
ExaRD: introducing a framework for empowerment of resource
discovery to support distributed exascale computing systems
with high consistency

Elham Adibi1 • Ehsan Mousavi Khaneghah1

Received: 7 July 2019 / Revised: 24 September 2019 / Accepted: 9 March 2020 / Published online: 23 March 2020
� Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper, we introduced the framework to empowerment resource discovery units for supporting distributed exascale

computing systemswith high consistency. In addition to the execution of activities to find resources byExaRD, this framework

is able tomanage and control the dynamic and interactive events in distributed exascale computing systems. For these reasons,

the dynamic and interactive nature in distributed exascale computing systems is analyzed, based on which the impacts of the

occurrence of the dynamic and interactive nature in computational processes on the functionality of ExaRD are examined. By

analyzing the impacts of the dynamic and interactive concept on the functionality of ExaRD, decisions can be made for

constituent elements of the ExaRD framework and its functionality. Using a two-dimensional framework of ExaRD tomanage

and control dynamic and interactive events in distributed exascale computing systems causes ExaRD to be able to be executed

in traditional computing systems. This two-dimensional framework is also able to create responding structures outside of the

computing system to respond to the necessities of the computational processes. The ExaRD framework redefines the func-

tionalities function and generator space of RD. Our examination in terms of management framework indicated that this

framework is able to manage and control dynamic and interactive events by 50 percent.

Keywords Distributed exascale computing � Resource discovery � Dynamic and interactive events � Framework �
System state

1 Introduction

In high performance computing (HPC) systems such as

grid computing, peer to peer computing and distributed

exascale computing systems, the responding structure is

completed during the execution of programs. Thus, com-

putational processes of the global activity send new

requests during the execution of a program [1]. If resources

of the HPC systems can respond to the request, a load

balancer unit allocates resources to the requester [2];

otherwise, the resource discovery (RD) is called. The

resource discovery receives the request of the process

under the existing limitations, and the analysis is based on

the consideration of the time limitation, the type of the

resource, and sometimes the location limitation [3]. The

resource discovery should be able to find computing ele-

ments that contain the requested resource, and by resource

sharing, the execution of the process activity can be con-

tinued. In such systems, the request of the process is not

changing until the end of activities related to RD [4].

The main task of RD in traditional HPC systems like

grid computing and peer to peer computing is searching the

resource of the request and then making sure that features

of the request of the process are compatible with those of

the outside computing system [5]. The resource discovery

should be able to find the best resource to continue the

execution of the process in the shortest time [6].

As activities related to RD are performed outside the

boundary and limitation of the resource management sys-

tem, they contain more uncertainty compared to ordinary

& Ehsan Mousavi Khaneghah

EMousavi@Shahed.ac.ir

Elham Adibi

Elham.adibi@Shahed.ac.ir

1 Department of Computer Engineering, Faculty of

Engineering, Shahed University, Tehran, Iran

123

Cluster Computing (2020) 23:3349–3369
https://doi.org/10.1007/s10586-020-03091-5(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03091-5&amp;domain=pdf
https://doi.org/10.1007/s10586-020-03091-5


activities that are performed by the resource management

system [7]. When activities of RD are performed in an

environment with a higher uncertainty (such as in a dis-

tributed exascale computing system), due to the impacts of

the dynamic and interactive events, they have a different

nature compared to those performed in a traditional HPC

systems. In distributed exascale computing systems, in

addition to the traditional constraints of the computing

systems, boundaries and limitations related to the occur-

rence of the dynamic and interactive events by the com-

putational processes are also defined [8]. Boundaries and

limitations due to the dynamic and interactive nature of

events create some new limitations for activities related to

RD [9]. This necessitates having more accurate information

about the request and its limitations, as well as having

mechanisms to examine changes in the system.

To examine the performance of RD in distributed

exascale computing systems, the framework of RD should

be revised. The framework of RD in traditional HPC sys-

tems can only satisfy boundaries and limitations of the

computing system [10], but it is unable to adequately sat-

isfy boundaries and limitations related to the dynamic and

interactive nature of the computational processes. Thus, in

addition to the analysis of the impact of the dynamic and

interactive nature on RD, a new framework should be

introduced to manage challenges caused by the dynamic

and interactive nature of the computational processes,

thereby influencing on the functionality of RD. To create

this framework, constituent elements of RD in traditional

HPC systems should be revised, or new elements should be

defined in a way that the revised or new elements have

compatibility with the traditional HPC systems [11].

2 Related work

Grid computing acts as an architecture for executing HPC

applications. This architecture presents sharing of resour-

ces in different geographical places [12]. In addition, the

cooperative nature of the grid computing leads to the

generation of the concept named virtual organization

[13–15] which contains a dynamic set of data and resources

which cooperate together to do a task [16, 17]. Due to the

dynamic nature of the environment of the system, com-

putational processes or resource features undergo changes

during the execution of the program [18]. In [19], a

framework was introduced (called Cactus) which is com-

patible with the structure of HPC systems whose resource

characteristics change over time. In addition, a mechanism

for selection of resources was introduced. If the perfor-

mance of the system is beyond the boundaries, by this

mechanism, permission of changing the allocation of

resources through migration is given.

In [20], a peer to peer computing system was used as a

platform for the dynamic and scalable RD. These systems

efficiently manage dynamic of resources and directory

services in the network. In peer to peer computing systems,

computing elements are able to leave the system and join

the system in any time. As such, the description map and

features of the directory services are changing during the

execution of the program. In this paper, the Twine archi-

tecture was introduced to perform and examine the scalable

RD for which computing elements are able to send requests

for resources without any limitation in location and con-

tent. To have accurate information of resources in this

architecture, each of the computing elements updates

periodically the information. If any of the resources does

not update itself in the specific time period, it would be

omitted from the network.

There are two methods for organizing computing ele-

ments in peer to peer computing systems which include the

structured and unstructured methods [21, 22]. If the number

of computing elements in the system is limited, a quick

search and response to any query is guaranteed in the

structured peer to peer systems. On the other hand, if

information of resources in the computing system and

outside of it changes dynamically, as the updated infor-

mation should be distributed in the network and the system

becomes reorganized, the performance of the network

decreases, leading to the additional overhead. Thus, the

structured peer to peer systems are suitable for mainte-

nance and processing of resources that are static and does

not change over time [23].

In the unstructured peer to peer systems for which a pre-

existing structure is not defined for maintenance and

identification of the place of information of the resources,

the scalability is higher compared to the structured peer to

peer systems [24, 25]. In such systems, there is no limita-

tion in terms of location of computing elements and

information of resources [26]. Due to the dynamic nature of

the environment of such systems and the possibility of

adding computing elements in any time, there are more

variety of resources that computing elements are able to

share with other elements. Distributing the updated infor-

mation of resources in the whole network is a time-con-

suming task [27]. In [28], a full description of different

mechanisms of RD based on the dynamic nature of the

computing systems is provided.

A growing demand to computing resources and the need

for changes in their features indicate the importance of RD.

In [29, 30], limitations and challenges for sharing resources

in the grid computing systems were discussed and a model

was introduced which provides autonomy characteristic for

computing elements in distributed computing systems. In

the dynamic nature of the computing systems, reconfigu-

ration of the system and creating a dynamic network are

3350 Cluster Computing (2020) 23:3349–3369

123



possible by the autonomy characteristic combined with

self-organization.

In [31], behavior of each node in a large-scale system is

examined. To do so, behavior of each node in different

repetitions is observed in one loop. The work load of nodes

participated in a small-scale system is compared with the

workload of nodes participated in a large-scale system.

Their results indicated that extrapolation of the workload is

used effectively. In addition, the conducted simulation

makes it possible to have information about the most

number of nodes participating in a cluster system with a

limited number of resources.

In [32], a method is presented to discover scalability

bugs. This method is able to find scalability bugs and

provides some methods to test the code. This method is

implemented in several large-scale systems, which resulted

in acceptable results.

2.1 Definition of generator space of resource
discovery

One of the most important units of the resource manage-

ment of the high performance computing systems is RD.

By receiving a request from computational processes, RD

finds the best resource in a logical time, making possible

the continuation of the program [33]. After finding a

machine containing the resource [34], permission of access

to the requested resource is given to the requester [35].

In traditional HPC systems such as grid computing and

peer to peer computing, the procedure of RD takes place in

two ways: (1) based on conditions governed on the request

and necessities of the process, RD makes queries from

computing elements outside the computing system; (2) In

specific time periods or after some events, information

related to characteristics of resources outside the comput-

ing system are gathered, and when the process wants to

have access to a resource that cannot be responded by the

local computing system [36], by matching the request of

the process with characteristics of the discovered resources,

the right resource is allocated to the process. No matter

whether finding the resource is taken place or the request is

created, RD should be able to make consistency between

necessities of the process requesting and characteristics of

resources outside the computing system, while considering

the responding time and the possibility of giving the per-

mission of access to the resource [37].

Performance of RD depends on the Request Nature Set

(RNS) and the Resource Attribute Set (RAS). During the

execution of activities related to RD in traditional com-

puting systems, the Request Nature Set does not change

[38]. In such computing systems, RD tries to allocate a

computing element to the process that its RAS is not

changing during the response to the request of the process

[41].

Any changes in RNS or RAS can be caused by the

dynamic and interactive nature of the defined computa-

tional processes in the distributed exascale computing

system, which may lead to failure of activities related to

RD.

In distributed exascale computing systems, depending

on the dynamic and interactive nature of computational

processes, RNS of these computational processes may

change during the response to the request of the process or

during finding a resource. In addition, in such computing

systems, depending on the nature of the distributed

resource management system and definition of the local

autonomy [39, 40], the frequency of changes related to

RAS may increase.

