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Abstract
Efficiency in cloud servers’ power consumption is of paramount importance. Power efficiency makes the reduction in

greenhouse gases establishing the concept of green computing. One of the beneficial ways is to apply power-aware

methods to decide where to allocate virtual machines (VMs) in data center physical resources. Virtualization is utilized as a

promising technology for power-aware VM allocation methods. Since the VM allocation is an NP-complete problem, we

use of evolutionary algorithms to solve it. This paper presents an effective micro-genetic algorithm in order to choose

suitable destinations between physical hosts for VMs. Our evaluations in simulation environment show that micro-genetic

approach provides invaluable improvements in terms of power consumption compared with other methods.
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1 Introduction

Cloud computing offers a wide range of pay-as-you-go and

Internet-based services in different levels such as infras-

tructure, platform, and Software as a Service (i.e. IaaS,

PaaS, and SaaS) [1–5]. Main highlights of the cloud-based

services based on Berkeley’s report: ‘‘Cloud computing,

the long-held dream of computing as a utility, has the

potential to transform a large part of the IT industry,

making software even more attractive as a service’’ [6].

NIST states that ‘‘cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources’’ [6].

Service provisioning can be easily and swiftly handled with

an effective proactive management solutions. IaaS provi-

ders offer computing resources to cloud customers. Cus-

tomers pay based on the capacity and time of using VM-

based services to IaaS providers [7, 8].

From the other side, cloud services are becoming more

and more popular daily that attracts huge attention of big

IT providers such as Microsoft, Google, and IBM to run up

more and more centralized data centers in different spot of

the world [9]. Current cloud data center are compose of

thousands of physical hosts that consume a significant

amount of power. We are making more and more data

centers while we do not make use of the current available

cloud resources we have now. For example, most of current

initiated data centers have hundreds of available hosts that

are not fully utilized or idle [2]. Furthermore, more power

consumption by more physical hosts will also increase in

carbon dioxide (CO2) emission. Also, the operational costs

of cloud data centers are dramatically growing, mostly

because of increase in power consumption [10]. Thus, the

rate of power consumption by cloud data centers will

directly affect cloud providers’ profit [11, 12].

In this research work, we focus on live VM migration

i.e. provided by virtualization technology, between hosts in

cloud data centers. A promising technique to prevent hosts

from overutilization is VM live migration. Furthermore,
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VMs from underutilized hosts can be relocated and then we

can switch the under-loaded host to sleep mode. This will

be quite promising for power-care management of VMs in

data centers [13]. The main problems in online VM con-

solidation problem are detection physical servers’ status in

the data center, identifying overloaded and under-loaded

ones, adjusting overloaded servers’ load by selecting a

subset of their VMs for migration, and thus adjusting an

optimal mapping for allocation of the migrating VMs to

other servers. To do so, the rate of power needed for

computation and service level agreement violation (SLAV)

evaluated based on quality of services (QoS) are two

important evaluation criteria. Since idle physical servers

generally consume more than two third of a fully utilized

server, optimality in power consumption will be achieved

by maximizing physical servers’ utilization and minimiz-

ing number of available under-loaded servers. Thus, the

main solution is to transfer under-loaded servers’ load to

other available servers and then switch the under-loaded

server to sleep mode for power efficiency purposes. The

main benefit in reducing power consumption is to minimize

operational costs and thus it will bring more profit to cloud

providers [14, 15].

The main contributions of the proposed VM consolida-

tion approach are as follows:

• We proposed a micro-genetic VM allocation algorithm

for cloud data centers.

• We demonstrated the suitability and performance of the

proposed algorithm in several experiments.

• We provided and assessed the micro-genetic and

baseline algorithms over different scenarios.

The rest of the paper is organized as follows: we survey

recent studies and main concepts of the stated problem in

Sect. 2; Sect. 3 states the problem and presents the pro-

posed approach in details; extensive analysis excepted

from our simulation studies are presented in Sect. 4; finally

we conclude the overall performance of the proposed

solution in the paper and the future plans to further research

in line with this research work are presented in Sect. 5.

2 Related works

Recently, many researchers from academia and industry

tried to provide optimal allocation of VMs in the cloud data

centers. However, there is a long way to reach optimality in

cloud resource management. Linear programming is

among most common analytical solutions for this problem

[16, 17]. As a case study, Chaisiri et al. [18] provided a

multi payment plan for hosting VMs in multiple cloud

providers. The presented approach is effective in terms of

minimizing demand costs under uncertainty. The authors

proposed a linear- and quadratic-based scheduling algo-

rithm. Speitkamp et al. formulated cloud VM allocation

problem with linear programming with specific constraints

[19]. The authors decrease cost of VM allocation in cloud

data centers with a linear programming-based heuristic.

Wu et al. modeled the problem with genetic algorithm and

used genetic population in placement of VMs in data

centers to improve computation and communication power

consumption [20]. The authors in [21] proposed a cost-

efficient heuristic for solving VM allocation problem. They

demonstrated that their approach improves power con-

sumption by 25% in comparison with multi-start random

searching.

