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Abstract
Clouds are heterogeneous service-oriented systems which are increasingly considered as platforms of choice for scientific

workflow applications. Because resource and communication failures are inevitable in large complex distributed systems,

insuring the reliability of heterogeneous service-oriented systems poses a major challenge. As it affects the quality of user

service requirements, reliability has become an important criterion in workflow scheduling. Replication-based fault-

tolerance is one approach for satisfying the requirements set to safeguard the reliability of an application. In order to

minimize the workflow execution cost while respecting the user-defined deadline and reliability, the present paper proposes

Improving CbCP with Replication (ICR) which includes three algorithms: the Scheduling, the Fix Up, and the Task

Replication. The Scheduling employs the CbCP algorithm, where CbCP stands for Clustering based on Critical Parent and

it is a previously developed algorithm by the same authors, to generate a schedule map of the workflow. The Fix Up

algorithm checks the possibility of starting each task earlier in the leased resource without imposing any extra cost. The

Task Replication algorithm utilizes the rest of the idle time slots in leased resources to replicate tasks. Experimental results

from real and randomly generated applications at different scales demonstrate that the proposed heuristic, for the majority

of studied scenarios, increases the execution reliability of workflows while reducing the workflows execution costs.
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1 introduction

Scientific workflows are often designed as directed acyclic

graphs (DAGs) which nodes act for tasks and directed

edges signify dependencies between tasks. As a single

workflow can hold hundreds or thousands of tasks [1], this

kind of workflow can benefit from large-scale infrastruc-

tures, such as the public Cloud. Cloud computing has

provided an infrastructure for the sharing of large scale and

heterogeneous resources, for instance, Virtual Machines

and data resources. In large-scale heterogeneous systems,

resource management is a critical issue due to the various

configurations and capacities of hardware and software. In

order to carry out scientific applications, which are usually

modeled by workflows on the Cloud, the efficient

scheduling of algorithms is necessary to meet user or

system requirements [2]. Since users are charged for a

workflow’s execution on a Cloud, cost is a Quality of

Service (QoS) parameter. In this parameter, the number of

time intervals consumed by users determines how a

majority of today’s commercial Clouds set prices. In

addition, the processing capacity of VMs in heterogeneous

service-oriented systems has been advanced to supply

powerful Cloud-based services, while the failures of VMs

and communication faults [3] affect the reliability of sys-

tems and the quality of service for users [4]. As a result,

reliability has become another critical challenge in work-

flow scheduling [4–7]. Moreover, because the resources

available to an application can provide dynamic scaling in

response to demands, Cloud infrastructures are suit-

able platforms for the execution of deadline-constrained
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workflow applications. With all this variety, application

developers hosting their system in the Cloud are challenged

to make the best possibility in terms of price, reliability,

and deadline.

Workflow scheduling algorithms plays a critical role in

meeting QoS requirements. Scheduling is defined as the

mapping of tasks to processors so that specific require-

ments are satisfied, while still meeting the requirements of

task precedence. As optimal task scheduling is NP-Com-

plete [8], several heuristic methods have been introduced

for homogeneous [9] and heterogeneous distributed sys-

tems [10, 11]. Accordingly, heuristics can be utilized to

obtain sub-optimal schedules. General task scheduling

algorithms are categorized into various classes, such as list

scheduling algorithms, cluster algorithms, and duplication-

based algorithms. For example, HEFT is a list-scheduling

algorithm [9] which selects tasks according to the

descending order of their upward ranks and then dispatches

them to different VMs with the objective of reducing the

execution length.

In the Cloud, other factors also hold great importance,

such as workflow execution reliability and execution costs.

Reliability is determined as the probability of a schedule

successfully completing its execution [4–7]. If an appli-

cation can satisfy its identified reliability requirement, then

it is considered as reliable. A number of algorithms have

been proposed to improve reliability by redundancy in

space and time [12, 13]. One of the popular methods for

producing fault-tolerance is redundancy in space. For

instance, a replication scheme is applied in [3] to maximize

execution reliability. In the active replication scheme, each

task is simultaneously replicated on several VMs. A task

will succeed if at least one replication does not fail

[14–16]. However, more replicas signify increased

resource usage and greater costs. Whence, the reliability

problem of service-oriented systems is predominantly sat-

isfying an application’s reliability demand whilst still

reducing the use of resources as much as possible.

Another technique that can mitigate failures is the

backup/restart scheme, in which a task is rescheduled on a

backup VM in order to proceed when a VM fails [17, 18].

An improved version of the backup/restart method is the

checkpoint/restart scheme. In this scheme, when a failure

occurs, the task can be restarted from the latest checkpoint

instead of from the very beginning. Both the backup/restart

and checkpoint/restart schemes are based on redundancy in

time, which can result in missing the deadline [5].

In [19], the authors proposed Clustering based on Crit-

ical Parent (CbCP) scheduler, in which the probability of

failure for a cluster on a resource is known. Then, different

clusters are assigned onto corresponding resources by

considering each cluster’s sub-reliability requirement.

The main procedures of CbCP are as follows:

(1) Dividing the workflow into a number of Clusters

based on a Critical Parent (CbCP) then the reliability

requirement of the application is transferred to the

sub-reliability requirements of the clusters. In this

way, as long as the sub-reliability requirement of

each cluster can be satisfied, so can the application’s

reliability requirement. A workflow is made up of a

quantity of tasks, with each task’s sub-deadline

related to the workflow’s general deadline D. As a

result, exit tasks have sub-deadlines equal to D,

while a traversal of the workflow graph in reverse

topological order determines the remaining tasks’

sub-deadlines, in such a way that a heuristic assign-

ment can be utilized in the following.

(2) CbCP iteratively assigns each cluster to processors

with a minimum execution cost up to the sub-

reliability demand and sub-deadline of the cluster is

satisfied.

Finding the cheapest schedule that can complete each

task of the workflow prior to its Latest Finish Time is the

goal of the CbCP’s approach. Therefore, CbCP attempts to

postpone the start time of tasks as much as possible, which

consequently may cause an increase in the workflow exe-

cution cost. In contrast, the currently proposed algorithm

checks the possibility of starting each task earlier in the

leased resource if no extra cost is imposed, by shifting each

task toward the beginning of the time interval. Moreover,

CbCP is not considering idle time slots to increase the

overall reliability, while the present work’s algorithm

explores the possibility of task replication to increase

workflow execution reliability. These replicas also increase

resource utilization at no extra cost.

