
Budget-deadline constrained approach for scientific workflows
scheduling in a cloud environment

Naqin Zhou1 • Weiwei Lin2 • Wei Feng3 • Fang Shi2 • Xiongwen Pang4

Received: 18 April 2020 / Revised: 9 July 2020 / Accepted: 21 August 2020 / Published online: 8 September 2020
� Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In cloud computing environments, it is a great challenge to schedule a workflow application because it is an NP-complete

problem. Particularly, scheduling workflows with different Quality of Service (QoS) constraints makes the problem more

complex. Several approaches have been proposed for QoS workflow scheduling, but most of them are focused on a single

QoS constraint. Therefore, this paper presents a new algorithm for multi-QoS constrained workflow scheduling, cost, and

time, named Budget-Deadline Constrained Workflow Scheduling (BDCWS). The algorithm builds the task optimistic

available budget based on the execution cost of the task on the slowest virtual machine and the optimistic spare budget, and

then builds the set of affordable virtual machines according to the task optimistic available budget to control the range of

virtual machine selection, and thus effectively controls the task execution cost. Finally, a new balance factor and selection

strategy are given according to the optimistic spare deadline and the optimistic spare budget, so that the execution cost and

time consumption of the control task are more effective. To evaluate the proposed algorithm, we experimentally evaluated

our algorithm using real-world workflow applications. The experimental results show that compared with DBWS

(Deadline-Budget Workflow Scheduling) and BDAS (Budget-Deadline Aware Scheduling), the proposed algorithm has a

26.3–79.7% higher success rate. Especially when the deadline and budget are tight, the improvement is more obvious. In

addition, the best cost frequency of our algorithm achieves a 98%, which is more cost-competitive than DBWS.

Keywords Cloud computing � Scientific workflow � QoS scheduling � Budget � Virtual machine

1 Introduction

The development of cloud computing technology provides

a good platform for parallel applications, especially sci-

entific workflows, such as Epigenomics in bioinformatics,

Montage from astronomy and LIGO from gravitational

physics. These platforms offer numbers of networked,

flexible and scalable resources and services, and users pay

only for what they use. However, the inherent flexibility of

cloud computing platforms, while powerful, may also lead

& Weiwei Lin

linww@scut.edu.cn

& Xiongwen Pang

augepang@163.com

Naqin Zhou

439657699@qq.com

Wei Feng

doudou187230@163.com

Fang Shi

csshifang@mail.scut.edu.cn

1 Cyberspace Institute of Advanced Technology, Guangzhou

University, Guangzhou, China

2 School of Computer Science and Engineering, South China

University of Technology, Guangzhou, China

3 Guangzhou Branch of Shanghai Yizhong Enterprise

Management Consulting Co., Ltd, Shanghai, China

4 School of Computer, South China Normal University,

Guangzhou, China

123

Cluster Computing (2023) 26:1737–1751
https://doi.org/10.1007/s10586-020-03176-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-6876-1795
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03176-1&domain=pdf
https://doi.org/10.1007/s10586-020-03176-1

to inefficient usage and high costs when inadequate

scheduling and provisioning decisions are made [1, 2].

Therefore, how to effectively perform workflow scheduling

in a cloud computing environment is the key to ensuring

that workflow applications benefit from the cloud com-

puting environment.

Workflow scheduling is the mapping of each task in a

workflow to a suitable resource and sorting the tasks on

each resource to meet certainly given metrics. As a well-

known NP problem, it has been a hot research topic in the

distributed computing community for many years [3], and

many scheduling algorithms have been proposed. How-

ever, the scheduling algorithms proposed in the early days

are mostly based on shared community environments, such

as community grids. In general, the scheduling objective is

to minimize the execution time of the workflow, where

workflows with QoS constraints are rarely focused on.

With the development of service-oriented grids, many

workflow scheduling algorithms based on QoS constraints

have been proposed, such as [4–12]. However, these

methods only consider a fixed number of resources and

cannot be directly applied to the cloud computing envi-

ronment. Because in a cloud computing environment,

resources can be acquired at any time and released when

they are idle. Several scheduling algorithms have been

proposed for workflows with QoS constraints in cloud

computing environments in recent years, but the majority

of research has focused on one of cost or time, such as

[3, 13–19]. However, in cloud computing, time and cost are

two of the most relevant user concerns in user-defined

quality of service (QoS). Considering time and cost con-

straints simultaneously makes scheduling problems even

more challenging. A few scheduling approaches consider

both cost and time constraints, such as [20, 21]. However,

the literature [20] and [21] first divide the tasks in the

workflow into different levels, and then assign sub-dead-

line to each level. The tasks of the same level have the

same sub-deadline. This way of dividing deadline by level

is not conducive to each task make full use of the spare

deadline to balance time and cost.

Towards this, we propose a new heuristic algorithm for

multi-QoS constrained workflow scheduling, cost and time,

named Budget-Deadline Constrained Scheduling

(BDCWS). The BDCWS algorithm introduces an opti-

mistic spare budget and an optimistic spare deadline, and

gives a new balancing factor and selection strategy based

on the optimistic spare budget and the optimistic spare

deadline, making the execution cost and time consumption

of the control task more effective.

The main contributions of this paper include the fol-

lowing. (1) A multi-QoS constrained workflow scheduling

algorithm is proposed to solve the workflow scheduling

problem with budget and deadline constraints in cloud

computing environment; (2) The definition of new bal-

ancing factors and selection strategies based on the opti-

mistic spare deadline and optimistic spare budget expands

the time and cost adjustable range, which is more con-

ducive to balancing time and cost consumption, thereby

increasing the possibility of meeting both deadlines and

budget constraints; (3) Double control of the task execution

cost through the set of affordable virtual machines (built

based on the task optimistic available budget) and the new

balance factor, not only ensuring the cost competitiveness

of the scheduling result, but also ensuring the successful

rate; (4) Using real workflow applications to evaluate the

algorithm, the experimental results show that our algorithm

achieves a 26.3–79.7% higher success rate when compared

to state of the art algorithms; (5) Introducing the cost fre-

quency to analyze the experimental results, the results

show that the scheduling results generated by our

scheduling algorithm have more cost-competitive.

The rest of the paper is organized as follows. After

outlining the related work in Sect. 2, we describe the sys-

tem scheduling model in Sect. 3. Section 4 introduces the

proposed scheduling algorithm. Section 5 shows the

experimental results, and Sect. 6 concludes the paper.

2 Related work

Workflow scheduling problems have been extensively

studied for many years. A large range of the presented

scheduling algorithms in the early days are based on the

shared community environments such as community grids.

Assuming that the available computation or storage

resources are limited, in general, the scheduling objective

is to minimize the execution time of the workflow, where

workflows with QoS constraints are rarely focused on. This

problem becomes more challenging when QoS parameter

constraints are considered in the scheduling problems.

Time, cost, energy and reliability are common QoS

parameters considered in research work in this area. Yu

et al. [10] proposed a QoS workflow scheduling method

based on Markov decision process, which can minimize the

cost while satisfying the deadline constraints given by

users in the grid. Liu et al. [11] proposed a path balance

algorithm to adjust the length of each path in the workflow,

and proposed a cost optimization algorithm based on path

balance. Sakellariou et al. [5] proposed two algorithms,

LOSS and GAIN, for time-optimized and cost-constrained.

