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Abstract
The MapReduce (MR) scheduling is a prominent area of research to minimize energy consumption in the Hadoop

framework in the era of green computing. Very few scheduling algorithms have been proposed in the literature which aim

to optimize energy consumption. Moreover, most of them are only designed for the slot-based Hadoop framework, and

hence, there is a need to address this issue exclusively for container-based Hadoop (known as Hadoop YARN). In this

paper, we consider a deadline-aware energy-efficient MR scheduling problem in the Hadoop YARN framework. First, we

model the considered scheduling problem as an integer program using the time-indexed binary decision variables.

Thereafter, a heuristic method is designed to schedule map and reduce tasks on the heterogeneous cluster machines by

taking advantage of the fact that tasks have different energy consumption values on different machines. Our heuristic

method works in two phases, where each phase is composed of multiple similar rounds. We evaluate the proposed method

for large-scale workloads of three standard benchmark jobs, namely, PageRank (CPU-bound), DFSIO (IO-bound), and

NutchIndexing (mix-bound). The experimental results show that the proposed method considerably minimizes the energy

consumption for all benchmarks against the custom-made makespan minimizing scheme which does not consider energy-

saving criteria. We observe that energy-efficiency of the schedule generated by proposed heuristic stays within the 5% of

the optimal solution. Apart from this, we also evaluate the proposed heuristic against delay scheduler (the default task-level

scheduler in Hadoop YARN), and found it to be 35% more energy-efficient.
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1 Introduction

In the era of Big data analytics, large-scale data centers

have huge energy demands and thus given rise to various

energy efficiency issues. A typical data center consumes

electricity equivalent to 25000 households. Moreover, the

electricity consumption of worldwide data centers in 2012

was about 270 TWh [27]. This corresponds to almost 2% of

the global electricity consumption and has an approximated

annual growth rate of 4.3%. Since Hadoop MapReduce

(MR) is a widely used framework in data centers to analyze

a huge amount of data, we need to explore the various

possibilities to optimize energy consumption in context to

Hadoop.

There are two variants of Hadoop framework: (i) slot-

based [6] and (ii) container-based [28]. The container-

based Hadoop employs a new cluster manager known as

Yet Another Resource Negotiator (YARN). As depicted in

Fig. 1, mainly four methodologies are used to minimize the

energy consumption in any variant of Hadoop deployment.

These methodologies include (i) energy-aware data place-

ment at Hadoop Distributed File System (HDFS) layer (ii)

Dynamic Voltage and Frequency Scaling (DVFS) tech-

nique (iii) cluster-level resource management, and (iv)

energy-efficient job/task scheduling. In this paper, we have

adopted the last approach to optimize energy consumption.

In this approach, various map and reduce tasks are

assigned/scheduled to suitable energy-efficient nodes by
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taking advantage of hardware heterogeneity in order to

reduce energy consumption.

The MR schedulers for Hadoop can be classified as job-

level or task-level [25]. The default job-level schedulers

(i.e., FIFO, FAIR, and Capacity Schedulers), and a default

task-level delay scheduler [40] do not consider energy

minimization criteria while making scheduling decisions in

both variants of Hadoop. To overcome this problem, some

scheduling algorithms have been proposed in the literature,

which target to reduce energy consumption. However, most

of them are designed only for slot-based Hadoop. Thus,

there is a need to look for an energy-efficient scheduling

scheme exclusively for the YARN environment.

Besides minimizing power consumption, MR schedulers

need to complete production jobs in data centers within a

user-specified deadline. For example, the spam detection

task of Facebook is executed periodically and needs to be

completed before a given time. In view of this, we consider

the problem of deadline-aware Energy-efficient MR

Scheduling for YARN (EMRSY). Eventually, our problem

turns out to be same as in [15,39] as far as the energy

minimization objective and deadline constraint is con-

cerned. However, authors in these references have con-

sidered a slot-based Hadoop which has a different

mechanism for resource allocation and scheduling. Hence,

the mathematical modeling of the EMRSY problem and

subsequently designing a heuristic algorithm for it requires

an entirely different approach and is a very challenging

task, which we explain next.

1.1 Scheduling challenges in container-based
Hadoop

The scheduling in both variants of Hadoop differs in the

way various computing resources available of any node1

are allocated to map and reduce tasks. In traditional (slot-

based) Hadoop, resources are allocated in the form of a slot

which represents a fixed portion of node’s overall resource

capacity [28]. At each machine, a constant number of slots,

equals to the number of computing cores available at that

machine, are created separately for map and reduce tasks.

Each computing slot represents the same resource capacity

and can not exactly meet the heterogeneous resource

demand of different tasks. During the job execution, map

and reduce tasks are to be scheduled on their respective

slots.

On the other hand, YARN discards the idea of separate

computing slots for the map and reduce tasks. Moreover, it

allows map and reduce tasks to place their resource

requirements in the form a vector q~¼ hq1; . . .; ql; . . .; qjAji
where ql represents the amount of lth resource type and jAj
represents total resource types available at any machine.

The YARN allocates the exact amount of these resources in

the form of containers. A container represents the logical

collection of resources available at a node, and resembles

as a virtual machine. Currently, YARN supports two

resource types: memory and virtual cores. Therefore,

resource request vector of any task is represented as

hq1 MB; q2 VCi, where q1 and q2 denotes required amount

of memory in megabytes (MB) and number of virtual cores

(VC), respectively.

Figure 2 demonstrates the resource allocation concept in

YARN. There are two map tasks m1 and m2, and a reduce

task r1 to be scheduled on a YARN cluster of two machines

n1 and n2. Both map tasks have same resource request

vector as h6MB; 2VCi each, and reduce task has request

vector as h5MB; 1VCi. Moreover, both machine has a

total resource capacity2 of h64MB; 8VCi each. And now

suppose that tasks m1 and r1 are scheduled on machine n1
by any scheduling algorithm. In that case, two containers of

respective (and exact) resource demand are allocated

within machine n1 for both tasks as shown in Fig. 2.

Similarly, if task m2 is scheduled on machine n2, a con-

tainer of the exact amount of resources is created within

Energy-aware
data placement
at HDFS layer

DVFS scaling
Cluster level
resource
management

Energy-efficient
job/task scheduling

Energy saving
techniques for
Hadoop

Fig. 1 Energy saving techniques in Hadoop

r1
4 MB
1 VC

Available:
58 MB, 6 VC

m2
6 MB
2 VC

m1
6 MB
2 VC

machine n1 machine n2

Available:
54 MB, 5VC

Capacity:
64 MB, 8 VC

Capacity:
64 MB, 8 VC

Fig. 2 Task assignment and resource allocation in Hadoop YARN

1 The term node and machine have been used interchangeably in this

paper.

2 We use the same vector notation h�MB; �VCi to represent resource

capacity of machines.

684 Cluster Computing (2021) 24:683–699

123



machine n2. After task allocation, machine n1 is left with

h54MB; 5VCi resources whereas machine n2 is left with

h58MB; 6VCi resources. Moreover, when the tasks finish

their execution, both machines reclaim its allocated

resources. In any case, total number of tasks (and eventu-

ally total number of containers) scheduled on any machine

should not consume resources more than the machine’s

total resource capacity. For example, if we have so many

map tasks to be scheduled only on machine n1, then at most

four of them can be executed at a particular time instance.