Based on previous workflow scheduling research in the

context of the cloud, scheduling scientific workflows on the

cloud extremely reduces costs and makespan. However,

like any other distributed system, cloud computing is also

prone to resource failures, such as with VMs and relevant

network resources. As a result, considering the probability

of failure of those resources is imperative.

To address this problem, the current study proposes a

new algorithm called ICR (Improving CbCP with Repli-

cation). ICR includes three algorithms: the Scheduling, the

Fix Up, and the Task Replication. The Scheduling employs

the CbCP algorithm to generate a schedule map of the

workflow. The Fix Up algorithm attempts to explore the

possibility of starting each task earlier in the leased

resource, without imposing any extra cost. The Task

Replication algorithm utilizes the rest of the idle time slots

in the leased resources to replicate workflow tasks.

Therefore, the currently proposed algorithm applies dead-

line and reliability constraints. For the majority of studied

scenarios, simulation experiments illustrate that the

344 Cluster Computing (2021) 24:343–359

123



proposed algorithm increases the execution reliability of

workflows while reducing the workflow execution cost.

With these challenges in mind, the present paper offers

the following contributions:

• Replication-based fault-tolerance is considered a com-

mon approach for reliability enhancement. The current

study proposes the Task Replication algorithm to

increase workflow execution reliability at no extra cost.

This algorithm utilizes the idle time slots of leased

resources to replicate the proper tasks in those.

• Improving CbCP with Replication (ICR) is composed

of three algorithms: Scheduling, Fix Up, and Task

Replication. Scheduling is responsible for production of

a preliminary schedule map of tasks of the workflow,

Fix Up moves tasks of each time slot to an earlier

position, if possible, to produce bigger idle time slots,

and with larger ones, Task Replication receives a better

chance to improve reliability.

• Experimental outcomes on real and randomly induced

applications at various scales and heterogeneity degrees

confirm that the proposed method can increase the

workflow execution reliability while minimizing work-

flow execution costs.

The remaining structure of the current paper is as fol-

lows. Section 2 discusses related works. Section 3

describes the modeling of the system, problem definition,

and evaluation metrics. Section 4 provides the details of

the proposed algorithm and presents an example with its

complexity and illustration. Section 5 presents the simu-

lation results while Sect. 6 concludes the paper and sug-

gests future work.

2 Related work

The authors of [20] divide workflow scheduling algorithms

into two main areas: QoS-constrained and QoS optimiza-

tion. The aim of QoS-constrained algorithms is to optimize

some QoS parameters while meeting other user-defined

QoS constraints. For instance, some studies have consid-

ered budget constraints while minimizing the makespan

[21]. constructs a primitive scheduling that minimizes the

makespan. If the cost falls within the budget, the schedule

is finalized. Otherwise, tasks are remapped to less expen-

sive resources that observe the cost limitations. The QoS

optimization algorithm sets out to improve all QoS

parameters. Towards this end, there have been investiga-

tions to determine a correspondence in QoS parameter

relations, such as for time and cost in [22, 23]. The above-

mentioned works assume that resources are always avail-

able. Nonetheless, in the actual world, the failure of

resources and networks is unavoidable. There may be

depletions in resources because of issues like link failure,

power variation, and software/hardware failures [24].

Consequently, it is essential to consider reliability for

efficient workflow scheduling and so reduce the failure of

workflow execution.

Based on the common exponential distribution

assumption in reliability research [25], for each processor,

the occurrence of failures follows the Poisson distribution

with failure rate (k), which is a positive real number

identical to the expected number of failures occurring in

time unit t. Consequently, reliability throughout the inter-

val of time t is e�kt. To achieve maximum system relia-

bility while satisfying a given time constraint, [26]

developed the Minimum Cost Match Schedule (MCMS)

and Progressive Reliability Maximization Schedule

(PRMS). Clearly, the discussed works attain a limited

reliability and so special schemes are necessary, such as

active replication. The primary and backup scheduling

algorithm can tolerate one failure in the systems. The main

representative methods include the efficient fault-tolerant

reliability cost driven (eFRCD) [27], efficient fault-tolerant

reliability driven (eFRD) [15], and minimum completion

time with less replication cost (MCT-LRC) [18] algo-

rithms. Regarding their limitations, these approaches first

assume that no more than one failure happens at any one

moment. In [14], Benoit et al. present the fault-tolerant

scheduling algorithm (FTSA) which employs e ? 1 repli-

cas for each task in order to guarantee system reliability.

For a parallel application on heterogeneous systems based

on the active replication scheme, Benoit et al. Go on to

design a new scheduling algorithm in [21] that minimizes

the schedule length under both throughput and reliability

constraints. The main problem in [14, 28] is needing e
backups with high redundancy for each task so as to satisfy

the application’s reliability requirement. This, however,

leads to large resource redundancy which adversely

impacts execution by the system and incurs steep costs in

resources. To satisfy an application’s reliability require-

ment, recent studies have begun to explore active redun-

dancy for each task approach [5, 29]. Active redundancy

signifies that different tasks have different numbers of

replicas. This approach has a lower resource cost than that

of the fixed e backups for each task based on active

replication [29]. [5] and [30] propose fault-tolerant

scheduling algorithms that feature reliability specifications

to reduce resource redundancy (RR) and a quantitative

fault-tolerant scheduling algorithm (QFEC?) with low

execution charges, respectively. Both algorithms incorpo-

rate reliability analysis and active replication and employ a

dynamic number of backups for different tasks by con-

sidering each task’s sub-reliability requirement. Deter-

mining task sub-reliability demands is a RR and
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QFEC? limitation. In [5], the proposal of the DRR algo-

rithm takes advantage of the deadline demand of a parallel

application in RR.

The goal of the current paper is satisfying the demands

of reliability and deadlines. However, some of the dis-

cussed algorithms do not consider a network’s task com-

munication and link failures.

