
Towards an optimized distributed deep learning framework
for a heterogeneous multi-GPU cluster

Youngrang Kim1
• Hyeonseong Choi1 • Jaehwan Lee1 • Jik-Soo Kim2

• Hyunseung Jei3 •

Hongchan Roh3

Received: 29 November 2019 / Revised: 3 May 2020 / Accepted: 21 June 2020 / Published online: 11 July 2020
� Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This paper presents a novel ‘‘Distributed Deep Learning Framework’’ for a heterogeneous multi-GPU cluster that can

effectively improve overall resource utilization without sacrificing training accuracy. Specifically, we employ a hybrid

aggregation approach using a parameter-server and all-reduce schemes in order to address potential performance degra-

dation problems in running deep learning applications on a heterogeneous computing system. In addition, we design and

implement an asynchronous large mini-batch training mechanism to maintain training accuracy for asynchronous data-

paralleled deep learning processing with enhanced collective communication capability based on MPI. We successfully

implement our proposed framework on TensorFlow and perform extensive experiments in both of homogeneous and

heterogeneous computing systems. Evaluation results show that our proposed framework can improve computing per-

formance by decreasing I/O bottlenecks, and effectively increasing the resource utilization in the heterogeneous multi-GPU

cluster.

Keywords Data parallel � Distributed deep learning � Heterogeneous cluster � Large-scale deep learning

1 Introduction

Recently, distributed deep learning frameworks have been

proposed [1] to accelerate overall deep learning computa-

tions by exploiting multiple GPUs and multiple computing

nodes. Typically, distributed deep learning mechanisms

can be classified into asynchronous and synchronous

aggregations based on the execution timing of the opera-

tions. Also, it can be further categorized into parameter-

server [2] and all-reduce [3] schemes depending on the

methods of exchanging data for the aggregation among

training workers. However, employing combinations of

these distributed deep learning mechanisms on top of a

heterogeneous multi-GPU cluster may result in lower

computing resource utilization.

In the case of synchronous training, other training

workers may have to wait a substantial amount of time due

to relatively slow workers (stragglers) which results in

lower computing performance. To address such problems,

Ho et. al. proposed a Stale-Synchronous Parallel Param-

eter Server [4], which worked by specifying the staleness

threshold. Each worker maintained its difference in the

number of training iterations compared to the slowest

worker below the staleness threshold. However, even with

this approach, the total computing performance would still

degrade because workers had to delay the computation for

slower workers.

& Jaehwan Lee

jlee@kau.ac.kr

Youngrang Kim

kimyr207@gmail.com

Hyeonseong Choi

chyon794@gmail.com

Jik-Soo Kim

jiksoo@mju.ac.kr

Hyunseung Jei

hsjei@sk.com

Hongchan Roh

hongchan.roh@sk.com

1 Korea Aerospace University, Goyang-si, Republic of Korea

2 Myongji University, Yongin-si, Republic of Korea

3 SK Telecom ML Infra Lab., Seongnam-si, Republic of Korea

123

Cluster Computing (2020) 23:2287–2300
https://doi.org/10.1007/s10586-020-03144-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-6248-9567
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03144-9&domain=pdf
https://doi.org/10.1007/s10586-020-03144-9

To address this problem, we have designed a novel

distributed deep learning framework that can efficiently

increase the usage of computing resources on the hetero-

geneous multi-GPU cluster without degrading training

accuracy. In addition, we have implemented our proposed

design on a well-known distributed deep learning frame-

work, Google’s TensorFlow [5]. Specifically, the main

contributions of our paper are as follows:

– First, we propose a hybrid design with parameter-server

and all-reduce schemes. Our proposed design effec-

tively utilizes asynchronous parameter-server aggrega-

tion for inter-worker node communications, and

synchronous all-reduce method for local aggregation

among intra-node GPUs. Also, we add a local param-

eter server process between the worker and parameter

server to reduce network communication overhead.

With this structure, the overall computational resource

usage rate and performance on the heterogeneous

cluster can be improved.

– Second, we propose an asynchronous large mini-batch

training mechanism to guarantee the learning accuracy.

Large mini-batch training [6] updates the parameter

when the training of a specific sized mini-batch is

completed. We distribute parameter update cycles

according to the performance ratio of each worker.

When the training is finished for the cycle, the worker

receives the updated parameter from the parameter-

server and continues to the next large mini-batch

training process.

– Third, we exploit the MPI (Message Passing Inter-

face) [7] to support the effective communication of the

proposed system, most of which is composed of

collective communication patterns. Because the Ten-

sorFlow API cannot efficiently support the MPI com-

munications, we convert the MPI API to the operation

of TensorFlow using py_func.

To evaluate our proposed framework, we use the ResNet-

50 model [8] to train ImageNet data sets [9], and we

employ four different types of GPUs. First, we use only a

single GPU of each type to investigate the performance

trends based on the number of images processed per sec-

ond. Secondly, we have performed cluster-level experi-

ments using homogeneous and heterogeneous multi-GPU

clusters with distributed TensorFlow and our proposed

framework. Our experimental results demonstrate that the

proposed design improves the overall performance by up to

18% and 10% in homogeneous and heterogeneous com-

puting clusters respectively, compared to the existing

Distributed TensorFlow. In addition, unlike Distributed

TensorFlow, our proposed framework can achieve average

GPU performance similar to that of a single GPU which

indicates the improved utilization of computing resources

in the cluster.

2 Background

2.1 Distributed deep learning

To accelerate deep learning computation, developers and

researchers have generally used multiple GPUs per node

and a large-scale multi-GPU cluster that can reduce the

overall training time. The most popular method of dis-

tributing the deep learning workload is data-paralleled

deep learning [1]. In data parallelization, additional

aggregation processing is executed to reflect the contents

learned by each GPU in the whole training. Data-parallel

deep learning can be classified into asynchronous and

synchronous ways depending on the aggregation execution

timing. After summing or averaging gradients computed at

each GPU, an aggregation operation is performed, and all

training parameters are subsequently adjusted. Data-paral-

lel deep learning can also be divided into parameter-ser-

ver [2] and all-reduce [3] schemes depending on the

method of exchanging data for the aggregation between

GPUs. Distributed TensorFlow [10] is one of the most

popular distributed deep learning frameworks that can

support the parameter-server-based data-parallel mecha-

nisms (as depicted in Fig. 1). In the parameter-server

scheme, overall processes are divided into two groups-

parameter servers and workers. Parameter servers basically

update global model parameters with gradients computed

by workers and send the latest model parameters to

workers. Workers then receive model parameters from

parameter servers and compute their local gradients. After

successfully completing the computation of gradients,

workers send the computed gradients to parameter servers.