Abdel-Basset et al. [22] have studied the VM placement

problem with bandwidth allocation mechanism according

to the best fit policy. They have proposed an energy-effi-

cient approach using an enhanced version of whale opti-

mization algorithm in cloud computing environment.

Further, they validate their solution using Cloudsim toolkit

on the 25 various data sets with different bandwidth ran-

domly and proved that it reduces the number of active

servers compared with other meta-heuristics techniques.

Abdessamia et al. [23] have proposed a new solution using

binary version of gravitational search algorithm for solving

the VM placement problem in the heterogeneous cloud

data center. Besides, they implement their solution using

MATLAB and indicated that it outperforms in terms of

energy consumption compared with worst-fit, best-fit, first-

fit, and particle swarm optimization mechanisms.

Parvizi and Rezvani [24] have designed a multi-objec-

tive VM placement strategy for reducing the power con-

sumption, the number of active servers, and the total

resource wastage in cloud data center. They formulated

their problem as a non-linear convex optimization form and

used the non-dominated sorting genetic algorithm to

determine the optimal placement solution PMs on the VMs.

Finally, they evaluate their strategy using Cloudsim tool in

terms of energy consumption, resource loss, and the

number of active servers and confirmed that it superior to

compared with exact mathematical and first-fit decreasing

policies. Rasouli et al. [25] have proposed a learning

automata-based approach to place VMs between the

physical servers in a cloud data center. Their proposed

approach does not need any knowledge about cloud-based

applications running on cloud servers and utilized dynamic

migration and forcing idle servers to shut down. Besides,

they simulate their approach using Cloudsim on the Plan-

etLab data set and illustrated that it significantly reduces

energy consumption while satisfying QoS compared with

existing mechanisms.

Azizi and Li [26] have presented a new heuristic-based

algorithm that considers both resource wastage and power

consumption metrics to solve VM placement problem.
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Their proposed algorithm minimizes resource loss by bal-

ancing resource utilization between physical cloud servers.

Besides, they proposed resource usage factor policy to

solve VM placement problem using reward and penalty

mechanisms. Their simulation results on the Amazon EC2

VMs workloads indicated that their proposed algorithm

reduces total energy consumption resource loss of a cloud

data center compared with existing algorithms and it is an

interesting solution to achieve the green cloud computing.

In [27, 28], a review on the multi-objective VM placement

mechanisms using nature-inspired meta-heuristic algo-

rithms is studied. They classified VM placement mecha-

nisms into three classes: single-based, population-based,

and hybrid solutions. Then, they analyzed VM placement

solutions in terms of utilized optimization technique,

optimization resource, placement type, and environment

and provided the future research works that can be

explored in VM placement area.

Ghasemi and Haghighat [29] have designed a rein-

forcement learning-based mechanism to handle VM

placement issue using load balancing policies. Their pro-

posed mechanism selects an action from set of the

acceptable actions and performs it on the cloud environ-

ment receives a reinforcement signal according to the

suitability of the VM placement solution by utilizing that

action in the cloud environment. Their simulation results

using Cloudsim tool demonstrated that their proposed

mechanism outperforms to balance the workload in a

shorter time compared with other mechanisms. Qin et al.

[30] have developed a Pareto-based reinforcement learning

algorithm for minimizing energy consumption in a cloud

environment. They utilized the Chebyshev function and

considered the weight selection issue in their proposed

solution to achieve a Pareto approximation to solve VM

allocation problem. Further, they validate their proposed

algorithm using MATLAB and demonstrated that it is

scalable for VM requests with large scale.

Wei et al. [31] have developed energy-efficient exact

algorithms for solving VM allocation in cloud-based sys-

tems. They formulated the VM allocation problem in form

of three-dimension bin-packing as a mixed-integer linear

program and it solved by best-fit, first-fit, and greedy

heuristics strategies to minimize energy consumption.

Besides, they implement their proposed algorithm using

Gurobi solver on the real-world cloud data centers and

indicated that it has a linear consuming time and reduces

the numbers of physical servers.

Abohamama and Hamouda [32] have proposed a hybrid

approach using improved genetic algorithm and best fit

allocation policy to reduce the energy consumption in

cloud data centers. Their proposed approach handles the

balancing between the exploration and exploitation and

achieves the trade-off the usage of CPU, RAM and

bandwidth of cloud servers to reduce the resource wastage.

Reddy and Ravindranath [33] have designed an efficient

VM provisioning and placement strategy for minimizing

the energy consumption of cloud data centers. They uti-

lized JAYA optimization technique to find and optimal

placement solution. Further, their obtained results indicated

that their proposed strategy reduces the SLA violation,

energy consumption, and VM migration compared with

modified best fit decreasing and particle swarm optimiza-

tion mechanisms.

