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Abstract
Cloud providers offer computing services based on user demands using the Infrastructure as a Service (IaaS) service model.

In a cloud data center, it is possible that multiple Virtual Machines (VMs) run on a Physical Machine (PM) using

virtualization technology. Virtual Machine Placement (VMP) problem is the mapping of virtual machines across multiple

physical ones. This process plays a vital role in defining energy consumption and resource usage efficiency in the cloud

data center infrastructure. However, providing an efficient solution is not trivial due to difficulties such as machine

heterogeneity, multi-dimensional resources, and large scale cloud data centers. In this paper, we propose an efficient

heuristic algorithm that focuses on power consumption and resource wastage optimization to solve the aforementioned

problem. The proposed algorithm, called MinPR, minimizes the total power consumption by reducing the number of active

physical machines and prioritizing the power-efficient ones. Also, it reduces resource wastage by maximizing and bal-

ancing resource utilization among physical machines. To achieve these goals, we propose a new Resource Usage Factor

model that manages virtual machine placement on physical machines using reward and penalty mechanisms. Simulations

based on cloud user-customized VMs and Amazon EC2 Instances workloads illustrate that the proposed algorithm

outperforms existing approaches. In particular, the proposed algorithm reduces total energy consumption by up to 15% for

cloud user-customized VMs and by up to 10% for Amazon EC2 Instances.

Keywords Cloud computing � Infrastructure as a service (IaaS) � Virtual machine placement (VMP) � Optimization �
Energy efficiency � Resource utilization

1 Introduction

Cloud computing is a relatively new model to offer users

compute, network, storage, platform and application ser-

vices on demand through Internet infrastructure. Cloud

computing has become more and more popular because

cloud services can be provided in a scalable and elastic

fashion based on user demands. Virtualization enables

cloud data centers to share a physical machine’s resources

among multiple tenants.

The ever-increasing demand for cloud infrastructure

leads to noticeable energy consumption and greenhouse

gas emissions. Based on Amazon’s estimations, 42% of a

data center’s operational cost is due to its energy con-

sumption [1–3]. High energy consumption is a potential

threat for cloud providers as it increases the total cost of

ownership [4]. High energy consumption comes from both

the amount of computational resources used in cloud

infrastructure and their power inefficiencies, and the inef-

ficient usage of these resources [5]. Efficient usage of

physical machine resources using virtualization is a

promising solution to overcome energy inefficiencies.

Specifically, Virtual Machine Placement (VMP) opti-

mization has become a trending topic among researchers in

recent years [2–4, 6–23].
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VMP implies how Virtual Machines (VMs) are placed

on Physical Machines (PMs) in a data center. In fact, this

problem is an instance of multi-dimensional vector pack-

ing, which has no exact polynomial solution [24]. Two

main goals of VMP is to minimize power consumption and

reduce resource wastage. However, offering an efficient

solution for this problem is not trivial due to the following

reasons. First, physical machines and user applications

(virtual machines) have heterogeneous characteristics.

Second, the multi-dimensional nature of VMP problem

increases the complexity as server exhaustion in one of the

dimensions such as CPU, results in a server being unable to

host any more VMs (although other dimensions such as

RAM and bandwidth may still have remaining capacities)

[8]. Third, finding the optimal placement among thousands

of candidates (in case of large scale data centers that

receive lots of requests) will further increase the com-

plexity. Although valuable efforts have been made in order

to solve this problem, to our knowledge, non of which

consider minimizing the number of active physical

machines, server power efficiency, and maximizing and

balancing resource efficiency altogether.

In this paper, we propose an efficient heuristic algo-

rithm, MinPR, with a focus on minimizing the power

consumption and resource wastage in the context of large

scale data centers that deal with multi-dimensional and

heterogeneous resources. The proposed algorithm mini-

mizes power consumption through reducing the number of

active physical machines and utilizing power-efficient

ones. It also minimizes resource wastage by increasing

utilization and balancing different resources on a physical

machine. In order to achieve these goals, we propose a new

model named Resource Usage Factor that handles VM

placement using reward and penalty policies. Moreover, by

sorting physical machines based on their power efficiency,

it is ensured that more power efficient physical machines

are utilized first. We also exploit a replacement phase to

further minimize resource wastage. The proposed algo-

rithm is compared with existing competitors such as FFD

[25, 26], MBFD [4] and RVMP [20] in terms of the total

number of active physical machines, total power con-

sumption, total CPU and RAM utilization, and total

resource wastage. Simulation results demonstrate that the

proposed algorithm is a promising solution to the virtual

machine placement problem in cloud data centers.

The rest of this paper is organized as follows. In Sect. 2,

related works are reviewed. In Sect. 3, problem definition

and its formulation is introduced. The proposed algorithm

and its details are presented in Sect. 4. Section 5 is dedi-

cated to performance evaluation and simulation results.

Finally, conclusion and future work are given in Sect. 6.

2 Related work

In recent years, several algorithms are proposed to solve

the virtual machine placement problem. In general, these

algorithms are classified into four categories [11, 19]:

heuristic, meta-heuristic, exact, and approximate. Each of

these algorithms assigns the virtual machines to servers

with certain goals, including minimizing energy con-

sumption, load balancing, maximizing resource utilization,

minimizing cost, and reducing Service-Level Agreement

(SLA) violation.