On the other hand, in the case of the all-reduce scheme,

workers send and receive parameters and gradients with

each other and perform aggregations [3] without any cen-

tralized control (e.g., parameter servers) as shown in Fig. 2.

Fig. 1 Architecture of parameter-server method

2288 Cluster Computing (2020) 23:2287–2300

123

2.2 Parameter update state

Due to the nature of the distributed deep learning process,

an aggregation operation must be performed (either syn-

chronously or asynchronously). In a synchronous aggre-

gation mechanism, the aggregation operation is performed

for each iteration, and after updating parameters such as

weights, synchronization is executed by broadcasting the

parameters to all workers. However, with the asynchronous

method, the parameter server aggregates the learning

results through sequential receipts from workers, updating

the parameters, and immediately sending updates to the

workers. Therefore, unlike the synchronous aggregation

method, all workers may learn with different parameters

with each iteration. Because of these characteristics, for a

heterogeneous computing system, workers whose compu-

tational performance is relatively lower may have older

parameters that can affect the overall training accuracy.

To solve such problems, Q. Ho proposed a Stale-Syn-

chronous Parallel Parameter Server [4]. It works by spec-

ifying the staleness threshold, and if the difference of the

learning clock with the slowest worker is greater than the

staleness threshold, the worker pauses training. The paused

worker resumes training again when the clock difference

with the slowest worker become less than the staleness

threshold. Using this method can lower the differences

between the training clocks of the workers. However, a

worker with higher computing performance must still delay

its own training, so that it is impossible to fully utilize the

computing resources such as the GPUs of all workers.

In the case of Facebook, a large mini-batch training

experiment was performed to analyze learning accuracy

according to different batch sizes during distributed deep

learning [6]. The large mini-batch training carried out by

Facebook worked synchronously and cluster trained an 8k

batch for a single iteration using 128 GPUs that trained 64

mini-batches for each GPU. When the training used batch

sizes less than 8k, the change of loss per epochs was almost

identical, but the experiment demonstrated that the rate of

change of loss decreased when using batches larger than

8k. However, this experiment was synchronous, which may

have led to poor resource utilization in the heterogeneous

computing cluster.

2.3 Message passing interface (MPI)

MPI is a standardized data communication library for

message passing parallel programs. It has a high portability

of different systems, and a manager that directly manages

processes to internally join in communication opera-

tions [7]. MPI allocates jobs on a per process basis and the

processes send and receive messages with other processes

in a set called a communicator. The communication

methods used by MPI are classified into point-to-point and

collective communications. Point-to-point communication

refers to a method in which one reception process corre-

sponds to a single transmission process. Collective com-

munication is performed by all processes of the

communicator. For example, point-to-point communication

includes MPI_Send and MPI_Recv, whereas MPI_Bcast

and MPI_Reduce are included in collective communica-

tion. As the message size increases, bandwidth can be used

more efficiently. Therefore, it is important to be able to

send the largest possible message when using MPI. For

distributed deep learning, without optimizing the data

transfer for gradients and parameters, the computation

performance of the training will be reduced because of the

network bottlenecks. These data transfer processes can

perform efficient distributed deep learning by using the

MPI communication routines.

2.4 Horovod

Distributed TensorFlow has problems with scalability due

to communication overhead. For example, when training is

performed using 128 GPUs, about half of the computing

resources were not available (i.e. 50% resource utilization).

To address this problem, Uber developed Horovod, which

can reduce this communication overhead and achieve high

scalability [3]. Specifically, Horovod utilizes the ring-type

all-reduce method, and the collective communication of

MPI and NCCL to optimize the network usage. All-reduce

can efficiently use the network when the data used for

communication is sufficiently large. However, it is not

optimized for small sized data. Therefore, Horovod applies

an algorithm called Tensor Fusion that can integrate sev-

eral tensors before Horovod’s all-reduce is called. This can

result in improved network usage efficiency. The Tensor

Fusion provides 65% better performance than unoptimized

network, and Uber has achieved 88% resource utilization

when training Inception V3 and ResNet-101 models using

128 GPUs.

Fig. 2 Architecture of ring all-reduce method

Cluster Computing (2020) 23:2287–2300 2289

123

2.5 Python asyncio

When using multiple threads with Python, only a single

thread can access the Python object due to ‘‘Global Inter-

preter Lock (GIL)’’. This is a type of mutex used for the

memory management in Python programs. Therefore, only

a single task can actually work even if the program itself is

implemented with multi-threading. In the case of dis-

tributed deep learning, many workers can communicate

with a single global parameter server simultaneously.

However, because of GIL, the global parameter server can

receive the gradient from a specific single worker and

execute training using the gradient, which prevents it from

immediately continuing to receive the next worker’s gra-

dient. This can cause delays in other workers’ I/O opera-

tions, which can result in a significant increase to the

overall training time. To address this problem, Python

supports a library called asyncio.

Asyncio is a Python library supported from Python

3.4 [11]. By using asyncio, CPU computations and I/O

operations can be effectively overlapped which can reduce

the overall I/O bottleneck. Python has added two functions,

async and await, for using asyncio. Async is a function for

declaring an asynchronous co-routine. Await is a function

for waiting for the completion of the next asynchronous co-

routine and the shift to other asynchronous co-routines.

Asynchronous co-routines declared by async are scheduled

by the event loop obtained using get_event_loop().

The asynchronous co-routines waiting for completion

through await are stored in a queue. The event loop assigns

the CPU to a completed asynchronous co-routine that

requires CPU computations. In this way, asyncio can par-

allelize CPU tasks and I/O operations.