Most of recent studies mainly focused on single

parameter to decide where to allocate each VM in cloud

data center. Although single parameter like CPU utilization

and single objective like power consumption makes the

problem quite straight-forward to be easily modeled and

solved, the real-world VM allocation problem is way to

more complex and dependent on different parameters. Gao

et al. [34] proposed a multi-objective algorithm for

deciding where to allocate VMs in data center in order to

optimize power consumption and resource utilization

maxim. The authors applied a variant of ant colony system

(ACS) algorithm to find solution for large-scale VM allo-

cation problem. Experimental evaluation of simulation

studies on power consumption shows suitability and

applicability of the solution provided in big data centers.

According to the reviewed and summarized the VM

allocation mechanisms, a side-by-side comparison of them

in terms of the utilized technique, evaluation tool, perfor-

mance metrics, and data center configuration as well as

workload of each mechanism are shown in Table 1.

3 Proposed approach

This section focuses on the stated problem and the micro-

genetic solution is presented. We first describe the problem

in Sect. 3.1. Section 3.2 covers the explanation for the

applied methodology, which micro-genetic algorithm. The

proposed micro-genetic VM allocation algorithm will be

discussed in Sect. 3.3.

3.1 Problem definition and target model

Table 2 provides all the notations used to explain the VM

allocation problem. We consider, we have a cloud data

center including m * r racks that each contains h hosts [35].

Based on the number of hosts, racks, and modules, number

of all hosts is calculated according to Eq. 1 [3]:

n ¼ m� r � h: ð1Þ

Let Uk is kth cloud user who buy cloud services such

that U = {U1, U2,…,Uk-1, Uk, Uk?1,…,Uu} where 1 B k

B u. We represent a set of vectors to demonstrate VMs of
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Table 1 A side-by-side comparison of the VM allocation mechanisms

Reference Utilized

technique

Evaluation tool Performance metric Data center Workload

Abdessamia

[22]

GSA Simulation

(MATLAB)

Number of active server, energy

consumption

Synthetic (cluster of

heterogeneous servers)

Artificial

Abdel-Basset

[23]

WOA ? Lévy

flight

Simulation

(Cloudsim)

Utilization, number of physical

server

Synthetic (cloud user-customized

VMs)

PlanetLab

Parvizi and

Rezvani [24]

NSGA-III Simulation

(Cloudsim)

Execution time, utilization, resource

loss, and energy consumption

Synthetic (cloud user-customized

VMs)

PlanetLab

Rasouli et al.

[25]

LA Simulation

(Cloudsim)

Energy consumption, Number of VM

migration, SLA violation

Synthetic (Cloud user-

customized VMs)

PlanetLab

Azizi and Li

[26]

Heuristic-

based

(priority-

based)

Simulation (C??) Number of active server, energy

consumption, resource wastage,

CPU utilization

Synthetic, real-world (cloud user-

customized VMs, Amazon EC2

Instances)

Artificial

Ghasemi and

Haghighat

[29]

RL Simulation

(Cloudsim)

Execution time, number of server

shutdown, VM migration cost

Synthetic, real-world (Gaussian

distribution, Nottingham

University)

PlanetLab

Qin et al. [30] Pareto-based

RL

Simulation

(MATLAB)

Energy consumption, resource

wastage, computation time

Synthetic (Cloud user-

customized VMs)

Artificial

Wei et al. [31] Exact-based

method

Simulation

(Gurobi

solver ? Python)

Energy consumption, resource

utilization, number of active server,

computation time

Real-world (Google Data Center) Artificial

Abohamama

and Hamouda

[32]

Permutation-

based GA

Simulation

(MATLAB)

Power consumption, resource

wastage, elapsed run time

Real-world (TSP dataset) Artificial

Reddy and

Ravindranath

[33]

JAYA

optimization

Simulation

(Cloudsim)

Energy consumption, VM migration,

SLA violation

Real-world HP ProLiant ML110) PlanetLab

Our approach Micro genetic (Cloudsim) Energy consumption, VM migration,

SLA violation, number of server

shutdown

Real workload (PlanetLab) PlanetLab

GSA gravitational search algorithm, LA learning automata, RL reinforcement learning, WOA whale optimization algorithm, NSGA-III, non-
dominated sorting genetic algorithm, TSP traveling salesman problem

Table 2 Notations used for problem definition

Notation Definition Notation Definition

Hi Host i Vrtj The amount of time jth VM is running

n Total number of physical servers Vsj SLA violation of jth VM

Uk User k Vstj Initiated time of jth VM

r Number of racks Vrts
j,i Execution time of jth VM on host i since time slot s

UVk Total number of VMs of the kth cloud customer u Total number of cloud customers

Vj VM j ‘ Length of each time slot in minutes

Vu j
s CPU usage in percentage of jth VM in time slot s Ehi Total power consumption of ith Host

Va j
s Million instructions allocated from jth VM to cloud servers in

time slot s
EiðHuisÞ Power consumption of ith host in time slot s

Huis CPU usage in percentage of ith host in time slot s Fi
s Number of available VMs in ith host at time slot s

Vcj Total CPU capacity of jth VM Vmts
j Minutes that jth VM is in migration during time slot s

Hci Total CPU capacity of ith host Vdts
j Total time that jth VM experiences violation during

time slot s
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all cloud users denoted by V = {V1,V2,…,Vu} where Vk is

a vector of user k’s VMs. Hence, user k has a vector of

available VM denoted by UVk = {V1
k ; V

2
k ; . . .;V

l
k}.