Due to functionality of RD and two concepts of RAS

and RNS, the generator space of RD can be defined as:

As can be seen in Eq. (1), definition of RD is based on

the ‘‘ProcessRequest’’and the ‘‘Resourceout of system’’. These

two sets are the main definers of RD. In fact, RD is a

function that maps the ‘‘Resourceout of system’’ to the ‘‘Re-

sourceout of system’’. To do this mapping, RD should use four

activities. First, RD should be conducted based on one of

the aforementioned scenarios. Second, a resource that has

100 percent consistency with the request of the process, or

a resource with the least similarities with the request of the

process can be found by RD. This selection is determined

based on the policy of RD [41]. In traditional computing

systems, the 100 percent consistency is usually used

because structure of the response is known. In distributed

exascale computing systems, due to the unknown structure

ð1Þ

Cluster Computing (2020) 23:3349–3369 3351

123



of the response, as well as the possibility of some changes

in constrains of the request, the least similarity pattern can

be used [42, 43]. Third, RD should have a permission to

have access to the discovered resource. This permission

can be total or partial. It can be also a function of time or be

independent of time. In the total permission, RD allocates a

discovered resource to the requester as part of local

resources. In this case, the resource management system

should provide the aforementioned transparency. In the

partial permission, only some specific activities can be

allowed for the requester, and the requester should create

and manage a distinct activity (part of a global activity) in

remote resources [44]. Forth, regarding permanent or

temporary inclusion of computing elements containing the

requested resource, decision should be made based on

general policies of the resource management system. If the

global activity is frequently running or the resource man-

agement is acting based on similarity of global activities,

RD treats based on the permanent inclusion of computing

elements. Otherwise, the treatment is based on the need and

the request of the process.

Similarity of the global activity is used in computing

systems in which the frequency of the execution of the

global activity is low, but global activities that are executed

by the resource management system have similarities [45].

Similarities are examined in terms such as procedure of the

execution, beneficial computing elements and the request

of the process.

Based on policies of the resource management system,

RD should decide whether or not to reduce the unused

computing elements of the system. This is one of the

drawbacks of the distributed exascale computing system in

comparison to the traditional HPC systems because it leads

to increases in the execution time of the units of the

resource management system [46].

Two fundamental concepts by which activities of RD

are defined are the process state and the global activity. The

first contains the cause of the creation and the nature of the

request in the process, while the latter indicates whether the

request is memory-oriented or not [47, 48].

Each activity of RD has two characteristics of ‘‘answer’’

and ‘‘true’’. The ‘‘answer’’ characteristic determines if RD

is able to adequately respond to the request of the process.

These two concepts are discussed in more details in the

next subsection.

2.2 Failure of resource discovery procedure

In contrast to the load balancer, RD operates outside of the

boundary and limitations of the system. Computing ele-

ments outside of the computing system do not contain

constraints related to the response procedure. In addition,

these elements are not obeying the governing rules of the

computing system. Therefore, during the response proce-

dure, RD may be confronted with a concept known as

incapability of the response. Based on a criterion, RD

should decide whether or not it is able to respond to the

request of the process [3].

In computing systems, including traditional or dis-

tributed exascale computing systems, the creator of a

request is a process. Each process contains a concept

known as receiving of the response in the right time and

location [49]. If the right time and location related to the

necessities of the process is violated, there might be a

problem in continuation of the life of the process. Thus, the

‘‘answer’’ characteristic of RD means a meaningful

response to the request of the process. This concept is more

complex in distributed exascale computing systems. In

such systems, the occurrence of dynamic and interactive

events during activities related to RD might change the

concept of the meaningful response to the request. Thus,

RD in such systems should use more accurate mechanisms

to be able to provide an answer [50].

The ‘‘true’’ concept refers to the fact that the request

should be correctly responded, which means RD does not

fail during activities relate to the RD.

3 The dynamic and interactive nature
of computational processes

The dynamic and interactive nature of computational pro-

cesses is due to the fact that all variables governed on

natural events and relationship of variables, as well as

boundary and limitations of the system that are being

examined are not known for scientists in a special field of

science. The aim of the special field of science is using of

the distributed exascale computing system based on

knowledge of variables and their relationships, as well as

boundary and limitations of the computing system [8, 51].

In distributed exascale computing systems, principle

rules are scientific traditional programs that currently run

on computing systems [52]. To recognize and discover the

unknowns, a set of basic rules should be considered in the

special field of science. These rules are implemented in the

computing and processing systems over the past 50 years,

Resource management in traditional computing systems

responses to requests based on processes considered in the

initial design of the system [53]. In contrast, during the

execution of a program and in response to requests in

distributed exascale computing systems, executable ele-

ments with new processes are being created or a new

relationship might be formed between the existing pro-

cesses; thus unpredictable resources are requested from the

existing processes. Such unpredictable requests that are

3352 Cluster Computing (2020) 23:3349–3369

123



created during the execution are due to the dynamic and

interactive nature of the computational processes [54].

In contrast to the traditional computing systems, in

distributed exascale computing systems requests with the

dynamic and interactive nature are created which have not

been considered at the time of designing the system [54].

This is due to discovery of the governed rules on natural

events [48]. A new process might be created in the pro-

cedure of discovery of the governed rules on natural events,

or a new relationship might be formed between processes

that describe natural events. If boundaries of the system

that considered for the discovery of natural events are not

in accordance with the nature of events, a new relationship

between processes describing events with computing ele-

ments out of the system is created [55].

In computing systems, in response to the request of the

process, new requests are created or a new relationship is

created between processes inside the system and the

environment, leading to creation of a new process. In all of

the aforementioned items, a request is formed in the

computational process for which there is not defined any

controlling and managing structure at the time of designing

the system. The resource management should be able to

create appropriate controlling and managing structure for

the requests during the execution of the program.

By examining the nature of scientific programs that need

distributed exascale computing systems [56], it can be

concluded that in such applications, the frequency of the

occurrence of requests that cannot be responded by the

local system increases [54].

This is due to formation of requests with the dynamic

and interactive nature and creation of a new global activity

[48] for the response to them, as well as the fact that a

controlling and managing structure to respond to such

request is not defined [48, 57]. The dynamic and interactive

event leads to creation of a new process with new rela-

tionship inside and outside of the system, the features that

were not considered in the responding structure of the

system at the time of its design.

3.1 The impact of the dynamic and interactive
nature of computational processes
on recourse discovery

The dynamic and interactive nature of computational pro-

cesses influences RD in two ways [48]. First, the dynamic

and interactive nature increases the frequency of calling

RD, meaning that functionality of RD is changing. In tra-

ditional computing systems, RD is being called for finding

a new resource which has the capability of the response to a

request of the process. During the occurrence of the event

with dynamic and interactive nature in computational

processes, RD is used for the response outside of the

boundary and limitations of the system [54]. The second

influence of the dynamic and interactive nature on RD is

related to RNS and the Request Imaging (RI). In traditional

computing systems, if Alpha process in response to the

request of Beta causes calling of RD, during finding

appropriate resources, RNS related to Alpha process will

not change.

3.2 The impact of the dynamic and interactive
nature of computational processes
on the Request Nature Set (RNS)

In this study, the Request Nature Set of the Alpha process is

defined as Eq. (2):

As can be seen in the Eq. (2), RNS related to the Beta

request is defined based on four spaces which include the

nature of the request, the type of the request, and the time

and location constraints of the request. In RNS, permission

and allocation of a resource to the process can be defined.

In Eq. (2), the nature of a request is the cause of for-

mation of Beta in the Alpha process. The Alpha process is

part of a global activity. In traditional and distributed

exascale computing systems, the global activity is a set of

related activities which are responded by different elements

of the computing system. The cause of formation of the

global activity in distributed computing systems is due to

the fact that an initial request existed in the computing

ð2Þ

Cluster Computing (2020) 23:3349–3369 3353

123



element, part or all of which cannot be responded by the

local computing element. To response to the request, the

local computing system sends the request or part of the

request to other computing elements of the system. Each

computing element of the global activity is responding to

part of the request. In Fig. 1, the global activity in dis-

tributed exascale computing systems is depicted [48].

As can be seen in Fig. 1, a request is formed in machine

A1 which has not the capability to respond to the request or

part of the request. Based on the global activity mecha-

nism, the request (or part of it) is transformed to another

machine in the system. If each machine is considered

equivalent to a point in the page, a line called global

activity will be created, each point of which is a computing

element that responds to the part of the request. The request

is finished in machine Az, meaning that all parts of the

request are done by elements of the global activity. In the

computing system shown in Fig. 1, the request is inside the

system from A1 to Ai. In machine Ai, there is no element in

the computing system that can respond to the request (or

part of the request). Therefore, RD is activated in machine

Ai, and all machines from Ai to Az are added to the system

by RD [48].

The initial request that is formed in machine A1 is called

Teta. As Teta cannot be responded in machine A1, it is

transformed to machine A2. If the concept of transforma-

tion in the system is being in such a way that during the

transformation of Teta, the cause of the creation of the

request and the reason that Teta cannot be responded is

being transformed to A2, Teta is memory oriented. Other-

wise, if Teta initiates its activity as a local request in

machine A2 and has no information about its situation in

machine A1, it is called memory less.

If Teta is memory oriented, the cause of transformation

and not responding to the previous computing element, as

well as those parts that were responded in the previous

element are kept. Thus, each computing element has

accurate information about the nature of the request and the

cause of its formation, as well as the reason that it is

transformed. On the other, if Teta is memory less, during

transformation from one computing element to another, it

is considered as a new request that should be responded by

the new computing element.