1.2 Work done and contributions

We formulate the EMRSY problem for a single MR job as

an integer program. To solve the formulated problem, we

propose an offline heuristic algorithm which generates a

static schedule before the actual execution of MR job

begins. At the time of job execution, tasks are scheduled on

a particular node and at a designated time as specified in

the schedule. The algorithm uses a metric similar to the one

used in [15]. However, in our case, it is now calculated for

each node rather than for each slot. Based on this new

metric, nodes are arranged in a particular order and picked

one by one for task allocation. Apart from this, the pro-

posed heuristic separately calculates the map and reduce

deadlines unlike [15], to better schedule the tasks so that

job may complete its execution before user-specified

deadline.

Our algorithm schedules map and reduce tasks to vari-

ous machines in two disjoint phases by calling two separate

subroutines. In the first phase, it schedules all map tasks to

cluster machines in multiple similar rounds. Once all map

tasks are scheduled, it starts scheduling reduce tasks in the

second phase. The scheduling of reduce tasks are also

performed in various similar rounds. We evaluate the

performance of the proposed technique for a wide variety

of MR benchmark jobs and find that it saves a significant

amount of energy in comparison to a scheme that considers

only makespan minimization as its primary objective.

Being an offline scheduling algorithm, the proposed

approach requires the values of various input parameters

including processing time and energy consumption of tasks

in advance. The values of these two parameters can be

estimated with the help of profiling. In most data centers,

many production jobs are run periodically which creates a

huge amount of profiled historical data. For example, the

Facebook process GigaBytes of data every few minutes to

detect spams. The profiling technique has been successfully

utilized in many MapReduce scheduler proposed in the

past [3, 15, 17, 29, 30, 39]. To profile the desired input

parameters, we have designed an MR energy profiler which

do not rely on any external power meter as used in [15, 39].

1.3 Paper organization

The organization of the paper is as follows. Section 2

presents a brief discussion of energy-efficient scheduling

techniques in both variants of the Hadoop framework.

Section 3 formulates the EMRSY scheduling problem as an

integer program. Section 4 proposes a offline heuristic

method which produces sub-optimal schedules for map and

reduce tasks. Next, Sect. 5 presents the experimental

evaluation of the proposed technique followed by conclu-

sion in Sect. 6.

2 Related work

In this section, we discuss existing energy-efficient MR

scheduling schemes. For a better understanding, we clas-

sify the discussed techniques as slot-based and YARN-

based schemes.

2.1 Energy-efficient scheduling schemes in slot-
based Hadoop

To minimize the energy consumption, Yigitbasi et al. [38]

took the advantage of hardware heterogeneity of a Hadoop

cluster and proposed a scheme to schedule heterogeneous

workload (mix of IO and CPU-bound) by intelligently

assigning jobs to its corresponding energy-efficient node.

Mashayekhy et al. [14, 15] proposed a task-level offline

scheduler to improve the energy efficiency of a single

MapReduce job over a cluster of heterogeneous machines

while satisfying the service level agreement (SLA). The

problem of map and reduce tasks assignment to respective

slots has been modeled as an integer programming (IP)

problem with a deadline as one of the constraints. To solve

the formulated problem, two heuristics have been proposed

which take the differences in energy efficiency of machines

for different tasks into account and use a metric called

energy consumption rate (ecr) which is calculated for each

computing slot. The metric induces an order relation

among the machines for tasks allocation i.e., the slot with

the lowest ecr value is picked first for scheduling tasks on

it.

In order to improve the performance of the heuristic

method discussed in [15], Yousefi et al. [39] proposed a

task-based greedy heuristic, to establish the mapping

between slots and tasks. The heuristic minimizes the

energy consumption of an MR job without significant loss

in performance while satisfying a user-specific deadline.

On average, the proposed greedy heuristic can meet

deadlines as tight as 12% because it calculates map and

reduce deadline separately before starting the task
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placement. The time complexity of the proposed greedy

heuristic is Oðiðlog iþ k log kÞ þ jðlog jþ l log lÞÞ where

i and j represents the number of map and reduce tasks,

respectively. And k and l represents the number of map and

reduce slots, respectively.

Bampis et al. [2] considered the problem of minimizing

the weighted completion time of n MapReduce jobs with a

constraint of the energy budget in an environment where

processors have DVFS technology. The authors assumed

that the order of jobs is not fixed, and derived a polyno-

mial-time constant-factor approximation algorithm to solve

the formulated problem as integer program.

Wang et al. [32] considered a geo-distributed hetero-

geneous MapReduce clusters and proposed the energy-

aware task scheduling scheme which also take care of

deadlines, data locality and resource utilization. A mathe-

matical model is constructed for the considered problem. It

is well known that the energy consumption is closely

related to resource utilization in data centers. Their

scheme improves server resource utilization using fuzzy

logic which ultimately optimizes the energy consumption.

Zhang et al. [41] aim to reduce the energy consumption

of a MR job along with minimizing the makespan at the

same time, thus, making it a bi-objective optimization

problem. They model it as an integer linear program, while

ignoring the temporal dependency constraint between map

and reduce tasks. They propose a two phase heuristic

allocation (TPHA) algorithm to find a high-quality initial

feasible solution and then employ the NSGA-II meta-

heuristic to find the set of pareto optimal solutions. The

TPHA heuristic provides feasible schedule as the initial

population to NSGA-II algorithm.

Chen [4] take multiple MapReduce jobs for scheduling

and focus on the goal of jointly optimizing the scheduling

time, job costs and energy consumption. The authors

mainly rely on reducing the network traffic through data

locality to reduce the energy consumption. Hamandawana

et al. in [8] proposed a scheduling framework with two

modules, namely, a task scheduler and power management

module which coordinates with the scheduler to place the

nodes in two different power transition pools: high and low

state power pools by leveraging the node tagging infor-

mation. Zhou et al. [42] proposed a window-based dynamic

resource reservation and a heterogeneity-aware copy allo-

cation technique to schedule the straggler tasks with an aim

of energy minimization. Besides this new scheme, they

also devised a performance and an energy consumption

model to compare the different speculative execution

solutions proposed in the literature.

2.2 Energy-efficient scheduling schemes
in YARN-based Hadoop

Cai et al. [3] assumed a set of n MR jobs, each with its own

user-specified deadline to be executed in the YARN envi-

ronment. They designed a scheduler to minimize the

energy consumption, which works at the job level and task

level both. At job-level, the scheduler only attempts to

complete the jobs within its deadline, leaving the objective

of energy minimization at the task-level which is targeted

through the user-space DVFS governor. Pandey et al. [16]

presented a heuristic algorithm that greedily selects the best

energy-efficient node for task allocation. The proposed

scheme is capable of scheduling n number of MR jobs

algorithm, however, it does not consider any deadline

parameter.

Shao et al. [19] formulated the MR scheduling problem

for YARN architecture as an m-dimensional knapsack

problem (MKP) resulting in an integer program. Besides

energy minimization, the authors also considered the fair-

ness metric and proposed a heuristic approach to produce

the sub-optimal solution. Their scheme also employs a

power-down mechanism where in periods of low-utiliza-

tion some servers are switched off to save more energy.

Jin et al [11] employed two types of binning algorithms

for energy minimization in YARN environment. For CPU-

intensive batch jobs, they proposed a D-based binning

algorithm. On the other hand, for online jobs, they pro-

posed a K-based binning algorithm that can adapt to con-

tinuously arriving tasks. Shinde et al. [20] proposed a

algorithm for YARN environment and devised a metric

called Rank, which uses the progress score (PS) of cur-

rently executing tasks. The algorithm assigns task to con-

tainers without negatively impacting the makespan.