However, most Python functions are based on blocking

I/O operations rather than asynchronous co-routines. To

execute these blocking I/O functions asynchronously,

Python supports the run_in_executor function of the

event loop. The run_in_executor function allows

blocking I/O operations to be run in parallel with a current

asynchronous co-routine by executing a blocking I/O task

through another thread or process. The network I/O over-

head caused by the transmission of parameters in a dis-

tributed deep learning system can also be a substantial

performance degradation problem. However, by leveraging

the asyncio functionality in Python, we can also effectively

overlap the training operations and network I/O tasks in the

distributed deep learning which can potentially contribute

to the improved scalability and throughput.

3 Motivations

As we discussed in Sect. 2.1, data-parallel distributed deep

learning frameworks can be divided into parameter-server

and all-reduce schemes.

The parameter-server method collects gradients com-

puted in each GPU from the CPU or GPU memory, exe-

cutes an aggregation operation, and then broadcasts the

aggregated gradients to all GPUs. As a result, all GPUs are

periodically synchronized. This creates an advantage in

that all GPUs share the same parameters when using the

parameter-server scheme synchronously, and therefore

training accuracy can be guaranteed. However, when using

a heterogeneous computing system where the performance

of each GPU might differ, the overall computing perfor-

mance may be degraded due to stragglers (i.e. GPUs with

relatively lower processing performance). With asyn-

chronous aggregation, this potential performance degra-

dation problem may be addressed since faster GPUs do not

have to wait for slower GPUs by skipping the synchro-

nization step for every iteration. However, this can still

cause network bottlenecks by concentrating I/O operations

on specific devices that perform aggregations such as

parameter servers.

In the all-reduce scheme, it is possible to avoid network

bottlenecks by distributing I/O operations to multiple

devices to execute peer-to-peer communications without

centralized communication as in the parameter-server

method. However, because all GPUs can perform aggre-

gations after computing gradients, only synchronous

operations are possible. Therefore, overall computing per-

formance can be degraded by a worker with the lowest

computing performance in a heterogeneous computing

cluster.

To address the problems inherent in the existing data-

parallel distributed deep learning schemes, we have

designed a novel distributed deep learning framework that

can effectively increase the computing resource utilization

on a heterogeneous multi-GPU cluster without degrading

the training accuracy.

4 Architecture and implementation

In this section, we propose a method to perform efficient

distributed deep learning when using a heterogeneous

multi-GPU cluster. Our proposed solution uses a hybrid

approach that employs parameter-server and all-reduce

methods, and it executes aggregation through collective

communication of MPI. In addition, we make full use of

computational resources in the heterogeneous cluster

2290 Cluster Computing (2020) 23:2287–2300

123

without lowering accuracy by using asynchronous large

mini-batch training.

4.1 Hybrid-aggregation for heterogeneous
capability

Distributed TensorFlow uses the parameter server method,

which is the most traditional distributed deep learning

method. For multi-GPU distributed processing, Distributed

TensorFlow creates worker processes for each worker

node. The worker aggregates the gradients computed by

GPUs on that worker node. The local aggregation is usually

performed by a CPU. After the local aggregation, a worker

sends aggregated gradients to the parameter server for

global aggregation, and receives the updated parameter to

broadcast to all GPUs. Another method is to create worker

processes for each GPU on the worker node. Without local

aggregation, each worker process sends computed gradi-

ents directly to the parameter server. With Uber’s Horovod,

which uses ring-type all-reduce, worker processes are

created for each GPU. All worker processes in a cluster

communicate in a peer-to-peer method between other

worker processes without the parameter server. However,

when we use distributed deep learning mechanisms with a

heterogeneous computing cluster, the following perfor-

mance degradation problems can occur.

– First, with the asynchronous parameter- server method,

a network bottleneck can occur because I/O operations

from workers are concentrated on the parameter server.

– Second, I/O bottlenecks can be solved when performing

local aggregation after a single process uses a multi-

GPU in each worker node. However, GPU computa-

tions are delayed because aggregation is computed on

the CPU.

– Third, when using the all-reduce method, network I/O

can be solved, but workers have to wait for the worker

possessing the relatively lower computing performance.

To address these problems, we propose a hybrid structure

that uses the all-reduce and parameter-server methods

together, as shown in Fig. 3. With this architecture, each

worker node performs local aggregation via the intra all-

reduce method. Computing the aggregation with all-reduce

uses GPUs rather than CPUs, so that it can perform com-

putations faster than the local aggregation of Distributed

TensorFlow. To investigate the effects of our local aggre-

gation using the all-reduce method, we conduct an exper-

iment comparing the throughput of the gather and all-

reduce methods. When using four TITAN Vs, the worker

using the gather method processes 117 images/s. However,

the worker using the all-reduce method processes 145

images/s (representing 24% improvement in image pro-

cessing). This result demonstrates that using the all-reduce

method can effectively reduce the communication over-

head. If the size of the gradient data is very large or the

bandwidth of the network is low, in one iteration, the I/O

ratio increases and the operation of the next iteration may

be significantly delayed. Therefore, we propose to overlap

the I/O and computation to avoid performance degradation

by the network. We add the local parameter server process

to our Hybrid-Aggregation system. The local parameter

server is created on each worker node. When the worker

processes complete the gradient aggregation, the local

parameter server sends it to the global parameter server.

While the local parameter server executes I/O with the

global parameter server, the worker process can perform

the operation of the next iteration without waiting, so the

total computation time can be reduced. In addition, instead

of directly sending the updated parameter to the worker

process from the global parameter server, after broadcast-

ing the parameters to each local parameter server, the local

parameter servers broadcast it to the sub worker processes.

With this architecture, we can effectively reduce network

usage.

4.2 Asynchronous large mini-batch training

To address the potential training accuracy degradation

problem, we propose an effective asynchronous large mini-

batch training strategy as follows. The parameter server

executes only executes aggregation with gradients received

from workers. After aggregation execution, unlike the

existing asynchronous method, the parameter server does

not forward updated parameters to workers. Also, workers

do not update parameters, and they just train with new

mini-batches. When aggregation is executed as much as the

large mini-batch of the specified size, the parameter server

updates the parameters and simultaneously broadcasts all

the updated parameters to the workers. Figure 4 demon-

strates this process. Each worker receives the updated

parameters from the parameter server after training for an

iteration cycle computed based on the computation per-

formance ratio. After that, workers continue to train for the

next large mini-batch. The iteration cycle executed by each

Fig. 3 System architecture of proposed Hybrid-Aggregation method

Cluster Computing (2020) 23:2287–2300 2291

123

worker is calculated as follows at the initialization before

training.

