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Abstract
Serverless computing and a function execution model, Function-as-a-Service (FaaS), are currently receiving considerable

attention from both academia and industry. One of the reasons for the success of serverless computing is its straightforward

interface that abstracts complex internals of cloud computing resource usage and configurations. However, this approach

may result in hiding too much information about how underlying cloud resources would work, entailing that users cannot

predict how their applications will perform, especially for IO-heavy ones. To address this issue, we evaluate several aspects

of network and disk IO performance with realistic workloads using public FaaS systems. Our analysis reveals that current

public FaaS systems do not provide appropriate levels of IO performance differentiation, and the ability to isolate network

resource allocation during concurrent execution is rarely offered by service providers. Based on the results presented in this

paper, we insist that it must be mandatory for network and disk IO resource performance of FaaS to be more visible and

predictable, as is the case for memory and CPU, in order to expand serverless computing applications to data-intensive

ones.

Keywords FaaS � Serverless computing � Resource isolation � Cloud functions � Data-intensive application �
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1 Introduction

Serverless computing is gaining popularity with the FaaS

execution model. Without incurring the overheads involved

in provisioning cloud instances and being able to scale

them as needed, FaaS systems allow system developers to

focus on the implementation of core logic. Many public

cloud service vendors provide an FaaS execution model

with their own custom cloud services, such as block stor-

age, databases, messaging, and event notification. One of

the major benefits of the FaaS is its straightforward inter-

face, which allows users to select a minimal set of con-

figurations. For example, the Lambda service provided by

AWS, the first public FaaS provider, lets users set the

maximum memory size for function run-time, and the CPU

quota is allocated proportionally to the RAM size, as is the

service charge.

Despite their popularity, many of the recent applications

of FaaS execution models are limited to the orchestration

of multiple cloud services or gateway functions by invok-

ing other proprietary cloud services or custom functions for

passing input and output arguments. Bag-of-tasks type

applications, which do not impose dependencies among

parallel jobs, are also a good candidate for the FaaS model.

Characteristics of current prevalent FaaS applications are

stateless, and they require minimal interaction among

function run-times [1]. The hardware and instance config-

uration of FaaS run-times reflect such characteristics: no

direct communication among function run-times support,

no deterministic scheduling support, and a small amount of

attached disk storage.

Using cloud computing resources for processing large-

scale datasets with well-designed parallel algorithms is

becoming the norm, but such big-data applications do not

fit well with the current FaaS execution model. Hellerstein
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et al. [2] insist that data-intensive applications should be

natively supported by the FaaS execution model, in order

to widen the adoption of serverless computing in many

fields.

The high-level abstraction of the resource and billing

model of current FaaS hides considerable information

about underlying compute resources, meaning that users

are likely to be ignorant of how a given function will

perform. To address this issue, Wang et al. [3] and Lee

et al. [4] evaluated several public FaaS execution envi-

ronments, and uncovered many issues regarding service

scalability, performance isolation, hardware heterogeneity,

and the cold-start problem. Although this work identified

important attributes of various FaaS environments, the

evaluation mainly focused on CPU and memory resources

that are closely related and dependent performance metrics

in FaaS, barely covering the performance characteristics of

network and disk IO resources; for network resource per-

formance, they conducted an experiment using the iperf3

system command to observe resource isolation character-

istics by invoking multiple functions on the same host.

They concluded that the aggregated network bandwidth

does not differ from that of various numbers of concurrent

executions; hence, they did not identify any network

resource isolation mechanisms amongst function invoca-

tions. For disk IO operation, they used the dd system

command to identify performance. However, we believe

that the IO performance in the FaaS runtime needs deeper

investigation, because it will become more important as the

serverless computing approach is broadened to data-in-

tensive applications.

In order to better understand the network and disk IO

performance of FaaS using container technology, we per-

formed thorough experiments that heavily utilize disk and

network resources with practical application workloads.