In Eq. (2), the type of the request is defined by the

resource management system. For example, in [48], the

type of the request lies in one (or a combination) of the four

categories of I/O, file, process and memory. Any other

categories of resources can be also used.

In Eq. (2), the time constraint of the request refers to the

required time to respond to each request. This time either is

determined by the computing element that creates the

global activity or is determined during transformation of

the request from one computing element to another.

In Eq. (2), location constraint of the request refers to the

fact that whether response to the Beta request should be

done in a specific location or not. In some computing

elements, the Beta request should be finished in the ele-

ment that the global activity is initiated. Thus, the resource

management system should manage the global activity in

such a way that leads to completion of the global activity in

the element that it is initiated [58].

In Eq. (2), RACBeta denotes permission of access to a

resource and allocation of the resource. For the Beta

request, in machine number i, there should be a permission

of access to the resource that has capability to respond to

the Beta request (or part of it) in machine number i ? 1.

Permission of access and allocation of a resource to the

request are granted by the load balancer if machine number

i ? 1 is in the local computing system [59], but are granted

by RD if machine number i ? 1 is outside the local com-

puting system.

In traditional HPC systems, during the response to the

Beta request, RNS is not changing by the load balancer and

RD. This means that either RNS related to the Beta request

is created in the computing element that creates the global

activity with no changes during the global activity (if the

request is memory oriented), or when the Beta request is

transformed to the computing element, RNS is created by

the resource management system which will be constant

during the existence of the process containing the Beta

request (if the request is memory less).

When a request is created in a system, each request is

considered in the triple form as\ time, type, loca-

tion[ (\ t, t, l[). When the Beta request is created in the

Alpha process, either the load balancer or RD is called. At

the time of calling, each of these two units considers the

aforementioned triple form which is called the Request

Image (RI). In traditional HPC systems, RI is constant

during the response by any of these two units.

Based on system’s theory, the Beta request is due to the

interaction of the process with an element (a process or a

resource). In traditional HPC systems, a new interaction

does not occur and all the interactions can be defined in the

structure of the initial response. On the other hand, in

distributed exascale computing systems, creation of a

process or relationship between processes inside or outside

of the system creates a new interaction that has not been

considered in the structure of the initial response.

Fig. 1 A schematic of the global activity in distributed exascale

computing systems [48]

3354 Cluster Computing (2020) 23:3349–3369

123



3.3 The impact of the dynamic and interactive
nature of computational processes
on the Beta request

Based on the above discussion, it can be concluded that the

dynamic and interactive nature of computational process

leads to the formation of the Beta request, the RNS of

which is different from that of the initial global activity. In

other words, RI under the dynamic and interactive nature is

changing during the execution of the load balancer or RD.

In distributed exascale computing systems, the dynamic

and interactive nature of computational processes leads to

creation of a request that cannot be responded by the local

computing system; thus it should be responded by RD.

In distributed exascale computing systems, RI is written

as RI (t) which is due to the possibility of the occurrence of

an event with the dynamic and interactive nature. In other

words, when an event with the dynamic and interactive

nature occurs, the time and location constraints, as well as

the type of the requested resource might change.

As discussed above, in distributed exascale computing

systems, creation of RNS or changing RI with time can be

considered as the impact of the dynamic and interactive

nature on the request of the processes that form the global

activity. Formation of a new RNS or variability of RI with

time means that RD or in some cases a load balancer

should respond to them in such a way that mechanisms of

RD can be used in distributed exascale computing systems.

4 Resource discovery in distributed exascale
computing systems

The resource discovery in traditional HPC systems is

searching for the requested resource based on constraints

and limitations of the request. After discovery of the

requested resource, the permission of access is given to the

load balancer, while relationship between the requesting

process and the process contains a resource is provided,

and the requested resource is allocated to the requester.

Such pattern for RD means that this unit needs to have four

elements which include searching, adaptation, permission

of access and allocation, while RD should also have con-

nection with inter process communication management

unit outside of the machine.

In traditional HPC systems, when the resource man-

agement system is activated, RD should be able to create

RNS. In fact, the most important difference between tra-

ditional HPC systems and distributed exascale computing

systems is related to the way of creation of RNS.

In traditional HPC systems, RNS is created based on the

type of the request. In such computing systems, RD does

not extract the nature of the request and does not gather

information regarding the cause of the request in the

computing element of the requester. Thus, activities related

to RD are based on the type of the request and consider-

ation of time and location constraints and constraints that

are governed on RAC. This is due to the fact that the nature

of the request is constant. In traditional HPC systems, the

nature of the request is always determined at the time of

designing the system, and structures of responses are based

on the nature of the request. Defining different mechanisms

for RD and selecting one mechanism to be used in com-

puting systems indicate that the nature of the request is

constant in traditional HPC systems.

In distributed exascale computing systems, the type of

the request is only one of the constraints that affect RD,

and the structure of the response related to RD is based on

the nature of the request. As such, the resource manage-

ment system or RD should obtain information about the

nature of the request. This is due to possibility of definition

of processes with the dynamic and interactive nature. In

such processes, some events might be created that were not

considered in structures of the initial response. In such

systems, if selection of a mechanism for RD is only based

on the type of the request, due to the dynamic and inter-

active nature of the computational processes, selected

mechanisms might be invalid. Invalidity of the RD mech-

anism means either consecutive fails of RD or increasing

the responding time of RD.

In distributed exascale computing systems, RD should

be able to gather some information based on the nature of

the request, and to create the structure of the response.

Defining the structure of the response means selecting an

appropriate mechanism based on the nature of the request

for using in RD. In such computing systems, the nature of

the request originates from a two dimensional space. Part

of the nature of the request originates from the process

requesting the resource and part of it originates from the

global activity. In contrast to traditional HPC systems,

actions and behavior of the process in distributed exascale

computing systems are related to functionality of the pro-

cess and activities that lead to creation of functionality of

the process.

The functional space of the process in traditional HPC

systems was also used. The functional space of the process

refers to two subjects: (1) need; and (2) procedure of cre-

ating the need in the process.

The need concept implies examining the process at a

specific time, meaning that at a specific time what kind of

the resource is required for continuation of the activity. The

procedure of creating a need in traditional HPC systems is

based on structure of the data and functionality of the

process as an abstract element.

Cluster Computing (2020) 23:3349–3369 3355

123



In traditional HPC systems, all management activities of

the resource management system are defined based on the

process. Thus, the management unit in such systems is the

process. On the other hand, due to the dynamic and inter-

active nature of computational processes, resource man-

agement in distributed exascale computing systems is

related to the functionality and influence of a set of pro-

cesses, and defines all of its management activities based

on the global activity. Thus, the functional space of the

process in distributed exascale computing systems only

contains one dimensional space which contains need and

for understanding features of the process, global activities

are also considered.

Understanding the nature of a request in distributed

exascale computing systems is only possible if the global

activity concept and its status are considered. Thus, RD in

distributed exascale computing systems considers each

process as part of the global activity. Conditions governed

on this global activity determine the basic part of the nature

of the request. The nature of the request can be obtained

based on vector algebra, as well as using the concept of

global activity and its definition based on affine page and

description of global activity based on Latin square [60].

In traditional HPC systems, it is assumed that if process

O at t = zeta requests to have access to a resource that

cannot be responded by the resource management system,

RD is activated. At t = fi (fi[ zeta), RD allocates the

resource to the process O. During the time period [zeta, fi],

features of the process O and elements that can influence

the process O do not change. This is due to the fact that

Processstate and global activity are both constant in Eq. 1,

meaning that RI is constant during the period [zeta, fi].

Based on what already discussed, the dynamic and

interactive nature of computational processes in distributed

exascale computing systems cause changes in the Pro-

cessstate, particularly changes in features of the request and

global activity. As a result, RI changes during the period

[zeta, fi]. Thus, the most important challenge for RD in

distributed exascale computing systems is the fact that RI

changes, which leads to failure of activities related to RD.

During the activities related to RD at the time period

[zeta, fi], RD should be informed about changes in the

processState and global activity. Getting information about

state of the process and global activity implies that a

connection mechanism between RD, which was describing

in Eq. 2, and\ processState, global activityState[ , should

be defined. Based on the above discussion and challenges

associated with the dynamic and interactive nature in

computational processes and functionality of the traditional

RD, the framework shown in Fig. 2 can be applied for RD.

As can be seen in Fig. 2, RD in distributed exascale

computing systems uses a two dimensional framework,

which is in contrast to that in traditional HPC systems. In

fact, in traditional HPC systems, RD assumes that there is

no change in the RI elements during the period [zeta, fi]. A

constant RI at the specified period means that the

Requestnature and RAC are constant. Thus, in such com-

puting systems, after receiving the request of the process,

RD leaves the computing element, meaning that RD

becomes inactivated. The resource discovery acts based on

any of the abovementioned mechanisms, and the decision

is based on a set of information about computing elements.

In addition, the decision is based on using indicators, and

the accordance of RI with these indicators to find whether

or not the computing element can respond to the process

initiated RD. Thus, the framework presented in Fig. 2A can

be used as a framework for traditional RD at which the

Requestnature and the Processstate are constant.