They all use other heuristics to minimize one target as an

initial allocation, then implement a redistribution strategy

to optimize another goal and meet the user’s budget con-

straints. Zheng et al. [6, 7] proposed the algorithm Budget-

constrained Heterogeneous Earliest Finish Time (BHEFT)

that optimizes the execution time of a budget-constrained

1738 Cluster Computing (2023) 26:1737–1751

123

workflow. Similar to BHEFT, [4] proposed Heterogeneous

Budget Constrained Scheduling (HBCS) algorithm. The

algorithm defines a quantity Cost Coefficient to adjust the

ratio between available budget and the cheapest possibility

to control the budget and minimize the execution time of

the workflow application. However, the HBCS algorithm is

unfair for low-priority tasks because high-priority tasks

have more budget than low-priority tasks [12]. Chen et al.

[12] proposed a scheduling algorithm to solve the unfair-

ness of the HBCS algorithm, namely, Minimizing the

Schedule Length using the Budget Level (MSLBL). Wu

et al. [22] proposed a heuristic algorithm of PCP-B2 with

cost-constrained and time-optimized. PCP-B2 uses the

PCP-wise budget distribution mechanism, which balances

budget among partial critical paths according to their

sequential or parallel structure nature. Prodan et al. [9]

proposed a general bi-criteria scheduling heuristic called

dynamic constraint algorithm (DCA). DCA models the

scheduling problem as an extension of the multiple-choice

knapsack problem and uses dynamic programming to

optimize two criterions. DCA first selects a criterion as the

primary criterion and optimizes it. Then, DCA establishes a

sliding constraint and optimizes the secondary criteria

within the sliding constraint. Arabnejad et al. [8] proposed

a deadline-budget constrained scheduling (DBCS), which

defines a quality measure to balance time and cost. Sun

et al. [23] proposed a scheduling algorithm using sub-

deadline for workflow applications under budget and

deadline constrained. The proposed approach uses sub

deadline for each task to assign priority of each task.

The above methods offer valuable experience for the

opportunities and challenges of workflow scheduling in a

grid environment. However, there are very big differences

between cloud computing environments and grid environ-

ments in resource supply and resource pricing mechanisms

[13]. References [24–29] classified and described many

workflow methods in the cloud computing environments.

Since the scheduling constraints in this paper are time and

cost, only these two QoS parameters are considered in our

review of previous work. These algorithms can be divided

into three categories, one is to constrain one parameter to

optimize another parameter, two-parameter optimization

and two-parameter constraint.

Concerning the optimization of cost constrained to time,

Mao et al. [30] proposed an ‘‘auto-scaling’’ mechanism that

automatically increases/decreases computing resources

based on workload information to minimize execution

costs while meeting deadlines. Abrishami et al. [31]

designed two algorithms based on the Partial Critical Path

(PCP) [32], which were the IaaS Cloud Partial Critical

Paths (IC-PCP) one-phase algorithm and the IaaS Cloud

Partial Critical Paths with Deadline Distribution (IC-

PCPD2) two-phase algorithm. The purpose of the two

algorithms is to minimize the cost of workflow execution

while meeting a user-defined deadline. Calheiros et al. [33]

gives the Enhanced IC-PCP with Replication (EIPR)

algorithm for improving IC-PCP. The algorithm applies

task replication to increase the chances of meeting dead-

lines. Rodriguez et al. [13] proposed the Particle Swarm

Optimization (PSO) algorithm based on meta-heuristic

optimization technology to minimize the overall workflow

execution cost while meeting deadline constraints. Hong

et al. [18] proposed a hybrid distribution estimation algo-

rithm to optimize cost with deadline constraints and setup

time in cloud computing. Arabnejad et al. [14] introduced a

new heuristic scheduling algorithm Deadline Distribution

Ratio (DDR) to solve the workflow scheduling problem

with the objectives of minimizing the cost of cloud com-

puting resources while meeting a given deadline. Anwar

et al. [34] proposed a dynamic scheduling algorithm of bag

of tasks based workflows to meet user-defined deadline

constraints while minimizing costs. Sahni et al. [15] pro-

posed a dynamic cost-effective deadline-constrained

heuristic algorithm for scheduling scientific workflows in

public clouds. Singh et al. [19] proposed a scheduling

algorithm called Partition Problem based Dynamic Provi-

sioning and Scheduling (PPDPS) to optimize the execution

cost of deadline-constrained workflow applications. Meena

et al. [35] proposed a meta-heuristic cost effective genetic

algorithm to minimize the execution cost of workflow

while meeting the deadlines of the cloud computing envi-

ronment. Wu et al. [3] proposed a meta-heuristic algorithm

L-ACO and a simple heuristic algorithm ProLiS to mini-

mize the execution cost of workflow in the cloud under a

deadline constraint.

Concerning the optimization of time constrained to cost,

Wu et al. [36] rigorously proved that the scheduling

problem of budget constraints is not only NP-complete, but

also incomparable, and a heuristic solution is designed for

this problem. Ghafouri et al. [16] proposed a scheduling

algorithm called CB-DT (Constrained Budget-Decreased

Time) to reduce makespan while meeting the budget con-

straints of workflow applications. In order to get a smaller

makespan, the algorithm attempts to use the back-tracking

method to select faster and more expensive resources for

critical tasks as much as possible. Rodriguez et al. [17]

proposed a budget-driven algorithm with fine-grained

billing periods, the purpose of which is to optimize the way

in which the budget is spent to minimize the application’s

makespan (i.e., total execution time). Arabnejad et al. [37]

proposed a scheduling algorithm as Budget Distribution

with Trickling (BDT) and concluded that the earlier cal-

culation of biasing the budget distribution to the workflow

would result in a lower makespan within the budget.

Faragardi et al. [38] proposed the Greedy Resource Pro-

visioning and modified HEFT (GRP-HEFT) algorithm for

Cluster Computing (2023) 26:1737–1751 1739

123

minimizing the makespan of a given workflow subject to a

budget constraint for the hourly-based cost model of

modern IaaS clouds. The GRP-HEFT consists of two parts,

(i) a resource provisioning algorithm and (ii) a scheduling

algorithm. The resource provisioning algorithm lists the

instance types according to their efficiency rate (its

capacity divided by its cost). For the scheduler, [38]

modified the HEFT algorithm to consider a budget limit.

Rizvin et al. [39] proposed the Fair Budget-Constrained

Workflow Scheduling algorithm (FBCWS) to minimize the

makespan while satisfying budget constraints and a fair

means of schedule for every task. Chakravarthi et al. [40]

proposed the Normalization based Budget constraint

Workflow Scheduling algorithm (NBWS), which controls

the resource selection range of each task according to the

available budget, thereby improving the probability ‘best’

resource selection for the task.

With regard to bi-parameter optimization, Su et al. [41]

proposed a cost-effective scheduling algorithm based the

concept of Pareto dominance, which produced the same

makespan as the Heterogeneous Earliest Finish Time [42]

(HEFT) algorithm, while significantly reducing costs. Zhu

et al. [43] proposed an evolutionary multi-objective opti-

mization (EMO) algorithm to solve the multi-objective

cloud scheduling problem that minimizes makespan and

cost. Choudhary et al. [44] proposed a hybrid algorithm

based on Gravitational Search Algorithm (GSA) and HEFT

algorithm for bi-objective workflow scheduling in cloud

computing, i.e., optimization time and cost, but it is for a

fixed number of virtual machines.

Regarding the bi-parameter constraint, Malawski et al.

[45] proposed several dynamic (online) and static (offline)

algorithms for a given budget and deadline, but these

algorithms only consider one instance type. Verma et al.

[46] proposed Bi-Criteria Priority based Particle Swarm

Optimization (BPSO) that solves workflow scheduling

problems in the cloud given deadlines and budget con-

straints. The algorithm can produce good scheduling

results, but it has higher time complexities. In [47], Verma

et al. proposed Budget and Deadline Constraint Hetero-

geneous Earliest Finish Time (BDHEFT) algorithm for

workflow scheduling problems with deadlines and budget

constraints, which is an extension of the HEFT algorithm.