The authors of [19] propose an algorithm for the cost-

optimized, deadline, and reliability-constrained execution

of workflows in Clouds. Dividing the workflow into a

number of Clusters based on the Critical Parent (CbCP)

concept. It is assumed that decreasing the workflow

makespan is of no benefit for the user. Therefore, to min-

imize the execution cost, the CbCP algorithm utilizes

almost all the time available before the deadline. There-

fore, CbCP attempts to postpone the start time of tasks as

much as possible, which consequently, may cause an

increase in the workflow execution cost. Inspired by CbCP,

the current paper’s algorithm is saving workflow execution

cost and time by inspecting the feasibility of beginning

each task earlier in the leased resource, with no additional

cost. Moreover, to increase workflow execution reliability,

the proposed algorithm considers task replication as a way

to increase workflow execution reliability. These replicas

also increase resource utilization without incurring any

extra costs.

3 System model and problem definition

This section discusses workflow and Cloud modeling and

then outlines the problem.

3.1 Application and Cloud models

One of the best formats for the programming of scientific

applications on distributed infrastructures is the workflow

model, such as the Cloud and grid. The scheduling of

scientific workflows in the Cloud is the focus of the current

study’s scheduling algorithm.

A scientific workflow utilizes the application model of a

directed acyclic graph (DAG), because workflow tasks are

optionally interconnected [31]. Gs ¼ V ;E;ET;CMð Þ shall

be the graph corresponding to a workflow in which V ¼
s1; s2; . . .; snf g is the set of tasks. The set of edges

expressing the precedence relationships between tasks is E.

Edge ei; ekð Þ 2 E signifies that si is a parent of sk. As a

single entry and a single exit task are required by the

proposed algorithm, the start and the end of the workflow

assume one dummy entry task and one dummy exit task,

respectively. sentry and sexit represent these dummy tasks

and feature zero processing time and zero communication.

ET is an n� m matrix in which exei;j signifies that the

execution time of si takes place on vmj. With the cloud

being naturally heterogeneous, the task computation time

varies according to the resource. CM is an n� n matrix in

which cmi;k represents the quantity of data moved from si
to sk. The amount of data communication between tasks is

set and specified beforehand. A task can commence exe-

cution in a workflow upon the completion of its parents’

executions and the transfer of its essential data.

The present work models the Cloud resource by Grs ¼
VM;K;PRð Þ for scheduling algorithm, where VM indicates

the finite set of m heterogeneous virtual machines:

VM ¼ vm1; vm2; . . .; vmmf g. K ¼ k1; k2; . . .; kmf g repre-

sents the failure rate of vmj, which is a positive real number

equal to the expected quantity of failures occurring in time

unit t. PR ¼ pr1; pr2; . . .; prmf g signifies the price of each

resource per time unit.

Figure 1 depicts a sample workflow of ten tasks, s1 to

s10. While a single entry and single exit task are required

by the proposed algorithm, dummy tasks sentry and sexit are
determined. Figure 1 shows each weighted edge, which

represents both the estimated data transfer time and the

precedence constraint among the corresponding tasks.

Assumed for each task si are three different possible

resources, i.e., vm1, vm2, and vm3, which use a different

QoS to execute the task. Table 1 presents the task execu-

tion times on various resources (ET), each resource per

time unit (PR) cost, and each resource’s failure rate (K),
respectively. For the commencement of s5’s processing, all
the data required by s2 and s3 must be sent. This example

shows that the workflow makespan is the end task’s finish

time, s10.

3.2 Problem definition

According to Sect. 1, it is impossible for the reliability of a

workflow execution to be 100%. However, a workflow

execution may be considered reliable if the system can

meet the workflow’s reliability demand. The present

study’s problem may be described by the following. The

scheduling system’s input contains the given workflow Gs,

deadline D, and reliability R. The aim is to locate a map of

tasks used by resources to produce a concrete schedule so

that the workflow execution Cost is minimized whilst the

makespan meets the deadline and the workflow’s acquired

reliability, Relschedul, satisfies the requirements. Eq. (1)

provides the program’s formal descriptions and Table 2

lists the present study’s important notations and their

definitions.
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MinCost ¼
Xy

x¼1

FTclx;j � STclx;j
lenghtofinterval

" #
� prj

M ¼ FTsexit � STsentry �D

Relschedul �R

ð1Þ

Cost is what the user pays for the execution of the

workflow by the resource and for network consumption. As

discussed, a clustering algorithm is the basis of the current

research. That is to say, in the Critical Parent view, the

workflow is divided into clusters in which y is the quantity

of generated clusters; FTclx;j � STclx;j is the total execution

time of cluster ðclx) on resource vmj; Relschedul is the

workflow execution reliability or the workflow execution’s

probability of being successfully completed; and M is the

workflow makespan which signifies the time required to

finish all the tasks’ executions. Finally, during scheduling,

the start time and finish time of each task are also specified.

A pricing model popular among most commercial

infrastructure as a service (IaaS) Cloud service providers

models the resource usage cost, which is founded on a pay-

as-you-go plan. This model calculates charges by the

number of time intervals the resource is used, even if the

last one is not completely consumed.

To model reliability, there are two major kinds of fail-

ures: transient failure (also called random hardware failure)

and permanent failure. Once a permanent failure happens,

the resource cannot be restored unless by replacement. On

the other hand, in the case of the most probable conse-

quence of transient failure, the failure lasts a short time and

finishes without damaging the resources [25]. Conse-

quently, the present study mostly considers transient

Fig. 1 A sample workflow [19]

Table 1 Available resources for the workflow of Fig. 1

VM ET PR K

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

vm1 12 30 18 24 18 24 30 18 30 12 3$ 0.00010

vm2 30 72 30 36 48 48 48 36 48 30 2$ 0.00015

vm3 48 96 54 60 66 66 66 48 84 48 1$ 0.00018

Table 2 Important notations in

this study
Notation Definition

exei;j Execution time of task si. on vmj

cmi;k Communication time between the tasks si. and sk

kj Constant failure rate of vmj. per time unit

prj Price of each resource per time unit

TETclx ;j Total Execution Time of cluster x ðclxÞ on vmj

CMRk;i Communication Reliability between parent and its child tasks

CRi;j Computation Reliability of task si on the vmj

CRclx ;j Computation Reliability of cluster x ðclxÞ on the vmj

CPi Critical Parent of task si
Relschedul liability of workflow execution

Relclxmin
Minimum sub-reliability requirement for the cluster x (clxÞ

Rel
clx;j
Actual

Actual reliability achieved by allocations of cluster x ðclxÞ on vmj

Relij Reliability attained by scheduling a task si on vmj

RFi Failure probability for task si on vmj

RFslotw Probability of failure of an idle time slot on vmj when task si is assigned
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failures. Generally, the occurrence of a transient failure for

a task in a DAG-based application follows the Poisson

distribution [5, 16, 32]. Therefore, the reliability of an

event in time unit t is indicated by Eq. (2):

RðtÞ ¼ e�kt ð2Þ

The present paper also addresses heterogeneous systems

made up of various hardware and software with different

configurations or capacities. As a result, each resource’s

Mean Time Between Failures (MTBF) also differs from

each other. Like [32], the current research presumes that

failures do not happen during processor times.