– Step 1. The parameter server calculates the necessary

iterations by dividing large mini-batch into the mini-

batch size that will be used for the single iteration.

– Step 2. Each worker node multiplies the computation

performance of the GPU to be used and the number of

installed GPUs to calculate the computing performance

of that node and then sends it to the parameter server.

– Step 3. After receiving the computation performance of

each node, the parameter server distributes the total

number of iterations needed to calculate the large mini-

batch by the ratio of each worker’s performance, and it

then broadcasts this information to all worker nodes.

Figure 4 shows a timeline for the execution of training with

four workers with different performances capabilities. In

this case, the large mini-batch is set to 512, and each

worker trains with a mini-batch of 64 for a single iteration.

Therefore, a total of eight iterations is required to train with

the large mini-batch. When the computing performance

ratio of the workers is 4:2:1.5:1, each worker’s iteration

cycle to update the parameters will be set to 4, 2, 1, 1, as

shown in Fig. 4. Here, workers receive updated parameters

from the parameter-server at almost the same time. In this

way, it is possible to minimize worker waiting time com-

pared to synchronous training. In addition, all workers

share the same parameters, so the reduction of accuracy

can be prevented.

4.3 Collective-communication implementation
via MPI

To implement our proposed system for actual distributed

deep learning training, we use Google’s TensorFlow.

TensorFlow employs gRPC communication to support

Distributed TensorFlow[10], but in this paper we use MPI

instead of gRPC to implement communication. In the

proposed design, most communication processing is com-

posed of collective communication patterns. Typically,

with local aggregation, the all-reduce method is used, and

sending updated parameters to all workers is performed via

broadcasting. TensorFlow operates using a ‘‘define-and-

run’’ method in which a developer predefines the graph at

the Python level [5]. To define the graph, only operations

implemented in the TensorFlow APIs can be used, however

MPI is not implemented as TensorFlow APIs. Therefore,

implementing MPI in TensorFlow with existing Python

implementation method, communication and computation

cannot be overlapped as shown in the first timeline of

Fig. 5. As a result, the computation can be delayed by the

networking time.

To solve this problem, we switch MPI API to Ten-

sorFlow operation API by using py_func [12] to overlap

computation and communication. py_func is a function

provided by TensorFlow to convert another Python

libraries to TensorFlow operations. By converting the MPI

operations to TensorFlow’s operation, MPI communica-

tions can overlap with computation, as shown in the second

timeline graph of Fig. 5.

4.4 Parallel I/O via asyncio

In this paper, we propose a hybrid aggregation method that

effectively combines the ‘‘parameter-server’’ and ‘‘all-

Fig. 4 Timeline of asynchronously large mini-batch training

Fig. 5 Operation timeline of each process depending on whether

overlapping is applied

2292 Cluster Computing (2020) 23:2287–2300

123

reduce’’ approaches to maximize the overall utilization of

computing resources in a heterogeneous cluster. In our

proposed scheme, the global parameter server asyn-

chronously receives local aggregated gradients from each

worker and updates the training parameters with received

gradients. However, when multiple workers are simulta-

neously sending gradients to the parameter server, I/O

bottlenecks can occur, which can result in the overall

performance degradation of training process.

To address this problem, we parallelize the communi-

cating tasks (that receive gradients data from workers), and

the training tasks (of parameters on the global parameter

server). For this purpose, we implement separate processes

to perform the communication and training parameters.

The communication process receives the local aggregated

gradient from each worker and pushes it to the data queue.

The training process uses the aggregated gradient from the

data queue to train the parameters. Similarly, workers are

also implemented for training and communication tasks in

different processes.

However, when performing actual training operations,

we found that the overall training time increases signifi-

cantly compared to the conventional Distributed Ten-

sorFlow. In order to analyze the results, we have checked

the latency of data communication and computation of

training parameters. Figure 6 shows the data flow and

latency of each operation. For the worker, the time for

training computation is 0.55 seconds, which is the same as

the training computation for TensorFlow. However, we

confirm that it takes almost the same time as the training

computation latency for exchanging data between compu-

tation process and communication process in both workers

and the global parameter server. Since each process allo-

cates and uses different memory space, the slowdown

occurs when writing data to another memory space.

Therefore, we attempt to parallelize computations and

communications using multi-threading instead of multi-

processing with the global parameter server and worker.

However, when using multi-threading in Python, all

threads are only able to use a single CPU core due to GIL,

so the threads are not truly able to operate in parallel.

To address this problem of parallelizing computations

and I/O operations in distributed deep learning, we effec-

tively leverage asyncio, which is a Python module for

asynchronous programming that can enable I/O operations

and CPU tasks to be run in parallel. Asyncio allows the

parallel execution of I/O with CPU work via asynchronous

co-routine context switches. With asyncio, asynchronous

co-routines are executed within the event-loop. The asyn-

chronous co-routine executing I/O operations inside the

event loop does not use the CPU cores. On the other hand,

co-routines that need CPU computations can use the CPU

cores. Thus, similar to multi-threading, threads that do not

actually need the CPU cores to execute the I/O no longer

occupy the cores, and only asynchronous co-routines that

execute CPU tasks utilize the CPU (while other co-routines

are executing I/O).

In this paper, we design a communication I/O using MPI

to be executed asynchronously with TensorFlow’s session,

and asyncio is used to run the CPU processing and I/O

operations in parallel. We perform the same analysis as

seen in Fig. 6 to determine if the problems with multi-

processing are resolved by using asyncio. The results

indicate that the data exchange between the existing

communication process and computing process originally

took 0.5 seconds, but it can be reduced into 0.4 millisec-

onds with asyncio. With multi-processing, each process

uses other memory space, so it takes time to send and

receive data. However, with asyncio, because the co-rou-

tines can share the same memory space, it does not take

additional time to send and receive data.

5 Evaluation

To evaluate our proposed scheme, we check the compu-

tation performance of our system by training ImageNet [9]

data using the ResNet-50 [8] model. In addition, we

compare the performance of Distributed TensorFlow’s

synchronous and asynchronous schemes with our proposed

framework in terms of resource usage on heterogeneous

and homogeneous computing systems. We conduct exper-

iments using four kinds of GPUs: NVIDIA’s Tesla K80,

Tesla P100, TITAN Xp and TITAN V. The API used for

training is TensorFlow r1.12, and the versions of CUDA

driver and cuDNN are 9.0 and v7.