Although exact algorithms such as Constraint Pro-

gramming (CP) [27, 28], Linear Programming (LP) [29],

Integer Linear Programming (ILP) [30], Mixed Integer

Linear Programming (MILP) [21], Stochastic Integer Pro-

gramming (SIP) [31], Pseudo-Boolean Optimization (PBO)

[32] and Constraint Satisfaction Problem (CSP) [33] pro-

duce the optimal solution, their time complexity is expo-

nential. In [34], several approximate algorithms for

1-dimensional bin packing are surveyed. Authors in [35]

proved that it is viable to solve the 1-dimensional bin

packing with 1þ � approximation in polynomial time.

They also proved that 2-dimensional bin packing algo-

rithms cannot be solved in polynomial time. It is worth

mentioning that bin-packing is an NP-hard problem and is

a special case of VMP problem. Moreover, VMP algo-

rithms must be able to solve problems with more than

thousands of VMs and PMs in a reasonable time. Hence,

proposing an exact algorithm or even an efficient approx-

imate algorithm is unlikely to be possible [36]. For this

reason, most of the similar previous works used heuristic

and/or meta-heuristic algorithms [2–6, 9, 10, 12, 14–17, 20,

22, 25, 26, 28, 37–43]. In the following, we discuss some of

these algorithms.

First Fit Decreasing (FFD) [25, 26] sorts the VMs

decreasingly based on their resource demand and puts the

PMs in a consecutive list. For each VM, it searches the PM

list and the first PM that has enough resources to host the

VM will be chosen. Best Fit Decreasing (BFD) [44] sorts

the VMs decreasingly based on their resources similar to

FFD; afterwards each VM is assigned to a PM with the

minimum residual resource that could fit the VM. FFD and

BFD use such a simple strategy, but they do not consider

energy consumption and resource balancing among dif-

ferent resources.

Beloglazov et al. [4] proposed the Modified Best Fit

Decreasing (MBFD) algorithm in which all VMs are sorted

based on their current CPU utilization and for each VM a

server that has the least increase in energy consumption

will be designated as its destination. In fact, this method

chooses the more power-efficient servers first. Esfandiar-

poor et al. [10] proposed Our Modified Best Fit Decreasing
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(OBFD) algorithm in which VMs are sorted based on their

CPU requirement. Afterwards for each VM a server will be

found that results in the least energy increasement of the

data center. To this end, the best server is chosen from non-

underutilized and non-empty servers. The goal of both

these algorithms is to minimize the data center’s energy

consumption but they do not consider maximizing the

resource utilization and balancing the load among different

types of resources.

Zhang and Ansari [9] formulated the VM placement

problem as a bin packing problem. They were inspired

from dominant resource, a resource that has the most

demanding value among all the others. Hence, they pro-

posed the Dominant Residual Resource aware FFD (DRR-

FFD) and its variations. The idea behind DRR-FFD is that

first VMs are clustered based on their dominant resource,

then in each cluster, VMs are sorted non-increasingly.

Also, PMs are sorted non-increasingly based on their

power efficiency. DDR-FFD, similar to FFD, chooses the

most demanding VM to be placed on the first PM that can

host it. But choosing VM from which of the clusters is

based on mechanisms that are different in each of the

variations. For instance, DDR-BinFill calculates the ser-

ver’s remaining capacity in each iteration and specifies its

remaining capacity vector. Finally, it searches the VM

cluster based on the dominant remaining capacity vector.

Although these heuristics perform better than single

dimensional ones, for certain workloads they lead to

inappropriate placements [9].

Recently, Gupta and Amgoth [20] proposed Resource-

aware Virtual Machine Placement (RVMP) algorithm

whose fundamental goals are minimizing energy con-

sumption (through reducing the number of active PMs) and

resource wastage. They devised a new technique called

Resource Usage Factor that can lead to balanced resource

optimization on active PMs. RVMP does no processing on

the VM and PM lists whatsoever. Based on VM resource

requirements, the resource usage factor of the each PM is

calculated. This factor leads to choosing a specific PM for a

VM that improves its resource optimization. Although

RVMP performs well in maximizing resource optimization

and minimizing resource wastage, it does not improve

energy consumption dramatically. The reason behind this is

that it does not consider PM energy consumption param-

eters for choosing one to assign to a VM.

The first Ant Colony System (ACS) approach for solv-

ing VM placement problem was proposed by Gao

et al. [12]. It aims at minimizing power consumption and

resource wastage. To reach these goals, the algorithm finds

lots of non-dominated solutions and also ignores the

resource balance of active PMs. In [7] the authors proposed

a VM placement algorithm based on Ant Colony Opti-

mization (ACO) that tries to reduce power consumption

and resource wastage by minimizing the number of active

PMs. The main issue with this work is that it is not best

suited for heterogeneous data centers as the PMs are

assumed to be homogeneous. Recently, in [45] authors

proposed an ACS-based approach for dynamic VMP whose

goal is minimizing the energy consumption in data centers.

To achieve this goal, they designed a new heuristic infor-

mation in which a PM that consumes the least amount of

energy is selected as a candidate PM to host VMs.

Although their approach improves the energy consumption

of data centers, it suffers from high execution time which is

an imporant factor in large-scale data centers. Moreover,

resource wastage has not been considered in this work.