From the results of our experiments and subsequent anal-

yses, we made the following observations:

– I/O device micro-benchmarks that exclusively stress

specific hardware do not provide an accurate estimate

of realistic network and disk performance,

– Quantitative evaluations reveal that the configuration of

memory allocation for functions makes a difference in

network and disk IO performance, even though they are

not enforced by a service provider,

– A response time and cost evaluation revealed that

allocating more resources to function run-time does not

always produce a proportional gain in performance, and

the cost can increase significantly,

– Fine-grained measurement of IO overhead while run-

ning data-intensive applications on public FaaS reveals

the consequence of not limiting IO devices, which is

unfavourable to function run-times with larger RAM

configurations.

We believe that the findings in this paper will be valuable

when building data-intensive applications in FaaS envi-

ronments, by providing insights into the impact of the

maximum memory size allocation to network and disk IO

performance. The comparison of networks from many

concurrent download functions reveals that the end-to-end

response time can be shortened with increased parallelism,

but the total aggregated download time across functions

increases significantly, resulting in increased bills for end

users. Furthermore, we could observe that not limiting IO

device performance can adversely affect CPU performance

especially when the RAM configuration is small. Although

the current FaaS execution model is popular because of the

abstraction of complex resource provisioning and

scheduling, users, when deploying data-intensive applica-

tions in an FaaS environment, should be conscious of the

impact of concurrent executions on a single host to avoid

unexpected performance.

The remainder of this paper is organized as follows.

Section 2 discusses related work. Section 3 describes

details about serverless computing and function execution

environments. Section 4 presents thorough evaluation of a

function service regarding network and disk IO resource

performance, and Sect. 6 concludes the paper by proposing

future work.

2 Related work

Many cloud service vendors provide FaaS execution

models, including Lambda by AWS, Functions by Azure,

and Cloud Functions by Google. In contrast to other public

cloud service providers, IBM open-sourced their function

service implementation, Openwhisk. OpenLambda [5] is

another open source implementation of FaaS. As a con-

tainer orchestration tool, Kubernetes [6] has been adopted

for many industry applications that are built using a micro-

service architecture. To further extend the functionality of

Kubernetes, many open-source serverless platforms built

on top of Kubernetes are being actively developed,

including OpenFaaS, Kubeless, and Knative. These appli-

cations have the potential to contribute significantly to

expanding the adoption of FaaS in industry and academia,

but they tend to show unpredictable performance because

of a high level of resource abstraction.

Wang et al. [3] and Lee et al. [4] compared public

function execution environments. They focused mainly on

quantitative evaluation of concurrent function throughput,

service scalability, and the cold-start problem. Their eval-

uation mainly focused on CPU and memory resource
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performance, and did not cover network resources as

thoroughly as we do in this paper. As the FaaS execution

environment focuses on data-heavy applications, we

believe that the impact of network and disk IO resources

becomes as important as CPU and memory.

Despite the popularity of FaaS, its applications are

currently quite limited to the orchestration of multiple

cloud services. To extend the scope of FaaS applications,

Kim and Lin [7] proposed running data analysis jobs on

Flint using a serverless environment. Ishakian et al. [8] ran

a deep neural network model inference engine on an FaaS

platform and compared its performance with those of

dedicated machines. Feng et al. [9] proposed an algorithm

to run DNN training tasks using FaaS. Pywren [10] ran

large-scale linear algebra and machine learning jobs on

AWS Lambda. Kim et al. [11] presented an algorithm to

build an optimal cloud environment to execute matrix

multiplication tasks, and the proposed algorithm can be

applied to a function environment. Kim and Lee [12, 13]

proposed a suite of data-intensive FaaS workloads to

expand the application scenario of serverless computing.

There is a recent trend in the literature towards expanding

FaaS applications to data-heavy jobs [2], and it has been

demonstrated that the performance impacts from network

and IO device resources can be significant.

There are attempts to overcome limitations of FaaS to

support diverse applications. Pocket [14] and Locus [15]

proposed external ephemeral storage service by using high

performance key-value storage engines, such as NVMe

SSD or Redis. Crucial [16] proposed a shared-state

machine that acts as a global variable storage service for

Java run-time. Though the current FaaS applications are

limited to embarrassingly parallel ones, with efforts from

academia, we believe that FaaS will gradually support

data-intensive MapReduce [17] type applications natively

and that network and disk IO performance will become

crucial.