4 The scheduling algorithm

The aim of the present paper is the QoS-constrained static

scheduling of scientific workflows on the IaaS Cloud

platform. Because of its data communication and prece-

dence limitations, there is a challenge in optimally

scheduling a workflow. As reliability is related to Com-

munication Reliability CMRð Þ and Computation Reliabil-

ity CRð Þ, the scheduling issue becomes more difficult to

solve.

Relschedul ¼
Yn

i¼1

CRi;j � CMRk;i; si 2 V ; ek; eið Þ 2 E; vmj

2 VM

ð3Þ

CMR is the probability of the successful transfer of a

parent task generated message, for example sk, to proces-

sors located with the child tasks, for instance si. CR is the

probability of si being successfully executed on vmj. CbCP

holds that the workflow structure increases reliability. In

other words, the obtained reliability of the workflow is

enhanced by lowering the quantity of messages sent from

parent tasks to child tasks. Furthermore, replication is the

most widely used mechanism for enhancing the reliability

of services. Replication can be achieved by either redun-

dancy in time (task resubmission) or redundancy in space

(task duplication). The rationale behind task replication

with e number of replicas is that e� 1ð Þ failures can be

tolerated without affecting the workflow makespan. The

downside of task replication is the consumption of extra

resources. In order to mitigate such effects and save on

costs, the current research proposes a scheduling algorithm

which employs the idle time slots of leased resources to

replicate tasks. Therefore, the objective of the proposed

ICR (Improving CbCP with Replication) algorithm is

raising the execution reliability of workflows within a user-

specified deadline and reliability in a public Cloud

environment.

This section first discusses the main concepts and then

provides some basic definitions. The ICR scheduling

algorithm is then elaborated on and its time complexity

computed. Finally, the algorithm’s operation is demon-

strated through an illustrative example.

4.1 Main ideas

The proposed algorithm completes three different steps at a

high level:

Step 1 Allocation of Cloud resources and task

scheduling This step involves obtaining the

suboptimal number and the type of resources able

to fulfill the workflow within its deadline and

reliability constraints.

Step 2 Fix Up This second step attempts to explore

possibility of starting each task earlier in the

leased resource, without any extra cost, by

shifting each task toward the beginning of the

time interval.

Step 3 Task replication The third step determines the

placement of idle time slots and the replication of

a proper tasks in those for enhancing workflow

execution reliability without incurring any extra

cost. The next sub-sections discuss each step-in

detail.

4.2 Basic definitions

In its ICR scheduling algorithm, the present paper intends

to find, for all tasks, the priority and Critical Parent.

Consequently, calculating some workflow task parameters

is necessary before scheduling the workflow proposed by

[19].

A task’s priority is the length of the longest path from

the task to sexit. When calculating the length of the path, the

communication times are excluded and solely the compu-

tation times are considered.

Ranki ¼ exei:j; if succi ¼ u; si 2 V ; vmj VM

Ranki ¼ max
sk2 succi

ðRankk þ exei:jÞ; Otherwise

ð4Þ

Calculation of the rank is repeatedly performed by

passing over the task upwardly, starting from sexit. In

Eq. (4), the average computation time of task si is exei;j and
the set of immediate successor tasks of si is succi.

CPi is the Critical Parent of si, whose sum of finish time

and data transfer time is greater than that of all other

parents.
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CPi ¼ k 2 predi s:t EFTk þ cmk;i [ EFTl þ cml;iwhere l
2 predi and k 6¼ l:

ð5Þ

For each unscheduled task si, its Earliest Start Time

ðESTiÞ is the earliest time at which si can start its com-

putation. Obviously, it is impossible to compute the precise

ESTi, since a Cloud is a heterogeneous environment and

the computation time of tasks varies from resource to

resource. Thus, the current work must approximate the

execution and data transmission time for each unscheduled

task. Between the available approximation alternatives

(e.g., the average, the median, or the minimum), the min-

imum execution and data transmission time are preferred.

Therefore, the Earliest Start Time (ESTi) is defined as

follows:

ESTi ¼ 0; for the entry node

ESTi ¼ maxk2predi EFTkwhere si & sk2identical vm kð
EFTkwhere si& sk 62identical vm þ cmk;i

� ð6Þ

In addition, defined for each unscheduled task si is its

Earliest Finish Time ðEFTiÞ or the earliest time at which si
can finish its computation. Once again, it is impossible to

compute EFTi exactly and it must be computed according

to the approximate execution and data transmission time as

follows:

EFTi ¼ ESTi þ exei;j ð7Þ

Similarly, the Latest Finish Time ðLFTiÞ or the latest

time in which si can complete its computation, can be

defined as:

LFTi ¼ Deadline; For the exit node

LFTi ¼ mink2succi LSTk where si & sk2identical vm kð
LSTkwhere si & sk 62identical vm � cmi;k

� ð8Þ

Finally, (9) shows the Latest Start Time ðLSTiÞ which is

the latest time at which si can start its computation:

LSTi ¼ LFTi � exei;j ð9Þ

4.3 Allocating and scheduling

Among the existing approaches for scheduling workflow

applications in public Cloud environments, the CbCP

(Clustering based on Critical Parent) algorithm s works

with assumptions closest to those of the system and

application models discussed in Sect. 3. CbCP is a cost

minimizer with a deadline- and reliability-constrained

algorithm that operates by assigning all the tasks of a

workflow cluster to the same resource.