Similar to literature studies, we assume that CPU utilization

of cloud physical servers is the main factor in power con-

sumption [36–38]. To do so, we consider a direct correlation

between power usage and CPU performance of the cloud host.

Accumulative resource usage of allocated VMs to a specific

host is called total CPU usage of the host in MIPS. It can be

divided to total CPU capacity of the host to calculate the host

CPU utilization, which is calculated as follows:

Huis ¼
PFi

s
j¼1 Va

j
s

Hci
: ð2Þ

Each VM may experience a performance degradation

due to resource outage in part of its execution which will

cause SLA violations and VM down time (VDT). It is

mainly happening due to VM live migration or resource

under provisioning. Thus, total VDT (i.e. total time a VM

experiences performance degradation) is calculated similar

to our previous research work [3], as follows:

Vdt js ¼ VM migration timeþ host overutilization time

when VM is not in migration

! Vmt js þ HuVh
j
s

s =Huut
j k

� Vrtj;is ;

ð3Þ

where Vmts
j denotes how many minutes the jth VM is in

migration at time slot s; Huut denotes specific threshold to

detect overutilized hosts; and Vrts
j,i denotes total execution

time of the jth VM when it is allocated to ith host at current

time slot.

Total violation experience of the jth VM until current

time slot s can be calculated according to Eq. 4:

Vs j ¼

Ps
s0¼ Vstj=‘b c Vdt

j
s0

Vrt j=‘
: ð4Þ

Here, Eq. 5 denotes calculation of total power consumed

by the ith host at time slot s of the data center.

Ehis ¼ EiðHuisÞ � ‘=60; ð5Þ

where minimization of power consumption and SLAV are

two objectives of the problem, the objective function will

be defined as follows [3]:

Minimize # and d

# ¼
Xx

s¼1

XNms

m¼1

XNrsðmÞ

r¼1

XNhsðrÞ

h¼1

EhhsHs
h
s ; ð6Þ

d ¼
Xx

s¼1

XNms

m¼1

XNrsðmÞ

r¼1

XNhsðrÞ

h¼1

XF
i
s

v¼1

Vm SLAVv
s ð7Þ

Subject to:

0�Huis � 100 i 2 1; 2; . . .; nf g; s 2 f1; 2; . . .; xg;
ð8Þ

j 2 f1; 2; . . .; ug; ð9Þ

Hshs ¼
1;Active

0; Turnedoff=slept:

�

ð10Þ

3.2 Methodology and concepts

In this section, a micro-genetic approach is presented,

which is a promising population-based meta-heuristic

algorithm to guarantee good solutions with acceptable but

levels of computations [39]. In this section, we will provide

necessary micro-genetic concepts to demonstrate how to

make of it for the stated problem.

3.2.1 Basic concepts

Genetic algorithm is an effective search method in very

broad and large spaces, which ultimately leads to orienta-

tion to find a solution. Genetic algorithm works with a

series of coded variables. The advantage of working with

coded variable is the codes are able to convert continuous

space to a discrete space. Micro-genetic algorithm is the

agile version of genetic algorithm has been attempted to

remove some of the genetic algorithm’s steps to make this

algorithm more agile. In most cases, the initial population

of micro-genetic algorithm considers much less and in

most standard documents, the number of initial population

for the micro-genetic algorithm is 15. Algorithm 1 displays

the pseudo of micro-genetic algorithm. In the following,

different components of genetic algorithms are presented:

(A) Chromosome a genetic algorithm includes a popula-

tion of chromosomes that each denotes a solution in

the search space. Each chromosome includes a string

of genes that each is part of a solution and it is fixed

to a specific number. Binary coding is the most

common representation for chromosomes, which

include bit strings.

(B) Population a number of chromosomes constitutes

together is called the genetic population. Genetic

operators are used to make changes in the chromo-

somes in order to form new solutions.

(C) Fitness function genetic algorithm needs an evalua-

tion function called fitness function to calculate the

goodness of any solution found by chromosomes.

Fitness function calculates a non-negative score for

Cluster Computing (2021) 24:919–934 923
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any chromosomes in the population, which shows the

how close the chromosome is to the optimal solution.

(D) Coding commonly the binary code is used, but in

many cases another coding is required based on the

situation of the problem. Genetic algorithm deals

with the coding face of the problem’s parameters or

variables. One of the coding ways is the binary

coding, which aims to turn the problem’s solution to

the string of binary digits (phase 2). The numbers of

bits used for coding the variables are depend on the

considered accuracy of the solution, the change

range of the parameters and the relationship between

the variables.