3 Function execution mechanism
for serverless computing

Initial public cloud computing services offered virtualized

instances, so that users could run an operating system

image based on needs. From the initial offering, cloud

computing services developed in the direction of hiding the

complexities of infrastructure provisioning, operating sys-

tem dependency, software installation, and automatic

scaling as demands change. In the context of resource

abstraction, serverless computing provides several services

freeing users from the burden of server instance provi-

sioning. For example, the Amazon API Gateway provides a

public web endpoint service, usually with HTTP protocol

support, alleviating the burdens of instance provisioning

and the installation of necessary software, such as Apache

web server or nginx. For database services without server

provisioning, AWS provides DynamoDB (key-value stor-

age) and Aurora (RDBMS), which are fully managed by

the service provider, allowing users to focus on core data

management tasks.

In order to decrease challenges of users for the setup of

computation environments, many cloud service vendors

provide a serverless function service. With this service, a

user implements the core functionality of an application

and registers it with the FaaS. For the invocation of reg-

istered functions, an event-based approach is widely used.

The sources of events are generally other services provided

by the vendor. For example, in the Lambda FaaS of AWS,

functions can be invoked when an image file is uploaded to

Amazon S3 to perform further registered actions, such as

changing permissions for public access and file transcod-

ing. With the abstraction of instance provisioning, a service

provider can optimize resource utilization by packing as

many functions as possible in a single host. In order to

achieve this goal, the service provider uses container

technology that has relatively lower management overhead

and start time than virtualization [18].

In addition to the reduced overhead of server provi-

sioning, most FaaS vendors provide a simple memory-

based billing mechanism. In the function configuration step

of AWS Lambda and Google Cloud Function, users have to

decide upon the maximum memory size required by a

function, and the service bill is calculated as the registered

memory size times the duration of function execution.

Other resources are allocated in proportion to the config-

ured memory size. In contrast to a virtualization technique

that relies on a hypervisor for resource isolation among

multiple tenants, container technology relies on cgroup,

which provides per-resource isolation. In cgroup, the

parameter memory.limit_in_bytes sets the maximum

memory size that a container can use. There are many ways

to control the maximum CPU usage of a container: con-

tainer-to-core binding, share (priority)-based allocation,

and absolute time allocation. When using absolute time

allocation, cpu.cfs_period_us specifies the period of time

that the CPU quota is reallocated. In combination with

cpu.cfs_period_us, cpu.cfs_quota_us sets the amount of

CPU time that a container can use during cpu.cfs_pe-

riod_us. In an FaaS execution model, CPU resources are

allocated by setting the ratio of cpu:cfs quota us
cpu:cfs period us to the ratio

of configured memory size and the host machine’s total

memory size. For network resource allocation, cgroup’s

net_prio subsystem allows the setting of priorities among

many containers and can be used to differentiate network

resource allocation. For block IO device allocation, the
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blkio subsystem’s weight option allows the user to set the

relative importance of a container’s IO usage. With its

container technology and resource isolation mechanism, an

FaaS vendor can provide performance guarantees with a

simple billing mechanism. Based on the analysis of the

FaaS vendors’ performance, [3, 4] determined that CPU

and memory resources are allocated proportionally to user

payments, but these authors did not produce an in-depth

discussion of network and disk IO resources allocation and

isolation. An FaaS working scenario is shown in Fig. 1.

4 IO performance characteristics of FaaS

Prior work [3, 4] has focused on evaluation and comparison

among many FaaS providers mainly on memory allocation

and the corresponding CPU performance. As FaaS appli-

cations become more data-friendly, it appears that the

impact from the IO performance becomes crucial for pro-

viding reliable and predictable performance. In order to

understand the impact of various FaaS configurations to the

disk and network performance, we thoroughly investigate

the performance quantitatively with respect to memory

allocation and concurrent executions. We use Func-

tionBench [12] to evaluate the IO performance of FaaS

with realistic applications. The FunctionBench is com-

posed of micro and application benchmarks. The micro-

benchmarks consist of a few system commands that stress

either CPU, memory, disk, or network exclusively. The

application benchmarks contain many data-intensive sce-

narios, such as image/video processing, text data featur-

ization (tf-idf) followed by sentiment analysis, DNN

serving, and MapReduce tasks [13]. The authors provide

source codes that are ready to be executed for public cloud

services AWS, Azure, and Google, and we use them

without modification.