Now, we briefly discuss and mention some pointers to

other energy-saving techniques in the Hadoop framework

as shown in Fig. 1. Few significant works have been done

by Tiwari et al. in [22–24, 26] where authors have

employed the DVFS technology to save processor energy.

Li et al. [12] propose a temperature-aware power allocation

(TAPA) scheme which adjusts frequencies of CPUs

according to their temperature. Besides these works, Wirtz

et al. [33] also proposed a user-space CPU governor to

adjust processor frequency to save power, however, their

scheme run Hadoop on commodity hardware comprising

maximum 4 cores per node. An extensive analysis of the

frequency scaling technique to optimize energy consump-

tion in Hadoop is given in [10]. Wang et al. [31] built a

power controller which scale up CPU frequency in case of

CPU-intensive workloads and scale down CPU frequency

when I/O-intensive or Network-intensive workloads

emerge. The main goal is to dynamically search the
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performance-power consumption trade off by the proposed

control model.

Although D’Souza et al. [7] has not proposed any new

scheme for energy minimozation, they produce an empir-

ical analysis of energy consumption in all three default job-

level schedulers in Hadoop: FIFO, FAIR and Capacity

Scheduler (CS) with a conclusion that CS performs best

among them. As far as intelligent data placement tech-

niques at the HDFS layer are concerned, authors in

[13, 35–37] have proposed various schemes at the HDFS

layer to minimize energy consumption. The interested

readers are advised to refer to [18, 34] for a comprehensive

discussion of energy saving techniques in Hadoop.

3 The problem formulation

In this section, we formulate the EMRSY problem as an

integer programming (IP) problem and call it as EMRSY-

IP. We consider a MapReduce job J which is represented

by two sets of tasks: MT ¼ fm1; . . .;mjMT jg and

RT ¼ fr1; . . .; rjRT jg. The set MT and RT consist of

jMT j map tasks and jRT j reduce tasks, respectively. The
job J is to be processed by a YARN cluster comprising

jN j heterogeneous machines represented by a set

N ¼ fn1; . . .; njN jg. The energy consumption and pro-

cessing time of a map task mj 2 MT on machine ni 2 N
is eij and pij, respectively. Similarly, the energy con-

sumption and processing time of a reduce task rk 2 RT on

machine ni 2 N is eik and pik, respectively. Moreover, we

also consider a set A ¼ fa1; . . .; ajAjg which represents jAj
types of resources available at each machine.

Further, a two-dimensional resource capacity matrix RC

of size jN j � jAj is used to represent the total amount of

each resource type available at any node. The value

RC[i, l] indicates the total amount of resource type al 2 A
available at machine ni. Furthermore, a resource request

matrix RRm of size jMT j � jAj is defined to store the

amount of each resource type required by any map tasks for

its execution. Similarly, a two-dimensional matrix RRr of

size jRT j � jAj is also defined to store the amount of each

resource type required by any reduce tasks. Particularly,

the values RRm½j; l� and RRr½k; l� indicate the amount of a

specific resource type al 2 A required by map task mj and

reduce task rk respectively during its execution.

The problem here is to schedule all map and reduce

tasks over the cluster of machines in such a way so that the

total energy consumption is minimized. It is also required

that all tasks complete their execution within a given

deadline D while maintaining the temporal dependency

between map and reduce tasks i.e., a reduce task may start

only after the execution of all map tasks. Moreover, as we

have considered the YARN environment, scheduling pro-

cess needs to fulfill the resource constraint, that is, at a

particular time, no more tasks can be scheduled at any

machine beyond its total capacity.

The problem is formulated using time-indexed (TI)

decision variables [21], which is based on discretization of

time horizon t (t ¼ 0; 1; . . .; T) where time is divided into

discrete intervals. our TI formulation (EMRSY-IP) uses

two types of binary decision variables, xijt and yikt, where

xijt ¼ 1 (yikt ¼ 1) signals that map task mj (reduce task rk)

is scheduled on machine ni at time t. The formulation is as

follows:

min
XjN j

i¼1

XjMT j

j¼1

XT�pij

t¼0

eijxijt þ
XjN j

i¼1

XjRT j

k¼1

XT�pik

t¼0

eikyikt ð1Þ

subject to:

XjN j

i¼1

XT�pij

t¼0

xijt ¼ 1; ðj ¼ 1; . . .; jMT jÞ ð2Þ

XjN j

i¼1

XT�pik

t¼0

yikt ¼ 1; ðk ¼ 1; . . .; jRT jÞ ð3Þ

XjN j

i¼1

XT�pik

t¼0

ðt þ pikÞyikt �D; ðk ¼ 1; . . .; jRT jÞ ð4Þ

XjMT j

j¼1

Xt�1

s¼maxð0;t�pijÞ
RRm½j; l�xijs

þ
XjRT j

k¼1

Xt�1

s¼maxð0;t�pikÞ
RRr½k; l�yiks �RC½i; l�;

ði ¼ 1; . . .; jN j; t ¼ 0; 1; . . .; T � 1; l ¼ 1; . . .; jAjÞ
ð5Þ

XjN j

i¼1

XT�pij

s¼maxð0;t�pijÞ
xijs þ

XjN j

i¼1

Xt�1

s¼0

yiks � 1;

ðj ¼ 1; . . .; jMT j; k ¼ 1; . . .; jRT j; t ¼ 0; 1; . . .; T � 1Þ
ð6Þ

xijt 2 f0; 1g ði ¼ 1; . . .; jN j; j ¼ 1; . . .; jMT j;
t ¼ 0; 1; . . .; T � 1Þ

ð7Þ

yikt 2 f0; 1g ði ¼ 1; . . .; jN j; k ¼ 1; . . .; jRT j;
t ¼ 0; 1; . . .; T � 1Þ

ð8Þ

The decision variables of the formulation include:

xijt binary variable equals to 1 if map task mj is

scheduled on machine ni at time t and 0 otherwise

yikt binary variable equals to 1 if reduce task rk is

scheduled on machine ni at time t and 0 otherwise
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And, indices used in the formulation have following

meaning:

Index Meaning

i Index of cluster machines ði ¼ 1; . . .; jN jÞ
j Index of map task to be scheduled ðj ¼ 1; . . .; jMT jÞ
k Index of reduce task to be scheduled ðk ¼ 1; . . .; jRT jÞ
l Index of resource type ðl ¼ 1; . . .; jAjÞ
t Index of time ðt ¼ 0; 1; . . .; TÞ

In this IP formulation, the objective 1 is to minimize

total energy consumption. Constraint 2 and 3 are assign-

ment constraints that require each map and reduce task to

be assigned to one machine only once. Constraint 4 is

deadline constraint, which requires all tasks must finish

their computation before the user-specified deadline.Con-

straint 5 is a capacity constraint which requires that at any

instance of time, the number of tasks assigned to any

machine should not exceed its capacity limit. The con-

straint 6 establishes the temporal dependency between map

and reduce tasks. And lastly, constraints 7 and 8 ensure

that decision variables xijt and yikt take values either 0 or 1.

The formulation has OðjN jðjMT j þ jRT jÞTÞ decision

variables and OðjMT j þ jRT j þ jMT jjRT jT þ
jN jjAjTÞ constraints, that is, exponential in the input size

of the problem. Therefore, exponential time is required to

solve it optimally. However, LP relaxation of time-indexed

IP formulations provides a good lower bound to optimal

solutions in less time [1].