3.2.2 The proposed micro-genetic VM allocation algorithm

In this section, the proposed micro-genetic approach for

allocation of VMs is presented in details based on the

explanation provided in Sect. 3.2.1.

Algorithm 2 presents dynamic host management with

live VM migration with live VM migration in details.

Algorithm 2, line 2 shows that a number of VMs regarding

cloud customers’ requests are initialized and allocated to

physical hosts randomly. It is then the main loop of the

problem which will be repeated till there are available VMs

according to customers’ requests (lines 3–9). In the start of

each loop, overloaded hosts shall be detected (line 4) and a

subset of their allocated VMs should be chosen for

migration (line 5). Selected VMs for migration shall be

migrated to other normal active hosts (line 6). Furthermore,

hosts based on their low load will be detected as

underutilized cloud servers (line 7) and finally VMs from

these detected underutilized hosts should be migrated to

other places, i.e. hosts with normal CPU utilization (line 8).
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Now, we are going to explain the proposed micro-ge-

netic VM allocation algorithm. Chromosome, which is a

fundamental part of the algorithm, is the string or the

sequence of bits as the coded face of one solution in con-

sidered problem. In fact the bits of a chromosome play the

role of genes in nature. Working alternately on the coding

and solution space is one of the main characteristics of the

genetic algorithms. The genetic operators acts on the

chromosome or coding spaces, while selecting and evalu-

ating acts on the solution space. In nature is the same way,

individuals (chromosomes) are in the real non-coded space

in the phenotype mode. With coding in any mechanism,

genotypes mode appears.

3.2.2.1 Binary coding This conversion is a standard con-

version in genetic algorithms. The binary coding is the most

simple and best conversion for genetics operators. But this

type of conversion in not suitable for complex issues like the

problem we have here, because usually causes the chromo-

somes to be very large for holding solution’s information. In

binary conversion, the members of the population convert to

string of 1s and 0s. For example, suppose algorithm finds the

maximum of the function F (x, y, z).

Consider the search should be in the range 0 to 255 and

positive integers. Each solution may contain three X, Y,

and Z. Each number’s length in the range of considered

problem should be maximum of 8-bits. If each chromo-

some is considered as XYZ, so to cover all possible solu-

tions, the chromosomes’ length needs to be strings of bits.

For this chromosome C can be as follows:

C = 11010010 11100011 00110111.

In this case, if it is necessary, the negative numbers

should be searched, a bit could be added to the beginning

of each string. For example if a bit is 0, the number is

positive and it is 1, the number is negative.

000000001 = 1,

100000001 = - 1.

Conversion of decimal numbers can also be done with

the use of such measures.

3.2.2.2 Permutation coding In this way, the chromosomes

are shown as a series of natural numbers and each of these

numbers is related to the special parameter in the solving

problem space. The arrangement of these numbers is

important and the length of the string is exactly equalwith the

numbers of defined parameters in the problem. The use of

this type of coding is to solve travelling salesman problem.

The definition is shown below.

On many issues such as the problem of ‘‘traveling

salesman’’, we are facing with the various permutations of

the set of the solutions. In this problem we have some

cities, the distance between them is cleared and with

starting from one and end to the same city we must:

(1) We should pass all the cities only once.

(2) The lowest distance should be passed.

The point which is important here is causes the binary

coding is not a suitable method for this problem, that the

cutting between two parents must be somehow that there is

no repetition element. Single-point method is modified as

this form, all the previous sections before the cut-off point

in the first parent is copied identically to the child and the

rest of the first parent genes which do not occur in the

child, accordance with the coming arrangement in the

second parent are certainly copied in the child.
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3.2.2.3 Encoded value In this coding method, the chro-

mosomes can choose any kind of related data in the

problem in their string. This data can be real numbers,

rational expressions, navigation commands, and coded data

as strings of characters. In this type of coding all the cutting

operator mechanisms such as binary mode is used.

3.2.2.4 Modeling and chromosome representation of the
problem with micro-genetic algorithm Here, we first

model allocation of VMs to cloud servers using micro-

genetic algorithm. To do so, each gene is shown with a

one-dimensional array and number of elements in the array

equals to number of VMs in VM migration list denoted by

N is shown. In the following the modeling the resource

allocation problem in form of array structure, as follows:

As seen, the second row represents the array index,

which demonstrates the migrating VM id. The first row

shows the resource in which the VM will be allocated. In

other words, the ith index represents VM[i], and its value

shows the physical hosts number in which the VM will be

allocated. As an example, if 9th index equals to 4, it means

that 9th VM should be processed on the 4th available

physical host.

3.2.2.5 Description of the steps and fitness function

Step I: t = 0;

Initialize population:

For producing the initial population, every

chromosome or the solution is considered as a

one-dimensional array and any index on the

array represents one specific virtual machine.

Step II: Termination conditions:

Algorithm execution continues until a

condition occurs as follows:

1. The number of iterations reaches the

maximum limit.