4.1 Characteristics of network performance

To exclusively measure the performance of network

resources of FaaS, we used the iperf3 system call from the

FunctionBench [12] to measure available network band-

width. To use the iperf3 system command, we created a

large-enough dedicated server using an Amazon EC2

c4.8xlarge instance with the -s option of iperf3, as function

run-times do not support a direct connection [2]. The

Lambda function run-time works as a client where the IP

address and port of the server are passed as function

arguments. Using the iperf3 command, we can let a client

(function run-time) work as either a data uploader (default

option) or downloader (with -R option), and we present the

result in both cases when necessary. To measure latency of

data download and update, we use Amazon S3 as a source

and destination from the Lambda run-time and utilize the

Amazon Fine Food Review text dataset1 with Python2.7

and the boto3 library. The different memory configuration

of function run-time limits the maximum file size to be

loaded in the memory, and we partition the dataset into

chunks with 10, 20, 50, 100, and 200 MB. All AWS

resources in the experiments are deployed on N. Virginia

region.

We present various metrics related to network perfor-

mance. The download time is the time taken by a single

function run-time to download a file. The response time

measures the end-to-end latency when downloading files in

parallel from multiple function executions. The large input

dataset was partitioned into small chunks so that parallel

download was implementable. The aggregated download

time is the accumulated download time from multiple

function executions. Unlike the response time, aggregated

download time does not consider function parallelism by

adding up download time from each container, and it

determines billing for the download service.

4.1.1 Impact of memory size configuration

We first evaluated the network bandwidth available with

AWS Lambda with different memory size configurations

by using the iperf3 system command. In Fig. 2, the hori-

zontal axis shows the memory size configured in Lambda.

The leftmost six bars show the available bandwidth when a

function run-time works as an uploader, and the rightmost

six bars represent the available bandwidth when a function

run-time works as a downloader, with data obtained using

the iperf3 -R option. Previous work [3] has investigated the

bandwidth available in a function execution environment in

the upload case, and their findings match the values given

in Fig. 2. From these experimental results, we can see that
cloud

VM host

invocation

Lambda functionuser

Amazon EC2

Automatic 
Provisioning

Amazon EC2

VM host

cgroup

Network (net_cls)

Disk I/O (blkio)CPU (quota)

Memory

container (memory : 128MB)

container (memory : 256MB)

container (memory : 128MB)

Fig. 1 FaaS environment using container technology 1 https://snap.stanford.edu/data/web-FineFoods.html.
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the service provider does not provide different levels of

network quality based on the configured maximum mem-

ory size.

Evaluation with the iperf3 system command provides an

easy way to investigate the network bandwidth available

for a function run-time, but it does not represent a realistic

scenario for data applications that may download or upload

files from a shared block storage. To understand the net-

work performance of an FaaS under a realistic scenario, we

performed download and upload experiments using blocks

of data of different sizes. Figure 3 shows the download

(Fig. 3a) and upload (Fig. 3b) times of input files of dif-

ferent sizes on a Lambda run-time with 1024 MB of

memory configured. The primary vertical axis shows the

response time taken to process a chunk, and the secondary

vertical axis shows the network bandwidth consumed. The

file size does not have a noticeable impact on network

bandwidth use. We used a 10 MB input chunk file size in

the following experiments, unless otherwise noted, which

is executable with the minimal memory configuration

(128 MB).

To evaluate the impact of memory size when real

datasets are accessed from a function execution environ-

ment, we measured the download time, upload time, and

the relationship between response time and cost (Fig. 4).

Figure 4a shows the download time for each function run-

time when the total file size is 1 GB, divided into 10 MB

chunks. Thus, the total number of chunks to download is

100, equal to the total number of function executions

required to process all of the chunks. In the figure, we show

the median value across many invocations, in order to

avoid effects of unavoidable long-tail latency in a cloud

environment [19]. In Fig. 4a, the median download time

decreases as the function’s allocated memory size increa-

ses. This observation contradicts the results from the iperf3

experiment (Fig. 2), which showed that function memory

allocation does not have an impact on the network band-

width performance. In addition, with respect to the amount

of available bandwidth, access to S3 services from a

function run-time exhibits much lower available bandwidth

than the iperf3 tests; for 128 MB of configured memory for

a function, iperf3 shows about 70 MB/s, while the down-

load from S3 shows 9.5 MB/s. Amongst many possible

reasons, we believe that differences in the experiment

environment and scenarios are likely to be the most sig-

nificant reason for this difference. In the iperf3 experiment,

we created a VPC in which a function run-time and EC2

instance can talk to each other via a fast local area network.