First, we confirm the computational performance when

learning is performed using only a single GPU. The size of

the mini-batch used for training ResNet-50 model is 64.

Table 1 shows computing performance as the number of

images processed per second. Tesla K80 has the lowest

performance with 52 images/s. TITAN Xp and Tesla P100

has approximately triple the performance of Tesla K80, and

TITAN V has four times as much performance. ForFig. 6 System flow of data transfer using multi-processing

Cluster Computing (2020) 23:2287–2300 2293

123

subsequent experiments, to evaluate the cluster perfor-

mance (Figs. 7 and 8), we compare based on the above

results and determine whether it is identical to the sum of

the number of GPUs. For the distributed processing

experiment, four worker nodes are used, and the GPU

configuration of each worker node is as shown in Table 1.

5.1 Computational performance using
distributed tensorflow in homogeneous
and heterogeneous systems

Before evaluating the performance of our proposed

framework, we check the computational performance of

Distributed TensorFlow. First, we examine the perfor-

mance when Worker 0 and Worker 1 are used to evaluate

the distributed computing performance in a homogeneous

system. Tesla P100 and TITAN Xp are different models,

but the results in Table 1 reveal similar throughputs in

terms of images per second, indicating that they constituted

a homogeneous system. In addition, we confirm the per-

formance when using a total of 16 GPUs of four worker

nodes, as shown in Table 1, to confirm the performance in a

heterogeneous system. The experiment is divided into

synchronous and asynchronous, and 10 Gigabit Ethernet is

used as a network. Throughout these experiments, we

compare the performance of the entire system and each

GPU based on the number of images processed per second.

The results of the synchronous training are presented in

Table 2. They demonstrate that the average throughput for

each GPU is 140.80 for Tesla P100 and 134.71 for TITAN

Xp when using a homogeneous environment with Worker 0

and Worker 1. Performance is slightly lower than that

shown in Table 1, but this is because of the network I/O,

which was an existing problem while performing dis-

tributed processing. The performance of entire cluster is

similar to the sum of the image throughputs for all GPUs.

The results of the heterogeneous system using four workers

shows that all GPUs have similar computing performance.

This is because the total computing time has increased as

other workers wait for the computing time of Worker 2,

which has the slowest performance. Therefore, although

the number of GPUs has increased more than in the

homogeneous system, the performance of the system has

decreased significantly.

Table 3 shows the results of asynchronously executing

the same experiment as that shown in Table 2. When only

Worker 0 and Worker 1 are used, the results are similar

with those found in the synchronous training. when using

the heterogeneous system, the results show much higher

computing performance than in the synchronous training.

When training asynchronously, unlike synchronously,

workers do not have to wait for the computations of a

slower worker. Accordingly, delays are reduced and the

computing performance of the cluster increases signifi-

cantly. However, computing performance of each GPU

shows lower performance than the performance in Table 1.

This is because all GPUs independently perform the I/O

with the parameter server asynchronously, the total net-

work usage increase, and a performance bottleneck occurs.

Table 1 Multi-GPU

construction of each Worker

Nodes and computation

performance of single GPU

Worker # Multi-GPU construction Computation performance of single GPU

Worker0 Tesla P100 4ea 152 image/s

Worker1 TITAN Xp 4ea 148 image/s

Worker2 Tesla K80 4ea 52 image/s

Worker3 TITAN V 4ea 207 image/s

Fig. 7 Total computing performances with each distributed strategy

Fig. 8 Average performance on each GPU with each distributed

strategy

2294 Cluster Computing (2020) 23:2287–2300

123

Due to network bottleneck, each GPU waits to execute

communication, the next iteration is delayed, and the total

operation time increases.

To summarize, Distributed TensorFlow with a homo-

geneous system shows no significant performance differ-

ence between synchronous and asynchronous methods.

With the heterogeneous system, the waiting time for each

worker decreases and the overall performance of the cluster

increases significantly with asynchronous training. How-

ever, due to the network communication bottleneck, it is

very difficult to fully utilize available computing resources.

5.2 Computational performance using
the proposed hybrid-aggregation method

The proposed Hybrid-Aggregation scheme computes the

parameter update period of each worker for asynchronously

large mini-batch training using the computation perfor-

mance value. Each worker waits for the global parameter

server to complete the aggregation after performing the

training for the calculated period. When the updated

parameters are broadcasted after aggregation, the next

iterations are executed.

To evaluate the performance of the proposed design, the

large mini-batch size is set to 8192, and the same experi-

ment as that with Distributed TensorFlow is performed. In

addition, we confirm that the parameter update cycle of

each worker is set correctly. The experiment results are

presented in the Table 4. From the results of training with a

homogeneous system using Worker 0 and Worker 1, we

can confirm that the system archives approximately 18%

higher cluster system performance than Distributed Ten-

sorFlow. In the proposed system, unlike with Distributed

TensorFlow, computing operation and communication are

overlapped to minimize the delayed time due to commu-

nication, which results in decreased training time. Also, it

is confirmed that similar cycles (17 and 15 respectively) are

used for the parameter updates for Worker 0 and Worker 1.

The results of the heterogeneous experiments using all

workers demonstrate about a 2.5 times higher performance

than the synchronous Distributed TensorFlow and 10%

higher than asynchronous Distributed TensorFlow. In

addition, the cycles for the parameter update of each

worker are set to the same ratio as the computation per-

formance ratio in Table 1. Moreover, the average perfor-

mances on each GPU are almost same as those in Table 1.

To summarize, with our proposed distributed deep

learning framework, we can effectively reduce the over-

head of the network I/O by exploiting asynchronous large

mini-batch training. Since communication and learning

operations are performed in parallel, we have minimized

the computation waiting time from the communication, and

as a result, we are able to confirm that the overall training

time and the computing performance can actually be

improved compared to the performance of Distributed

TensorFlow on heterogeneous computing systems.