The first step of the ICR algorithm includes the deter-

mination of ordering and placing each task of clusters

according to CbCP. The resource assignment algorithm

then determines the quantity and kind of VMs to be utilized

based on the clustering algorithm for workflow execution.

At the beginning, the task priority should be computed

before clustering. Similar to the state-of- the-art study by

[33], the present research ranks tasks according to their

priority which are based on upward ranks. The length of the

longest path from si to sexit is task si’s priority. In figuring a
path’s priority or path length, communication times are

neglected and solely computation times are counted

(Eq. 4). The priority of sentry is the sum of computation

costs along the longest path. This schedule length can

never be lower than the priority of DAG’s sentry.
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The clustering algorithm is based on CbCP. In other

words, for each si, a Critical Parent ðCPiÞ is computed,

which signifies the assignment of both the task and its

Critical Parent to the same vm. Task graph nodes are sorted

by the lowest rank first order on the list. Cluster generation

begins from the first task on the list not yet assigned to a

cluster. The search traces the selected task any successor

task’s Critical Parent. Then, the current task is added to the

appropriate cluster. If not, a new cluster is generated for

this task. The generation of a cluster is accomplished

whenever there are no more unassigned tasks on the list.

For assigning clusters to VM, the present work adopts

the method from the CbCP algorithm which examines

available VM. In order to find a vmj able to execute each

cluster task before its LFT and by satisfying its sub-relia-

bility, available VM are examined, starting from the

cheapest to the more expensive. The first vmj able to meet

this requirement at the cheapest price is selected. Let R be

the reliability demand and y be the quantity of generated

clusters. Therefore, the minimum sub-reliability demand

for the cluster with the highest priority is computed as:

Relclxmin ¼
R

1�
Qy

i¼xþ1 Rel
cli;j
max

; x ¼ 1

Relclxmin ¼
R

Qx�1
i¼1 Rel

cli;j
Actual �

Qy
i¼xþ1 Rel

cli;j
max

; 2� x� y; vmj 2 VM

ð10Þ

Let D be the overall deadline requirement of an appli-

cation. While a workflow consists of several tasks, each

task is associated with a sub-deadline related to the overall

deadline. Thus, the sub-deadlines of exit tasks are equal to

D and the sub-deadlines of the rest of the tasks are calcu-

lated on the authority of a traversal of the workflow graph

in reverse topological order. This policy attempts to find

the cheapest schedule able to execute each workflow task

before its Latest Finish Time (LFT).

4.4 Fix up

As previously mentioned, CbCP attempts to postpone the

start time of tasks as much as possible. According to

Eqs. (11, 12, 13), this algorithm computes the sub-deadline

of each task based on the Latest Finish Time (LFT) in order

to satisfy the user-defined deadline. Suppose the Actual

Start Time (AST) of task si is ASTi.

ASTi ¼ LFTi � exei;j ð11Þ

LFTi ¼ Deadline; For the exit node ð12Þ

LFTk ¼ min ASTi2succkwheresi&sk2identicalvmð
k ASTi2succkwheresi&sk 62identicalvm � cmk;i

�
; unassignedpredi

ð13Þ

Therefore, the Fix Up algorithm attempts to inspect fea-

sibility of starting each task earlier in the leased resource,

without any extra cost, by shifting each task toward the

beginning of the time intervals in an iterative process. In

order to shift task si, the present paper proposes new factors

for tasks: Definite Start Time (DST) and Definite Finish

Time (DFT). Algorithm 2 describes the heuristic Fix Up.

Algorithm 2 sorts the nodes of the task graph by the

highest rank first order on the list (Line 2). The determi-

nation of a DST is originated from the first task on the list.

As stated in Eq. (14), the DSTentry is zero. For each task si,
the current work computes its Definite Start Time, DSTi, as

the exact time at which si start its computation (Line 5).

Moreover, for each task si, the exact time at which si fulfill
its computation is described as its Definite Finish Time

DFTi (line 8). Therefore,DSTi and DFTi are computed as

follows:
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DSTi ¼ 0; Fortheentrynode ð14Þ

DSTi ¼ max DFTk2predi where si & sk2identical vm k
�

DFTk2predi where si & sk 62identical vm þ cmk;i

�

DFTi ¼ DSTi þ exei;j

ð15Þ

The algorithm compares a task’s ASTi and DSTi. If DSTi
is smaller than ASTi, then task si is shifted to DSTi and

DFTi is updated. Otherwise, just DSTi and DFTi are

updated (Lines 6–13). The Fix Up algorithm is accom-

plished whenever there are no unchecked tasks on the list.

4.5 Task replication

The ICR algorithm attempts to utilize accessible free time

gaps in the schedule map for task replication in the iterative

replication process. In order to replicate task si to a cor-

responding vm, the present paper proposes new factors for

tasks and idle time slots called risk factors. Algorithm 3

describes the heuristic algorithm of Task Replication.

In Line 14, ICR calls upon the Task Replication algorithm

to obtain a list of all possible idle time slots useful for task

replication purposes. Idle time slots exist in scheduling of

workflows because of two reasons. The first is dependencies

among tasks which may lead to periods in which the next task

scheduled to a vm must wait for data that are being generated

during the execution of another task in another vm. The second

reason for idle time slots in scheduling of workflow is that

some paid periods are only partially used in some situations.

These idle time slots are sorted into ascending order of size.

Lines 4–14 define an order for the tentative replication

of tasks in available idle time slots. Tasks are sorted

according to their risk factor criteria, as follows:

Let RFi indicate the failure probability for task si on
vmj. Since a workflow consists of a number of tasks, each

task is associated with RFi according to the reliability of its

vm and the duration of its execution time. Therefore, the

RFi of each task is computed according to Eq. (16). Sup-

pose that the reliability attained by scheduling task si on
vmj is Rel

i
j.

RFi ¼ 1� Relij

� �
� exei;j ð16Þ

Relij ¼ e

�kj�ðð
P

sk2vmj

exek;jÞþexei;jÞ

ð17Þ

The Task Replication algorithm prioritizes tasks into a

decreasing order of risk factor.

Let RFslotw be the probability of failure of a time slot on

vmj when task si is assigned. RFslotw depends on three

items: the type of vm, the task assigned to that vm, and the

communication reliability. As a Cloud is a heterogeneous

environment, the probability of failure for each vm, com-

putation time, and reliability of tasks vary from one vm to

another. In addition, based on Eq. (3), CMR, which rep-

resents the communication reliability link between two

resources, affects the amount of reliability achievement.