However, access to S3 from a function run-time might

include routing through the public Internet, even though the

services exist in the same AWS region. Another difference

is the execution environment: for the iperf3 experiment, a

system command is invoked, but download from S3

includes Python 2.7 with the boto3 library to actually

access the S3 service. We also believe that the iperf3 test

involves lower memory usage and CPU utilization than

does using Python with the boto3 library, and more intense

resource usage of S3 downloads actually degraded the

network performance.

Figure 4b shows the per-function upload time (median

value) and available bandwidth. Similar to the results

shown in Fig. 4a, the available upload bandwidth increases

as the allocated memory size increases, and these findings

are also contrary to the results shown in Fig. 2. From the

experimental results presented in Figs. 4a, b and 2, we can

conclude that the widely-used iperf3 benchmark does not

accurately reflect the network performance of function

environments. Obviously, in an FaaS application, the

chance of accessing S3 is higher than using the iperf3

command. Thus, to represent realistic data-intensive

applications in a function environment evaluation, we have

to consider use of external data sources in order to better

understand the behavior of function execution environ-

ments. We can also conclude that although the service

provider does not differentiate available network band-

width of a function run-time based on the allocated mem-

ory size, the limited memory size and its proportional CPU

usage quota to configured RAM size negatively affect the

network performance, and functions are likely to use lim-

ited network bandwidth based on memory allocation.

AWS Lambda has a unique billing model that reflects

the configured maximum memory size and running time of

a function. To investigate the impact of function memory

configuration and cost to download all the necessary input

files in S3, we created a response time and cost map

(Fig. 4c). In the experiments, each function downloaded a

chunk of size 10 MB. The total number of chunks down-

loaded was 100, and a new function invocation happened

for each chunk. In the figure, the horizontal axis shows the

configured memory size; the primary vertical axis shows

response time, with values shown on the solid line with

circle markers; and the secondary vertical axis shows the

normalized cost of running the entire set of functions, with

values shown on the dotted line with square markers. The

figure shows that the response time decreases as the con-

figured memory size increases. However, the normalized

Fig. 2 Network bandwidth evaluation with iperf3
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cost increases with increasing memory size, because the

increased memory does not result in linear improvement in

the overall download response time. This non-linearity

becomes noticeable as the memory size becomes much

larger; for example, between 2048 and 3008 MB. If we

increase memory size from 128 to 256 MB, the response

time will be halved, with a marginal cost increase. How-

ever, a memory increase from 1024 to 2048 MB shortens

the response time by about 25%, but the cost increases by

about 68%.

4.1.2 Impact of concurrent execution

We evaluated the impact of configured memory size on

overall network performance. We then investigated the

impact of concurrent execution of multiple functions on a

single host.

Concurrent execution evaluation methodology in order

to decide if function executions were conducted on the

same host, Wang et al. [3] proposed a function run-time

and host-mapping mechanism. For concurrent execution

detection, we profiled self/cgroup file of the proc file-sys-

tem from a function run-time. This file provides the VM

identifier, which begins with ‘‘sandbox-root’’, and if the

VM identifier is the same, we assume that the function runs

on the same host. We ran the concurrency tests on AWS

Lambda as much as possible, but the function placement is

not deterministic, which entailed difficulties in result ver-

ification. To overcome this issue, we created a function

run-time environment using an AWS EC2 instance and

Docker. Among the EC2 instance types, we used c3-large,

which has two virtual cores and 3.75 GB RAM, and is

known to be widely used for function run-time [3]. Docker

provides an easy way to stop, start, and deploy containers.

Docker uses cgroup to isolate resources among containers.