RD Adaptation

Time & 
Location 

Boundary 
Analysis

Global 
Activity

Process
State 

Analysis

Request 
Nature

Decision

Inter process communication

Inter process communication

Time & 
Location 

Boundary 
Analysis

Request 
State 

Analysis

Request 
Nature Decision

RD Finder

(B)

(A)

Fig. 2 The framework of (A) RD Finder and (B) RD Adaptation in

distributed exascale computing systems

3356 Cluster Computing (2020) 23:3349–3369

123



Unpredicted changes in the Requeststate in such com-

puting systems lead to failure of RD. In such computing

systems, after making a decision, the load balancer allo-

cates a resource to the process. Thus, part of the framework

presented in Fig. 2B is also done by traditional RD.

A change in RI during the period [zeta, fi] causes

changes in Requestnature or RAC or both of them. On the

view of RD, the period [zeta, fi] contains two periods of

[zeta, omega] and [omega, fi]. Omega is the time that RD

discovers a resource. The occurrence of the dynamic and

interactive nature in computational processes which leads

to changing of RI, and consequently changes in the

Requestnature or RAC can take place in any of the two

abovementioned periods.

As can be seen in Eq. (3), the impact of the dynamic and

interactive nature on RD occurs in three ways: (1) temporal

changes in RNS due to the occurrence of the dynamic and

interactive nature on the requesting process or vice process;

(2) a change in the state of RI which somehow influences

on the requesting process; and (3) a change in constraints

that are governed on RAC.

If the dynamic and interactive nature of the computa-

tional process occurs at the period [zeta, omega], as the

dynamic and interactive nature is occurred during the

activities related to RD, part of the RD unit which is in the

machine initiating the RD activity (Fig. 2a) should some-

how give these changes to RDAdaptation (Fig. 2b). The

dynamic and interactive nature in the process of the

requesting resource means changes in elements of Eq. (2).

The resource discovery should analyze the dynamic and

interactive nature of the occurred event, and then obtain the

requesting parameters which should be given to RDAdaptation

based on Eq. (4) by inter process communication mecha-

nism outside the machine. As n units of time have passed

from the start of RD, based on Eq. (4), it should decide

whether to use the framework presented in Fig. 2 or to ini-

tiate a new RD activity.

DO ¼
Xn

Z¼0

1þ ið Þz�XZ½ � ð4Þ

In Eq. (4), DO is the rate of computing elements that are

examined by RD, n is the time unit that RD is activated in

the computing element, Xz is changes of the Requestnature
between the initial state and the new state after the

occurrence of the dynamic and interactive event. If the

value of DO exceeds from a specific limit that is

determined by RD, activities related to the current RD

stops and a new RD initiates.

Changes in the governed constraints on the request of

the process mean changes in conditions of accessibility to

the resource. In this situation, changing of the type of the

resource and the constraints governed on it are not neces-

sary. Thus, the occurrence of the dynamic and interactive

nature causes changing of the pattern of the requesting

process from the resource. As a result, the current RD

stops. In addition, if the Request-nature changes, constraints

and the type of the requested resource change. As RD uses

a two dimensional framework, during the period from the

start to the occurrence of the dynamic and interactive

nature, RD might have examined computing elements for

which the new conditions are valid. The reason of not using

a temporal pattern for the state of changing the user request

set (URS) is related to the fact that RD based on Eq. (4)

does not search any information about the RAC.

The occurrence of the dynamic and interactive nature of

the computational processes in the two time periods leads

to a change in the Requestnature, which itself necessities a

connection mechanism between the two frameworks of RD

presented in Fig. 2.

If RAC changes in response to changes in the

Requestnature, during the second time period of the RD

activities, RD certainly fails. If RD gathers information

about each computing elements from the start as a form

of\ time, dependency, location[ (\ t, d, l[), then based

on the framework presented in Fig. 2, failure of RD can be

prevented. If as a result of changes in the Requestnature
during the first time period of the RD activities, then by

changing elements of the Requeststate and the Processstate,

compatibility between the two frameworks can be

achieved. If as a result of a change in the Requestnature, only

time and location constraints and the type of the resource

change, no matter at which time RD is taking place, based

on the framework shown in Fig. 2, RD should make

compatibility between sections A and B [61, 62].

The consistency concept stated above means that

machine A0 that initiating RD finds machine P0 which can

respond to the request. Consistency between adaptation and

finder is only meaningful if both of them are located over

the same plane and mapping of each element of the finder

and adoption element are matched. A = f (p) in which f (p)

is an analytical function, can be written as Eq. (5):

ð3Þ

Cluster Computing (2020) 23:3349–3369 3357

123



A ¼ f pð Þ
¼ RDFinder RequestNature;RI;RACð Þ

þ RDAdaptation RequestNature;RI;RACð Þ ð5Þ

In Eq. (5), f (p) is the functionality function of RD. This

function is a complex-valued function in which its real part

contains the finding part and its imaginary part contains the

adapting part of RD. In Eq. (5), i indicates changes in the

new request after the occurrence of the dynamic and

interactive nature for the request based on which the RD

activity is initiated. The imaginary variable (i) indicate that

in distributed exascale computing systems if an event with

the dynamic and interactive nature does not occur, or if it

does, the nature of the created request is being the same as

the previous request, the adoption part is not going to be

activated.

Assume that RD in space K can be analyzed (space K is

equal to the environment of the distributed exascale com-

puting system). In this condition, Eq. (6) should be valid in

order to have RD in space K with functional capability.

oRDFinder

oRequestNature

� �
¼

oRDAdaptation

o RI;RACð Þ

� �� �
and

oRDFinder

o RI;RACð Þ

� �
¼

oRDAdaptation

oRequestNature

� �� �

ð6Þ

Equation 6 states that RD in distributed exascale com-

puting systems is only analytical and functional if the two

introduced parts in the framework of Fig. 2 are identical in

terms of three concepts of RI, RAC and the Requestnature.

In view of the resource management system, this means

that the two parts of ExaRD framework are consistent. The

resource management system only accepts ExaRD in the

computing system and provides analytical possibility for

that if based on three indices of RI, RAC and the

Request-nature creates a common page between the two

parts of ExaRD. In this condition, constituent parameters

that create the common page are identical in both pages. In

fact, two parts of ExaRD are finding a resource for a

Requestnature under the RI condition and the response

constraints of RAC.

In Eq. (5), which is functionality function of the RD

unit, RDFinder RequestNature;RI;RACð Þ defines a three

dimensional space of RAC, RI and the Requestnature. Then

from the start of the activation to the end of the execution

of ExaRD, the RDFinder can be described as a triple set

RequestNature;RI;RACh i, in which the Requestnature and RI

are vectors and RAC is a scalar. The Requestnature is a four

dimensional vector as\ Process, Memory, File, I/O[ , in

which each vector at the start of the global activity is at the

same direction of the unit vector and its value is equal to

necessity of the global activity of the specific resource. If

any of the computing elements can respond to parts of the

request of the process that belongs to the global activity,

direction of the Requestnature vector changes. The allocated

time to the process that belongs to the global activity to use

a resource is equal to changes in the weight of the vector

equivalent to the resource in the Requestnature vector [63].

By connecting constituent points of the triple set

of\Requestnature, RI, RAC[ , the trend line of the exe-

cution of RDFinder in the specified three dimensional space

for each RDFinder can be obtained. Similarity, a three

dimensional space for the RDAdaption can be defined, based

on which the trend line of the execution of RDAdaption can

be obtained. The function in Eq. 5 or the functionality

function of RD can define those terms specified in Eq. 6,

through which a correspondence between points of the

space of the RDfinder and those of RDAdaption can be

established, which implies that characteristics of the space

of the requesting process is equivalent to characteristics of

the space of the response. In view of RD, this means that

activities related to RD has been successful.

RDfinderspace ¼ RDfinder RequestNature;RI;RACð Þ and
RDApationspace ¼ RDApation RequestNature;RI;RACð Þ

ð7Þ

If Eq. (5) can establish a conformal map between the

two spaces of the RDfinder and the RDAdaption based on

Eq. (7), map of each page or each line from the space of

the RDfinder to the RDAdaption both in magnitude and

direction is identical. The identical here means that the

request has been successfully responded. In Fig. 3, events

that lead to activation of ExaRD are shown.

As can be seen in Fig. 3, after creation of the Beta

request, the load balancer in distributed exascale comput-

ing systems becomes activated. Based on the nature of the

request, the load balancer makes decision if the Beta

request is ordinary or it is a request with the dynamic and

interactive nature. In addition, based on its mechanisms,

the load balancer makes a decision about the capability of

the distributed exascale computing system to respond to the

Beta request. If the load balancer finds that the request is

dynamic and interactive, and the distributed exascale

computing system cannot respond to the request, ExaRD

will be called. Activation of ExaRD implies that the

RDfinder is activated (Fig. 2a).

The RDfinder is activated in a machine at which the

request of ExaRD is located. As a result of the activation of

the RDfinder in the machine, the Requestnature gets infor-

mation from the load balancer to analyze the nature of the

LB RD Finder RD 
Adaption

Fig. 3 Trend of the activation of the ExaRD unit

3358 Cluster Computing (2020) 23:3349–3369

123



request. Analyses taken in the load balancer in terms of the

nature of the request, including the type of the dynamic and

interactive nature and analyses related to the data structure

of the process that take place by the load balancer, are

given to the Requestnature. This information is used as the

basic information for creation of RNS. As a result of

activation of the Requestnature, the Requeststate and time and

location boundary analysis are activated in parallel. The

Requeststate element analyzes the data structure of the

process that has the Beta request.