In [2, 3, 14], different variations of the genetic algorithm

are proposed for the VM placement problem in a data

center. Proposed algorithms in [2, 3] place the VMs so that

energy consumption is reduced in both servers and the

network. In [14], authors modeled the VM placement using

the vector packing approach, they tried to reduce power

consumption through maximizing the efficiency of

resource usage and minimizing the number of active PMs.

The main focus of these papers is minimizing power con-

sumption, but they did not consider resource efficiency and

minimizing resource wastage as algorithms’ goals.

Some studies such as [6, 13] used Particle Swarm

Optimization (PSO) in order to find an efficient VMP

optimization solution. In [6], authors tried to minimize

power consumption through redefining the PSO parameters

by adopting an energy-aware fitness first strategy to update

particle position and exploiting a two-dimensional particle

encoding scheme. [13]’s authors also modified PSO so that

it can relocate migrated VMs in order to reduce power

consumption and VM migration cost. Both of these

approaches used the optimized PSO to minimize the data

center’s energy consumption. However, they ignored

resource efficiency balance and minimizing resource

wastage.

Although existing algorithms made a great effort to

effectively solve the virtual machine placement problem,

none of them consider all of the factors below altogether:

1. Physical machine heterogeneity

2. Multi-dimensional resources

3. Minimizing energy consumption through reducing

number of active servers and prioritizing efficient

servers when assigning virtual machine

4. Minimizing resource wastage by maximizing effi-

ciency and balance among different resources

In this paper, we propose an efficient algorithm for virtual

machine placement in large scale data centers that con-

siders all the aforementioned factors.
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3 Problem statement and formulation

In this section, we first introduce virtual machine place-

ment preliminaries and then propose the problem

formulation.

3.1 Problem statement

Server virtualization is one of the key technologies in cloud

computing systems. This technology makes it possible to

place and run multiple virtual machines on a single phys-

ical one. Once in a while requests are checked and are

formed as virtual machines and then cloud infrastructure

resources are assigned to these virtual machines. In a cloud

computing environment, there is a pool of physical

machine resources with different amounts of capacities.

The process of mapping multiple virtual machines to a set

of physical machines is known as the virtual machine

placement problem. This process plays a vital role in

efficient usage of the resources and energy consumption in

the cloud infrastructure. However, due to reasons like

request and physical machine heterogeneity, multi-dimen-

sionality of resources and large scales, proposing an effi-

cient solution is not a straightforward task. This mapping

must be designed to satisfy the main requirements of a data

center, such as minimizing the energy consumption and

cost along with maximizing the profit.

3.2 Problem formulation

In this subsection, we propose the mathematical formula-

tion of the virtual machine placement problem. For ease of

readability, the list of notations used throughout the paper

is included in Table 1.

Suppose that P ¼ fP1;P2; . . .;Png is the set of physical

machines in the data center where the capacity of d-di-

mensional resources can be defined as Pp ¼
ðC1

p ;C
2
p ; . . .;C

d
pÞ for 1� p� n. Also suppose that the set of

virtual machines are expressed as V ¼ fV1;V2; . . .;Vmg
and Vv’s d-dimensional resource demand vector is defined

as Vv ¼ ðR1
v ;R

2
v ; . . .;R

d
vÞ for 1� v�m. In order to

demonstrate the mapping between VMs and PMs, we use a

placement matrix Xn�m whose elements are defined as

follows:

xp;v ¼
1; if Vv is placed on Pp

0; otherwise

�
ð1Þ

And for the set of PMs, we define an allocation vector y

where each yp, for 1� p� n, is 1 if it hosts at least one VM;

otherwise the value would be 0. In other words:

yp ¼
1;

Pm
v¼1 xp;v � 1

0; otherwise

�
ð2Þ

We define the normalized utilization vector of Pp’s

resources in all the demensions as Up ¼ ðU1
p ;U

2
p ; . . .;U

d
p Þ,

where

Ui
p ¼

Xm
v¼1

xp;v � Ri
v

Ci
p

: ð3Þ

Suppose that the CPU capacity of a physical machine Pp is

Ccpu
p (in Million Instructions Per Second, denoted by MIPS)

and it’s maximum power consumption is Pmax
p (in Watt,

denoted by W); then the power efficiency of Pp is defined

as follows:

Pp ¼
Ccpu
p

Pmax
p

: ð4Þ

This parameter indicates how much computational power

that a specific physical machine provides for each watt. For

instance, HP ProLiant G5’s computational power and

maximum power consumption are 5320 MIPS and 135W,

respectively [46]. Therefore, the power efficiency of this

server is equal to 39.41. For HP ProLiant G4, the compu-

tational power and maximum power consumption are 3721

MIPS and 117W, respectively; thus, its power efficiency is

equal to 31.79 [46]. As a result, HP ProLiant G5 is more

power efficient than HP ProLiant G4.

In this paper, we focus on two main resource dimen-

sions, CPU and RAM. In other words, d ¼ 2. However, the

proposed method can be easily extended to any other

number of resource dimensions. In the following, the

power consumption and resource wastage of a data center

is modeled using mathematical words.