2. Where fitness of the best solution is not

changed after a certain number of repetitions.

3. Converging the fitness of chromosomes.

In this study the first type of conditions is

selected.

Step III: Fitness Function.

To determine how much a solution can offer

an appropriate response, its value should be

measured by a fitness function. This function

gives a value to the solution based on the

quality parameters in the solution. In the

optimization algorithm by applying this

function on all solutions, their value is

calculated. And the solutions with the best

value which can be based on the policy-

making parameters have the maximum value,

could considered as the most

suitable solution. In this problem, the

following parameters are used, as shown in

Current CPU utilization of cloud host Pjis calculated as

follows:

lj ¼ Pw
j cpu=P

cpu
j : ð11Þ

The following equation calculates power consumed by

cloud host Pj with CPU usage of lj is:

E pj
� �

¼ kj � emaxj þ 1� kj
� �

� emaxj � lj; ð12Þ

where kj is rate of power consumption while the host is idle

and emaxj shows power consumption rate of the host pj in

fully utilization mode [7].

The following equation calculates the fitness function

for measuring the value of each solution:

fitness ¼ 1=
XN

1

Eðpj

 !

: ð13Þ

4 Performance evaluation

In this section, experimental setup for simulation is firstly

presented. Performance metrics for experimental evalua-

tion is provided in the following section. Finally, we dis-

cuss experimental results of the proposed algorithm in

comparison to three baseline algorithms.

4.1 Experimental setup

This section explains setup information for our simulation

experiments such as simulation environment and its setup.

The Cloudsim tool [40] as a widely used simulation tool for

cloud platforms. This simulation tool is used to assess the

proposed and baseline VM allocation algorithms. We

consider a data center including several modules that each

includes several racks with a number hosts. The details of

our simulation setup are illustrated in Table 4.

We consider two different types of physical hosts from

HP in our simulation. Table 5 provides details and
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specifications of these two host types. Table 6 provides

power consumption of these hosts over different CPU

utilization in watt. We also consider four different VM

types provided in Table 7. Note that power consumption

level of each cloud server at time slot s is calculated

according to its CPU usage level. Each kind of cloud server

has different power consumption level. In this study, we

consider two different standard server configurations (i.e.,

HP ProLiant G4 and G5), as shown in Table 5. Besides, the

power consumption level of different types of cloud servers

are in detail provided in Table 6. As an example, if a HP

ProLiant G5 has a CPU utilization of 10% during a time

slot, the power level of that cloud server during that time

slot would be 97 W per hour, as shown in Table 6. It is

worth noting that the power consumption rate of cloud

servers has linear relationship to the data provided in

Table 6. That is, if CPU utilization of a cloud server is in

between two of those utilization levels, a simple proportion

between those levels shall be calculated.

To better illustrate the effectiveness of our micro-ge-

netic algorithm, we make use of a dataset generated from

real resources in the form of VMs executed in hundreds of

cloud servers around the globe. The applied dataset is

gathered in 10 different days and is applied for evaluation

of our proposed and other baseline algorithms. The used

dataset is a result of gathered information from real phys-

ical hosts in CoMon project [42]. This data set includes

percentage of CPU load of many VMs in for a full daytime.

Details of the used dataset are provided in Table 8.

In this experiment, we do not use real implementation of

the scenarios in order to evaluate effectiveness of the

solutions provided because of technical and physical

resource limitations. Even though we adjust simulation

setup in line with real data center environments and also we

make use of real dataset from log of physical cloud servers

and VMs to better understand superiority of the micro-

genetic algorithm.

4.2 Metrics for performance evaluation

This section presents effective metrics for evaluation of the

micro-genetic algorithm including cumulative consump-

tion of power by physical hosts, SLAV, rate of VM

migration, and finally totals times physical hosts switched

to sleep.

Power consumption cumulative consumption of power

by physical hosts is the first important metric of this

research problem. This metric should be minimized to

reach more efficiency in allocation of VMs in data centers.

Table 3 The used parameters
V: VMs list P: a list of hosts

Vi: ith VM in the VMs list Vcpu
i : required CPU for ith VM

Vimem: required memory for ith VM Pj: jth host in list P

Pcpu
j : CPU processing capacity of Pj Pmem

j : memory capacity of of Pj

Pw
j cpu: current computing load allocated to Pj Pw

j mem: current memory load allocated to Pj

VPj: a list of VMs allocated to the host Pj

Table 4 Data center setup [9]

Parameter Value

Number of modules 4

Number of racks in each modules 5

Available racks in all modules 20

List of physical hosts in a rack 48

List of physical hosts in all racks and modules 960

Table 5 Setup specification of

physical hosts [3]
Server CPU model Cores Frequency (MHz) RAM (GB)

HP ProLiant G4 Intel Xeon 3040 2 1860 4

HP ProLiant G5 Intel Xeon 3075 2 2660 4

Table 6 Power profile of the considered physical hosts in our simulation in W [3]

Server Idle (0%) 10% 20% 30% 40% 50% 60% 70% 80% 90% Full (100%)

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117

HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135
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Power consumption profile and the calculation function is

provided in Sect. 3.