With analysis of the data structure of the process with

the Beta request, ExaRD can obtain the initial values of the

request dependency and the type of the request. Although

the type of the request can be also given from the

Requestnature, if the process request is in the composite

form and as a function of time, the obtained information

about the type of the request from the Requestnature do not

contain information about the time dependent function, and

only contains general information about the nature of the

request of the process. ExaRD makes a decision based on

the analyzed information by the Requeststate element about

the type of the request and whether it changes overtime or

not. This element also makes a decision based on the

requests that are related to the Beta request and its required

resource, as well as based on the requests that affect the

Beta request and its required resource. This causes ExaRD

to be able to make a decision in case of failure of the

activities related to RD. Obtaining information about pro-

cesses that affect (or affected by) the process that contain

the Beta request causes RD to get information about

dependencies of other processes or dependencies of the

process containing the Beta request. Based on this infor-

mation, the structure of the response can be defined, which

include constraints, boundary and limitations and benefits

of the dependencies.

The time and location boundary analysis element makes

a decision about the time and location constraints of the

process containing the Beta request. These constraints

indicate that in which time and location, the response to the

Beta request is acceptable for the process containing the

Beta request, and in which conditions it is not acceptable.

Information of the time and location boundary analysis

element contains constraints that govern on RD. If ExaRD

cannot satisfy the constraints, the procedure of RD fails.

Information of this element causes that in the data structure

of RNS, the initial values to be given to the request time

and the request location. The Requestnature, time and

location boundary analysis and the Requeststate causes

initial values to be given to the data structure of RNS. The

data structure of RNS in ExaRD is as a linked list, and for

each computing element examined by the RDFinder unit, the

first four variables of it and for each responding element,

all six variables are being given values.

In distributed exascale computing systems, information

about the Requeststate, time and location boundary analysis

and the Requestnature elements are functions of time. When

RD finds a resource for which constraints, limitations and

the governed conditions are similar to those of the Beta

request, RD creates a process called vice_RD in the com-

puting element containing the requested resource. This

process is the owner of the requested resource and the vice

owner of the request. Thus, vice_RD is being informed

about any changes in the request. Creation of the vice_RD

process takes place when all variables of the RNS data

structure have been given some values. Giving values to

the data structure of RNS should contain the permission of

access and allocation of a resource that the vice_RD is its

owner.

Part of the data structure related to the constraints and

limitations in Eq. 2 are initialized by the information of the

time and location boundary analysis element. Information

defined in this equation is compared against the data

structure of the vice_RD process, and if they are the same,

it can be concluded that the dynamic and interactive event

is not occurred in the Beta request. If they are not the same,

it can be concluded that the dynamic and interactive event

occurred in the Beta request, causing activation of the

RDAdaptation.

The RDFinder and the RDAdaptation units interact with the

Resoucestate element. The Resoucestate element which is in

direct relationship with the Requestnature knows about the

state of the resource of the computing elements before and

after the occurrence of the dynamic and interactive nature

in the computational processes. Values are given to the

Resoucestate based on information of the operating system.

This implies that RD in each computing elements obtains

the state of resources that their type is the same as the one

initially defined by the Requestnature. This information is

given to the Resoucestate element. This element contains

information about existing resources in computing ele-

ments, no matter what constraints are governed on the Beta

request. Based on information in the Requeststate, time and

location boundary analysis, and Resourcestate, the RDFinder

unit makes a decision regarding the fact that which

resource in the computing element can respond to the

process containing the Beta request.

The time period between the start of RD and activation

of the vice_RD process is in the range of [zeta, omega]. In

this time range, the occurrence of the dynamic and inter-

active nature in the process containing the Beta request can

be discussed in two areas of RAC and the Requestnature. In

view of ExaRD, the occurrence of the dynamic and inter-

active nature in RAC means that the permission of access

to the resource is changing or the allocation pattern of the

resource of the vice_RD is changing. Thus, the RDFinder

sends a request to the vice_RD process to change the

Cluster Computing (2020) 23:3349–3369 3359

123



permission of access to a resource or allocation of a

resource. If the vice_RD process can execute the request,

by changing the structure of RNS and synchronizing it with

the RDFinder, manages the dynamic and interactive event. If

the nature of the request changes, the RDAdaptation activates.

In the RDAdaptation unit, information about time and loca-

tion boundary analysis and the Requestnature elements and

part of information of the Resoucestate are received from

the RDFinder unit. Part of the information of the Resoucestate
is received from the vice_RD process. The vice_RD pro-

cess gets this information from the data structure of the

resource of its own. In the RDAdaptation unit, the Processstate
element represents the vice_RD process. Any changes in

the vice_RD and changes of Beta and its effects on the

resource are analyzed by this element. Analysis by the

vice_RD process contains analysis of the Beta request and

the responding resource. As a result of this analysis, he

Processstate element creates an allocation mapping. For

allocation, through maintaining the allocation mapping

mechanism or changing the allocated elements [8], the

Processstate element manages the vice_RD process when

the dynamic and interactive nature of the computational

processes causes changes in the nature of the request.

After the occurrence of the dynamic and interactive

event, the RDAdaptation unit is activated and then a direct

connection between the RDAdaptation unit and vice_RD

process is established. By the information of the vice_RD

process, the RDAdaptation unit provides the required con-

sistency between the requesting process of the resource and

the process containing the resource.

The request REQ with the time and location constraints

causes an activation of RD. Based on the traditional defi-

nition of RD, the RDFinder takes place based on two con-

cepts on the Requeststate and the Processstate. The

Requeststate is the state of the request relative to RD and the

Processstate is the state of the requesting process of the

resource relative to RD.

In traditional HPC systems, the Requeststate and the

Processstate do not change during RD. On the other hand, in

distributed exascale computing systems, these concepts

depend on time, location and the process or the request

relative to the global activity, as well as other global

activities. Thus, Eq. (8) can be used as a controlling and

managing mechanism for RD in distributed exascale

computing systems.

As can be seen in Eq. (8), in contrast to the traditional

HPC systems, two concepts of Requeststate and Processstate
are considered as functions of time, dependency and

location. The dependency concept here is any kind of

constraint other than time and location that govern on the

space of the request and process. Due to the time concept

that exists in such computing systems, the space of the

request and the process might contain constraints to other

concepts (for example, the other process or the other

request).

If RD examines the following (a) and (b) conditions, it

decides whether or not the computing element can

respond to the request. Based on Eq. (8), (a) if the User

Request Set (URS) is being equal to necessities of the

process, for which responding to its request in the local

computing system is not possible and URS is in the form

of\RAC, limitation time, limitation location[ , in each

computing element that is being examined, its URS is re-

examined with the requesting process or its vice. This is

referred to as the double verification of RNS; (b) the RD

mechanism can examine the condition stated in Eq. 9

during examination of URS related to a computing ele-

ment.

ð9Þ

Equation 9 states that if URS of a computing element

can satisfy the RNS related to the requesting process, the

new computing element can only be added to the com-

puting system by RD if it does not change the RI state of

the system at the time of activities related to RD. If the RI

state of the computing system changes in response to

adding the new computing element, even if RNS can be

satisfied by URS, due to the concept of the change chain,

this computing element will be disregarded.

The start and end of the activity of RD are t = zeta and

t = zeta2, respectively. During [zeta, zeta2], due to

dynamic and interactive events, some changes occur in the

computing system, making it as a dynamic system. A

dynamical system is important in terms of changes related

ð8Þ

3360 Cluster Computing (2020) 23:3349–3369

123



to elements that benefit from the requesting process or

activities related to RD. As the system is in the dynamic

and interactive state, RNS is changing. If at t = zeta, RNS

becomes equal to RNSzata, RD should find a resource in

which while considering changes of RNS at zeta and zeta2,

RI would not change at zeta and zeta2.

The concept of RI (t) concentrates on two concepts of

the state of the system and creation of change chain. In a

systematic view, RI is a function of an independent vari-

able t, and its state can be changed due to the occurrence of

a dynamic and interactive event either by the requesting

process or other processes that affect the functionality of

the requesting process. In view of change chain, RD that its

URS is similar to RNS of the request, should not be in such

a way that leads to chain of necessities or creation of a new

necessity in the system.

5 Evaluation

To evaluate the suggested framework for RD in distributed

exascale computing systems, a peer to peer distributed

exascale computing system is used [48]. In this system,

there are four types of resources that can be defined by the

operating system. In such computing systems, the global

activity can be considered as what shown in Fig. 1.

To evaluate the suggested framework, two global

activities are executed by the system [48]. The Mesoscale

Model Version 5 (MM5) [64] and the Weather Research

and Forecasting (WRF) model [65] need high performance

computing systems. Based on the global activity, each of

these two models use computing resources that exist in the

system. Thus, two global activities are being executed in

the system. Each computing element of the system in each

time can make a role in execution of one or two global

activities.

The number of computing elements of the system is 120.

With 120 computing elements, it would be possible to

consider the computing system as a broad system for each

of the models. The specified models are generally executed

on fewer computing elements, such that their execution on

120 computing element helps us to analyze the condition of

the models when they are over a broad system.

Due to the nature of the distributed exascale computing

systems and the need to define the initial computing sys-

tem, 50 computing elements are considered for the initial

computing system. These 50 computing elements are

consistent with the initial necessities of the computational

processes related to scientific and application programs

mentioned earlier. During execution of scientific and

application programs, if computational processes need new

resources to continue the execution, ExaRD extends the

systems and adds new resources.

To create interactive and dynamic events on machine

12, a specific version of the software of the managing

system [48] is used at which RD uses the ExaRD frame-

work. Selection of machine 12 is due to the fact that in

most of the times of the execution of scientific and appli-

cation programs, this computing element participates in

global activity of both software. Hardware configuration of

this computing machine is equivalent to computing

machines of the system. If each global activity stated in

[60] are considered, in most of the times of the execution of

the mentioned scientific and application programs, com-

puting element 12 is the cross point of the two pages

corresponding to global activities [66, 67]. Any other

computing element can also be selected to be examined.