An example of optimal schedule We show an example of

an optimal schedule for an MR job comprising 5 map tasks

fm1;m2;m3;m4;m5g and 2 reduce tasks fr1; r2g when

executed on a cluster of 2 machines fn1; n2g. The resource
requirement, processing time in seconds (s), and energy

consumption in joule (J) of all map and reduce tasks on

both machines are shown in Table 1. The machine n1 has

resource capacity of h10MB; 3VCi, whereas machine n2
has h15MB; 4VCi. We use IBM ILOG CPLEX studio

v12.8 to exactly solve the EMRSY-IP formulation for the

above problem instance. For small problems, CPLEX

generates the optimal schedule in very quick time. Figure 3

shows the generated optimal schedule when the deadline

D = 15 s. The decision variables, which have value one,

are shown in the diagram itself. The total energy con-

sumption of 7 tasks for the generated optimal schedule is

24 J.

4 The Heuristic algorithm

This section presents the proposed (deadline-aware)

energy-efficient MapReduce scheduling algorithm for

YARN (EMRSAY) to solve the problem formulated in

Sect. 3. The algorithm is based upon a metric known as the

average energy consumption rate (avg ecr) similar to the

metric given in [15]. However, the avg_ecr metric in our

work has a difference, that is, in spite of each map and

reduce slot, the metric is now calculated for each cluster

machine separately for map tasks and reduce tasks. For a

particular machine ni, The metric avg_ecr is calculated as

the average ratio of energy consumption and processing

time as follows:

Table 1 Processing time and energy consumption of MR tasks

Task Resource requirement Processing time (s) EC (J)

n1 n2 n1 n2

m1 h5MB; 2VCi 2 3 4 5

m2 h5MB; 2VCi 5 5 3 5

m3 h5MB; 2VCi 4 7 4 4

m4 h5MB; 2VCi 6 5 2 3

m5 h5MB; 2VCi 4 4 3 4

r1 h2MB; 1VCi 4 3 2 8

r2 h2MB; 1VCi 3 2 6 5

EC energy consumption

y1,1,11 = 1
x1,5,0 = 1
x1,2,7 = 1
x1,1,5 = 1

m5〈5, 2〉
m1

〈5, 2〉
2 4 6 8 10

M
a
ch

in
e

1
(n

1
) Deadline = 15s

12 14 15

2 4 6 8 10

M
a
ch

in
e

2
(n

2
)

12 14 15

y2,2,12 = 1
x2,4,6 = 1
x2,3,0 = 1

m3〈5, 2〉

m4〈5, 2〉

Fig. 3 An example of optimal schedule when deadline D = 15 s
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avg ecrmi ¼

PjMT j
j¼1

eij
pij

jMT j ði ¼ 1; . . .; jN jÞ

avg ecrri ¼

PjRT j
k¼1

eik
pik

jRT j ði ¼ 1; . . .; jN jÞ

where avg ecrmi and avg ecrri represent average energy

consumption rate of machine ni for map and reduce tasks

respectively.

The proposed EMRSAY algorithm schedule the map and

reduce tasks to cluster machines in two separate non-over-

lapping phases, namely, map phase and reduce phase. The

map phase is triggered first by subroutine sched mapðÞ in

which scheduling decisions regarding all map tasks are

fixed. Whereas, in the reduce phase, triggered next by

subroutine sched reduceðÞ, scheduling decisions for reduce

tasks are taken. Both these phases are comprised of multiple

similar rounds and in each round (of any phase), one by one

all machines are packed with as many tasks as its total

resource capacity. The order in which machines are selected

for task allocation (or packing) is decided on the basis of

avg ecr metric. As we will see later that these metrics are

dynamic in nature and are repeatedly calculated at the start

of each round. The proposed algorithm also estimates the

map and reduce deadlines separately as in [39]. This better

guides the algorithm to schedule map and reduce tasks

within the user-specified deadline. The detailed working of

the algorithm is as follows.

Algorithm 1: Main Algorithm (EMRSAY)

1 t = 0
// Estimates separate deadlines for map

and reduce phase
2 for j = 1 to |MT | do

3 T
m

j =
∑|N |

i=1 pij
|N |

4 forall k = 1 to |RT | do

5 T
r

k =
∑|N |

i=1 pik
|N |

6 Dm = D ×
∑|MT |

j=1 T
m

j
∑|MT |

j=1 T
m

j +
∑|RT |

k=1 T
r

k

7 Dr = D
8 sched map();
9 sched reduce();

10 if MT �= φ‖RT �= φ then
11 No feasible schedule
12 return

13 else
14 Output: x, y

The main EMRSAY algorithm has been shown in

Algorithm 1 where it first initializes the time horizon vari-

able t ¼ 0, and then estimates map deadline Dm and reduce

deadline Dr. To achieve this, the algorithm requires two

parameters T
m
j and T

r
k for each map and reduce task

respectively. These parameters represent average processing

time of a respective task over all machines in the cluster.

After calculating these parameters in lines 3 and 5, the

algorithm calculates map deadline according to the expres-

sion given in line 6. Next, the reduce deadline Dr is set as

the job deadline D . Afterward, it simply calls two sub-

routines: sched mapðÞ and sched reduceðÞ, one after

another to schedule map and reduce tasks to different

machines in multiple rounds. After returning from

sched reduceðÞ subroutine, if there are some map or reduce

task still unallocated (line 10), the main algorithm tells that

no feasible schedule is possible and returns. Otherwise, it

outputs the values of decision variables x and y.

The subroutine sched mapðÞ has been shown in Algo-

rithm 2, which schedules map tasks on cluster machines in
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multiple rounds. It starts with initializing the variable

v ¼ 1. An iteration of the first while loop (lines 2–21)

represents a single round. At the starting of any round (say

vth), the subroutine initializes the variable round to v and

round timev to zero. The variable round represents the

current round and round timev represents the total duration

of vth round and equals to the maximum processing time of

any map task scheduled in that round. After initialization, it

creates a priority queue Q of all machines on the basis of

avg ecr metrics (lines 5–7). This priority queue Q is cre-

ated afresh in each round.

Next, during the while loop of lines 8–19, the subroutine

extracts a machine one at a time from this queue and

assigns as many map tasks to it as its resource capacity

while satisfying map phase deadline criteria. This process

is repeated until all machines are extracted or all map tasks

are allocated. The detailed explanation of this loop is as

follows. First of all, a node ni is extracted from this priority

queue in line 9. The machine which has the lowest average

rate of energy consumption has the highest priority of

being extracted from the queue. After extracting ni, all

unassigned map tasks mj are stored as a set smi on the basis

of processing time pij on this extracted machine (line 10).

Once the subroutine has the extracted machine ni and the

sorted set smi at hand, it starts assigning map tasks from the

set smi to the extracted node till the node ni is not full and smi
is not empty (lines 11–19).

During this scheduling process, the algorithm first takes

the map task mj which has maximum processing time on

node ni (line 12). And if its resource requirement can be

fulfilled by node ni and total processing time do not exceed

map deadline (line 13), the algorithm schedules this map

task mj on node ni in line 14 (xijt ¼ 1). The fulfillment of

resource requirement is checked by the expression RRm
j

~ þ
ROi
~ �RCi

~ in line 13, where the vector ROi
~ of size ðjAjÞ

represents the total amount of currently occupied (busy)

resources on ni. Apart from this, the vector RCi
~ represents

the resource capacity of node ni and RRm
j

~ represents the

resource request vector of map task mj. After the assign-

ment, various data structures are updated in lines 15–17. At

last, if the processing time of task mj is greater than the

current round timev, its value is updated as the value of pij.