Therefore, the location of both the parent tasks and child

tasks is critical.

Computation reliability (CR) and communication relia-

bility (CMR) are calculated from tables of reliability pro-

vided by the Cloud provider.

RFslotw ¼ 1� CRi;j

� �
� exei;j � 1� CMRk;i

� �
ð18Þ

For task replication, the current study employs the fol-

lowing steps to select the task and the corresponding

processor.
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Compute the RFslotw of the first task on the list of all

available idle time slots. In other words, if task si has been
assigned to a vm, then this vm is either unavailable or

available for si. ICR then replicates task si with a maxi-

mum risk factor on corresponding vmj with a minimum risk

factor that generates the maximum workflow execution

reliability value. A task is considered as assigned to a slot if

its execution does not violate the end of the time interval, is

completed before its sub-deadline, and does not violate task

dependencies; that is, in this slot, the task does not run

before a predecessor or after a successor. As the objective

of this replication is to increase reliability rather than fault

tolerance, it should be noted that space replication is the

target of ICR.

Because of the reliability enhancement of si, the work-

flow execution reliability is then improved and is changed

to:

Relinew ¼ 1� 1� Relij

� �
� 1� Reliz
� �� �

vmj; vmz 2 VM

ð19Þ

Relschedul ¼ Relinew �
Qy

x¼1 Rel
clx;j
Actual

Relij
ð20Þ

As previously mentioned, Rel
clx;j
Actual is the probability that

clx is successfully executed on vmj.

4.6 Time complexity

To determine the time complexity of the proposed algo-

rithm, suppose that the schedule workflow receives work-

flow Gs ¼ V ;Eð Þ as an input with n tasks and e edges.

Additionally, assume that the maximum quantity of

resource kinds for each task is m while Sj j is the number of

idle time slots. As Gs is a directed acyclic graph, the

maximum number of edges can be assumed as O Vð Þ2.
Therefore, the present work first computes the time com-

plexity of the algorithm’s principal sections as follows:

Firstly, the algorithm traverses each task of the task

graph and calculates the start times and completion times.

At each node, the incoming and outgoing edges are con-

sidered and, in the worst case, all of the DAG edges need to

be checked. Therefore, the worst-case complexity of these

stages is O Ej jð Þ, while Ej j is the quantity of edges.

Because the array queue must be generated, this can be

performed at time O Vj jlog Vj jð Þ, which is the time for

sorting DAG nodes in an ascending order of importance

[34].

For the resource assignment algorithm, each cluster’s

resources must be evaluated so as to detect the cheapest

one which also respects both the sub-reliability and sub-

deadline constraints. Each resource evaluation should

compute the actual start time of the task on that resource,

which requires considering all parent tasks and their edges.

In the worst case, a node has n� 1 unassigned predeces-

sors, so the time complexity of updating the LFT for all

nodes is O Vj jð Þ.
The Fix Up algorithm traverses each task of the task

graph and computes the Definite Start Times and Definite

Finish Times. The worst-case complexity of these steps is

O Ej jð Þ, where Ej j is the number of edges.

The Task Replication algorithm traverses each task of

the task graph and computes risk factor RFi. The algorithm

then tests this on all available idle time slots for each task

in order to find the least RFslotw which respects both the task

dependencies and sub-deadline constraints. In the worst

case, the time complexity of replication for all nodes is

O Vj j � Sj jð Þ while the maximum number of idle time slots

can be assumed as O Vj jð Þ.
Accordingly, the overall time complexity of the ICR

algorithm is O(|V| ?|E| ?|V| log |V| ?|E| ?|V||V|). For a

dense graph, the quantity of edges is proportional to

O(|V|2). Therefore, the worst-case complexity of the ICR

algorithm is O(|V|2).

4.7 An illustrative example

In order to show how the algorithm works, the current

paper traces the algorithm’s operation on the sample graph

shown in Fig. 1 [19]. The graph consists of ten tasks, from

s1 to s10, and two dummy tasks, sentry and sexit. There are

three different types of resources for each task si, i.e., vm1,

vm2, and vm3, which can execute the task with different

QoS. Table 1 provides the execution times of tasks on

different resources (ET), the price of each resource per

time unit (PR), and the failure rate of each resource (K),
respectively. In Fig. 1, the number above each edge shows

the estimated data transfer time among the corresponding

tasks. Finally, the overall deadline and reliability of the

workflow are 300 and 0.94, respectively. As mentioned

before, ICR involves three algorithms: Scheduling, Fix Up,

and Task Replication. The first step of the ICR algorithm

includes the determination of ordering and placing each

task of clusters according to CbCP. In other words, with

these settings, the CbCP algorithm, which is the state-of-

the-art algorithm for scheduling workflows on Clouds,

generates the schedule map illustrated in Fig. 2 [19]. The

CbCP consists of four main algorithms: clustering, relia-

bility distribution, deadline distribution, and resource

assignment. The clustering algorithm is based on a critical

parent. In the reliability distribution algorithm, the sub-

reliability requirement for the clusters is continuously

calculated based upon the actual reliability obtained by

previous assignments, as well as presuppose reliability

achieved by assigning unallocated clusters to the processor
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with maximum reliability to ensure that the overall relia-

bility requirement is met. In the deadline distribution

algorithm, the distribution of the overall workflow deadline

over individual tasks is based on the Latest Finish Time.

That is, if each task finishes before its sub-deadline, the

whole workflow is completed before the user-defined

deadline. Finally, the resource assignment chooses the

cheapest service for each cluster while satisfying its sub-

reliability and sub-deadline.

ICR then calls the Fix Up algorithm to compute the

DSTi and DFTi for each task si. Based on Algorithm 2, the

nodes of the task graph are sorted by the highest rank first

order on the list. The array list for this DAG is:

RankList ¼ s1; s2; s4; s3; s7; s6; s5; s9; s8; s10f g. The com-

putation of a DST is started from the first task on the list.