In computing element 12, the resource management

system has been changed. As a result, the resource man-

agement system can manage three states of creation a

process, relationship and interaction with the environment

of the system that leads to the occurrence of a dynamic and

interactive event [68, 69]. To this end, the resource man-

agement system in machine 12 (a) can manage processes

that are not in the structure of the global activity;

(b) manages the inter process communication between two

processes that constitute the global activity that has not

been considered in the initial structure of the global

activity; (c) machine 12 is connected to another computing

machine on which the two scientific applications exist. The

resource management system of machine 12 can manage

inter process communication related to the global activity

and the corresponding process outside of the computing

system which was not considered in the responding struc-

ture of the global activity. The system and the computing

element 12 are examined in 70 time units. In Fig. 4, the

number of RD, the number of calling ExaRD and the

number of responses by ExaRD are shown.

As can be seen in Fig. 4, the load balancer in computing

element 12 in each time encounters with 5 requests related

to global activities that cannot respond to them and needs

to call RD. the number of RDs in Fig. 4 indicates the

number of events that lead to the call of ExaRD and RD in

computing element 12. For example, at time 14, there are 8

requests for which there are no responses by the load

balancer. Based on the nature of the requests and the fact

that the basic element of the request is the Requeststate and

the Processstate, from these 8 requests, five of them are

responded by ExaRD unit and three of them by RD. All

three requests related to the traditional RD are responded

successfully, while out of the five requests related to

ExaRD, four requests are responded successfully and one

request has been failed.

As can be seen in Fig. 4, if computing element 12 is

examined for a long time period, on average in each time, 5

requests which include traditional RD or ExaRD occur. Out

Cluster Computing (2020) 23:3349–3369 3361

123



of these 5 requests, two of them are being sent to the

ExaRD unit by the load balancer. Recognizing the dynamic

and interactive requests by the load balancer is based on

analysis of elements of the Requeststate, the Processstate and

the global activity. If the Requeststate and the Processstate
are being in such a way that a request cannot be responded

by the computing element 12, the load balancer sends the

request to a traditional RD. If the analysis of the

Requeststate and the Processstate indicates that the request is

dynamic and interactive which cannot be responded by the

computing element 12, the request is being sent to ExaRD.

Analysis of the Requeststate, the Processstate and the

global activity are being used in computing system [46]. In

view of the load balancer, this implies that each request

cannot be responded by the load balancer. From the anal-

ysis of the Requeststate and the Processstate, it can be

determined that the request is dynamic and interactive or

not. In experiments of this section, it is assumed that when

the load balancer cannot respond to a request based on its

own local resources, the request is being considered as a

dynamic and interactive request and the load balancer tries

to prove that the request is dynamic and interactive. If it is

concluded that the request has a dynamic and interactive

nature, the request is being sent to ExaRD. This leads to a

reduction in the response time. In the second pattern that is

not being used in experiments of this section, the load

balancer can consider the request that cannot be responded

by its local resources as an ordinary request and send it to a

traditional RD. If it cannot be responded by the traditional

RD, a request is being sent to ExaRD.

As can be seen in Fig. 4, when computing element 12 is

being examined for a long time period, on average ExaRD

in each time unit receives 2.27 dynamic and interactive

requests and in each time unit responds to .9 of them. This

implies that ExaRD can respond to 42.1 of the dynamic and

interactive requests. As stated in Eq. 2, the existence of

RAC and RNS for each request in a computing system for

which RAC changes during the time period between find-

ing the requested resource and resource allocation causes

failure of RD. If the Requestnature change due to a change in

any of its constituents elements in Eq. 2, the ExaRD might

change the Requeststate and its constituent elements. As

stated earlier, if RAC changes between omega and fi, RD

cannot respond to the request with a dynamic and inter-

active nature. In addition, definition of a threshold for

variable DO in Eq. 4 is also another factor that contributes

to failure of activities related to ExaRD. Thus, definition of

the failure concept for functionality of ExaRD that stated in

0

2

4

6

8

10

12

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
N

um
be

r
Time 

Resource Discovery Events

Number of RD

Number ExaRD

Answered ExaRD

Fig. 4 The number of events

that leads to calling of the RD

unit

0
10
20
30
40
50
60
70
80
90

100

1 4 7 101316192225283134374043464952555861646770

%

Time

Dynamic and Interactive 

RNS

RI

RAC

Linear (RNS )

Linear (RI)

Linear (RAC)

Fig. 5 The impacts of RNS, RI

and RAC variables on the

dynamic and interactive nature

3362 Cluster Computing (2020) 23:3349–3369

123



Eq. 3 causes the ExaRD cannot respond to all dynamic and

interactive requests. In Fig. 5, the impact of each variables

RNS, RI and RAC on dynamic and interactive events

responded by ExaRD are shown.

It can be seen that changes of RI at a long time period

causes the occurrence of 31 percent of events that during

execution of activities related to ExaRD have a dynamic

and interactive nature. The percentage impacts of RI and

RAC on events that lead to the dynamic and interactive

nature during the execution of activities related to ExaRD

are very close. If computing element 12 is considered for a

long time, the impact of RAC is about 30 percent. The

difference between RI and RAC is in the curve slope

during time. RAC uses a decreasing trend due to failure of

activities related to ExaRD. If permission of access chan-

ges at the time between finding the requested resource and

allocation of the, the ExaRD activity fails, and thus a

change in RAC does not lead to a dynamic and interactive

nature.

As stated in the ExaRD framework, in case of the

occurrence of changes caused by RAC that lead to a

dynamic and interactive nature, failure of activities related

to RD at the specified time occurs. When peer to peer

computing system reaches to equilibrium [48], the most

changes of RAC also occur at this time period. As can be

seen in Fig. 5, if the amplitude of the frequency of changes

of RAC increases, the amplitude of the frequency of

changes of RNS also increases. This is caused by a change

in the permission of access required by the process and thus

a change of the type of the request. This is occurred in

experiments took place between 0 to 10 and also 40 to 50

time units. Change of RAC between zeta and omega time

period impacts on dynamic and interactive events during

execution of activities related to ExaRD. For example, at

time units 4, 21 and 71, RAC causes 50 percent increase in

the occurrence of dynamic and interactive events during

execution of activities related to ExaRD.

As can be seen in Fig. 5 and also based on Eq. 3, the

impact of the dynamic and interactive nature can be

examined based on changes of RNS in time for the process

requesting RD, a change of the RI state in such a way that

causes a change of the Processstate of the requesting RD or

a change in constraints govern on RAC related to the

requesting process.

As can be seen in Fig. 5, RNS has the most impact on

the occurrence of dynamic and interactive events during

the execution of activities related to ExaRD. On average,

38 percent of the causes of creation of the dynamic and

interactive nature during ExaRD are caused due to changes

in the nature or the type of the request. During 0 to 10 and

40 to 50 time units, changes related to RNS have an impact

on the dynamic and interactive events during ExaRD. By

examining scientific and application programs that are

executing on the computing element 12, it is identified that

at the abovementioned time units, processes that need

ExaRD are changing the type of the requesting resource.

As a result, with examining the trend of changes in RNS

during a long time and their impact on the occurrence of

the dynamic and interactive nature during an execution of

RD activities, it can be identified that in 58 percent of the

cases that experienced the most impact from RNS, the

impact of RNS is due to a change in the type of the request.

In contrast to RI and RAC, the impact of changes in

RNS during examination of the system follows an

increasing pattern. By examining functionality of the sci-

entific and application programs executing on the com-

puting element 12, it is found that the increasing pattern is

due to an increase of the number of events for which the

nature of the request changes. A change of the nature of the

request causes a need for creation of a new RD in the

system which creates a dynamic and interactive nature

during the execution of RD.

As can be seen in Fig. 5, RI uses the diagram with a

decreasing slope which is caused by activation of RI. In

initial experiments, activation of RI is due to variation of

the time constraints, while after the time unit 28, a change

of RI is due to changing of the dependency constraints. The

frequency of the occurrence of changes of RI, and conse-

quently its impact on events with the dynamic and inter-

active nature during ExaRD are reduced due to the impact

of the location and dependency constraints. At time units

30 and 31, the impact of RI on events with the dynamic and

interactive nature during execution of the ExaRD activities

is about 60 percent. This is due to the fact that during the

abovementioned time units, the time constraints that gov-

erned on a request by which ExaRD is activated are

changing by processes.

Figure 6 shows the number of events that leads to the

dynamic and interactive nature due to changes of RAC, the

Requestnature and the DO variable in the computing element

12 for the time unit 70. As can be seen, changes of RAC,

the Requestnature and the DO variable follow a unique

pattern. As stated in the framework of ExaRD, changes of

either RAC or the Requestnature are the cause of the

dynamic and interactive nature during RD that requires the

use of a framework such as ExaRD or RD. Generally, the

request change leads to the RAC change, although in the

experiments, there are time units for which the request

change is not accompanied with the RAC change. In units

such as 58 to 61, although the request change is occurred,

there is no change in RAC. By examining processes that

need ExaRD during this time period, it can be found that

the cause of the request change is changing of the nature of

the request that leads to a request with a different nature,

but the amount of the DO variable is not in such a way that

to stop activities related to RD and create a new RD. In the

Cluster Computing (2020) 23:3349–3369 3363

123



conducted experiments, in 54 percent of the changes

undertook by the RAC change, ExaRD can successfully

respond to the requesting process.