Similar to BDHEFT, Arabnejad et al. [20] proposed a

Budget Deadline Aware Scheduling (BDAS) algorithm

which solves the problem of workflow scheduling under

budget and deadline constraints in the cloud. The BDAS

algorithm first divides the tasks in the workflow into dif-

ferent levels, then allocates a budget and sub-deadline for

each level, and finally selects resources for the task based

on the cost time trade-off factor. The experimental results

given in [20] show that the BDAS algorithm is superior to

the BDHEFT algorithm. Ghasemzadeh et al. [21] proposed

a Deadline-Budget Workflow Scheduling (DBWS) algo-

rithm. Similar to the BDAS algorithm, the DBWS algo-

rithm also divides the tasks in the workflow into different

levels.

Most of the scheduling strategies mentioned above focus

on constraining one QoS parameter to optimize another. In

this paper, our goal is to propose a novel workflow

scheduling algorithm to find a feasible solution for a

workflow that meets budget and deadline constraints. To

evaluate the performance of our scheduling strategy, we

chose to compare with the two latest low-time complexity

algorithms based on budget and deadline constraints,

namely BDAS [20] and DBWS [21].

3 System scheduling model

The resource model, application model, and scheduling

objective are described in this section.

The resource model, assumed in this work, consists of

virtualized resources provided by an IaaS cloud service

provider. The IaaS cloud service provider offers a variety

of virtual machine (VM) types that can be represented as

VMT ¼ fvmt1; vmt2; :::; vmtjVMTjg. The processing power

of the various VM types can vary. The reason behind this

could be (i) different MIPS rate for the virtual processor,

(ii) different number of virtual cores, (iii) different memory

size and storage capacity, and different storage access time.

Cloud providers specify the processing power of different

types of the provided VMs use a metric names Compute

Unit (CU) (e.g., ECU used by Amazon EC2) [38].

CUðvmtkÞ denotes the compute unit of vmtk.

In the same way, as in [20, 21], all VMs are assumed to

be in the same data center or region and average bandwidth

between virtual machines is roughly equal. Suppose there

is no limit to the number of VM instances lease (used) by

an application. Also, when a VM is leased, it requires an

initial boot time for its proper initialization before it is

made available to the user. Similarly, when the VM is

released, it again takes some time to shut down properly. In

addition, the pricing model is based on a pay-as-you-go

billing scheme and the users are charged for the number of

time intervals they use (lease) a VM. We use the fine-

grained billing period provided by most providers, such as

Amazon’s EC2 cloud [48], Google Compute Engine [49]

and Microsoft Azure Microsoft [50], which are 1 s billing

period. The fine-grained billing period is an emerging

billing period in the cloud computing environment in the

past two years. Flexibility is limited when coarse-grained

billing periods, so that it is easy to cause inevitable waste

[17]. In September 2017, Amazon announced that EC2 will

use the per-second billing period from October 2017 [51].

1740 Cluster Computing (2023) 26:1737–1751

123

To ensure user benefits and increase competitiveness, many

cloud providers have also pushed out fine-grained billing

periods (billing per second), such as Google Compute

Engine [49] and Microsoft Azure [50].

Since internal data transfer is free in most cloud envi-

ronments, the data transfer cost is assumed to be zero.

3.1 Application model

A typical workflow application can generally be described

as a Directed Acyclic Graph (DAG). A DAG can be

modeled by a two-tuple G ¼ ðT;EÞ, where T ¼
ft1; t2; :::; tng is the set of nodes with each element repre-

senting a workflow task, and E is the set of directed edges

with each element representing the dependency between

two task nodes, that is, for 8ei;j 2 E, task ti must finish its

execution and transfer the resulting data to solve the data

dependency before task tj starts, thus, ti is the immediate

predecessor of tj while tj the immediate successor of ti.

In a given DAG, a task with no predecessor is called an

entry task, and a task with no successor is called an exit

task. It is assumed that a DAG has only one entry task and

one exit task. If there is more than one entry task (exit task)

in a DAG, a dummy entry task (exit task) with 0 weight

and 0 communication can be added to the graph.

3.2 Scheduling objective

The objective of our algorithm is to find a feasible schedule

for the workflow that can meet the user-defined QoS con-

straints, i.e., the finish time of the workflow must not

exceed the user-defined time constraint (DEADLINE), and

the total cost must not be higher than the user-defined cost

constraint (BUDGET). For this workflow, if a schedule

satisfies its time and cost constraints, the schedule is con-

sidered as a successful schedule; otherwise, it is considered

as a failure.

4 Algorithm design

In this section, first, define the basic definitions that need to

be used in the proposed algorithm (Sect. 4.1). Table 1

summarizes the common notations used throughout this

paper.

4.1 Basic definition

Definition 1 The execution time of task ti on virtual

machine vmk is represented by ETvmk
ti . For workflows, Juve

et al. [52] has published the execution time of tasks on

Xeon@2.33 GHz CPUs (CU = 8). The execution time of

tasks is reversely proportional to the CU value [38]. In the

same way, as in [38], we use the execution time of tasks for

a VM with CU = 1 as the reference execution time of tasks

and denoted by ref time. Accordingly, ETvmk
ti is.

ETvmk
ti

¼ ref timeðtiÞ
CUðvmtðvmkÞÞ

ð1Þ

Definition 2 The data transfer time between the tasks ti
and tj is defined as:

TTi;j ¼
datai;j=bw vmðtiÞ 6¼ vmðtjÞ

0; vmðtiÞ ¼ vmðtjÞ

�
ð2Þ

where datai;j is the amount of data elements that ti sends to

tj, bw is the communication bandwidth between VMs. If ti
and tj are assigned to the same VM (denoted by

vmðtiÞ ¼ vmðtjÞ), TTi;j becomes 0.

Definition 3 All immediate predecessors of task ti are

defined as:

predðtiÞ ¼ ftjjðtj; tiÞ 2 Eg ð3Þ

Definition 4 All immediate successors of task ti are

defined as:

succðtiÞ ¼ ftjjðti; tjÞ 2 Eg ð4Þ

Definition 5 schedvmk
denotes a set of tasks that are

scheduled to be on vmk.

schedvmk
¼ ftijvmðtiÞ ¼ vmkg ð5Þ

where vmðtiÞ is the VM which is assigned to the task ti.

Definition 6 The start time of the task ti on the VM vmk is

calculated as follows:

STvmk
ti

¼ max availvmk
; max
tj2predðtiÞ

fFTtj þ TTi;jg
� �

ð6Þ

where availvmk
is the available time of vmk.

availvmk
¼ boot timevmk

; schedvmk
¼ /

FTvmk
tL ; schedvmk

6¼ /

�
ð7Þ

where boot timevmk
is the VM startup/boot time, and tL is

the last task in the sorted tasks scheduled list for the virtual

machine vmk(schedvmk
).

Definition 7 The Finish Time of the task ti on vmk is

calculated as follows:

FTvmk
ti

¼ STvmk
ti

þ ETvmk
ti

ð8Þ

Cluster Computing (2023) 26:1737–1751 1741

123

Definition 8 DAGmakespan indicates makespan or schedule

length, which is the finish time of the exit task of the

workflow:

DAGmakespan ¼ FTexit ð9Þ

Definition 9 The execution cost of task ti on vmk is cal-

culated as follows:

Costvmk
ti

¼
FTvmk

ti � STvmk
ti

IT

� �
� VMCðvmtðvmkÞÞ; schedvmk

¼ /

0; FTvmk
ti �RTvmk

and schedvmk
6¼ /

FTvmk
ti � RTvmk

IT

� �
� VMCðvmtðvmkÞÞ; otherwise

8>>>>><
>>>>>:

ð10Þ

where VMCðvmtðvmkÞÞ is the monetary cost per charging

unit (price) of a VM type vmtðvmkÞ, IT is the billing period,

and RTvmk
is indicated as the last interval used by last

scheduled task on vmk.