For memory allocation, we use –memory option to specify

the maximum amount of memory that a container can use,

and for CPU allocation, we used –cpus to specify the

amount of CPU time that a container can use. The –cpus

option uses cgroup’s cpu.cfs_period_us and cpu.cfs_quo-

ta_us. After fixing the memory size, we set the CPU ratio

as proportional to the memory size. For example, assuming

the maximum memory size of Lambda to be 3008 MB and

a host machine has two virtual cores, the 128 MB container

will get a CPU allocation of 0.085 ¼ 2:0� 128
3008

� �
; and the

3008 MB container will get CPU allocation of 2.0. With

this method, we created a function execution environment

using EC2 instances and performed experiment. It shows

very similar result pattern with the Lambda environment.

With the confirmation, we perform experiments on the EC2

and Docker environments when we cannot ensure that

many functions run on the same host.

Figure 5 shows the network bandwidth available when

multiple functions run on the same host. To maximize the

(a) Download time (b) Upload time

Fig. 3 Response time with different file size

(a) Download time (b) Upload time (c) response time - cost

Fig. 4 The impact of function’s configured memory size to the network performance and cost
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number of concurrently running functions on a host, we set

the function memory size as 128 MB, with up to 26

functions executed on the same host. We used the iperf3

scenario to measure the network bandwidth. In the figure,

the horizontal axis shows the number of functions running

concurrently on the same host: the gray bar shows the

median of available download bandwidth amongst the

functions whose value is marked on the vertical axis; and

the solid line with round markers shows the aggregated

network bandwidth across all concurrent functions. We do

not show the upload bandwidth test result, because it is

very similar to the download case. The Lambda service

does not restrict network resources based on the configured

memory size, as evidenced by the figure: as the number of

concurrent executions increases, the allocated bandwidth

per execution decreases, but the total aggregated bandwidth

remains constant.

Figure 6 shows the download times when multiple

functions are executed concurrently on the same host. In

Fig. 6, the number of concurrent executions is shown on

the horizontal axis; the bars show the median download

time required for multiple downloads to fetch all 100

chunks, each 10 MB in size, from Amazon S3; and the

numeric value on each bar shows the aggregated network

bandwidth across concurrent executions. When there is one

function running on a host, we can see that the download

time is the shortest and the aggregated bandwidth is the

smallest. As concurrency increases, the aggregated

bandwidth increases, and the download time also increases,

due to network resource contention on a same host.

Figure 7 shows the relationship between the response

times of multiple concurrent function executions and cost

with the number of concurrent executions shown in the

horizontal axis. The solid line with round markers shows

the response time required to download all 100 chunks

from S3 on the primary vertical axis. As the number of

concurrent executions increases, the response time

decreases, due to increased parallelism. The dotted line

with square markers shows the normalized cost incurred

with increased function concurrency, with values shown in

the secondary vertical axis. Due to the increased paral-

lelism and network resource contention, we can observe

that having more functions does not always result in

improved cost efficiency. When a small number of func-

tions run concurrently, we can fetch necessary files faster

by paying proportionally more. In the case of extreme

concurrency, such as 16 and 26 instances, there is almost

no response-time gain, but the cost increases by about 20%.

Unfortunately, in a function execution environment, users

do not have control over where submitted functions will

execute or how many functions will execute on the same

machine. From the service provider’s perspective, it is

evident that packing as many functions as possible into a

single host maximizes resource utilization. Thus, users

have to be cautious about increasing the number of parallel

tasks, as a specific strategy might not be optimal from a

response time and cost perspective.

4.2 Characteristics of file IO performance

For most of current FaaS applications, using local storage

to store intermediate result is rare [2], and public FaaS

systems provide limited local storage for FaaS run-times.

However, data-intensive applications can generate huge

intermediate outcomes that are generally temporary stored

on a local machine’s storage [20, 21], and the importance

of disk IO performance will become significant as big-data

applications become deployed on FaaS. To better

Fig. 5 Available network bandwidth with concurrent function exe-

cution measured with iperf3

Fig. 6 Download response time and aggregated bandwidth Fig. 7 Response time and cost relation
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understand the disk IO performance of public FaaS systems

for data-oriented applications, we thoroughly investigate

bandwidth and latency with respect to the different con-

figured memory sizes and concurrencies.