In Table 1, correlation coefficient between the RAC

change and the number of requests that are responded

successfully by ExaRD are shown. The correlation coeffi-

cient of these two variables is .8, which indicates a high

correlation. In the conducted experiments, in 54 percent of

the cases, RD can respond to the request after the occur-

rence of the RAC change, implying that 54 percent of the

RAC change occurs at the time period before finding the

requested resource that can be managed by ExaRD.

Table 2 shows the correlation coefficient between the

responded requests by ExaRD and the request nature

change variable. As can be seen, the correlation coefficient

between the responded requests by ExaRD and the request

nature change variable is weak, implying that the

Requestnature change by ExaRD is responded to some

extent. In contrast to the RAC change, RD in both time

periods tries to respond the Requestnature change, causing

the Requestnature change as a weak correlation with the

responded requests by ExaRD.

Table 3 indicates that there is a moderate correlation

between the responded requests by ExaRD and change of

the DO variable. As can be seen in Table 3, there is a

moderate correlation between the responded requests by

ExaRD and changes in the DO variable. This is due to the

fact that the DO variable examines whether as a result of

changing the nature of the request, RD can be continued.

By considering the number of examine elements, this

variable examines whether changing the nature of the

request can lead to continuation of RD. In implementation

0

1

2

3

4

5

6

7

1 4 7 101316192225283134374043464952555861646770
N

um
be

r

Time

RAC and Request Nature

RAC change

Request nature Change

Do

Fig. 6 Values of the RAC

change, the Request nature

change and the DO variables in

the computing element 12

Table 1 Correlation between

the responded requests by

ExaRD and the RAC change

Model summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .907a .823 .820 .71277

aPredictors: (Constant), RAC Change

Table 2 Correlation between

the responded requests by

ExaRD and the Request nature

change

Model summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .035a .001 - .013 1.69183

aPredictors: (Constant), Request Nature Change

Table 3 Correlation between

the responded requests by

ExaRD and the DO variable

Model summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .814a .662 .657 .98394

aPredictors: (Constant), Do

3364 Cluster Computing (2020) 23:3349–3369

123



of the distributed exascale computing systems [48], it is

assumed that RD continues. Thus, calculation of the DO

variable is used for cancellation of RD activities.

As can be seen in Fig. 6, the DO variable is equal to

around 1, except in time units like 23, 36 and 64. This

implies that based on the pattern in computing element 12,

if the Requestnature changes one unit, ExaRD stops activi-

ties related to RD. In order to decide about the value of the

DO variable, ExaRD examines computing element 12 for

specific time period and usually does several RD activities

that do not fail. In Fig. 6, the computing system reaches to

equilibrium from 0 to 40 time period. Thus, ExaRD con-

siders the mean value 1 to calculate the amount of the DO

variable.

As can be seen in Fig. 7, the required time for doing

activities of the finding section of the suggested framework

of ExaRD is higher than the required time for activities of

the adoption section. In time units 5, 11, 18, 25, 39, 51 and

58, the time that is required for taking place the two units

are nearly equal, which is caused by the fact that both RAC

and the Requestnature are changing simultaneously. The

change of RAC takes place during the execution of

RDFinder to find a resource. In time units like 60, 57, 56, 36,

27, 15, 6, 1 and 68, the required time for adaptation is

negligible compared to the required time for the RDFinder.

This can be due to the fact that in the above time units,

specifically at time units 56 and 57, only the type of the

nature of the request changes. On the other hand, at the

above time units, the initial resource is found by ExaRD,

but changes of the nature of the request causes execution of

the adoption section.

6 Discussion

By redefining of the RD concept, the framework for

ExaRD is introduced. This definition considers the fact that

in spite of changes in RNS, RI and RAC over time due to

the dynamic and interactive nature, the RD activities can

still be done.

Based on Eq. (1), the occurrence of the dynamic and

interactive nature leads to re-definition of effective ele-

ments and spaces on the RD. Equation 1 states that RD in

which spaces and based on what conditions and execution

of which activities can be re-defined. As ExaRD manages

and executes activities related to RD at the time of the

occurrence of the dynamic and interactive nature in the

requesting process, this re-definition is based on the Pro-

cessstate and the Requeststate.

Concepts such as the cause of the request, the type of the

request, boundary and limitations of the request and

responding to the request are based on the Processstate. In

addition, concepts such as those activities that should be

done by RD in order to respond to the request are based on

the Requeststate. Based on this definition, ExaRD can ana-

lyze two basic states of the requesting process relative to

RD and the request relative to RD. On the other hand, in

traditional HPC systems, RD only analyzes the

Resourcestate. Thus, definition of the functionality of

ExaRD based on Eq. (1) causes the basic concept of the

defining RD from the requesting resources changes to two

concepts of the Requeststate and the Processstate.

The reason of re-defining of the basic element that

defines RD and its consistency with two concepts of the

Requeststate and Processstate is due to consideration of the

dynamic and interactive nature because it causes a change

in the state of the requesting process relative to RD, and as

this may happen during activities related to RD, the

Requeststate related to RD should be analyzed.

During execution of activities related to RD, ExaRD

evaluates the Processstate requesting the resource and the

created request. During the execution of the program, an

event with the dynamic and interactive nature can make

changes in the process containing the resource or ExaRD.

For example, due to inter process communication, data

structure of ExaRD is changing, such that it is looking for a

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
e

miT
noitucexE

fo
%

Time

ExaRD Framework Execution Time

Finding Time

Adaption Time

Fig. 7 Execution time for

activities of the RDFinder and

RDAdaptation sections in ExaRD

Cluster Computing (2020) 23:3349–3369 3365

123



resource that was not requested by the process. In this

paper, the dynamic and interactive nature is only consid-

ered at a process requesting the resource. Thus, ExaRD can

only respond to the request if changes in the request were

established by a requesting process.

In ExaRD, definition of the RI space and its conversion

from a constant value to a varying value with time cause

consistency of the state of the real system with the state of

the system that ExaRD has information about it and does

activities related to ExaRD. To this end, ExaRD uses re-

definition of the traditional RD activities based on the

Requeststate and the Processstate.

Activities of ExaRD are related to the nature of the

request and its response to the occurrence of the dynamic

and interactive events and also the requesting Processstate
relative to RD. This re-definition of the basic element of

the creation of RD causes ExaRD to use separate two

dimensional frameworks. In this framework, two tasks of

finding and adoption are separated. Activities related to

traditional RD are considered in both sections of the

framework. The reason that ExaRD is able to manage

changes of RNS and RI with time is re-definition of

activities of finding and adoption based on either the

Requeststate or the Processstate. The finding section is re-

defined based on the request, which causes in the frame-

work of ExaRD, the finding section can be able to consider

constituent elements of Eq. (2) that are related to the

Requeststate.

By considering the time and location boundary and

limitations of the request, decision is based on changes

took place on the request due to the occurrence of the

dynamic and interactive event. Decision is also based on

the state of the discovered resource that is able to respond

to requests based on RI (t). The decision is taken place by

the RDFinder based on the Requeststate. The structure of the

RDFinder unit is such that it is in full interaction with the

RNS structure mentioned in Eq. (2) and also the data

structures of the Requeststate mentioned in Eq. (4). Using a

linked list, structures of RNS and the Requeststate can

provide analysis of initial conditions governed on the

request, while maintaining information related to comput-

ing elements are examined by ExaRD and also information

related to time and location boundary unit mentioned in

Eq. (2).

The Requeststate element that is in full interaction with

the Requestnture element in distributed exascale computing

system depends on time and location constraints and any

other dependency. Information of this unit is given to the

vice_RD process to complete data structure of the

requesting process. As stated in Eq. (8), conditions gov-

erned on searching a resource are given to RDFinder by

vice_RD.

The dynamic and interactive nature is such that con-

sistency between the finding and adoption units should

exist. In this condition, RD should be informed about

changes of the requesting Processstate and changes of RI

and RNS by this process, such that this unit tries to find the

requesting resource in the new state of the system. This

happens when activities that have been taken place in

finding and adoption are consistent. To this end, based on

Eq. (4), ExaRD decides whether changes that took place

are in some way that it is logical to continue the activity

based on the current RD. This is a parametric decision and

is different from a computing system to another. If it is

valid, based on Eqs. (5–8), it can be decided if through the

Requeststate and the Processstate elements, consistency of

the finding and adoption units can be established. The

consistency is satisfied based on Eqs. (7 and 8). Based on

the pattern used by ExaRD, challenges due to the dynamic

and interactive nature during activities related to RD can be

solved. This can be done by increasing empowerment of

RD, while considering changes of RNS and RI with time

which was examined in Eq. (3).

7 Conclusion

In this paper, while functionality of RD in distributed

exascale computing systems is examined, a two dimen-

sional framework is introduced to increase empowerment

of RD to manage and control dynamic and interactive

events that are created by the requesting process. The

framework presented in the present study changes the basic

activities of RD from the type of the request to the

Requeststate and the Processstate. In this way, if the dynamic

and interactive event occurs in the requesting process,

through the gathered information, RD can control these

conditions. By considering failure of the RD activities, it is

discussed that in which conditions ExaRD can respond to

the dynamic and interactive events.

Experiments conducted in distributed exascale comput-

ing systems indicated in which conditions the introduced

framework can control and manage the dynamic and

interactive events during the RD activity. If all constraints

of the request are changing, the second part of the frame-

work of ExaRD needs to spend an equal or even more time

than that of the first part. By changing the data structure of

the requesting process and the process containing the

resource, ExaRD can manage the created conditions and

can finish the RD operation.