Table 2 ResNet-50 training

computation performance using

synchronous distributed

TensorFlow

System construction Total performance Average performance on each GPUs

Worker0 1102:04image=s Worker0 : 140:80image=s

Worker1 Worker1 : 134:71image=s

Worker0 812:36image=s Worker0 : 51:38image=s

Worker1 Worker1 : 52:72image=s

Worker2 Worker2 : 48:23image=s

Worker3 Worker3 : 50:76image=s

Table 3 ResNet-50 training

computation performance using

asynchronous Distributed

TensorFlow

System construction Total performance Average performance on each GPUs

Worker0 1121:04image=s Worker0 : 152:61image=s

Worker1 Worker1 : 141:30image=s

Worker0 1968:3image=s Worker0 : 143:68image=s

Worker1 Worker1 : 138:53image=s

Worker2 Worker2 : 43:73image=s

Worker3 Worker3 : 178:36image=s

Cluster Computing (2020) 23:2287–2300 2295

123

5.3 ImageNet training time and accuracy
with the ResNet-50 model

We have proposed a scheme to complete training jobs

faster than the existing distributed training method with a

heterogeneous computing cluster. We have also designed

an asynchronous large mini-batch training method to

ensure the same accuracy. To verify the effectiveness of

our proposed schemes, we perform the training of Ima-

geNet data with the ResNet-50 model, and we analyze the

overall training time and accuracy. For comparison models,

we use our proposed scheme and the conventional Dis-

tributed TensorFlow with synchronous and asynchronous

training. We use the benchmark program provided by

TensorFlow and perform training operations during 90

epochs for both comparison models in a heterogeneous

cluster. The system used for training consists of a total

three workers and a single parameter-server. Two of the

three workers use eight of NVIDIA’s TITAN V GPUs, and

the remaining worker uses eight TITAN Xp. We perform

four different types of experiments, including our proposed

method and the conventional Distributed TensorFlow. The

first experiment uses the synchronous Distributed Ten-

sorFlow, and the second uses the asynchronous Distributed

TensorFlow. The third and fourth experiments are for

performing training using our proposed system based on 8k

and 16k batches.

Table 5 shows the summary of our performance evalu-

ation results. In terms of training time, the synchronous

Distributed TensorFlow takes 12 hours, while the asyn-

chronous system takes 9.5 hours (25% more overhead than

the asynchronous training). This result shows that the

synchronous training scheme can result in performance

degradation problems in a heterogeneous computing clus-

ter. This is mainly because with the synchronous Dis-

tributed TensorFlow, the servers using TITAN V have to

wait until the servers using TITAN Xp complete the tasks

(in a heterogeneous computing cluster). Without this delay

caused by the heterogeneity in the computing cluster, the

asynchronous Distributed TensorFlow could complete the

training job faster than the synchronous system. The pro-

posed Hybrid-Aggregation method takes 8.5 hours and 7

hours with 8k and 16k batches, respectively. With the 16k

large mini-batch, it is possible to reduce the training time

by 1.5 hours because the cycle used to broadcast the trained

parameters by the parameter server to the workers is longer

than that used with the 8k batches. In addition, the pro-

posed method completes training faster than the asyn-

chronous Distributed TensorFlow. This is because we can

reduce the communication bottleneck that occurs in the

Table 4 ResNet-50 training computation performance using proposed Hybrid-Aggregation way

System

construction

Parameter update

cycle(clock)

Total performance (image/s) Average performance on each GPU (image/s)

Worker0 Worker0 : 17 1341 Worker0 : 153.80

Worker1 Worker1 : 15 Worker1 : 150.71

Worker0 Worker0 : 8 2177.68 Worker0 : 154.82

Worker1 Worker1 : 8 Worker1 : 150.61

Worker2 Worker2 : 4 Worker2 : 53.23

Worker3 Worker3 : 12 Worker3 : 203.76

Table 5 Training accuracy and latency of using each distributed training

Distributed TensorFlow

Synchronously

Distributed TensorFlow

Asynchronously

Hybrid aggregation using

8k batch

Hybrid aggregation using

16k batch

Training
time(hours)

12 9.5 8.5 7

Training loss 1.583 1.577 1.0258 1.1296

Top� 1

accuracy
0.766 0.764 0.7616 0.7409

Top� 5

accuracy
0.924 0.922 0.9266 0.9097

2296 Cluster Computing (2020) 23:2287–2300

123

vanilla Distributed TensorFlow while executing computa-

tion and communication asynchronously with asyncio.

The final training accuracy and loss show similar results

across all experiments as we can see from Figs. 9, 10

and 11. Although the minimum value of training loss is

similar, it can be confirmed that this loss is reduced more

quickly when using our proposed Hybrid-Aggregation than

with the conventional Distributed TensorFlow. This is

because the parameters are updated using the large mini-

batch training method proposed in this paper, and all

workers perform synchronization periodically. As seen

from the results in Figs. 10 and 11, the training accuracy of

the asynchronous Distributed TensorFlow is higher than

that of the synchronous Distributed TensorFlow. This is

because workers using an asynchronous training mecha-

nism process more mini-batches per unit time than those

using synchronous mechanism. Our proposed

scheme shows faster accuracy improvements than the

Distributed TensorFlow. Despite the asynchronous training

mechanism, we can achieve higher training accuracy than

the vanilla Distributed TensorFlow.

To summarize, our Hybrid-Aggregation method can

substantially reduce the overall training time compared to

the conventional Distributed TensorFlow without losing

the training accuracy for the ImageNet data with the

ResNet-50 model. In particular, when we are using the 16k

large mini-batches, we are able to achieve almost the same

training accuracy within only about a half the amount of

time.

6 Related works

To improve the deep learning computation performance in

a distributed system, various methods have been proposed.

CosmoFlow [13] utilized Intel Xeon Phi processors to

accelerate the deep learning based cosmology data training.

CosmoFlow used a TensorFlow framework with MPI

communication through the Cray PE Machine Learning

Plugin. The main difference between Cosmoflow and our

proposed design is that Cosmoflow used fully-synchronous

data paralleled training. To improve the computing

resource utilization of a heterogeneous cluster, we designed

a Hybrid-Aggregation with all-reduce and parameter-server

mechanisms. CosmoFlow demonstrated distributed training

on 8192 Cori nodes with 77% parallel efficiency. However,

if the training is performed on a heterogeneous cluster

using Cosmoflow, the parallel efficiency can be lower.