SLA violation since decrease in power consumption with

minimizing available physical servers may cause increase

in SLA violation due to performance degradation, SLAV

will be the second most important metric. SLA violation

(i.e. SLAV) consists of host overload violation and viola-

tion because of migration. Hence, it is the multiplication of

SLA violation of hosts during overutilization (SLATAH)

and violation of VMs during migration (PDM) [3]:

SLAV ¼ SLATAH � PDM

!
PNumberofhosts

host¼1 DownTimeðhostÞ
Pn

host¼1 TotalRuntimeðhostÞ

�
PnumberofVMs

vm¼1 MigrationTimeðvmÞ
PnumberofVMs

vm¼1 TotalExecutionTimeðvmÞ
: ð14Þ

VM migration the more live VM migration, the more

SLAV due to live migration. Thus, the number of VM

migration is another effective metric because less VM

migration may reduce total SLAV.

Host shutdowns periodically switching on/off hosts will

cause increase in power consumption, and live VM

migration. It goes without saying that once we decide to

turn a host off; all its VMs shall be moved to other places

for load balancing purposes. Then, fewer number of server

shutdown may bring better QoS.

4.3 Experimental evaluation

In this section, we analyze the performance of the micro-

genetic algorithm in details. This is done with comparison

by recent baseline algorithms in the form of several sce-

narios under metrics provided in Sect. 4.2.

Ten different executions for any experiments are done

and the average results of these executions are used for

evaluation in this section. To demonstrate the superiority of

micro-genetic VM allocation algorithm, we provide a

concrete comparison with standard genetic VM allocation

algorithm [1] and a power-care algorithm for allocation

with bin-packing (PABFD) [35], which is a modified ver-

sion of the allocation solution called MBFD [16].

We also provide different scenarios to do a fair analysis

to proof that the proposed algorithm does not just

promising for a specific scenario. Table 9 provides differ-

ent VM consolidation scenarios used in our experiments. In

each scenario, we used different VM selection algorithm,

heuristics for detection of over-utilized and underutilized

algorithms.

First of all, we tune number of interaction for proposed

micro-genetic VM allocation algorithm. To do so, we run

different experiments for all scenarios I, II and III with

different number of iterations with micro-genetic VM

allocation algorithm. The average results of the achieved

fitness values of each experiment over different executions

and scenario are provided in Fig. 1. Vertical axis demon-

strate fitness value.

At it is seen, for the first iterations the algorithm has bit

improvement over iterations since the higher fitness value

the better the solution is. It is clear that there is a plateau

after iteration 15 for all the scenarios since there a nuance

change in fitness value that is not worth the algorithm

overhead. Then, we can conclude that 30 can be considered

as the tuned iteration number for the problem. Thus, we

will provide all the details and experiment results of the

proposed algorithms with 30 iterations in this manuscript.

As mentioned, we run proposed and baseline algorithms

for 10 different working days we have in the dataset. In

order to remove the results variance, we execute each

experiment 10 times and the median of all results are used

for evaluation in Figs. 2, 3, 4 and 5.

Figure 2 illustrates total number of live VM migration

for the micro-genetic and comparing algorithms in all ten

days of the dataset. Figure 2 illustrates number of VM

migration over different working days in our dataset for the

proposed and the baseline algorithms. It is worth men-

tioning that each working day in our dataset shows a dif-

ferent experiment in our simulation evaluation. That is how

we analyze the performance of our approach over 10

Table 7 VMs specification in

our simulation [41]
VM type High-CPU medium instance Extra large instance Small instance Micro instance

CPU (MIPS) 2500 2000 1000 500

RAM (MB) 870 1740 1740 613

Table 8 Workload information in details [43]

Date (working days) Number of VMs Means (%) SD (%)

03/03/2011 1052 12.31 17.09

06/03/2011 898 11.44 12.83

09/03/2011 1061 10.70 15.57

22/03/2011 1516 9.26 12.78

25/03/2011 1078 10.56 14.14

03/04/2011 1463 12.39 16.55

09/04/2011 1358 11.12 15.09

11/04/2011 1233 11.56 15.07

12/04/2011 1054 11.54 15.15

20/04/2011 1033 10.43 15.21
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different experiments (10 working days from 2011-03-03

to 2011-04-20). As seen the proposed micro-genetic VM

allocation algorithm outperform other baseline algorithms

in all working days. The main reason to this happen is that

a better fitting algorithm is provided using micro-genetic

that is more accurate than GA and heuristic PABFD

algorithms. Better VM allocation brings better fitting and

thus fewer hosts are needed to allocate VMs. Since we can

fit migrating VMs to available hosts, there would not need

to migrate VMs from overloaded hosts to other available

VMs and thus number of VM migration is decreased.