Wang et al. [3] lightly evaluated IO performance of

public FaaS using dd system command. However, such a

micro-benchmark cannot capture complex access patterns

of realistic data-oriented applications [22], and in this study

we use a suite of IO benchmarks provided in the Func-

tionBench [13] that uses fread/fwrite in the Python for both

sequential and random access.

4.2.1 Impact of memory size configuration

Figure 8 shows the response time and corresponding

bandwidth for processing 100 MB files from AWS

Lambda. We conducted the same set of experiments with

different file sizes, and it shows similar result. Figure 8a

shows the read performance, and Fig. 8b shows the write

performance. In each figure, the gray bar and white bar

show the latency of sequential and random access,

respectively, in the primary vertical axis. The solid line

with round markers and dotted line with square markers

show the available bandwidth of sequential and random

access, respectively, in the secondary vertical axis. For

both read and write operations, it shows proportional per-

formance as we increase the memory allocation. When a

function run-time has over 2 GB of memory allocated, the

available disk IO bandwidth reaches the maximum. When

the allocated RAM is small, the available disk bandwidth is

very little. Thus, users should be cautious in the function

run-time configuration, even if a function requires a small

amount of memory, as it can affect various aspect of

resources.

Similar to the network resource, it is known that public

FaaS vendors do not differentiate disk IO resource allo-

cation [3]. However, controlling available processing

capacity by limiting the RAM size and CPU quota pro-

portionally impacts the disk IO performance indirectly, and

users experience different disk IO performance propor-

tional to the allocated memory. In the experiments, the

evaluation of read happens right after a write operation has

finished. Thus, it is likely that the read operation perfor-

mance has benefit from using cached output from the write

operation. In realistic FaaS applications, this scenario is

more likely than accessing files stored in disk without

caching, because the current FaaS execution model is

stateless, and a randomly assigned function run-time does

not store a file locally for function execution.

4.2.2 Impact of concurrent execution

The disk IO bandwidth can get impact from concurrent

function executions on a same host. To quantitatively

measure the impact, we perform the fread/fwrite experi-

ments on a controlled environment presented in Sect. 4.1.2.

The result of write operation is shown in Fig. 9. The hor-

izontal axis shows the degree of concurrent executions on a

host. The primary vertical axis shows the latency to com-

plete an operation of 100 MB input file, and the secondary

vertical axis shows the corresponding available bandwidth.

The gray bar indicates the latency of sequential write, and

the white bar shows the latency of random write. The

allocated memory size of each function run-time is set as

128 MB. The solid line with round markers shows the

bandwidth of sequential write, and the dotted line with

square markers shows that of random write. In the exper-

iment, we could not complete random write operation

within 1000 s when the number of concurrent executions is

26, and the white bar and blue square marker in the setting

are missing. Both random and sequential write show

degradation due to the contention in a same host. Similar to

the network resources, users should be conscious about the

performance degradation of disk IO operation due to the

concurrent execution even if they cannot control the

function placement.

(a) File read (b) File write

Fig. 8 Response time and available bandwidth with different memory size (AWS Lambda)
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5 IO performance of public FaaS

It is important to understand the impact from IO resources

to overall performance of data-intensive applications on

public FaaS systems. To represent data analytics scenarios,

we ran MapReduce and image processing applications

from FunctionBench [12, 13] and present compute, disk

IO, and network time on AWS Lambda and Google Cloud

Function service while allocating different memory sizes.

Image processing in the image processing workload, we

assume that a batch of images (five images of 1 MB each)

is stored in a shared cloud object storage. A FaaS function

fetches images and apply several effects, such as flip,

rotate, blurring, contour filtering, resize, and gray scale,

using Python Pillow library. As there are many effects

applied for each image, the intermediate outcome should

be stored in a local disk of each function run-time. After all

the tasks complete, the outcomes stored in a local storage is

uploaded to a shared cloud object storage.

Figure 10 shows the latency of image processing with

different memory size configured. The dark gray bar shows

AWS Lambda performance, and the white bar shows

Google cloud Functions. Missing bars mean that the given

experiment could not complete with the configured mem-

ory size. We separate each bar into network (upper left

diagonal), disk IO (plain), and processing (right upper

diagonal) time that is shown in the primary vertical axis.