For example, assume DST1 ¼ 0 and DFT1 ¼ 12. As the

value of DST1 is smaller than that of AST1, the algorithm

performs a shift. The Fix Up algorithm is completed when

there are no more unchecked tasks on the list. After the

possible shifting by the Fix Up algorithm in Fig. 2, the

result is the schedule map of the workflow as seen in

Fig. 3.

Finally, ICR calls upon the Task Replication algorithm,

i.e., Algorithm 3, for the sample workflow in Fig. 1. Based

on Algorithm 3, the risk factor is computed for each task of

the workflow according to Eq. (16). The generation of a

replication is started from the first task on the Risk Factor

List, which has not yet been checked by any resource. The

tasks on the list are sorted by descending order of risk

factors. Thus, the array list for this DAG is:

Risk Factor List ¼ s10; s7; s8; s6; s9; s4; s2; s3; s1; s5f g: s10
appears as the first task on the list. When the suitability of

any idle time slots is evaluated for s10, all are considered

invalid. This is due to, the DFT of s8 and s9, the prede-

cessors of s10, are 144 and 222, respectively. Therefore, if

s10 is applied in vm2, it must be executed for an extra time

interval. The condition of the two next tasks, s7 and s8, is
the same as that of s10. However, s6 does not violate tasks

dependencies and is completed before the end of the time

interval. Thus, s6 is chosen to be replicated to vm1. The rest

of the replications are generated by following this process.

Figure 4 depicts the scheduling of the workflow in

Fig. 1 with task replication, which makes it possible to

meet the application deadline and reliability. The hatched

boxes indicate the tasks, the crossed boxes signify the

replica of a task, and the numbers outside the boxes signify

the task numbers. The execution start time and finish time

of each task can be determined according to the time bar.

sentry and sexit with zero computation and zero communi-

cation time have no effect on the scheduling method and

are not appeared in the schedule map.

Fig. 2 Sample workflow schedule map

Fig. 3 Sample workflow schedule map after the Fix UP algorithm Fig. 4 Sample workflow schedule map after the Replication algorithm
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As discussed above, the Fix Up algorithm attempts to

explore possibility of starting each task earlier in the leased

resource, without imposing any extra cost, by shifting each

task toward the beginning of the time interval. Moreover,

in the application of the Task Replication algorithm to idle

time slots, some tasks are replicated to increase the relia-

bility of the workflow. According to the results, the total

time, reliability, and cost are 270, 0.9581, and $19,

respectively.

5 Performance evaluation

This section presents the results of the current work’s

simulations that utilize the improved CbCP with replication

(ICR) algorithm.

5.1 Experimental workflows

To evaluate a workflow scheduling algorithm, its perfor-

mance should be measured on some sample workflows. For

instance, such an evaluation can employ a random DAG

generator to construct different workflows with various

properties or utilize a library of realistic workflows

designed for the scientific or business community.

One of the introductory works in this area is by Bharathi

et al. [35], who studied the framework of five realistic

workflows from different scientific applications, namely

CyberShake, Epigenomics, LIGO, and SIPHT. These

graphs are based on real scientific workflows in different

fields of science, such as astronomy, earthquake science,

biology, and gravitational physics. Figure 5 provides the

approximate structure of these workflows which have a few

number of nodes. It should be mentioned that these

workflows have different structural characteristics in rela-

tion to their composition and key components, such as

pipeline, data aggregation, data distribution, and data

redistribution. For each workflow, tasks with similar color

are in the identical class and can be processed with a

common service.

Bharathi et al. provide a detailed specification for each

workflow which explains their structures, data, and com-

putational demands. The DAX (directed acyclic graph in

XML) format of these workflows is accessible on their

website. For its experiments, the present research chooses

three sizes of workflows: small (about 25 tasks), medium

(about 50 tasks), and large (about 100 tasks).

5.2 Experimental setup

The resource class determined in the current study is based

upon Amazon AWS EC2. Table 3 presents the instances

and their related leasing prices for a period of 60 min. The

Pegasus Workflow Generator [35] generates the mentioned

workflows.

The approaches of [19] and [30] are similar to the cur-

rent work. The authors of [19] introduce the CbCP algo-

rithm to minimize the cost of an application and to satisfy

its deadline and reliability requirement on heterogeneous

distributed systems. The limitation of CbCP is that, the

algorithm does not consider the idle time slots in leased

resources. In [30], the authors present the QFEC? algo-

rithm to minimize the execution cost to meet an applica-

tion’s reliability requirements. The two necessary

limitations of the QFEC? procedure are its ignoring of the

workflow structure and the high sub-reliability require-

ments of the tasks.

To compare the current study’s simulation results with

those from the CbCP and QFEC? algorithms, five differ-

ent deadline intervals and reliability values are specified,

from tight to relaxed. At first, for each workflow, the HEFT

strategy calculates the deadline, since it must be greater

than or equal to the makespan of scheduling the same

workflow with the HEFT strategy. Then, various deadline

Fig. 5 The structure of five realistic scientific workflows [35]

Table 3 VM types used in the experiments

Type Memory (GB) Core speed (ECU) Cores Cost ($)

m1.small 1.7 1 1 0.06

mi.medium 3.75 2 2 0.12

m1.large 7.5 2 2 0.24

m1.xlarge 15 2 2 0.48

m3.xlarge 15 3.25 3.25 0.50

m3.xxlarge 30 3.25 3.25 1.00
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thresholds are computed by multiplying the deadline by the

constant c, where c ranges from 1 to 5. When c ¼ 1, the

deadline is very tight, while higher values of c represent

more relaxed deadlines. Moreover, different reliability

thresholds are defined from 0.95 to 0.9 with 0.01 decre-

ments. It is assumed that the reliability of the processors

and the communication links utilized in this stage are

predefined. That is to say, the Cloud provider has obtained

these values.

5.3 Experimental results

To evaluate its ICR scheduling algorithm, the present paper

must assign a deadline and reliability to each workflow. In

order to calculate each workflow application’s deadline and

reliability, their execution is simulated with HEFT [33].

Moreover, to solve the difference in the attribution of

workflows, the total cost is normalized to make the com-

parison easier. As a result, the normalized cost (NC) of a

workflow is computed by dividing the current execution

cost of the workflow by the execution cost of the cheapest

possible schedule.

To assess the ICR, CbCP, and QFEC? algorithms by

testing, cost and system reliability are selected for the

evaluation criteria. The schedule cost compares the mon-

etary cost among the algorithms, while system reliability

measures the performance of these algorithms.