S. Kim et.al. presented Parallax to optimize data parallel

training by utilizing the sparsity of model parameters [14].

Parallax also combined parameter-server and all-reduce to

optimize the I/O bottleneck on the distributed training.

Parallax achieved 2.8x and 6.02x speed-ups for NLP

models compared to TensorFlow and Horovod, respec-

tively. However, the evaluation was performed on a

homogeneous multi-GPU cluster. When using a
Fig. 9 Training loss of each distributed training

Fig. 10 Top-1 accuracy of each distributed training

Fig. 11 Top-5 accuracy of each distributed training

Cluster Computing (2020) 23:2287–2300 2297

123

heterogeneous computing cluster, the training accuracy and

throughput were similar totteretersdfasd TensorFlow’s

results.

X. Lian et.al. proposed an asynchronous decentralized

parallel stochastic gradient decent (AD-PSGD) to mitigate

the performance degradation caused by communication

bottlenecks in an asynchronous distributed deep learning

system [15]. In AD-PSGD, each worker updated its model

parameters by averaging the model parameters from ran-

domly selected neighbors. AD-PSGD achieved similar

accuracy as all-reduce, while it converged faster than all-

reduce. The difference between AD-PSGD and our method

is that AD-PSGD reduces the communication bottleneck

via decentralized training, while we are leveraging the

local parameter server.

To improve the performance of distributed learning in

heterogeneous computing environments, a heterogeneity-

aware decentralized training protocol called Hop was

proposed [16]. Hop used a queue-based synchronization

mechanism for synchronizing model parameters in dis-

tributed environments. Hop also proposed skipping itera-

tions to mitigate the degradation of training performance

due to slow workers. Hop achieved 3.262x speed-ups for

the CNN model compared to the parameter server method.

Hop also converged 1.37 times faster than the parameter

server method when randomly slowing down every worker

by a factor of six. Unlike Hop, we have proposed a novel

distributed deep learning architecture to improve training

performance.

Ammar Ahmad et.al. proposed new MPI designs to

improve the performance of applications in multi-GPU

environments [17]. They proposed two new designs. First,

a pipelined chain (PC) of MPI Bcast, which provides

efficient intra- and inter-node GPU communications, was

proposed. Second, they proposed a Topology-Aware

pipelined chain (TA-PC) for multi-GPU sys-tems to effi-

ciently utilize PCIe links in a node. They compared the

proposed MPI Bcast with NCCL-based MPI Bcast

(MPI?NCCL1) and ncclBroadcast (NCCL2)to evaluate

the performance of the proposed MPI Bcast. The proposed

MPI Bcast showed up to 16.6x better performance than

MPI?NCCL1 in inter-node communication. In addition,

the proposed MPI Bcast showed up to 10x better perfor-

mance than NCCL2. They efficiently communicate

between GPUs by modifying the existing MPI. Unlike

them, we efficiently communicate using the existing MPI

and hybrid aggregation architecture.

Recently NVIDA has release a report titled ‘‘SONY

Breaks ResNet - 50 Training Record with NVIDIA V100

Tensor Core GPUs’’ [18]. In NVIDIA’s report, several

studies are stated to have trained ImageNet with the

ResNet-50 model. Each study showed the computing per-

formance of training while increasing the size of the large

mini-batch to be trained. According to the results of the

studies described in this report, Facebook used 256 NVI-

DIA Tesla P100s to train an 8K large mini-batch. Also,

Sony increased the size of the large mini-batch further and

trained a 68K large mini-batches using 2176 NVIDIA

Tesla V100s. Both of these studies have improved the

computing performance of deep learning by using larger

sizes of large mini-batches at the cluster using large

numbers of GPUs. However, these experiments were per-

formed in a homogeneous environments constructed with

GPUs with the same computing performance. Therefore,

with a heterogeneous multi-GPU cluster, using the same

methods from the above research would lower the com-

puting performance compared to the proposed Hybrid-

Aggregation method in this paper.

7 Conclusion

In this paper, we proposed an efficient distributed deep

learning framework for a heterogeneous multi-GPU clus-

ter. Our proposed design was able to address the disad-

vantages of existing all-reduce and parameter-server

methods through a hybrid structure of the two schemes. In

addition, we performed large mini-batch training asyn-

chronously to increase the overall utilization of available

computing power in the entire cluster. To evaluate the

performance of our proposed design, we implemented it

using MPI and TensorFlow, and we demonstrated a per-

formance improvement in homogeneous and heteroge-

neous computing systems through ResNet-50 training with

the ImageNet dataset. Further experiments on the training

accuracy in large mini-batch training will be carried out in

the future.

Acknowledgements This research was supported by Basic Science

Research Program and Next-Generation Information Computing

Development Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Science and ICT

(2020R1F1A1072696, 2015M3C4A7065646), Institute of Informa-

tion & communications Technology Planning & Evaluation(IITP)

grant funded by the Korea government(MSIT)(No. : 2020- 0-01305,

Development of AI Deep-Learning Processor and Module for 2,000

TFLOPS Server), GRRC program of Gyeong-gi province (No.

GRRC-KAU-2020-B01, ‘‘Study on the Video and Space Conver-

gence Platform for 360VR Services’’) and ITRC (Information Tech-

nology Research Center) support program (IITP-2020-2018-0-01423)

References

1. Zinkevich, M., Weimer, M., Li, L., Smola, A.J.: Parallelized

stochastic gradient descent. In: Advances in Neural Information

Processing Systems 23

2. Heigold, G., McDermott, E., Vanhoucke, V., Senior, A., Bac-

chiani, M.: Asynchronous stochastic optimization for sequence

2298 Cluster Computing (2020) 23:2287–2300

123

training of deep neural networks. In: 2014 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP)

3. Sergeev, A., Balso, M.D..: Horovod: fast and easy distributed

deep learning in tensorflow. In: arxiv.org, Feb 2018

4. Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J.K., Gibbons, P.B.,

Gibson, G.A., Ganger, G., Xing, E.P.: More effective distributed

ml via a stale synchronous parallel parameter server. In:

Advances in Neural Information Processing Systems 26 (NIPS

2013)