3.2.1 Modeling power consumption

In [47], it is shown that it is possible to accurately model

the server power consumption linearly as a scale of CPU

utilization. Such scale is also proposed by the authors of

[12]. In order to save energy, servers turn off when idle; so

they do not consume power. Thus, Pp’s power consumption

is a function of its CPU utilization as shown below:

Ppower
p ¼ Pidle

p þ ðPmax
p � Pidle

p Þ � Ucpu
p ; if Ucpu

p [ 0

0; otherwise

�

ð5Þ

where Pidle
p and Pmax

p are power consumptions of Pp when it

is in idle and full utilization, respectively. Ucpu
p 2 ½0; 1� is

the normalized CPU utilization. Based on the above for-

mulas, the total power consumption of physical machines

in a data center can be calculated by the equation below:
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Xn
p¼1

Ppower
p

¼
Xn
p¼1

yp � ðPidle
p þ ðPmax

p � Pidle
p Þ �

Xm
v¼1

xp;v:R
cpu
v

Ccpu
p

 !

ð6Þ

3.2.2 Modeling resource wastage

The remaining available resources of each physical

machine can be variant on the VM placement strategy. To

fully utilize multi-dimensional resources (such as CPU and

RAM), the following equation is used to compute the

resource wastage of Pp [12]:

Pwastage
p ¼

jLcpup � Lramp j þ �

Ucpu
p þ Uram

p

ð7Þ

where Ucpu
p and Uram

p show the normalized CPU and RAM

resource usage, respectively, and Lcpup and Lramp determine

the normalized remaining CPU and RAM resource usage. �

is a very small positive real number that equals to 0.0001

[12]. The key idea behind this modeling is to make

effective use of a PM’s resources in all dimensions and

balance between remaining resources across multiple

dimensions. Hence, the total resource wastage of a data

center can be calculated as follows:

Xn
p¼1

Pwastage
p ¼

Xn
p¼1

yp

�
jðCcpu

p �
Pm

v¼1ðxp;v�Rcpu
v ÞÞ�ðCram

p �
Pm

v¼1ðxp;v�Rram
v ÞÞjþ �Pm

v¼1ðxp;v�Rcpu
v Þþ

Pm
v¼1ðxp;v�Rram

v Þ
ð8Þ

3.2.3 Optimization formula

Our goal is to solve the optimization problem of VM

placement in a data center in a way that both power con-

sumption and resource wastage are minimized. So the

problem can be formulated as below:

Minimize
Xn
p¼1

Ppower
p ð9Þ

Minimize
Xn
p¼1

Pwastage
p ð10Þ

Subject to the following constraints:

Table 1 List of notations used

in this paper
Notation Description

P Set of physical machines; P ¼ fP1;P2; � � � ;PjPjg, where jPj ¼ n

V Set of virtual machines; V ¼ fV1;V2; � � � ;VjV jg, where jV j ¼ m

d Number of resource dimensions

Ci
p

Resource capacity of Pp along the ith dimension

Ri
v Resource demand of Vv along the ith dimension

xv;p, yp Binary variables

Ui
p

Normalized resource utilization of Pp along the ith dimension

Pp Power efficiency of Pp

Pidle
p

Power consumption of Pp in idle mode

Pmax
p Power consumption of Pp in full utilization mode

Ppower
p Total power consumption of Pp

Lcpup Normalized remaining CPU usage of Pp

Lramp Normalized remaining RAM usage of Pp

Pwastage
p Total resource wastage of Pp

Ap Current utilization state of Pp

Bðp; vÞ Posterior usage state of Pp after placement of Vv

Fðp; vÞ Resource usage factor of Pp after placement of Vv

U i
p

Posterior usage state of Pp along the ith dimension

V(U1
p;U2

p; . . .;Ud
p) Variance of the posterior utlization state vector of PM Pp

a; b; c;r Constant values
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Xn
p¼1

xp;v ¼ 1 8v ¼ 1; 2; � � � ;m: ð11Þ

Xm
v¼1

ðxp;v � Rcpu
v Þ� ðCcpu

p � ypÞ 8p ¼ 1; 2; � � � ; n: ð12Þ

Xm
v¼1

ðxp;v � Rram
v Þ� ðCram

p � ypÞ 8p ¼ 1; 2; � � � ; n: ð13Þ

yp; xp;v 2 f0; 1g 8p ¼ 1; 2; � � � ; n and 8v ¼ 1; 2; � � � ;m:
ð14Þ

Based on constraint (11), each VM can be hosted only on

one PM. Constraints (12) and (13) indicate that the sum of

CPU and RAM of all virtual machines hosted on a PM

must not exceed the amount of the PM’s CPU and RAM

capacity, respectively. At last, constraint (14) specifies the

problem’s variable domains. Having m virtual machines

and n physical ones, there are nm solutions for the place-

ment problem in total. Therefore, proposing an exact

solution is infeasible in large scale domains. In the fol-

lowing, we propose an efficient heuristic algorithm that is

able to find a good solution in polynomial time for this

problem.

4 Proposed algorithm

In this section, we first describe the multi-dimensional

resource usage model and then present the proposed

algorithm for VM placement.