In the current study’s simulation experiments, all three

algorithms successfully scheduled all workflows before

their deadlines according to the reliability requirements for

tight deadlines (short deadline factor) and the workflow

reliability threshold R which is equal to 0.95. The system

reliability of the three algorithms is compared with respect

to graph specifications. It should be noted that CyberShake,

Epigenomics, LIGO, Montage and SIPHT workflows have

different structural characteristics in relation to their

composition and key components, such as pipeline, data

aggregation, data distribution, and data redistribution.

Figure 6 presents the overall experimental results. As

mentioned, the limitation of CbCP is not considering idle

time slots to increase the overall reliability, while the

QFEC? algorithm’s key limitations are ignoring the

workflow structure, as well as the high sub-reliability

requirements of all tasks. Compared to CbCP and

QFEC? , ICR utilizes the idle time slots of allocated

resources to replicate proper tasks in, which is thought to

enhance the workflow execution reliability. It should be

mentioned that the degree of enhancing reliability varies

among different workflows as this depends on the work-

flow structure and size. For instance, in the cases of

Epigenomics and LIGO for small and medium workflow

reliability, improvement is impossible because the number

of idle time slots is very low in these cases. In contrast, the

ICR algorithm achieves noticeable improvement in system

reliability with Montage, CyberShake, and SIPHT for small

and medium workflows, in which the amount of replication

is more than in other types of workflows. In other words,

ICR algorithm achieves noticeable improvement in system

reliability in the workflows with high interdependencies

among tasks, i.e., CyberShake and Montage workflows. In

these types of workflows, the quantity of idle time slots

exist in scheduling is more. The reason is that the depen-

dencies among tasks located in different clusters are high,

that may lead to periods, in which, the next task scheduled

to a vm must wait for data that are being generated during

the execution of another task in another vm. As a result, by

increasing the number of idle time slots, the rate of repli-

cation is increased and influences system reliability. On the

contrary, according to the structure of high-parallelism

workflows such as Epigenomics, the number of idle time

slots are low and the system reliability is just satisfied.

Figure 6 demonstrates that system reliability lowers

with an increasing number of tasks, the reason for which is

explained as follows. When the task number increases, the

total execution time of each cluster correspondingly

lengthens. Consequently, according to Eq. (2), system

reliability falls. Moreover, improvement of the workflow’s

execution reliability declines by relaxing the deadline,

since the possibility of selecting a slower resource via the

resource assignment algorithm increases. Therefore, in this

type of resource, the execution time of each task is longer

than that of fast resources. As a result, the chance of tasks

finishing execution in the idle time slots of leased resources

decreases.

Figure 7 provides the cost of scheduling all workflows

with the ICR, CbCP, and QFEC? algorithms. The

QFEC? method iteratively selects available replicas and

processors with minimum execution times for each task

until its sub-reliability demand is satisfied. On the contrary,

the CbCP algorithm uses almost all available deadlines to

meet the deadline. In other words, CbCP attempts to

postpone the start time of tasks as much as possible even if

it may cause to increase the workflow execution cost. Thus,

ICR employs the Fix Up algorithm to explore the possi-

bility of starting each task earlier in the leased resource,

without imposing any extra cost, by shifting each task

toward the beginning of the time interval. In some cases,

this process frees up a number of time intervals, for

example, in the cases of Montage and CyberShake for

small and medium workflow executions, in which the cost

improvement is noticeable because of the structural prop-

erties of the workflows. In these types of workflows, the

dependencies between tasks located in different clusters are

high. As a result, this can generate idle time slots in leased

resources which may affect the workflow execution cost. In

contrast, in the cases of Epigenomics, SIPHT, and LIGO,
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the workflow execution cost improvement is almost zero.

Because the rate of dependency between clusters is low in

these workflows, their execution can be in parallel and so

decrease the idle time slots in the resource. Therefore, the

ICR and CbCP algorithms have almost the same normal-

ized cost since the Fix Up algorithm cannot reduce their

number of idle time slots.

In addition, Fig. 7 shows the results for a relaxed

deadline and reliability. The ICR, CbCP, and QFEC? al-

gorithms have almost the same normalized cost for a

relaxed deadline and reliability. Therefore, in cases in

which the workflow deadline and reliability are not strict,

the schedule map changes to reduce execution costs within

the constraints of the specified deadline and reliability.

As demonstrated in Fig. 7, increasing the quantity of

tasks from 25 to 100 lowers the normalized cost in

Epigenomics while producing the same normalized cost in

SIPHT and LIGO. However, in Montage and CyberShake,

an increase in workflow tasks raises the normalized cost,

because the structure of these workflows creates small

Fig. 6 Obtained Reliability of scheduling workflows with the ICR, CbCP and QFEC? algorithms
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clusters. Therefore, the resource assignment algorithm

must establish many resources, even though only a low

number of their idle time slots are used.

6 Conclusions

Cloud computing enables users to gain their desired QoS

(such as deadline and reliability) by paying an appropriate

price. The present paper proposes a new algorithm, ICR,

for workflow scheduling which minimizes the total exe-

cution cost while meeting a user-defined deadline and

reliability.

When compared with CbCP and QFEC? , the main

advantages of ICR are its capability to start each task

earlier in the leased resource, without imposing any extra

cost, by shifting each task toward the beginning of the time

interval and utilize the rest of the idle time slots in the

leased resources to enhance the workflow execution relia-

bility. The current study evaluates the ICR algorithm by

Fig. 7 Normalized Cost of scheduling workflows with the ICR, CbCP and QFEC? algorithms
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simulating it with synthetic workflows based upon real

scientific workflows of various structures and sizes. The

outcomes show that ICR provides the best possible solution

when the task graph satisfies a simple condition. Even if

the condition is not met, this algorithm provides a satis-

factory schedule close to the optimum solution. The

shortest schedule length and resource usage are also of

critical concern in high-performance computing systems.

To address this, the proposed algorithm minimizes the

schedule length via the Fix Up algorithm and considers

resource usage by employing the Task Replication

algorithm.

Future work shall focus on improving the proposed

algorithm for utilization in scheduling multiple workflows

whose requests are received at different rates.
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