This process is repeated till the node ni has some unallo-

cated resources and ordered set smi is not empty. After this

node becomes full, the algorithm extracts the next node

from queue Q and repeat the process (lines 8–19). Once all

nodes are extracted from the queue Q, the algorithm

updates the scheduling time horizon t in line 20 and enters

into the next round by incrementing the round counter by

one in line 21.

After the subroutine sched mapðÞ finishes the schedul-

ing of map tasks, the main EMRSAY algorithm calls the

sched reduceðÞ procedure (second phase) which schedules

reduce tasks also in multiple rounds. The procedure

sched reduceðÞ has been shown in algorithm 3 with nec-

essary modification as required. The detailed working of

this procedure is similar to sched mapðÞ procedure and we

skip its discussion.

4.1 Time complexity

The time complexity of EMRSAY is OðjMT jþjRT jþ
jMT jðjN j lg jN j þ jMT j2ÞþjRT jðjN j lg jN j þjRT j2ÞÞ.
There are four additive terms in this expression. The first

two terms correspond to two for loops of lines 2–3 and

lines 4–5, respectively in Algorithm 1. The third and forth

term correspond to time complexities of sched mapðÞ and
sched reduceðÞ subroutines, which are OðjMT j
ðjN j lg jN j þ jMT j2ÞÞ and OðjRT jðjN j lg jN j þ jRT j2ÞÞ
respectively. The complexity of sched mapðÞ subroutine is
calculated as follows. The while loop of lines 8–19 has the

complexity of OðjN jðlg jN j þ jMT j lg jMT j þ jMT j2Þ
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where first additive term is for extracting an element form

priority queue in line 9, second term is for sorting in line

10, and finally third term is for inner while loop of lines

11–19. The previous time complexity of lines 8–19 simply

reduces to OðjN j lg jN j þ jMT j2Þ. Further, the for loop of
lines 5–7 contributes OðjN j lg jN jÞ in running time.

Hence, running time of outer while loop of lines 2–21 is

calculated as OðjMT jðjN j lg jN j þ jMT j2ÞÞ which is

also equal to running time of sched mapðÞ subroutine.

Similarly, the complexity of sched mapðÞ subroutine is

calculated as OðjRT jðjN j lg jN j þ jRT j2ÞÞ.

4.2 A numerical example

We show an example to explain the working of our pro-

posed EMRSAY heuristic algorithm. We take same set of 5

map tasks fm1;m2;m3;m4;m5g, and a set of 2 reduce tasks

fr1; r2g as assumed in Sect. 3. The tasks are to be sched-

uled on 2 machines n1, n2 with resource capacity of

h10MB; 3VCi and h15MB; 4VCi, respectively. All other
characteristics has been shown in Table 1, with a user

deadline D is set as 15 s. We deliberately consider the

same problem instance to compare the sub-optimal

schedule generated by EMRSAY algorithm with the opti-

mal schedule in Sect. 3.

The algorithm starts by initializing time horizon variable

t ¼ 0 and then it calculates map and reduce deadlines. For

this purpose, it first calculates T
m ¼ f2:5; 5; 5:5; 5:5; 4g and

T
r ¼ f3:5; 2:5g. Afterwards the algorithm calculates map

deadline Dm ¼ 11:84 s and fixes the reduce deadline

Dr ¼ D ¼ 15 s. After this, it calls the subroutines

sched mapðÞ and sched reduceðÞ one after another. The

subroutine sched mapðÞ starts by initializing variable

v ¼ 1. The detailed explanation of different rounds of

sched mapðÞ procedure is as follows:

sched mapðÞ, Round 1: At the starting of the first round

(round ¼ v ¼ 1), the subroutine sets round time1 ¼ 0s.

Then, it calculates avg ecrm ¼ f0:93; 0:96g for both

machines n1 and n2. After this, a priority queue Q ¼
fn1; n2g is created based on avg ecrm values. The sub-

routine extracts n1 as the first node for scheduling map

tasks. For that purpose, it creates an ordered set sm1 ¼
fm4;m2;m3;m5;m1g on the basis of processing time of

unallocated map tasks on the first extracted machine n1.

The first map task m4 of ordered set sm1 is scheduled on

machine n1 (x1;4;0 ¼ 1). After this, the machine n1 has

remaining capacity of h5MB; 1VCi and is unable to

accommodate more map tasks. Hence, the second machine

n2 is extracted from the priority queue Q and remaining

unallocated map tasks ðm1;m2;m3;m5Þ are again sorted on

the basis of processing time on n2 to form the new ordered

set sm2 ¼ fm3;m2;m5;m1g. Next, the map tasks m3 and m2

are scheduled in that order on machine n2
(x1;3;0 ¼ 1; x1;2;0 ¼ 1). After this assignment, node n2 left

with capacity of h5MB; 0VCi and unable to accommodate

more tasks further. At this point of time, the round time1
parameter is calculated as 7 s (the maximum processing

time of a map task scheduled on any machine in this round)

and the priority queue Q becomes empty. Hence, the

subroutine enters into second round of scheduling after

setting the time horizon variable t ¼ 0þ 7 ¼ 7 s and

incrementing the variable v.

sched mapðÞ, Round 2: At the starting of second round,

the variable round is set to 2 and round time2 is initialized

as 0 s. Here, we have two map task m1 and m5 left for

scheduling. Hence, on the basis of energy consumption of

only these two task, the parameter average energy con-

sumption rate (avg ecr) of both machine is calculated as

avg ecrm ¼ f1:34; 1:33g and again a priority queue is

created as Q ¼ fn2; n1g. First n2 is extracted and map tasks

m1 and m5 are scheduled on it (x2;1;7 ¼ 1; x2;5;7 ¼ 1). After

the scheduling of last map task, round time2 is calculated

as 4 s and time horizon variable is set as t ¼ 11 s.

After the sched mapðÞ finishes its scheduling process,

the main algorithm calls the sched reduceðÞ subroutine

which schedules reduce tasks in multiple rounds (quite

similar to sched mapðÞ subroutine). It also starts by ini-

tializing the variable v ¼ 1. The detailed working of the

sched reduceðÞ procedure is as follows:

sched reduceðÞ, Round 1: In the first round, we calcu-

late avg ecrr ¼ f1:1; 2:58g and on the basis of these val-

ues, priority queue Q ¼ fn1; n2g is created. First, machine

n1 is extracted and ordered set sr1 ¼ fr1; r2g is imple-

mented. Thereafter, both these reduce tasks are scheduled

on n1 (y1;1;11 ¼ 1 and y1;2;11 ¼ 1). The parameter

round time1 is calculated as 4 s and time variable t is set to

15 s at the end of first round. Now, we have no more

reduce task to schedule hence, the procedure terminates

and returns to main EMRSAY algorithm.

As all the map and reduce tasks are scheduled on

machines within a given deadline, the main algorithm

EMRSAY produces the values of decision variables x and

y as the output. The total energy consumption of the gen-

erated schedule is 28 J, whereas the optimal schedule in

Sect. 3 consumes 24 J. However, optimal schedule gener-

ation costs much more time than the EMRSAY algorithm

as observed through experimental evaluations as explained

in the next section.