4.1 Multi-dimensional resource usage model

Based on our problem formulation, each physical machine

has d dimensions of resources. To minimize resource

wastage in a data center, it is necessary that for each active

physical machine, resource utilization in all dimensions are

maximized and balanced. To illustrate the PM’s d-dimen-

sional utilization we exploit the multi-dimensional resource

usage model [20]. A similar approach titled ‘‘multi-di-

mensional space partition model’’ is previously introduced

in [37]. Using this model, it is possible to measure the

appropriate resource utilization of each PM for VM

placement.

We use the normalized utilization vector to represent the

current utilization state of the active physical machine Pp

which is represented as Ap ¼ ðU1
p ;U

2
p ; . . .;U

d
p Þ where Ui

p is

calculated based on Eq. (3). The current utilization state of

a physical machine can be represented by a point in a d-

dimensional domain. For instance, Fig. 1 illustrates the

current utilization state of Pp with CPU utilization equal to

50% and RAM utilization equal to 25%, i.e.

Ap ¼ ð0:50; 0:25Þ. In this figure, point O ¼ ð0; 0Þ repre-

sents the idle state of a machine whilst point E ¼ ð1; 1Þ
corresponds to the state where Pp is fully utilized in both

dimensions. Based on this model, three different domains

can be defined as follows [20]:

Acceptance Domain (AD): This domain specifies that

d dimensions of a physical machine are balanced properly

and that the resource wastage is low. This is an accept-

able state for active physical machines.

Balanced Domain (BD): This domain includes those PMs

which do not have significant imbalance among their dif-

ferent resources and that there is relative balance overall.

However, there are parts of this domain that must be de-

prioritized using different mechanisms. We considered this

phenomenon in our proposed algorithm (by applying penalty

using the variance of the normalized utilization vector).

Unbalanced Domain (UD): This domain specifies that

there is a disequilibrium among resource utilizations in

different dimensions and that it may cause extreme

resource wastage on a physical machine. In a VM place-

ment problem, this must be avoided. We also considered

this situation in our proposed algorithm (we de-prioritize

this domain by applying some penalty).

In general, the domain determination function f ðUpÞ for
a normalized utilization vector with Up ¼ ðU1

p ;U
2
pÞ is

defined as follows:

f ðUpÞ ¼
AD; if Up belong to the triangle BEC

UD; if Up belong to the triangle AGB or CFD

BD; otherwise

8><
>:

ð15Þ

Consider a Pp ¼ ðC1
p ;C

2
p ; . . .;C

d
pÞ and a

Vv ¼ ðR1
v ;R

2
v ; . . .;R

d
vÞ, and also suppose that Pp has enough

resources to host Vv. Now suppose that the current

current utilization state of 

BDA

B

C

DO=(0,0)

E=(1,1)
G

F

BD

UD AD

UD
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N
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Fig. 1 Multi-dimensional resource usage model
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utilization state of Pp equals to Ap ¼ ðU1
p ;U

2
p ; . . .;U

d
p Þ. The

posterior usage state is Pp’s new utilization state after it

hosts Vv and we denoted it by Bðp; vÞ ¼ ðU1
p;U2

p; . . .;Ud
pÞ

where U i
p ¼ Ui

p þ
Ri
v

Ci
p

for 1� i� d. The posterior utilization

state demonstrates the appropriateness of placement of Vv

on Pp. For instance, consider an HP ProLiant G4 with

specification as Pp = (3720 MIPS, 4 GB) along with the

current utilization state Ap ¼ ð0:5; 0:25Þ. Assume that

there are two VM requests V1 = (1600 MIPS, 800 MB) and

V2 = (1100 MIPS, 2200 MB) to be placed on Pp. By

placing V1 on Pp, the utilization state becomes Bðp; 1Þ ¼
ð0:93; 0:45Þ . However, by placing V2 on Pp, the utilization

state Bðp; 2Þ ¼ ð0:80; 0:79Þ is obtained (see Fig. 2).

4.2 The proposed algorithm for virtual machine
placement

The main idea of our algorithm lies in two phases. In the

first phase, called placement phase, physical machines are

sorted in non-ascending order based on their power effi-

ciency as shown in Eq. (4). This means that in a data center

with heterogeneous physical machines, those which add the

least power increase to data center’s power consumption

are chosen first to host virtual machines. It is worth noting

that if a physical machine’s remaining capacity crosses a

certain threshold (either gets higher than a certain upper

threshold or lower than a bottom one), it will be omitted

from the list of available physical machines. In other

words, over-loaded and under-loaded machines are not

chosen for hosting. This helps us reduce the data center’s

power consumption by migrating VMs on under-loaded

physical machines so that we can turn that PM off. After

choosing a power-efficient physical machine, the algorithm

tries to optimize its resource utilization and balance its

resource usage across multiple dimensions so that the

number of active physical machines and resource wastage

is minimized. Details of this phase are discussed in the

following subsection. The second phase is the replacement

phase. If a physical machine Pp’s normalized utilization

vector resides in the Unbalanced Domain, an inactive PM

from the list of all inactive ones is found, such that 1.) it is

more power-efficient than the others, 2.) it has enough

capacity to host all virtual machines that placed on Pp, and

3.) its utilization vector falls in either the Acceptance

Domain (first priority) or Balanced Domain (second pri-

ority). Afterwards, Pp will be turned off, and the newly

chosen PM will be turned on.