RTvmk
¼ FTvmk

tL

IT

� �
� IT ð11Þ

where tL is the last task in the sorted tasks scheduled list for

vmk.

Definition 10 DAGcost represents the overall cost of exe-

cuting a workflow application and is defined as:

DAGcost ¼
X
ti2T

fCostvmk
ti

jti 2 schedvmk
g ð12Þ

Definition 11 STbest
tcurr

is the best start time of the task tcurr,

that is, the start time of the task tcurr in the VM with the

earliest finish time in all tested VMs.

4.2 The MW-HBDCS algorithm

The BDCWS algorithm consists of two main phases, the

task selection phase and the VM selection phase.

Table 1 List of notations
Symbol Definition

DAGmakespan The overall schedule length for a workflow

DAGcost The total cost for executing a workflow

ETvmk
ti ,ETvmtk

ti
The execution time of task ti on VM vmk , VM type vmtk

ETmin
ti

The minimum execution time for task ti among all VM type

ETmax
tcurr

The maximum execution time for the current task tcurr among all VM type

TTi;j The transmission time from task ti to task tj

predðtiÞ All predecessors of task ti

succðtiÞ All successors of task ti

vmðtiÞ The VM where task ti is assigned

schedvmk
The set of scheduled tasks on VM vmk

STvmk
ti The start time of the task ti on VM vmk

STbest
tcurr

The best start time of the current task tcurr

FTtj The finish time of task tj

FTvmk
ti The finish time of task ti on VM vmk

FTexit The finish time of the exit task of the workflow

boot timevmk
The startup/boot time of VM vmk

Costvmk
ti The execution cost of task ti on vmk

Costmin
ti

The minimum execution cost of task ti among all VM type

tL The last task in the sorted tasks scheduled list for a VM

vmtðvmkÞ The VM type of VM vmk

CUðvmtkÞ The compute unit of a VM type vmtk

VMCðvmtkÞ The monetary cost per charging unit (price) of a VM type vmtk

BUDGET User defined budget for executing the workflow

DEADLINE User defined deadline for executing the workflow

1742 Cluster Computing (2023) 26:1737–1751

123

4.2.1 Task selection phase

Tasks are selected according to their priorities. To assign a

priority for a task in the DAG, the upward rank (urank) is

computed. This urank represents, for a task ti, the length of

the longest path from ti to the exit task texit, including the

execution time of task ti and it is given by Eq. (13).

urankti ¼ ETmin
ti

þ max
tchild2succðtiÞ

furanktchild þ TTi;childg ð13Þ

where ETmin
ti

is the minimum execution time for task ti
among all VM type. For the exit node, uranktexit = ETmin

texit
.

The task with the highest urank value receives the

highest priority, followed by the task with the next highest

urank value, and so on.

4.2.2 VM selection phase

The VM selection phase is responsible for selecting the

appropriate VM for the current task tcurr . To control the

time and cost of consumption during the scheduling pro-

cess, a limit value for each factor is needed. We define two

variables, TOD (Task Optimistic Deadline) and TOAB

(Task Optimistic Available Budget) as limits for time and

cost, as shown in Eqs. (14) and (16), respectively.

TODtcurr ¼ STbest
tcurr

þ OSDtcurr þ ETmin
tcurr

ð14Þ

where ETmin
tcurr

is the minimum execution time for task tcurr
among all VM type, and OSDtcurr denotes the optimistic

spare deadline the current task tcurr, as shown in Eq. (15).

OSDtcurr ¼ DEADLINE � STbest
tcurr

� uranktcurr ð15Þ

where uranktcurr is the urank for the current task tcurr.

TOABtcurr ¼
ETmax

tcurr

IT
� VMCðvmtðvmmaxÞÞ þ OSB ð16Þ

where ETmax
tcurr

is the maximum execution time for the cur-

rent task tcurr among all VM type. OSB denotes the opti-

mistic spare budget, which is equal to the difference of the

budget and the sum of the cost for allocated tasks and the

cheapest cost for unscheduled tasks. The formula is as

follows:

OSB ¼ BUDGET �
X

ti2Tassigned
Costvmsel

ti

"

þ
X

ti2T�Tassigned

Costmin
ti

#
ð17Þ

where vmsel is the VM selected to run the scheduled task,

Costmin
ti

denotes the minimum execution cost of task ti
among all VM type, and Tassigned is the set of allocated

tasks.

In the VM selection, to guarantee that the workflow can

be executed without exceeding the budget constraint, first

all the vmj 2 R are filtered by TOABtcurr to construct an

affordable set SaffordableðtcurrÞ. R represents the set of

resources (VM instances) used in previous steps of

scheduling.

SaffordableðtcurrÞ ¼ fvmjjCostvmj

tcurr � TOABtcurr ; vmj 2 Rg
ð18Þ

Then, the VM is selected using the following selection

rules:

(1) If SaffordableðtcurrÞ ¼ / and TODtcurr � 0, the VM with

the earliest finish time in R [R
0
is selected to execute

the current task tcurr. R
0
is defined as the set of one

temporary VM from each available VMT .

(2) If SaffordableðtcurrÞ ¼ / and TODtcurr [0, the cheapest

VM in R [R
0
is selected to execute the current task

tcurr .

(3) If SaffordableðtcurrÞ 6¼ /, first, filter all vmj 2 R
0
with

TOABtcurr and build an affordable set (as in Eq. 19).

Then for all vmj 2 SaffordableðtcurrÞ[S
0

affordableðtcurrÞ
and FT

vmj

tcurr\TODtcurr , calculate their Bi-factor (BF)

values (as in Eq. 20). Finally, the VM is selected for

the current task tcurr according to (a) and (b) below.

(a) If 9vmj 2 SaffordableðtcurrÞ [S0affordableðtcurrÞ is such

that FT
vmj

tcurr\TODtcurr , select the VM with the smallest

BF value for the current task tcurr .

(b) Otherwise, select the VM with the earliest finish time

from SaffordableðtcurrÞ [S0affordableðtcurrÞ to execute the

current task tcurr .

S0affordableðtcurrÞ ¼ fvmjjCostvmj

tcurr � TOABtcurr ; vmj

2 R0g
ð19Þ

BF
vmj

tcurr ¼ TF
vmj

tcurr þ CF
vmj

tcurr ð20Þ

where TF
vmj

tcurr and CF
vmj

tcurr represent the time factor and cost

factor, respectively, such as (21) and (22).

TF
vmj

tcurr ¼ FT
vmj

tcurr=
ET

vmj

tcurr

uranktcurr
� OSDtcurr

 !
ð21Þ

CF
vmj

tcurr ¼
cost

vmj

tcurr

OSB
ð22Þ

The pseudo code of BDCWS is shown in Table 2.

In the algorithm, urank value of all the tasks are first

calculated by line 1. Second, in the while loop in lines 2–

35, the algorithm tries to allocate VMs for all the tasks. At

every loop iteration, line 3 selects the task with the highest

urank as the current task tcurr In lines 4–5, its TODtcurr and

Cluster Computing (2023) 26:1737–1751 1743

123

TOABtcurr values are calculated. Line 6 constructs a set of

affordable resources SaffordableðvcurrÞ for the current task

tcurr then, the algorithm selects a VM for the current task

tcurr according to the defined selection rules implemented

in lines 7–32. Finally, line 33 adds the mapping of the

current task tcurr to vmsel to the MAP.