Cluster Computing (2021) 24:683–699 691

123



5 Experiments

We perform two sets of experiments to evaluate the per-

formance of proposed EMRSAY heuristic algorithm. In the

first set of experiments, we compare EMRSAY with two

different custom-made offline algorithms, namely,

L-BOUND and L-MSPAN. Both these algorithms are

designed especially for comparison with EMRSAY and

have the following interpretations:

The L-BOUND algorithm provides a lower bound to the

optimal solution of EMRSY-IP problem. This lower bound

is obtained by optimally solving the relaxed version of

EMRSY-IP problem that can be derived by relaxing the

binary integer restrictions on decision variables. We call

the relaxed problem as EMRSY-LP, where LP stands for

linear programming. For large scale big-data jobs, the

optimal solution to EMRSY-IP problem takes a huge

amount of time. Hence, we take the L-BOUND algorithm

to compare our results, which produces the result in a very

quick time. The L-MSPAN algorithm provides lower

bound to NP-hard makespan minimization (MSPAN)

problem which minimizes the completion time of last

reduce task. The MSPAN problem can also be formulated

as an IP problem (say MSPAN-IP) by simply changing the

objective function of Eq. 1, and its relaxed version (i.e.,

MSPAN-LP) is solved by L-MSPAN to derive a lower

bound. The L-BOUND and L-MSPAN have been imple-

mented using the JAVA API provided with IBM CPLEX

optimization studio which internally uses Simplex algo-

rithm [5] to solve the relaxed LP problems. Both

L-BOUND and L-MSAPN generate partial schedules as

the value of a decision variable can be any value between 0

and 1 which results in the partial assignment of tasks to

machines. Hence, the generated schedule can not be used in

practice but serves as a lower bound to their respective

optimal solutions.

In the second set of experiments, we compare the per-

formance of EMRSAY with delay scheduler [40] which is

the default task-level scheduler in Hadoop YARN. It is

used by all three default job-level FIFO, FAIR and

Capacity Scheduler to assign map and reduce tasks to

different machines on the basis of data-locality and fair-

ness. The delay scheduler does not consider any energy-

efficiency metric while tasks assignment.

As mentioned earlier, the EMRSAY, L-BOUND, and

L-MSPAN are offline scheduling algorithms that require

the value of different input parameters including process-

ing time and energy consumption of all map and reduce

tasks on each machine in advance to produce the static

schedule even before the actual execution of MR job

begins. Therefore, to profile the input parameters for the

first set of experiments, a five node experimental YARN

cluster is built using heterogeneous machines. Once the

profiling is done, all three offline algorithms are compared

through the simulations performed on a single machine,

and for that, we implement the EMRSAY algorithm in

JAVA.

On the other hand, when EMRSAY is compared with

the delay scheduler, the same experimental YARN cluster

is used as a testbed for analysis. Before discussing the

details of the YARN cluster, we mention the benchmark

jobs and workload sizes which are used in both sets of

experiments. The performance metrics, used for evalua-

tions in both sets of experiments, are described in Sects. 5.3

and 5.4.

5.1 Benchmark jobs used for evaluations

Experiments have been performed using three MapReduce

jobs from the HiBench benchmark suite. These bench-

marks have been listed in Table 2 where PageRank is a

CPU-bound, DFSIO is an IO-bound and NutchIndexing is a

mix-bound MR job. HiBench is a big data benchmark suite

that helps evaluate different big data frameworks in terms

of speed, throughput, and system resource utilization.

There are a total of 19 workloads in HiBench. The work-

loads are divided into 6 categories: micro, machine learn-

ing (ML), SQL, graph, web search, and streaming.

Particularly, for experiment set-1, we take all three

selected benchmarks to compare the performances of

EMRSAY against L-BOUND and L-MSPAN algorithms.

On the other hand, for the experiment set-2, we use only

PageRank job.

5.2 YARN cluster configuration and profiling

A five node Hadoop YARN cluster has been used to profile

the processing time and energy consumption of map and

reduce tasks. The cluster is composed of five nodes with

one node as master and remaining four nodes as slaves. The

master node has a 10-core Intel Xeon W-2155 processor,

64 GB RAM, and 2 TB hard disk. One of the slave nodes

has the same configuration as the master node, two slave

nodes have a 6-core Intel Xeon E5645 processor, 8 GB

RAM, and 1 TB hard disk each, and lastly, one slave node

Table 2 Selected HiBench workload

Workload Type Category

PageRank CPU bound Web search

DSFIO IO bound Micro bechmark

NutchIndexing Mix bound Web search
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has a 2-core Intel Core i5-7200U processor, 12 GB RAM,

and 1 TB hard disk. We use Hadoop 2.7.2 framework with

an inbuilt FAIR scheduler for profiling. The HDFS block

size is kept as 128 MB with a file replication factor of 3.

All nodes are connected through a 1Gbps network switch.

The cluster configuration has been summarized in Table 3.

To profile energy consumption and processing time, a

single benchmark job is executed at a time. The processing

time of various tasks on different machines can directly be

noted down from YARN log files. However, to compute

the energy consumption eij of a map task mj at the machine

ni during the execution, we use power model as shown in

Eq. 9. Similarly, the energy consumption eik of a reduce

task rk at the machine ni during the execution is calculated

using the power model shown in Eq. 10. Table 4 shows the

meaning of various symbols used in both power models.

The values of Pcpu
i ; Pmem

i can directly be taken from

hardware specification sheets provided by the manufacturer

of the respective component. Whereas, the values of Edisk
i ,

and Enic
i can easily be calculated by using the power con-

sumption of disk and network interface card (NIC) that can

also be taken from hardware specification sheets. The

values of pij=pik, dij=dik, and Nij=Nik are taken from YARN

log files.

eij ¼Pcpu
i � pij þ Pmem

i � pij þ Edisk
i � dij þ Enic

i � Nij

ð9Þ

eik ¼Pcpu
i � pik þ Pmem

i � pik þ Edisk
i � dik þ Enic

i � Nik

ð10Þ

In order to better predict the energy consumption and

processing time of tasks at the time actual performance

evaluation, we execute the single benchmarks jobs multiple

times during the profiling stage with different input file

sizes: 40 GB, 60 GB, 80 GB, and 100 GB. Moreover, for

each input file size, the process is repeated five times

resulting in 20 runs for each benchmark.

on a particular run, say u (1� u� 20), we take the

average energy consumption of all map tasks scheduled on

machine ni and denote it as emui . Next, we calculate the

minimum of all twenty average energy consumption of

map tasks scheduled on machine ni and denote it as

minuðemui Þ. Similarly, the expression maxuðemui Þ is calcu-

lated as the maximum of all twenty average energy con-

sumption of map tasks scheduled on machine ni. In the

same manner, we calculate the values of minuðpmui Þ and

max
u

ðpmui Þ as the minimum and maximum of average pro-

cessing time of all map tasks scheduled at machine ni. The

same procedure is followed for reduce tasks and the values

of minuðerui Þ, max
u

ðerui Þ, minuðprui Þ, and max
u

ðprui Þ are cal-

culated where all expressions have usual meaning.

During the actual performance evaluation, the values of

processing time pijði ¼ 1; . . .; jN j; j ¼ 1; . . .; jMT jÞ and

the energy consumption eijði ¼ 1; . . .; jN j; j ¼
1; . . .; jMT jÞ of the map tasks on machine ni are taken in

such a way so that these values may remain uniformly

distributed in [minuðemui Þ, maxuðemui Þ] and [minuðpmui Þ,
maxuðpmui Þ], respectively. Similarly, the processing time

and the energy consumption of the reduce tasks on machine

ni are kept uniformly distributed in [minuðerui Þ, maxuðerui Þ]
and [minuðprui Þ, maxuðprui Þ], respectively.