4.2.1 Placement phase

Suppose that there are m virtual machines in queue waiting

to be placed and Pp is the most power efficient one, where

Ap ¼ ðU1
p ;U

2
p ; . . .;U

d
p Þ. First, we calculate the posterior

utilization state of Pp for all VMs like Vv that can be hosted

on it (i.e., Bðp; vÞ ¼ ðU1
p;U2

p; . . .;Ud
pÞ). To decide which

VM is appropriate to be placed on Pp, we exploit a criterion

named Resource Usage Factor. This criterion corresponds

to the appropriateness of placing Vv on Pp; it can be cal-

culated by the following formula:

Fðp; vÞ ¼
Yd
i¼1

U i
p þ f1ðBðp; vÞÞ � ðf2ðBðp; vÞÞ þ f3ðBðp; vÞÞÞ

ð16Þ

where f1ðBðp; vÞÞ is a reward function and f2ðBðp; vÞÞ and
f3ðBðp; vÞÞ are penalty functions, which can be calculated

by using the following relationships:

f1ðBðp;vÞÞ¼
a�
Qd

i¼1U i
p; if point Bðp;vÞ belongs to AD

0; otherwise

(

ð17Þ

f2ðBðp;vÞÞ¼
b�
Qd

i¼1U i
p; if point Bðp;vÞ belongs to UD

0; otherwise

(

ð18Þ
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Fig. 2 Posterior Utilization State of Pp = (3720 MIPS, 4 GB) after

placing V1 = (1600 MIPS, 800 MB) or V2 = (1100 MIPS, 2200 MB)
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in which V(U1
p;U2

p; . . .;Ud
p) is the variance of the posterior

utlization state vector of PM Pp and a;b; c and r are

adjustable parameters. In the following, we elaborate each

term of Eq. (16) in detail.

The first term (i.e.,
Qd

i¼1 U i
p) allows us to give a higher

priority to a VM which leads to the higher resource uti-

lization in a more balanced way. For example, if we have

three VMs V1, V2 and V3, where for each of them we have

Bðp; 1Þ ¼ ð0:70; 0:20Þ, Bðp; 2Þ ¼ ð0:50; 0:30Þ and

Bðp; 3Þ ¼ ð0:30; 0:20Þ, respectively. In this case V2 gets a

higher priority to be placed on PM Pp. The second term

rewards VM Vv that brings PM Pp to the Acceptance

Domain, while the third term penalises a VM that causes

PM Pp falls into the Unbalanced Domain. Finally, the

fourth term, plays an important role in our placement

phase. It is likely that the first and second terms give a high

value to a VM for placing on a PM while there exist better

choices. Let us explain this case with the help of an

illustrative example. Consider two VMs V1 and V2, and the

posterior utlization state vectors Bðp; 1Þ ¼ ð0:75; 0:60Þ and
Bðp; 2Þ ¼ ð0:95; 0:55Þ for PM Pp, respectively. Here both

terms one and two prefer V2 to V1, while term three has no

role on this scenario. However, it is clear that by hosting V2

on Pp, a lot of resources of PM Pp is wasted. Thus, we

prevent this by using an intelligent strategy. For this end,

we employ the variance of the posterior utlization state

vector of PM Pp. In this example, the variance of VM V1 is

0.005625 while it is 0.04 for VM V2. Therefore, our fourth

term will impose a lot of penalty to VM V2.

The algorithm’s pseudo code is presented in Algo-

rithm 1. In the proposed algorithm, we assume that all

requested VMs can be hosted on the available PMs. Here is

how the algorithm performs. First, available physical

machines are sorted based on their power efficiency (line

1). Then the first PM, say Pp, is chosen and so we set the

number of active physical machines to one (lines 2 and 3).

Afterwards, until all the VMs are placed, for each Vv 2 V if

that VM can be hosted on Pp, the Fðp; vÞ is calculated for it
(lines 4 to 8). At last, a VM that has the largest Fðp; vÞ is
chosen (lines 9 to 11). Then the selected VM called Vindex is

placed on Pp and removed from V; also, Pp’s resources are

updated (lines 12 to 15). If Pp does not have the capacity to

host any more VM, the next Pp is chosen from P and the

number of active physical machines is incremented (lines

16 to 18). At last, to balance the resource utilization, the

replacement phase is called in line 19.

f3ðBðp; vÞÞ ¼
c � VðU1

p;U2
p; . . .;Ud

pÞ; if point Bðp; vÞ in at least one dimension is greater than r%

0; otherwise

(
ð19Þ

Algorithm 1 Placement algorithm
Input: P, V
Output: placement of VMs, number of active PMs

1: Sort P in the non-ascending order of their power efficiency.
2: Activate the first Pp from the P
3: count ← 1
4: while m > 0 do
5: max ← 0
6: for all Vv in V do
7: if Rcpu

v ≤ Ccpu
v && Rram

v ≤ Cram
v then

8: Calculate F(p, v)
9: if max < F(p, v) then

10: max ← F(p, v)
11: index ← v
12: if max �= 0 then
13: Ccpu

p ← Ccpu
p − Rcpu

index

14: Cram
p ← Cram

p − Rram
index

15: Delete Vindex from V and m--
16: else
17: Activate the next Pp from the P
18: count++
19: Call VM replacement phase
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4.2.2 Replacement phase

The replacement phase’s pseudo code is presented in

Algorithm 2. In this phase, first P is divided into two parts:

powered-on PMs (Pon) and powered-off PMs (Poff ). Then

the list of powered-off PMs are sorted in a non-ascending

order based on their power efficiency (lines 1 and 2).