The time complexities of each step in the algorithm are

as follows:

a. The complexity of calculating the urank for all tasks is

Oðeþ nÞ, where e is the number of edges in the DAG

and n is the number of nodes.

b. At each step of the VM selection phase, the complexity

of calculating the Task Optimistic Available Budget

TOAB is Oðn � mÞ, where m is the number of available

VM.

c. At each step of the VM selection phase, the complex-

ities of calculating the Task Optimistic Deadline TOD

and constructing SaffordableðvcurrÞ are each OðmÞ.

Thus, the total time is Oðeþ nþ n � ðn � mþ mþ mÞÞ,
resulting in a total algorithm complexity of Oðn2 � mÞ.

5 Experimental evaluation

Since it is very difficult to perform repeatable experiments

on real datacenters, we implement our proposed approa-

ches on the simulation platform of [3], which uses Java 2

Standard Edition V1.7.0 and is available at https://github.

com/wuquanwang/workflow. In order to better evaluate the

proposed algorithm, the DBWS [21] algorithm and the

BDAS algorithm [20] which both are the latest two

heuristic scheduling algorithms for deadline and budget

constraints are chosen as the compared metrics of BDCWS

algorithm.

In the experiment, we used 9 different types of VMs in

[3], and each with different processing power and cost, the

details are shown in Table 3. Especially, the average

bandwidth between VMs is set to 20 Mbps, which is the

approximate average bandwidth between computing ser-

vices in Amazon EC2 [53]. The billing period and service

startup time are set to 1 s and 97 s [54], respectively.

In addition, we use the same approach to calculate the

cost execution of each task (Eq. 9) for all algorithms.

5.1 Budget and deadline constraints

It is necessary to define a predetermined deadline and

budget constraint for each workflow to evaluate the pro-

posed algorithm, such as Eqs. (23) and (24).

DEADLINE ¼ min
D

�ð0:8þ aDÞ ð23Þ

BUDGET ¼ min
B

�ð0.8þ aBÞ ð24Þ

where minD represents makespan for scheduling target

workflows using HEFT on the fastest virtual machine set,

minB represents the total execution cost of scheduling

target workflows using HEFT on the cheapest-cost virtual

machine set, aD and aB represent the time parameter and

cost parameter, respectively.

In the experiments, we let aD = [0.2,0.4,0.6, 0.8,1,2,3,4]

and aB = [0.2,0.4,0.6,0.8,1,2,3,4].

5.2 Performance metrics

To evaluate our algorithm with other algorithms, the dif-

ferent performance metrics are exploited, and the details

are shown in the following contents.

Planning Successful Rate (PSR): it is defined as the

planning success rate of finding a feasible schedule while

satisfying the user-defined deadline and budget, as

expressed by Eq. (25):

PSR ¼ 100�

Number of experiments that

successfully meet deadline and budget

Total number of experiments

ð25Þ

Makespan to Deadline Ratio (MDR): the ratio of

makespan achieved and deadline defined for each

workflow, the expression is given by Eq. (26):

MDR ¼ DAGmakespan

DEADLINE
ð26Þ

Cost to Budget Ratio (CBR): the ratio of execution cost

of the schedule produced and budget defined for each

workflow, as expressed by Eq. (27):

CBR ¼ DAGcost

BUDGET
ð27Þ

Cost frequency of algorithm A relative to algorithm B:

the cost frequency includes the best cost frequency, the

worse cost frequency and the equal cost frequency, and

the calculation formulas are given by Eqs. (28), (29) and

(30), respectively.

Best cost frequency ¼ Number of best cost

Total number of experiments

ð28Þ

Worse cost frequency ¼ Number of worse cost

Total number of experiments

ð29Þ

1744 Cluster Computing (2023) 26:1737–1751

123

https://github.com/wuquanwang/workflow
https://github.com/wuquanwang/workflow

Table 2 The BDCWS algorithm

Cluster Computing (2023) 26:1737–1751 1745

123

Equal cost frequency ¼ Number of equal cost

Total number of experiments

ð30Þ

where the best cost means that the cost of executing the

same workflow according to the scheduling scheme gener-

ated by Algorithm A is smaller than Algorithm B, the

worse cost means that the cost of executing the same

workflow according to the scheduling scheme generated by

Algorithm A is larger than Algorithm B, and the equal cost

means that the cost of executing the same workflow

according to the scheduling scheme generated by Algo-

rithm A is the same as Algorithm B. And if the best cost

frequency of algorithm A relative to algorithm B is greater

than the worse cost frequency, that means algorithm A is

more cost effective than algorithm B.

5.3 Experimental data sets

In our experiments, we use Workflow Generator [55] to

generate three different areas of workflow, namely Epige-

nomics from bioinformatics, Montage from astronomy and

LIGO from gravitational physics, and the details about

them can be found in Ref. [52]. These workflow applica-

tions differ in terms of computational characteristics,

structure, and communication data. The workflow for each

type application of small size is shown in Fig. 1.

Especially, 8 type sizes are selected for each workflow

application, with task sizes of 30, 50, 100, 200, 300, 400,

500, and 1000, respectively. And since 100 different

workflows are tested for each size, the total number of

experimental workflows is 3 9 8 9 100 = 2400.

5.4 Results and analysis

For our experiments, we define 8 different deadline factors

and 8 different budget factors. Permuting both factors yield

64 different cases per workflow and each workflow

includes 51,200 test cases.

5.4.1 EPIGENOMIC

As shown in Figs. 2, 3, 4, and 5, the Figs. show the results

of Epigenomic, where Figs. 2 and 4 show CBR and MDR

obtained by each algorithm. And the CBR and MDR values

are divided into two main categories, where a valid

schedule is represented by yellow and an invalid schedule

is represented by green. A value is less than 1 for the CBR

metric (Eq. 27) means that the algorithm meets the user

defined budget. But a value CBR[1 means that the

algorithm failed to find a schedule map with the cost is

lower than the user-defined budget. Similarly, the same

explanation also can be applied to MDR (Eq. 26). For

BDCWS, it almost uses the entire deadline and performs

workflow execution at a lower cost than the defined budget

to satisfy the users. As shown in Fig. 2, for all range of

deadline factor aB, the execution cost of the schedule map

obtained by DBWS almost meets user-defined budget

constraints. As can be found in Figs. 3 and 5, DBWS and

BDAS both observed the worst performance in the first

deadline factor (Fig. 3) and the first budget factor (Fig. 5),

which means 100% failure.

5.4.2 MONTAGE

Figures 6, 7, 8, and 9 shows the results of MONTAGE.

And from Fig. 9, it can find that the PSR obtained by the

BDCWS algorithm is better than the DBWS algorithm and

the BDAS algorithm, especially when the budget factor is

0.2. And the PSR obtained from the DBWS and BDAS

algorithms is less than 4%, but under the same conditions,

the PSR obtained from the proposed BDCWS algorithm is

higher than 80%. As shown in Fig. 6, the behavior of the

DBWS algorithm in MONTAGE is similar to EPIGE-

NOMIC, that is, the costs obtained for all range of deadline

factor aD almost satisfy the budget constraint. Furthermore,

an interesting feature is observed when the deadline factor

aD is equal to 0.2. As can be seen, all cost budget ratio

results in a valid schedule with a success rate of 0%. It

means that 100% of the failures in the algorithm are due to

violating deadline.