Figure 3 illustrates the statistics regarding host shut-

down in different working days and algorithms. As seen the

proposed micro-genetic for allocation of VMs had better

performance in comparison with other algorithms in all

working days. This is because the micro-genetic VM

allocation algorithm better allocate VMs to available hosts

with considering SLAV as well as power consumption.

Since the more allocation of the proposed algorithm will

bring more accuracy, fewer hosts due to inaccurate VM

allocation will be overloaded. On the other side, this

algorithm may not allocate VMs on hosts that would be

overloaded in near future. Thus, in such cases, the proposed

algorithm will not turn off hosts, in contrast, allocate VMs

to hosts with lower utilization rate. This policy will guar-

anty the solution from periodically switching hosts on/off.

Thus, as it is seen number of host shutdown in the proposed

algorithms is by far fewer than other two baseline

algorithms.

Figure 4 depicts power profile of micro-genetic and

comparing algorithms in different datasets. Number of VM

migration will increase total computation requests of

migrating VMs by 10%. Thus, increase in VM migration

will indirectly increase total power consumption. Hence,

there are two reasons that the micro-genetic allocation

improves power consumption: (1) efficient host availability

by switching unnecessary host to sleep mode; (2) the

micro-genetic allocation reduced number of VM migration

(which may cause increase in power consumption).

Figure 5 also depicts total SLAV of the proposed and

baseline VM allocation algorithm for all working days. As

it is shown, the proposed algorithm no only reduced power

consumption, but it does positive effect on QoS and brings

better SLAV (decrease in SLA violation).

Table 9 Scenario description

Scenario name Overload algorithm Under-load algorithm VM selection algorithm

Scenario I LR [16] SM [43] MMT [3]

Scenario II LR [16] SM [43] MC [43]

Scenario III Use window moving average (WMA) [13] SM [43] Maximum requested resources, MRR [13]
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Fig. 1 Convergence speed of the proposed micro-genetic VM allocation algorithm regarding fitness function
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Figures 2, 3, 4 and 5 illustrate the average results of all

scenarios to have a general understanding of the perfor-

mance of the comparing algorithms. However, it failed to

show the superiority of the micro-genetic algorithm over

different scenarios. Hence, we provide different perfor-

mance metrics for all scenarios in details in Table 10. As it

is seen in Table 8, the proposed algorithm is by far out-

perform all comparing algorithms regarding all perfor-

mance metrics in all scenarios. It is worth mentioning that

some scenarios are easier for the proposed while the other

scenarios. All in all, the micro-genetic allocation achieved

the best results in all scenarios.

Figure 6 illustrates the performance differences of the

proposed micro-genetic VM allocation algorithm over

different scenarios. As it is shown, the first and second

scenarios show way better performance specifically in

power consumption and SLAV. Obviously, power con-

sumption and SLAV rate in the third scenario are worse

than the first and second scenarios and it has a linear cor-

relation with the number of VM migration and number of

shutdown.

5 Conclusion

This paper presented a power-efficient micro-genetic

approach for allocation of VM in cloud data center. To do

so, dynamic consolidation of cloud servers and live VM
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migration is applied. We discussed the importance of

power consumption in cloud-based infrastructures. Unlike

the reviewed studies in the paper, the proposed VM allo-

cation algorithm could finely look into the solution space

and explore and exploit for a proper mapping solution for

the problem thanks to the advantages of micro-genetic

convergence speed. We evaluated the proposed approach

using Cloudsim and compared it with baseline algorithms

(genetic and PABFD VM allocation algorithms) over dif-

ferent scenarios and dataset (10 working days). Since

different scenarios for detection of hosts with over- or

under-utilization load, and VM selection may cause dif-

ferent situations for the VM allocation algorithms, we have

defined three different scenarios to better illustrate the

superiority of the micro-genetic approach in different

experiments. Experimental results using Cloudsim toolkit

demonstrated that the micro-genetic algorithm improved

power consumption. Our main future focus will be to

provide a seamless framework for allocation of VMs in an

OpenStack-based cloud data center to do unseen aspects of
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Fig. 4 Total power consumption of the proposed and baseline VM allocation algorithms for the first scenario
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proposed and baseline VM
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first scenario

Table 10 Final experiment

results
Scenario Policy Power consumption (kWh) SLAV 9 106 VM migration Shut down

Scenario PABFD 158.3 9.888 29,848.7 5690

GA 162.5 9.409 30,368.8 5601

Proposed 150.02 9.179 28,174.7 5501

Scenario II PABFD 165.7 9.725 26,722.8 4440

GA 169.25 9.43 28,223.9 4310

Proposed 158.68 9.192 26,102.3 4110

Scenario III PABFD 171.5 11.01 23,594.1 6102

GA 174.22 10.58 25,487.9 6001

Proposed 163.05 10.32 24,931.5 5962
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the real cloud data center to better understand other

effective features of cloud data centers related to VM

allocation problem. We also will work on data analytics to

further improve resource management in cloud

environments.
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