5. TensorFlow: an open source machine learning library for research

and production. https://www.tensorflow.org/

6. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski,

L., Kyrola, A., Tulloch, A., Jia, Y., He, K.: Accurate, large

minibatch sgd: Training imagenet in 1 hour. In: arxiv.org, April

2018

7. MPICH: high-performance portable MPI, https://www.mpich.

org/

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for

image recognition. In: arxiv.org, 2015

9. ImageNet, https://image-net.org, 2017

10. Distributed TensorFlow, https://www.tensorflow.org/deploy/

distributed/

11. asyncio—Asynchronous I/O, http://docs.python.org/3/library/

asyncio.html

12. py_func, https://www.tensorflow.org/ api_docs/python/tf/py_func

13. Mathuriya, A., Bard, A., Mendygral, P., Meadows, L., Arnemann,

J., Shao, L., He, S., Karna, t., Moise, D., Pennycook, S.J.,

Maschoff, K., Sewall, J., Kumar, N., Ho, S., Ringenburg, M.,

Prabhat, Lee, V.: Cosmoflow: using deep learning to learn the

universe at scale. In: arxiv.org, Aug 2018

14. Kim, S., Yu, G.-I., Park, H., Cho, S., Jeong, E., Ha, H., Lee, S.,

Jeong, J.S., Chun, B.-G. Parallax: sparsity-aware data parallel

training of deep neural networks. In: EuroSys 2019, March 2019

15. Lian, X., Zhang, W., Zhang, C., Liu, J.: Asynchronous decen-

tralized parallel stochastic gradient descent. In: Dy, J.G., Krause,

A., Eds., Proceedings of the 35th International Conference on

Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,

Sweden, July 10–15, 2018, series Proceedings of Machine

Learning Research, vol. 80. PMLR, 2018, pp. 3049–3058. http://

proceedings.mlr.press/v80/lian18a.html

16. Luo, Q., Lin, J., Zhuo, Y., Qian, X.: Hop: Heterogeneity-aware

decentralized training. In: Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Program-

ming Languages and Operating Systems, 2019, pp. 893–907

17. Awan, A.A., Manian, K.V., Chu, C.-H., Subramoni, H., Panda,

D.K.: Optimized large-message broadcast for deep learning

workloads: MPI, MPI?NCCL, or NCCL2? Parallel Comput. 85,

141–152 (2019)

18. SONY Breaks ResNet-50 Training Record with NVIDIA V100

Tensor Core GPUs. http://news.developer.nvidia.com/sony-

breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-

gpus/

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Youngrang Kim received

his B.S. and M.S. in Electronics

and Information Engineering at

Korea Aerospace University

(KAU). His primary research

interests include distributed

computing, high-performance

computing, and multi-gpu based

distributed deep learning

framework.

Hyeonseong Choi is a M.S.

candidate in Electronics and

Information Engineering at

Korea Aerospace University

(KAU). He receieved his B.S. in

Telecommunication and Infor-

mation engineering from Korea

Aerospace University. His pri-

mary research interests include

distributed computing, high-

performance computing, and

multi-gpu based distributed

deep learning framework.

Jaehwan Lee is an Associ-

ate Professor at the Department

of Electronics and Information

Engineering of Korea Aero-

space University. He received

his B.S. and M.S. in Electrical

Engineering from Seoul

National University, and Ph.D.

in Computer Science from

University of Maryland at Col-

lege Park. He has several

industry research experiences;

Korea Telecom (KT) as a senior

researcher (2000–2005), NEC

labs in America and Bell labs,

Alcatel-lucent as a research intern, and Samsung System Architecture

lab in US as a Research Staff Engineer. His research interests include

distributed computing, high-performance computing, and Big-data

infrastructures to support data intelligence. He was a recipient of the

General Electric (GE) Scholarship and the Korean Government

Scholarship for Electric Power Industry.

Cluster Computing (2020) 23:2287–2300 2299

123

http://arxiv.org/abs/org
https://www.tensorflow.org/
http://arxiv.org/abs/org
https://www.mpich.org/
https://www.mpich.org/
http://arxiv.org/abs/org
https://image-net.org
https://www.tensorflow.org/deploy/distributed/
https://www.tensorflow.org/deploy/distributed/
http://docs.python.org/3/library/asyncio.html
http://docs.python.org/3/library/asyncio.html
https://www.tensorflow.org/%20api_docs/python/tf/py_func
http://arxiv.org/abs/org
http://proceedings.mlr.press/v80/lian18a.html
http://proceedings.mlr.press/v80/lian18a.html
http://news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/
http://news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/
http://news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/

Jik-Soo Kim received his B.S. &

M.S. in Computer Science and

Statistics from Seoul National

University in Korea, and Ph.D.

in Computer Science from

University of Maryland at Col-

lege Park, USA. He is currently

an Assistant Professor at the

Department of Computer Engi-

neering of Myongji University.

His primary research interests

are in the design and analysis of

distributed computing infras-

tructures to support Many-Task

Computing, Cloud Computing

and Data-intensive Computing.

Hyunseung Jei received the BS

degree in 2008 from Soongsil

University, Seoul, Korea. He is

currently a SW engineer for SK

Telecom ML infra group. His

current research interests

include distributed deep learn-

ing, system sotfware for flash

memory, and SSD.

Hongchan Roh received the BS

degree in 2006, the MS degree

in 2008, and the Ph.D. degree in

2014, all from Yonsei Univer-

sity, Seoul, Korea. He is cur-

rently a research fellow for SK

Telecom. His current research

interests include distributed

deep learning, network proces-

sors, database systems, flash

memory, and SSD.

2300 Cluster Computing (2020) 23:2287–2300

123

	Towards an optimized distributed deep learning framework for a heterogeneous multi-GPU cluster
	Abstract
	Introduction
	Background
	Distributed deep learning
	Parameter update state
	Message passing interface (MPI)
	Horovod
	Python asyncio

	Motivations
	Architecture and implementation
	Hybrid-aggregation for heterogeneous capability
	Asynchronous large mini-batch training
	Collective-communication implementation via MPI
	Parallel I/O via asyncio

	Evaluation
	Computational performance using distributed tensorflow in homogeneous and heterogeneous systems
	Computational performance using the proposed hybrid-aggregation method
	ImageNet training time and accuracy with the ResNet-50 model

	Related works
	Conclusion
	Acknowledgements
	References