The EMRSAY, L-BOUND, and L-MSPAN also require

the user specified deadline (D) as one of the input param-

eters. And its value influences the possibility of getting the

feasible schedule under each algorithm. We set user

specified deadline according to Eq. 11 and denote it as DS

so that every time we get a feasible schedule during the

experiments. In Eq. 11, T
m
j ¼

PjN j
i¼1 pij
jN j and T

r
k ¼

PjN j
i¼1 pik
jN j

represents the average processing time of any map task mj

and reduce task rk, respectively.

DS ¼
PjMT j

j¼1 T
m
j þ

PjRT j
k¼1 T

r
k

jN j
ð11Þ

Although L-BOUND and L-MSPAN solve the relaxed

problem of their respective IPs and thereby take less CPU

time, it may further be reduced by choosing a suit-

able value for the input parameter T (the total discrete time

intervals). In this case, the value of the deadline parameter

D serves as a lower bound (LB) to T and we set TLB ¼ D. It

is to be noted that parameter T is only required in

L-BOUND and L-MSPAN algorithms.

5.3 Results and discussion: experiment set-1

As mentioned earlier, the experiment set-1, where we

compare EMRSAY with L-BOUND and L-MSPAN, is

performed for three different benchmark jobs as shown in

Table 2. For each job, we choose to evaluate three per-

formance metrics: total energy consumption (TEC) in joule

(J), schedule generation time (SGT) in seconds (s), and

Table 3 Cluster configuration

Machine Processor # physical cores RAM (GB) Disk (TB)

Master IX W-2155 10 64 2

Slave-1 IX W-2155 10 64 2

Slave-2 IX E5645 6 8 1

Slave-3 IX E5645 6 8 1

Slave-4 IC i5-7200U 2 12 1

IX Intel Xeon, IC Intel Core
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tightest satisfiable deadline (TSD) in seconds (s). The

metric TEC represents the total energy consumption of all

tasks following a schedule generated by a particular

scheduling algorithm. The metric SGT represents the

execution time (i.e., running time) of any scheduling

algorithm to generate a feasible schedule. The TSD rep-

resents the lowest value of deadline below which EMR-

SAY, L-BOUND, and L-MSPAN fail to generate a feasible

schedule. Obviously, it is better to have a lower TSD value,

which means the algorithm can schedule jobs under harder

conditions. To measure the TSD parameter, we ran

EMRSAY, L-BOUND, and L-MSPAN several times in a

binary search manner for each workload to find the tightest

deadline that each algorithm can meet. For each MR job,

the values of these metrics are evaluated for eight different

workload sizes, as shown in Table 5. The smallest work-

load is represented by (128M, 64R) which has 128 map

tasks and 64 reduce tasks, i.e., 192 tasks in total. Whereas

the largest workload, represented by (512M, 512R), has a

total of 1024 tasks consisting of 512 map and 512 reduce

tasks.

Apart from these metrics, we also analyze the sensitivity

of total energy consumption on the deadline parameter. For

that, the number of map and reduce tasks are fixed as

(256M, 256R), and the deadlines are varied from DS � 40

to DS þ 60 where DS represents the satisfiable deadline

calculated by Eq. 11.

5.3.1 CPU-bound load

Figure 4 shows the performance of EMRSAY against the

L-BOUND, and L-MSPAN algorithms for the CPU-bound

PageRank benchmark. Particularity, Fig. 4a shows the total

energy consumption of tasks following the schedules

generated by all three algorithms for different workload

sizes. It is observed that energy consumption in EMRSAY

is very close to the L-BOUND algorithm for all workload

sizes. This indicates that our proposed scheme is also very

close to optimal energy consumption. On the other hand,

the energy consumption in L-MSPAN scheme is far more

than EMRSAY and L-BOUND schemes as the main

objective of L-MSPAN is to minimize the completion time

of the last reduce task. Further, these results show that the

schedules produced by EMRSAY consume on average

37.23% less energy in comparison to L-MSPAN and just

4.6% more energy in comparison to L-BOUND algorithm.

This reduction of 37.23% in energy consumption makes

EMRSAY a suitable choice to replace makespan mini-

mizing schedulers in YARN framework. In addition, the

results also clearly show the sensitivity of energy con-

sumption on the total number of map and reduce tasks. We

note that energy consumption of tasks in all three algo-

rithms continuously increases when the total tasks are

increased from 192 to 1024.

Figure 4b shows the SGT of all three algorithms for

different workload sizes. It is seen that all algorithms

manage to produce a feasible schedule within one second

for all workloads sizes. Particularly, the proposed algo-

rithm EMRSAY generates a feasible schedule in less than

0.01 seconds for the biggest workload (512M, 512R). It

should be noted that L-BOUND and L-MSPAN solve the

relaxed version of their respective (NP-hard) IP problems,

and thus both manage to produce the near-optimal schedule

very fast. We could not get the optimal solution even after

one hour. As far as the sensitivity analysis of SGT on the

Table 4 The meaning of

symbols used in power

functions

Symbol Meaning

Pcpu
i CPU power of machine ni in W

Pmem
i Memory module power of machine ni in W

Edisk
i

Energy consumed to read/write a single byte on disk of machine ni in J

Enic
i Energy consumed to sent/receive a single byte through NIC of machine ni in J

pij=pik CPU time of task mj=rk on machine ni in s

dij=dik Total disk IO in bytes for task mj=rk on machine ni

Nij=Nik Number of shuffle bytes for task mj=rk on machine ni

Table 5 Workload size for the CPU, IO and mix-bound experiments

Workload #map tasks #reduce tasks #total tasks

(128M, 64R) 128 64 192

(128M, 128R) 128 128 256

(256M, 64R) 256 64 320

(256M, 128R) 256 128 384

(256M, 256R) 256 256 512

(512M, 128R) 512 128 640

(512M, 256R) 512 256 768

(512M, 512R) 512 512 1024
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workload is concerned, it increases very slowly as the

number of map and reduce task is increased.

Figure 4c shows the tightest satisfiable deadline (TSD)

under EMRSAY, L-BOUND, and L-MSAPN for different

workload sizes. It shows that the TSDs under these algo-

rithms increases swiftly as the number of map and reduce

tasks are increased. Further, the experiments show that

L-BOUND and L-MSPAN can meet the deadline 17.18%

and 19.78% shorter than EMRSAY respectively.

Lastly, Fig. 5 shows the sensitivity analysis of energy

consumption on different user deadline. The results show

that as we relax (i.e., increase) the deadline, total energy

consumption in all algorithms is reduced. For example, at

deadline DS, TEC of EMRSAY, L-BOUND, and L-

MSPAN is 35,152, 32,519, and 56,176 J respectively while

at deadline DS þ 20, it is 34,252, 31,287, and 54,173 J

respectively. When a production job in any data center

(e.g., spam detection job in Facebook) is executed over a

fixed-size input file, it creates a constant number of map

and reduce tasks. In that case, it is concluded that the value

of the user deadline supplied with these jobs affects the

total energy consumption during the execution.

5.3.2 IO bound load

To evaluate the performance of EMRSAY for the IO-

bound load, we take the DFSIO benchmark job and per-

form the same sets of experiments as in Sect. 5.3.1. Fig-

ures 6 and 7 shows the various experimental results

obtained for the experiments.