Afterwards, in lines 3 and 4, for each powered-on PM the

current utilization state is calculated. If the current uti-

lization state of Pp falls into Unbalanced Domain, from

powered-off PMs one is chosen (say Pq) that is able to host

all VMs on Pp and also will fall into the Acceptance

Domain after the placement (lines 5 to 10). Otherwise, in

lines 11 to 13, a PM is chosen that has enough resources to

host all the VMs on Pp and that after the placement its

utilization state falls into Balanced Domain.

4.2.3 Complexity analysis

Here we discuss the time complexity of our proposed

algorithm. For the placement phase, line 1’s complexity is

Oðn log nÞ. The while loop continues until all the VMs are

placed. On the other hand, the inner for loop is also run for

all the VMs that are not placed yet. As a result, the time

complexity of these two loops is equal to Oðm2Þ. Since the
V is not sorted, the deletion can be done in constant time,

by swapping the VM which we want to delete with the last

VM and decrementing the array size by one. Overall, the

first phase’s time complexity is equal to Oðn log nþ m2Þ.

Hence, if the number of VMs is larger than the number of

PMs, the complexity will be Oðm2Þ; if the number of PMs

is much larger than that of VMs (n[ [m), the time

complexity becomes Oðn log nÞ. The second phase’s time

complexity is quite simple and is, in the worst case, Oðn2Þ.

5 Performance evaluation

In this section, we first define performance metrics. Then

we describe the experimental setup and finally present the

simulation results. We compare our proposed algorithm,

MinPR, to various existing VM placement algorithms: FFD

[26], MBFD [4] and RVMP [20].

5.1 Performance metrics

In order to compare the algorithms’ performances, we used

multiple metrics that are defined below.

Number of active PMs: This metric represents the total

number of needed physical machines to host VMs.

Total power consumption: We use this metric to com-

pare the total power consumption of PMs in a data center,

according to the presented formula in Eq. (6).

Total resource wastage: The total resource wastage

metric specifies how the algorithms use the resources of

PMs along different dimensions (Eq. 8).

Algorithm 2 Replacement algorithm
Input: P , V
Output: replacement of VMs

1: Classify P into two categories: power on PMs (Pon) and power off PMs (Poff )
2: Sort Poff list in the non-ascending order of their power efficiency
3: for all Pp in Pon do
4: Compute Ap

5: if Ap ∈ UD then
6: for all Pq in Poff do
7: if all VMs on Pp can be placed on Pq && after replacement Aq ∈ AD then
8: Remove all VMs from Pp and put them on Pq

9: Update the Pon and Poff list
10: break
11: if all VMs on Pp can be placed on Pq && after replacement Aq ∈ BD then
12: Remove all VMs from Pp and put them on Pq

13: Update the Pon and Poff list
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Overall CPU and RAM utilizations: These metrics cor-

respond to the mean values of the CPU and RAM utiliza-

tions of k active PMs, and they can be calculated by the

equations below:

Coverall ¼ 1

k

Xk
p¼1

Xm
v¼1

xp;v � Rcpu
v

Ccpu
p

 !
ð20Þ

Roverall ¼ 1

k

Xk
p¼1

Xm
v¼1

xp;v � Rram
v

Cram
p

 !
ð21Þ

5.2 Experiment setup

To conduct experimental simulations, C?? programming

language is used. For the proposed algorithm, a and b
parameters are set to 0.25 and 0.5, respectively, and c and r
are set to 4 and 70, respectively. For physical machines, we

assume server types: HP ProLiant G4 (3720 MIPS, 4 GB)

and HP ProLaint G5 (5320 MIPS, 4 GB). G4’s power

consumption in the idle state is 86 W, and in full CPU

utilization is 117 W. For G5 these values are 93.7 W and

135 W, respectively [46].

For virtual machines, similar to [20], we have consid-

ered two scenarios: cloud user-customized VMs and

Amazon EC2 Instances. For the first one, we have con-

sidered CPU request bounds from 500 to 2500 MIPS and

RAM request bounds from 500 to 2000 MB. For the latter,

four different scenarios are assumed: Micro, Small, Extra

Large and High-CPU Medium instances whose character-

istics are shown in Table 2.

5.3 Simulation results

In this subsection, we first propose the simulation results

for cloud user-customized VMs (Fig. 3a–f) and then for

Amazon EC2 Instances (Fig. 4a–f). In all the tests, the

horizontal axis represents the number of virtual machines

and their domain varies from 200 to 1000. The vertical axis

represents the measured metric in each case. It is worth

mentioning that algorithms MBFD and RVMP suppose that

all PMs are active initially and the idle one are powered off

afterwards, whilst our proposed algorithm and algorithm

FFD suppose that all the PMs are powered off by default

and are turned on when needed.

5.3.1 Simulation results for cloud user-customized VMs

Figure 3a shows the number of active physical machines

against the number of virtual ones. It is observed from the

figure that the proposed algorithm MinPR needs much less

physical machines to host all the virtual machines. This

improvement is more significant when the number of VMs

increases. The number of used PMs in RVMP is less than

FFD but is more than the proposed algorithm and MBFD.