Fig. 1 The structure of the small size workflows

Table 3 Capabilities and costs of available service types

Type Compute

unit

Cost

¢/s
Type Compute

unit

Cost

¢/s

type1 1.0 0.12 type6 3.5 0.595

type2 1.5 0.195 type7 4.0 0.72

type3 2.0 0.28 type8 4.5 0.855

type4 2.5 0.375 type9 5.0 1.0

type5 3.0 0.48

1746 Cluster Computing (2023) 26:1737–1751

123

5.4.3 LIGO

The results of LIGO are shown in Figs. 10, 11, and 12. As

can be found in Fig. 12, the reason why the BDAS box plot

is not shown is any ratio greater than 1 means that a valid

schedule cannot be generated, so we only display values of

up to 4 to explain the results of valid schedules in more

detail. Meanwhile, the behaves of BDCWS in LIGO is

similar to EPIGENOMIC, it uses almost all deadlines and

completes the execution of the workflow within the spec-

ified budget. And for the DBWS Algorithm, we also can

find that as the budget factor increases, the ratio of

makespan and deadline gradually decreases. Furthermore,

it can be observed in Figs. 11 and 13 that the BDAS

algorithm achieves almost 100% failure when deadlines

and costs are tight.

5.4.4 The total success rate

Table 4 shows the total success rate of each algorithm

scheduling workflow with different deadline factor aD and

budget factor aB. Especially, for each workflow, we use 8

different size workflows and 100 different workflows were

tested for each size. Meanwhile, for each workflow, we

tested 64 different states, which are combinations of 8

different deadline factors aD and 8 budget factors aB.
Therefore, in this study, we provided 51,200 different test

cases for each scientific workflow.

It can be clearly seen from the results in Table 4 that the

best performance is the BDCWS algorithm, which has a

success rate of more than 81.7% in all data sets and the best

performance in MONTAGE, reaching 90.8%. And the

worst performer was the BDAS algorithm, especially with

99.4% of failed test cases in MONTAGE. Therefore,

according to the success rate shown in Table 4, it is shown

that our method is more likely to generate an accept-

able scheduling scheme under defined constraints.

5.4.5 Cost frequency

Since it is meaningless to compare the cost frequency when

the budget constraint and the deadline are not met, the

experimental results of aD ¼ ½1; 2; 3; 4� and aB ¼

0

1

2

3

4

310.6

S
ch

ed
u
le

R
B

C

Deadline Factor (D)

420.80.4

(
oita

R
te

g
d

u
B

ot
ts

o
C

)

V
al

id

 BDCWS DBWS BDAS

0.2

α

Fig. 2 CBR value for EPIGENOMIC grouped by aD

310.6 420.80.40.2

0

20

40

60

80

100

R
S

P

)
%()eta

R l
ufs secc

u
S

g
ni

n
n al

P(

Deadline Factor (D)

 BDCWS DBWS BDAS

α

Fig. 3 PSR value for EPIGENOMIC grouped by aD

0

1

2

3

4

410.4

R
D

M

Budget Factor (B)

320.80.6(
oita

R
e

nil
dae

D
ot

na
pse

ka
M

)

 BDCWS DBWS BDAS

0.2

V
al

id

S
ch

ed
u
le

α

Fig. 4 MDR value for EPIGENOMIC grouped by aB

310.4 420.80.60.2

0

20

40

60

80

100

R
S

P

)
%(

)eta
R

l
ufssecc

u
S

g
ni

n
n al

P(

Budget Factor (B)

BDCWS DBWS BDAS

α

Fig. 5 PSR value for EPIGENOMIC grouped by aB

0

1

2

3

4

310.6

S
ch

ed
u
le

R
B

C

Deadline Factor (D)

420.80.4

(
oita

R
te

g
d

u
B

ot
ts

o
C

)

V
al

id

 BDCWS DBWS BDAS

0.2

α

Fig. 6 MDR value for MONTAGE grouped by aD

Cluster Computing (2023) 26:1737–1751 1747

123

½1; 2; 3; 4�½1; 2; 3; 4� are taken to compare the cost fre-

quency, namely the success rate of the algorithms BDCWS

and DWBS is reaching 100%.

Table 5 compares the best frequencies, worse frequen-

cies, and equal cost frequencies of the algorithms BDCWS

and DWBS. Compared with the DWBS algorithm, the

BDCWS algorithm has the best cost frequency more than

the worse frequency, especially in the MONTAGE, the best

310.6 420.80.40.2

0

20

40

60

80

100

R
S

P

)
%(

)eta
R

l
u fss ec c

u
S

g
ni

n
nal

P(

Deadline Factor (D)

BDCWS DBWS BDAS

α

Fig. 7 PSR value for MONTAGE grouped by aD

0

1

2

3

4

410.4

R
D

M

Budget Factor (B)

320.80.6(
oita

R e
nil

dae
D

ot
na

pse
ka

M
)

 BDCWS DBWS BDAS

0.2

V
al

id

S
ch

ed
u
le

α

Fig. 8 MDR value for MONTAGE grouped by aB

310.4 420.80.60.2

0

20

40

60

80

100

R
S

P

)
%(

)eta
R

l
ufssecc

u
S

g
ni

n
nal

P (

Budget Factor (B)

BDCWS DBWS BDAS

α

Fig. 9 PSR value for MONTAGE grouped by aB

0

1

2

3

4

310.6

S
ch

ed
u
le

R
B

C

Deadline Factor (D)

420.80.4

(
oita

R te
g

d
u

B
ot ts

o
C

)

V
al

id

 BDCWS DBWS BDAS

0.2

α

Fig. 10 MDR value for LIGO grouped by aD

310.6 420.80.40.2

0

20

40

60

80

100

R
S

P

)
%(

)eta
R

l
ufssecc

u
S

g
ni

n
nal

P(

Deadline Factor (D)

BDCWS DBWS BDAS

α

Fig. 11 PSR value for LIGO grouped by aD

0

1

2

3

4

410.4
R

D
M

Budget Factor (B)

320.80.6(
oita

R
e

nil
dae

D
ot

na
pse

ka
M

)

 BDCWS DBWS BDAS

0.2

V
al

id

S
ch

ed
u
le

α

Fig. 12 MDR value for LIGO grouped by aB

310.4 420.80.60.2

0

20

40

60

80

100

R
S

P

)
%(

)eta
R

l
ufssecc

u
S

g
ni

n
nal

P(

Budget Factor (B)

BDCWS DBWS BDAS

α

Fig. 13 PSR value for LIGO grouped by aB

Table 4 Total success rate for three different scientific workflows

BDCWS (%) DBWS (%) BDAS (%)

EPIGENOMICS 81.7 55.7 17.5

MONTAGE 90.8 72.1 0.6

LIGO 90.1 56.6 5.5

Mean 87.5 61.5 7.9

1748 Cluster Computing (2023) 26:1737–1751

123

cost frequency reaches 100%. Therefore, we can say that

the BDCWS algorithm is more cost-competitive than the

DWBS algorithm.

6 Conclusions and future work

In this paper, for the workflow scheduling problem in the

cloud environment, a BDCWS algorithm is proposed. The

BDCWS algorithm maps a workflow constrained by user-

defined deadline and budget values to cloud resources.

BDCWS takes the basic characteristics of the cloud envi-

ronment into accounts, such as heterogeneity, on-demand

resource provisioning and pay-as-you-go price model with

time periods as well as booting time, and take a series of

targeted measures to improve its effectiveness. The

experimental results show that compared with the latest

two algorithms (DBWS and BDAS), our proposed

BDCWS algorithm increases the chances of meeting

deadlines and budget constraints. Especially when the

deadline and budget are tight, the improvement of BDCWS

algorithm is significantly higher than DBWS algorithm and

BDAS algorithm. Besides, the BDCWS algorithm is more

cost competitive than DBWS. In addition, we found that

the structure of the workflow seems to have a significant

impact on the success rate, such as the success rate of

BDCWS algorithm in MONTAGE is higher than 90%,

while on EPIGENOMICS it is only 81.7%. Therefore, in

the future, we will study how to choose proper algorithm in

an intelligent way for a given workflow to get better

schedule. Another future direction is to explore the impact

of VM performance variation on workflow execution and

improve our strategy to adapt to volatile environments.