Particularly, Fig. 6a shows the TEC of tasks in EMR-

SAY, L-BOUND, and L-MSPAN algorithms for a different

number of map and reduce tasks. The results show that the

energy consumption in EMRSAY is very close to the

L-BOUND algorithm where tasks consume only 4.6%

more energy on average. Also, as in the case of CPU-bound

load, EMRSAY performs far better than L-MSPAN algo-

rithm and saves 41.21% more energy on average. If we

compare these results with the CPU-bound (PageRank)

experiments shown in Fig. 4a, we observe that for the same

number of map and reduce tasks, the energy consumption

of EMRSAY, L-BOUND, and L-MSPAN is always less as

the CPU consumes more power than the other IO compo-

nents. As far as the energy sensitivity on the number of

map and reduce tasks is concerned, energy consumption is

always large on bigger workloads. For example, the total

energy consumption of EMRSAY, L-BOUND, and

L-MSPAN algorithms for workload (256M, 128R) are

22,896, 20,319, and 34,193 J respectively, while the total

energy consumption for workload (256M, 256R) are

31,358, 28,083, and 52,552 J respectively.

Figure 6b shows the SGT of EMRSAY for different

DFSIO workload sizes in comparison with L-BOUND and

L-MSPAN. The results conclude that EMRSAY produces

the feasible schedule within 0.006 s on average that makes

it suitable for even IO-bound workloads. Further, Fig. 6b

presents the TSDs of these offline algorithms for different

workloads. It is observed that the value of TSD increases

for all algorithms as the number of map and reduce tasks

are increased. The L-BOUND and L-MSPAN algorithms

perform better than EMRSAY and achieves 15.56% and
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18.12% shorter deadline in case IO-bound loads. More-

over, in case of DFSIO job, all algorithms could not

achieve deadline as tight as PageRank job. For example,

EMRSAY achieves the TSD of 199 and 190 s for DFSIO

and PageRank jobs respectively for the workload (256M,

128R). Thus, the user can provide tighter deadlines in case

of CPU-bound loads.

At last, Fig.7 shows the sensitivity analysis of energy

consumption on different deadline parameters. The results

show same behavior as PageRank job, that is, under tighter

deadlines more energy is consumed in comparison to

relaxed deadlines.

5.3.3 Mix-bound load

In the last experiment, we choose NutchIndexing job which

is CPU-bound during map stage and more disk IO-bound in

the reduce stage, making it a mix-bound job overall [9].

Figure 8a presents the TEC in all three algorithms under a

variety of workloads of NutchIndexing benchmarks. It

shows the same behavior as PageRank and DFSIO

benchmarks, that is, energy consumption increases as the

number of map and reduce tasks are increased. However,

for mix-bound benchmark job, energy consumption in

EMRSAY is higher than CPU and IO-bound jobs for the

same number of map and reduce tasks. For example,

energy consumption is 22,703 J under EMRSAY for the

mix-bound job while under CPU and IO-bound jobs, it is

17,501 and 16,128 J, respectively when workload is

(128M, 128R).

Figure 8b shows the schedule generation time (SGT) of

EMRSAY for different workloads in comparison with the

SGT of L-BOUND and L-MSPAN algorithms. The results

show that SGT follows the same trends as in the case of

PageRank and DFSIO benchmarks. We observe that

EMRSAY produces the feasible schedule within 0.006s on

average that makes it suitable for even mix-bound work-

loads. Further, TSD of all three algorithms for NutchIn-

dexing job shows the same behavior as in PageRank and

DFSIO benchmarks as shown in Fig. 8c. The results show

that TSD increases as the number of map and reduce tasks

are increased. However, in NutchIndexing job, the algo-

rithms fail to meet deadlines as tight as PageRank and

DFSIO jobs. For example, EMRSAY achieves the TSD of

203 s while L-BOUND and L-MSPAN achieve the TSD of

196 and 190 s respectively for the workload (256M, 128R).

Thus, the user can provide tighter deadlines in case of CPU

and IO-bound loads. At last, Fig. 9 shows the result of the

sensitivity analysis of energy consumption on different

deadline parameters. The results show that under tight

deadlines more energy is consumed in comparison to

relaxed deadlines.

5.4 Results and discussion: experiment set-2

In the second set of experiments, we compare the perfor-

mance of EMRSAY against the delay scheduler, the default

task-level scheduler in YARN. We choose two perfor-

mance metrics: total energy consumption (TEC) in joule

(J), and the tightest satisfiable deadline (TSD) in seconds

(s). Both these metrics (i.e., TEC, and TSD) are evaluated

for the following input data size: 15 GB, 25 GB, 35 GB, 45
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GB, 55 GB, 65 GB, and 75 GB. As this is the real testbed

experiments, we do not have direct control over the number

of map and reduce tasks. All we can do is to increase the

size of input file which eventually increases the number of

map and reduce tasks. For a input file of size X GB, the

dðX � 1024Þ � 128e number of map tasks are created as we

keep the HDFS block size as 128 MB. The number of

reduce tasks are set as one-third of map tasks. we also

evaluate the sensitivity of energy consumption on deadline.

To achieve that, the input data size is kept as 35 GB, and

the deadlines are varied from DS � 40 to DS þ 60 where DS

represents the satisfiable deadline.

Figure 10a shows the TEC of tasks when they follow the

schedule generated by EMRSAY and delay algorithms. We

notice that for a particular workload size, the EMRSAY

schedule consumes less energy than delay scheduler. For

instance, energy consumption in EMRSAY and delay

scheduler is 17,490 and 24,079 J, respectively for input

data size of 35 GB. Moreover, as we increase the size of

input data, the TEC also increases in both algorithms.

Figure 10b shows that TSD in case of EMRSAY is always

less than delay scheduler for particular data size. Also,

TSD for both EMRSAY and delay scheduler increases as

we increase the input data size. This concludes that

EMRSAY is able to generate a feasible schedule in tighter

deadline constraints. Finally, Fig. 11 compare both algo-

rithms on the basis of energy sensitivity on deadline. The

figure shows that energy consumption in both of them

decreases as we relax the deadline. For example, when the

deadline is DS þ 20, energy consumption is 34,252 and

37,465 J in EMRSAY and delay scheduler respectively. On

the other hand, when the deadline is DS þ 40, energy

consumption is 33,154 and 36,176 J, respectively.
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6 Conclusion

The minimization of energy consumption in the Hadoop

framework is a very important research field in the era of

big data and green computing. In this paper, we considered

the problem of scheduling map and reduce tasks of a single

MR job in order to minimize energy-consumption in

Hadoop YARN, and formulated this problem as an integer

program. As the formulated problem is strongly NP-hard,

we proposed a heuristic approach called EMRSAY, which

generates sub-optimal schedules in polynomial time.

Experimental results for a wide variety of benchmarks

show that the proposed heuristic algorithm saves a signif-

icant amount of energy. We have also compared the pro-

posed EMRSAY algorithm with the default task-level

delay scheduler in Hadoop and conclude that EMRSAY

saves up to 35% energy. As the Hadoop YARN can be used

for a variety of big data applications other than MapRe-

duce, EMRSAY may be redesigned with suitable modifi-

cation for other applications too.

Our future plan has two directions, first is to design a

dynamic MapReduce scheduler which does not require any

profiling and can be used for ad-hoc jobs. Second is to

build an energy-efficient YARN scheduler that can handle

a mix of Big Data jobs e.g., MapReduce and Spark

simultaneously.
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