The secondary vertical axis shows the ratio of network and

disk IO to the total completion time. As more resources are

allocated, we can see that both AWS and Google function

show improved performance. The ratio of network and disk

IO keep increasing as the configured memory size increa-

ses. Current FaaS systems do not provide isolation of IO

resources proportional to the configured memory size [3],

and this experiment result implies that handling IO device

overheads can negatively impact the CPU performance

especially when the memory configuration and the corre-

sponding CPU allocation are small. As more memory and

CPU quota are allocated to function run-time, the

improvement ratio of compute is much higher than that of

IO device. The larger memory and CPU allocation result in

enough capacity for processing the compute job. However

there is not much room for improvement for IO devices as

they do not get restrictions based on the configured mem-

ory size.

MapReduce the MapReduce workload implements par-

allel execution of Map and Reduce primitives [17] using

FaaS run-times. The workload receives the Wikipedia

dataset in the programming language category, and it

counts the number of occurrences of a programming lan-

guage to infer the popularity. In the experiment, we pre-

pared 1 GB of total input dataset that is partitioned into ten

blocks that are stored in a shared cloud object storage

service. Map tasks are invoked in parallel with the number

of blocks. Each Map task fetches an input block from a

storage and count the number of target programming lan-

guage. The outputs from Map tasks are uploaded to a

shared object storage, and a Reduce task aggregates Map

outputs.

Figure 11 shows the MapReduce experiment result. The

gray bars show the performance from AWS Lambda, and

white bars shows results from Google Cloud Functions. In

each bar, right upper diagonal parts express the compute

time, and the plain parts represent network latency. The

MapReduce task in the experiment does not involve a local

disk IO operation. Similar to the image processing exper-

iment result, larger memory size results in shorter

Fig. 9 Available disk bandwidth with concurrent function execution

Fig. 10 Image processing workloads with AWS Lambda and Google

Cloud Functions

Fig. 11 MapReduce workloads with AWS Lambda and Google Cloud

Functions
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execution time, as it has more CPU allocated. The IO ratio

increases as more memory is allocated to function run-

times because no limitation of IO resource results in better

relative performance when the configured memory size is

small.

From the micro-benchmark experiment result that relies

on data download, upload, file write, and read, we could

observe that disk and IO performance improve propor-

tionally with the configured memory size, though explicit

IO resource limitation is not enforced. However, with

experiments of realistic applications, we could uncover that

the ratio of IO changes significantly with different con-

figured memory size; the impact from IO device becomes

noticeable as the configured memory and CPU allocation

become large, and it eventually hinders performance

improvement even with a larger memory and CPU allo-

cation in FaaS. Because such behavior is not easily

expectable from users’ perspective, public FaaS providers

should provide a mechanism to let users control degree of

IO resource allocation. The needs will become more sig-

nificant as data-intensive applications are deployed using

FaaS systems.

6 Conclusions

In this paper, we presented the results of our investigations

into the performance of network and disk IO resources in

data-intensive FaaS applications. First, we measured net-

work performance by using the iperf3 micro-benchmark

and accessing a file shared on a block storage service. We

confirmed that the AWS Lambda service does not differ-

entiate the network resource allocation in proportion to

configured memory size, but we also found out that

memory allocation strongly impacts network performance

in an indirect manner, because the application involves

large amounts of memory and CPU usage. If multiple

functions run on the same host, network performance can

degrade noticeably, and users can be charged in an

unpredictable manner. For disk IO resources, we confirmed

that the different memory size configuration results in

proportional random and sequential read/write bandwidth.

We envision the importance of network and disk IO

resource performance isolation for realistic data-intensive

FaaS applications (e.g., MapReduce and image process-

ing). Not providing different level of IO resource limitation

results in favorable IO performance with the lower memory

size configuration. Thus, as larger memory size is allocated

for a function run-time, the impact from IO device

becomes more significant in a way that is not straightfor-

ward for end-users. To make the FaaS system widen

application scenarios to data-heavy ones, the service level

of IO resources should be more distinguishable as users set

FaaS run-times with a different degree of expectations.
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