Analyzing the behaviors of algorithms helped us realize

that RVMP prefers G4 servers to G5 ones but our algorithm

and MBFD are acting the opposite. Hence, due to the more

CPU resources of G5 servers, they are able to activate less

PMs leading to our algorithm and then MBFD to perform

better. In Fig. 3b different algorithms are compared to one

another based on their power consumption. Based on the

results, power consumption in a data center is significantly

improved when using our proposed algorithm. For

instance, for 400 VMs, the proposed algorithm outperforms

by approximately 13%, 9% and 11% compared to FFD,

MBFD and RVMP, respectively. Results of resource

wastage are depicted in Fig. 3c. It is obvious from the

figure that the proposed algorithm and then RVMP waste

less resources when compared to MBFD and FFD. This is

due to that PM resources are utilized in a balanced manner

in the proposed algorithm and RVMP. Figure 3d, e illus-

trate the overall RAM and CPU utilizations, respectively. It

is observable from these figures that the proposed algo-

rithm handles resource utilization and balance well.

Finally, we have conducted an experiment to observe the

number of active PMs for the case where the servers are

homogeneous. In order to do so, we assume that all servers

are HP ProLiant G5 (5320 MIPS, 4 GB) ones. As depicted

in Fig. 3f, the proposed algorithm performs better in this

experiment too as it leads to a fewer number of active PMs.

5.3.2 Simulation results for Amazon EC2 Instances

Based on VM specifications these simulation results are

somewhat different compared to the previous section. Here

we discuss these differences. The number of active PMs

that each algorithm produces when trying to host Amazon

EC2 Instances are depicted in Fig. 4a. As the figure shows,

the proposed algorithm again uses fewer PMs to host

Amazon EC2 Instances. However this difference is less

significant here. This is due to the VM requirements in this

scenario. Specifically, High-CPU Medium and Extra Large

Instances reduce the number of options for the algorithms.

However, it is important that which PMs host the VMs.

Here, in contrast to the previous section, RVMP performs

better than MBFD since it places VM so that PMs are

Table 2 VM characteristics for Amazon EC2 Instances scenario

Instance CPU (in MIPS) RAM (in MB)

Micro 500 613

Small 1000 1700

Extra large 2000 3750

High-CPU medium 2500 850
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utilized properly. The power consumption values of dif-

ferent algorithms are shown in Fig. 4b. By placing VMs on

more power efficient PMs and also by using the replace-

ment phase, the proposed algorithm is the most energy

efficient one among the four algorithms. The reason why

MBFD is the least efficient in power consumption here is

that this algorithm hosts most VMs on G5 servers; how-

ever, the requirement of VMs in this scenario is somehow

that if the balance between resources is not satisfied, it

results in resource wastage and thus high power con-

sumption. Here the improvement of the proposed algorithm

for 400 VMs is about 7.5%, 9.5% and 2.5% over FFD,

MBFD and RVMP, respectively.

Results of total resource wastage validation is illustrated

in Fig. 4c. It is obvious that the proposed algorithm mini-

mizes the resource wastage in the data center properly.
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Fig. 3 Simulation results for cloud user-customized VMs. Homo homogeneous PMs
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Although our algorithm places most of the VMs on G5

servers, in contrast to MBFD, it tries to keep the utilization

and resource balance at a high ratio. In addition to this, the

replacement phase migrates the Extra Large Instances from

G5 servers to G4 ones. This leads to the minimization of

energy consumption and resource wastage in the data

center. It is notable that in Fig. 4d, e the proposed

algorithm offers better utilization and resource balance. We

conduct the homogeneous experiment (with all servers

being HP ProLiant G5 ones) for this scenario too. Figure 4f

shows that in this scenario, our algorithm still performs

better compared to the other aforementioned algorithms.
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Fig. 4 Simulation results for Amazon EC2 Instances. Homo:= Homogeneous PMs
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6 Conclusion and future work

Due to the heterogeneous nature of physical and virtual

machines, multi-dimensional resources and large scales of

cloud data centers, virtual machines placement has become an

important research topic. In this work, we proposed an efficient

heuristic algorithm to solve this problem which considers

power consumption and resource wastage minimization as its

goals. The proposed algorithm achieved power consumption

minimization by reducing the number of active physical

machines and prioritizing the power-efficient ones; it also

minimized resource wastage by balancing different resources

and improving the utilization of active physical machines. We

compared the proposed algorithm with various existing ones

through extensive simulations using different perfromance

metrics. Results showed that the proposed algorithm signifi-

cantly reduces the total power consumption and resource

wastage of a data center compared to other algorithms.

Specifically, compared to the second-best algorithm, our

algorithmdemonstrated8%to12%in the total powerefficiency

for cloud user-customized VMs and 5% to 8% for the Amazon

EC2 Instances. In regard to the total resource wastage, the

percentage of improvement was between 26 and 47% for cloud

user-customized VMs, while it was about 28% to 35% for the

Amazon EC2 Instances. As a future work, we would like to

consider the dependency between VMs and the data center

network topology in ourmodel. Furthermore, we have a plan to

compare our proposed algorithm with more related works,

especially meta-heuristic algorithms.
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