Acknowledgements This work is supported by National Natural

Science Foundation of China (Grant Nos. 61772205, 61872084),

Guangzhou Science and Technology Program key projects (Grant

Nos. 202007040002, 201902010040 and 201907010001), Guangzhou

Development Zone Science and Technology (Grant No. 2018GH17),

Guangdong Major Project of Basic and Applied Basic Research

(2019B030302002), and the Fundamental Research Funds for the

Central Universities, SCUT (Grant No. 2019ZD26).

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of

interest regarding the publication of this paper.

References

1. Chard, R., Chard, K., Bubendorfer, K., Lacinski, L., Madduri, R.,

Foster, I.: Cost-aware cloud provisioning. In: IEEE International

Conference on E-Science 2015, pp. 136–144 (2015)

2. Lin, W., Xu, S., He, L., Li, J.: Multi-resource scheduling and

power simulation for cloud computing. Inf. Sci. 397(C), 168–186
(2017)

3. Wu, Q., Ishikawa, F., Zhu, Q., Xia, Y., Wen, J.: Deadline-con-

strained cost optimization approaches for workflow scheduling in

clouds. IEEE Trans. Parallel Distrib. Syst. 28(12), 3401–3412
(2017)

4. Arabnejad, H., Barbosa, J.G.: A budget constrained scheduling

algorithm for workflow applications. J. Grid Comput. 12(4),
665–679 (2014)

5. Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.:

Scheduling workflows with budget constraints. In: Integrated

Research in GRID Computing. Springer, Boston, MA (2007)

6. Zheng, W., Sakellariou, R.: Budget-deadline constrained work-

flow planning for admission control in market-oriented environ-

ments. In: International Workshop on Grid Economics and

Business Models, pp. 105–119. Springer, Berlin (2011)

7. Zheng, W., Sakellariou, R.: Budget-deadline constrained work-

flow planning for admission control. J. Grid Comput. 11(4),
633–651 (2013)

8. Arabnejad, H., Barbosa, J.G., Prodan, R.: Low-time complexity

budget–deadline constrained workflow scheduling on heteroge-

neous resources. Fut. Gener. Comput. Syst. 55, 29–40 (2016)

9. Prodan, R., Wieczorek, M.: Bi-criteria scheduling of scientific

grid workflows. IEEE Trans. Autom. Sci. Eng. 7(2), 364–376
(2010)

10. Yu, J., Buyya, R., Tham, C.K.: QoS-based scheduling of work-

flow applications on service grids. In: Proc. of 1st IEEE Inter-

national Conference on e-Science and Grid Computing 2005,

pp. 5–8. IEEE CS Los Alamitos, CA (2005)

11. Cancan, L., Weimin, Z., Zhigang, L.: Path balance based

heuristics for cost optimization in workflow scheduling. J. Softw.

24(6), 1207–1221 (2013)

12. Chen, W., Xie, G., Li, R., Bai, Y., Fan, C., Li, K.: Efficient task

scheduling for budget constrained parallel applications on

heterogeneous cloud computing systems. Fut. Gener. Comput.

Syst. 74(2017), 1–11 (2017)

Table 5 Cost frequency
Best cost frequency (%) Worse cost frequency (%) Equal cost frequency (%)

EPIGENOMICS 98.2 1.7 0.1

MONTAGE 100 0 0

LIGO 95.8 4 0.2

Mean 98.0 1.9 0.1

Cluster Computing (2023) 26:1737–1751 1749

123

13. Rodriguez, M.A., Buyya, R.: Deadline based resource provi-

sioningand scheduling algorithm for scientific workflows on

clouds. IEEE Trans. Cloud Comput. 2(2), 222–235 (2014)

14. Arabnejad, V., Bubendorfer, K., Ng, B.: Deadline distribution

strategies for scientific workflow scheduling in commercial

clouds. In: IEEE ACM International Conference Utility and

Cloud Computing 2016, pp. 70–78 (2016)

15. Sahni, J., Vidyarthi, P.: A cost-effective deadline-constrained

dynamic scheduling algorithm for scientific workflows in a cloud

environment. IEEE Trans. Cloud Comput. 6(1), 2–18 (2018)

16. Ghafouri, R., Movaghar, A., Mohsenzadeh, M.: A budget con-

strained scheduling algorithm for executing workflow application

in infrastructure as a service clouds. Peer-to-Peer Netw. Appl.

12(1), 241–268 (2019)

17. Rodriguez, M.A., Buyya, R.: Budget-driven scheduling of sci-

entific workflows in IaaS clouds with fine-grained billing periods.

Acm Trans. Auton. Adapt. Syst. 12(2), 1–22 (2017)

18. Shen, H., Li, X.: Algorithm for the cloud service workflow

schedulingwith setup time and deadline constraints. J. Commun.

36, 183–192 (2015)

19. Singh, V., Gupta, I., Jana, P.K.: A novel cost-efficient approach

for deadline-constrained workflow scheduling by dynamic pro-

visioning of resources. Fut. Gener. Comput. Syst. 79(2018),
95–110 (2018)

20. Arabnejad, V., Bubendorfer, K., Ng, B.: Budget and deadline

aware e-science workflow scheduling in clouds. IEEE Trans.

Parallel Distrib. Syst. 30(1), 29–44 (2019)

21. Ghasemzadeh, M., Arabnejad, H., Barbosa, J.G.: Deadline-bud-

get constrained scheduling algorithm for scientific workflows in a

cloud environment. In: international conference on principles of

distributed systems 2017, pp. 1–16

22. Wu, F., Wu, Q., Tan, Y., Li, R., Wang, W.: PCP-B 2: partial

critical path budget balanced scheduling algorithms for scientific

workflow applications. Fut. Gener. Comput. Syst. 60(2016),
22–34 (2016)

23. Sun, T., Xiao, C., Xu, X.: A scheduling algorithm using sub-

deadline for workflow applications under budget and deadline

constrained. Cluster Comput. 22(3), 5987–5996 (2019)

24. Wu, F., Wu, Q., Tan, Y.: Workflow scheduling in cloud: a survey.

J. Supercomput. 71(9), 3373–3418 (2015)

25. Alkhanak, E.N., Lee, S.P., Khan, S.U.R.: Cost-aware challenges

for workflow scheduling approaches in cloud computing envi-

ronments: taxonomy and opportunities. Fut. Gener. Comput. Syst.

50(2015), 3–21 (2015)

26. Smanchat, S., Viriyapant, K.: Taxonomies of workflow

scheduling problem and techniques in the cloud. Fut. Gener.

