing, information security, network security, and com-

puter network. He is a member of the IEEE.

Cluster Computing (2021) 24:1103–1121 1121

123

https://cloudsecurityalliance.org/group/cloud-controls-matrix/
https://cloudsecurityalliance.org/group/cloud-controls-matrix/
https://cloudsecurityalliance.org/
https://cloudsecurityalliance.org/

	Cloud services security-driven evaluation for multiple tenants
	Abstract
	Introduction
	Motivation
	Our contributions

	Preliminaries
	Fuzzy numbers
	Interval numbers
	TOPSIS technique

	The proposed method
	Problem Definition
	Examination
	Step 1: Cluster the tenants based on their profiles
	Step 2: Apply Skyline method to reduce search space
	Step 3 Compute the evaluation matrix for each tenant
	Step 4. Normalize the evaluation matrix
	Step 5. Determine criteria weights
	Step 5.1. Compute subjective criteria weights
	Step 5.2. Compute objective criteria weights
	Step 5.3. Compute the final combined criteria weights

	Step 6. Compute the weighted normalized decision matrix
	Step 7. Determine the weights of each tenant
	Step 7.1. Compute tenant’s local objective weight
	Step 7.2. Compute tenant’s combined local weight
	Step 7.3. Determine each cluster’s weight

	Calculate the closeness coefficient
	Step 7.4. Compute the global weight of each tenant

	Step 8. Aggregation of individual evaluation matrices

	Ranking
	Step 9 Consensus Control
	Step 9.1 Measure the degree of consensus
	Step 9.2. Update the weights of the tenants

	Step 10. Determine the overall ranking of alternatives


	Illustrative example
	Comparative analysis
	Comparison with other MCDM methods
	Rank conformance analysis
	Tenants consensus level on alternatives evaluation

	Comparison with related work

	Conclusion
	References