Comput. Syst. 52(2015), 1–12 (2015)

27. Singh, S., Chana, I.: A survey on resource scheduling in cloud

computing: issues and challenges. J. Grid Comput. 14(2),
217–264 (2016)

28. Rodriguez, M.A., Buyya, R.: A taxonomy and survey on

scheduling algorithms for scientific workflows in IaaS cloud

computing environments: workflow scheduling algorithms for

clouds. Concurr. Comput. Pract. Exp. 29(8), e4041 (2016)

29. Kaur, S., Bagga, P., Hans, R., Kaur, H.: Quality of Service (QoS)

Aware Workflow Scheduling (WFS) in cloud computing: a sys-

tematic review. Arab. J. Sci. Eng 44(4), 2867–2897 (2019)

30. Ming, M., Humphrey, M.: Auto-scaling to minimize cost and

meet application deadlines in cloud workflows. In: High Perfor-

mance Computing, Networking, Storage & Analysis 2011,

pp. 1–12

31. Abrishami, S., Naghibzadeh, M., Epema, D.H.J.: Deadline-con-

strained workflow scheduling algorithms for infrastructure as a

service clouds. Fut. Gener. Comput. Syst. 29(1), 158–169 (2013)

32. Abrishami, S., Naghibzadeh, M., Epema, D.H.J.: Cost-driven

scheduling of grid workflows using partial critical paths. IEEE

Trans. Parallel Distrib. Syst. 23(8), 1400–1414 (2012)

33. Calheiros, R.N., Buyya, R.: Meeting deadlines of scientific

workflows in public clouds with tasks replication. IEEE Trans.

Parallel Distrib. Syst. 25(7), 1787–1796 (2014)

34. Anwar, N., Deng, H.: Elastic scheduling of scientific workflows

under deadline constraints in cloud computing environments. Fut.

Internet 10(1), 5 (2018)

35. Meena, J., Kumar, M., Vardham, M.: Cost effective genetic

algorithm for workflow scheduling in cloud under deadline con-

straint. IEEE Access 4, 5065–5082 (2016)

36. Wu, C.Q., Lin, X., Yu, D., Xu, W., Li, L.: End-to-end delay

minimization for scientific workflows in clouds under budget

constraint. IEEE Trans. Cloud Comput. 3(2), 169–181 (2015)

37. Arabnejad, V., Bubendorfer, K., Ng, B.: Budget distribution

strategies for scientific workflow scheduling in commercial

clouds. In: International Conference on E-science 2016,

pp. 137–146

38. Faragardi, H.R., Sedghpour, M.R.S., Fazliahmadi, S., Fahringer,

T., Rasouli, N.: GRP-HEFT: A budget-constrained resource

provisioning scheme for workflow scheduling in IaaS clouds.

IEEE Trans. Parallel Distrib. Syst. 31(6), 1239–1254 (2019)

39. Rizvi, N., Ramesh, D.: Fair budget constrained workflow

scheduling approach for heterogeneous clouds. Cluster Comput.

1–17 (2020).

40. Chakravarthi, K.K., Shyamala, L., Vaidehi, V.: Budget aware

scheduling algorithm for workflow applications in IaaS clouds.

Cluster Comput. 1–15 (2020).

41. Su, S., Jian, L., Huang, Q., Xiao, H., Kai, S., Jie, W.: Cost-

efficient task scheduling for executing large programs in the

cloud. Parallel Comput. 39(4–5), 177–188 (2013)

42. Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and

low-complexity task scheduling for heterogeneous computing.

IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)

43. Zhu, Z., Zhang, G., Li, M., Liu, X.: Evolutionary multi-objective

Workflow scheduling in cloud. IEEE Trans. Parallel Distrib. Syst.

27(5), 1344–1357 (2016)

44. Choudhary, A., Gupta, I., Singh, V., Jana, P.K.: A GSA based

hybrid algorithm for bi-objective workflow scheduling in cloud

computing. Fut. Gener. Comput. Syst. 83, 14–26 (2018)

45. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algorithms

for cost-and deadline-constrained provisioning for scientific

workflow ensembles in IaaS clouds. Fut. Gener. Comput. Syst.

48, 1–18 (2015)

46. Verma, A., Kaushal, S.: Bi-criteria priority based particle swarm

optimization workflow scheduling algorithm for cloud. In:

Engineering & Computational Sciences 2014, pp. 1–6

47. Verma, A., Kaushal, S.: Cost-time efficient scheduling plan for

executing workflows in the cloud. J. Grid Comput. 13(4), 1–12
(2015)

48. Amazon: Amazon EC2 Pricing. https://aws.amazon.com/ec2/pri

cing/. Accessed 5 Aug. 2019

49. Google: Google Cloud Platform. https://cloud.google.com/com

pute/ (2017). Accessed 5 Aug 2019

50. Microsoft: Microsoft Azure. https://azure.microsoft.com (2017).

Accessed 5 Aug 2019

51. Barr, J.: New-Per-Second Billing for EC2 Instances and EBS

Volumes. https://aws.amazon.com/tw/blogs/aws/new-per-second-

billing-for-ec2-instances-and-ebs-volumes/ (2017). Accessed 1

Feb 2019

52. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G.,

Vahi, K.: Characterizing and profiling scientific workflows. Fut.

Gener. Comput. Syst. 29(3), 682–692 (2013)

53. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.:

Amazon S3 for science grids: a viable solution? In: Proceedings

1750 Cluster Computing (2023) 26:1737–1751

123

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://azure.microsoft.com
https://aws.amazon.com/tw/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/tw/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/

of the 2008 International Workshop on Data-Aware Distributed

Computing 2008, pp. 55–64. ACM

54. Mao, M., Humphrey, M.: A performance study on the VM startup

time in the cloud. In: International Conference on Cloud Com-

puting 2012, pp. 423–430

55. Juve, G.: Workflow Generator. https://confluence.pegasus.isi.edu/

display/pegasus/WorkflowGenerator. Accessed 12 June 2018

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Naqin Zhou received the Ph.D.

degree at South China Univer-

sity of Technology. Now she is

a Lecturer of Cyberspace Insti-

tute of Advanced technology,

Guangzhou University. Her

research interests are mainly on

parallel computing, cloud com-

puting and grid computing

systems.

Weiwei Lin received his B.S. and

M.S. degrees from Nanchang

University in 2001 and 2004,

respectively, and the PhD

degree in Computer Application

from South China University of

Technology in 2007. Currently,

he is a professor in the School of

Computer Science and Engi-

neering at South China Univer-

sity of Technology. His research

interests include distributed

systems, cloud computing, big

data computing and AI applica-

tion technologies. He has pub-

lished more than 100 papers in refereed journals and conference

proceedings. He is a senior member of CCF.

Wei Feng is working at

Guangzhou Branch of Shanghai

Yizhong Enterprise Manage-

ment Consulting Co., Ltd. He

has long been engaging in the

construction of government

cloud computing platform for

intelligent city. His research

interests include distributed

system, grid computing and

cloud computing.

Fang Shi received the master

degree in engineering from

Guangzhou University in 2019.

She is currently a Ph.D. student

in the School of Computer Sci-

ence and Engineering at South

China University of Technol-

ogy. Her research interests

include cloud computing and

big data

Xiongwen Pang received his

Bachelor from ChongQing

Univeristy in 1994, M.S.

degrees from Harbin Institute of

Technology in 1996, and the

PhD degree in Computer Ap-

plication from South China

University of Technology in

2007. Currently, he is an

assosiate professor in the School

of Computer Science, South

China Normal University. His

research interests include big

data, deep learning and AI

application technologies. He has

published more than 20 papers in refereed journals and conference

proceedings. He is a senior member of CCF.

Cluster Computing (2023) 26:1737–1751 1751

123

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

	Budget-deadline constrained approach for scientific workflows scheduling in a cloud environment
	Abstract
	Introduction
	Related work
	System scheduling model
	Application model
	Scheduling objective

	Algorithm design
	Basic definition
	The MW-HBDCS algorithm
	Task selection phase
	VM selection phase

	Experimental evaluation
	Budget and deadline constraints
	Performance metrics
	Experimental data sets
	Results and analysis
	EPIGENOMIC
	MONTAGE
	LIGO
	The total success rate
	Cost frequency

	Conclusions and future work
	Acknowledgements
	References