3366 Cluster Computing (2020) 23:3349–3369

123



References

1. Bogdanova, V.G., Bychkov, I.V., Korsukov, A.S., Oparin, G.A.,

Feoktistov, A.G.: Multiagent approach to controlling distributed

computing in a cluster Grid system. J. Comput. Syst. Sci. Int.

53(5), 713–722 (2014)

2. Banerjee, S., Hecker, J.P.: A multi-agent system approach to

load-balancing and resource allocation for distributed computing.

In: First Complex Systems Digital Campus World E-Conference

2015. Springer, Cham, pp. 41–54 (2017)

3. Navimipour, N.J., Rahmani, A.M., Navin, A.H., Hosseinzadeh,

M.: Resource discovery mechanisms in grid systems: a survey.

J. Netw. Comput. Appl. 41, 389–410 (2014)

4. Xu, J., Lam, A.Y., Li, V.O.: Chemical reaction optimization for

task scheduling in grid computing. IEEE Trans. Parallel Distrib.

Syst. 22(10), 1624–1631 (2011)

5. Chang, R.S., Hu, M.S.: A resource discovery tree using bitmap

for grids. Future Gener. Comput. Syst. 26(1), 29–37 (2010)

6. Qureshi, M.B., Dehnavi, M.M., Min-Allah, N., Qureshi, M.S.,

Hussain, H., Rentifis, I., Zomaya, A.Y.: Survey on grid resource

allocation mechanisms. J.Grid Comput. 12(2), 399–441 (2014)

7. Cokuslu, D., Hameurlain, A., Erciyes, K.: Grid resource discov-

ery based on centralized and hierarchical architectures. Int.

J. Infonomics 3(1), 227–233 (2010)

8. Khaneghah, E.M., Sharifi, M.: AMRC: an algebraic model for

reconfiguration of high performance cluster computing systems at

runtime. J. Supercomput. 67(1), 1–30 (2014)

9. Brömmel, D., Frings, W., Wylie, B.J.: Extreme-scaling applica-

tions en route to exascale. In: ACM Proceedings of the Exascale

Applications and Software Conference, p. 1. (2016)

10. Hemamalini, M.: Review on grid task scheduling in distributed

heterogeneous environment. Int. J. Comput. Appl. 40(2), 24–30
(2012)

11. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing tech-

nology challenges. In: International Conference on High Perfor-

mance Computing for Computational Science. Springer, Berlin,

Heidelberg, pp. 1–25 (2010)

12. Hashemi, S.M., Bardsiri, A.K.: Cloud computing vs. grid com-

puting. ARPN J Syst Softw 2(5), 188–194 (2012)

13. Toporkov, V., Yemelyanov, D., Bobchenkov, A., Potekhin, P.:

Preference-based economic scheduling in grid virtual organiza-

tions. Procedia Comput. Sci. 80, 1071–1082 (2016)

14. Guharoy, R., Sur, S., Rakshit, S., Kumar, S., Ahmed, A., Chak-

borty, S., et al.: A theoretical and detail approach on grid com-

puting a review on grid computing applications. In: IEEE

Industrial Automation and Electromechanical Engineering Con-

ference (IEMECON), 2017 8th Annual, pp. 142–146. (2017)

15. Toporkov, V., Toporkova, A., Yemelyanov, D., Bobchenkov, A.,

Tselishchev, A.: Scheduling optimization in grid with VO

stakeholders’ preferences. In: International Symposium on

Intelligent and Distributed Computing. Springer, Cham,

pp. 185–194 (2016)

16. Dawson, C.J., Rick, A.H.I., Joseph, J., Seaman, J.W.: U.S. Patent

No. 8,713,179. Washington, DC: U.S. Patent and Trademark

Office (2014)

17. Camarinha-Matos, L.M.: Collaborative smart grids—a survey on

trends. Renew. Sustain. Energy Rev. 65, 283–294 (2016)

18. Katyal, M., Mishra, A.: A comparative study of load balancing

algorithms in cloud computing environment. (2014). arXiv pre-
print arXiv:1403.6918

19. Allen, Gabrielle, Angulo, David, Foster, Ian, Lanfermann, Gerd,

Liu, Chuang, Radke, Thomas, Seidel, Harry, Shalf, John: The

cactus worm: experiments with dynamic resource discovery and

allocation in a grid environment. IJHPCA 15, 345–358 (2001).

https://doi.org/10.1177/109434200101500402

20. Balazinska, M., Balakrishnan, H., Karger, D.: INS/Twine: A

scalable peer-to-peer architecture for intentional resource dis-

covery. In: International Conference on Pervasive Computing,

pp. 195–210. Springer, Berlin, Heidelberg (2002)

21. Zuo, X., Iamnitchi, A.: A survey of socially aware peer-to-peer

systems. ACM Comput. Surv. CSUR 49(1), 9 (2016)

22. Olaifa, M., Mapayi, T., Van Der Merwe, R.: Multi ant LA: an

adaptive multi agent resource discovery for peer to peer grid

systems. In: IEEE Science and Information Conference (SAI),

pp. 447–451 (2015).

23. Ranjan, R., Zhao, L., Wu, X., Liu, A., Quiroz, A., Parashar, M.:

Peer-to-peer cloud provisioning: service discovery and load-bal-

ancing. In: Antonopoulos, N., Gillam, L. (eds.) Cloud computing,

pp. 195–217. Springer, London (2010)

24. Noghabi, H.B., Ismail, A.S., Ahmed, A.A., Khodaei, M.: Opti-

mized query forwarding for resource discovery in unstructured

peer-to-peer grids. Cybern. Syst. 43(8), 687–703 (2012)

25. Bazli, B.: Secure, efficient and privacy-aware framework for

unstructured peer-to-peer networks (Doctoral dissertation,
Liverpool John Moores University) (2016)

26. Jin, X., Chan, S.H.G.: Unstructured peer-to-peer network archi-

tectures. In: Handbook of Peer-to-Peer Networking (pp.

117–142). Springer, Boston, MA (2010)

27. Hameurlain, A., Cokuslu, D., Erciyes, K.: Resource discovery in

grid systems: a survey. Int. J. Metadata Semant. Ontol. 5(3),
251–263 (2010)

28. Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Li, J., Laroia,

R., Jovicic, A.: FlashLinQ: a synchronous distributed scheduler

for peer-to-peer ad hoc networks. IEEE/ACM Trans. Netw. 21(4),
1215–1228 (2013)

29. Barbosa, J., Leitão, P., Adam, E., Trentesaux, D.: Dynamic self-

organization in holonic multi-agent manufacturing systems: the

ADACOR evolution. Comput. Ind. 66, 99–111 (2015)

30. Prabhakar, B.M., Verma, H.K.: A Comparative study of opti-

mization techniques for optimal reconfiguration of distribution

network. Int. J. Adv. Electr. Power Syst. 1(1), 16–23 (2017)

31. Shi, R., Gan, Y., Wang, Y.: Evaluating scalability bottlenecks by

workload extrapolation. In: 2018 IEEE 26th International Sym-

posium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS) (pp. 333–347). IEEE

(2018)

32. Stuardo, C. A., Leesatapornwongsa, T., Suminto, R. O., Ke, H.,

Lukman, J. F., Chuang, W. C., et al.: Scalecheck: a single-ma-

chine approach for discovering scalability bugs in large dis-

tributed systems. In: 17th {USENIX} Conference on File and

Storage Technologies ({FAST} 19), pp. 359–373 (2019)

33. Singh, S., Chana, I.: QRSF: QoS-aware resource scheduling

framework in cloud computing. J. Supercomput. 71(1), 241–292
(2015)

34. Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman,

P.P., Kolodziej, J., Balaji, P., Zeadally, S.: A survey and taxon-

omy on energy efficient resource allocation techniques for cloud

computing systems. Computing 98(7), 751–774 (2016)

35. Glover, R.: U.S. Patent No. 9,070,112. Washington, DC: U.S.

Patent and Trademark Office (2015)

36. Ahmed, K., Bigagli, D., Hu, Z., Wang, J.: U.S. Patent No.
9,632,827. Washington, DC: U.S. Patent and Trademark Office

(2017)

37. Palencia, J.C., Harbour, M.G., Gutiérrez, J.J., Rivas, J.M.:

Response-time analysis in hierarchically-scheduled time-parti-

tioned distributed systems. IEEE Trans. Parallel Distrib. Syst.

28(7), 2017–2030 (2017)

38. Gupta, S., Fritz, C., & De Kleer, J. (2018). U.S. Patent No.
9,934,071. Washington, DC: U.S. Patent and Trademark Office

39. Guo, L., Chen, C., Xiaodi, K.E., Jason, T.S.: U.S. Patent Appli-
cation No. 15/142,029 (2017)

Cluster Computing (2020) 23:3349–3369 3367

123

http://arxiv.org/abs/1403.6918
https://doi.org/10.1177/109434200101500402


40. Calo, S.B., Verma, D.C., Bertino, E.: Distributed Intelligence:

Trends in the Management of Complex Systems. In: ACM Pro-

ceedings of the 22nd ACM on Symposium on Access Control

Models and Technologies (pp. 1–7) (2017)

41. Zhu, X., Yang, L. T., Jiang, H., Thulasiraman, P., Di Martino, B.:

Optimization in distributed information systems (2018)

42. Horelik, N.E.: Domain decomposition for Monte Carlo particle

transport simulations of nuclear reactors (Doctoral dissertation,

Massachusetts Institute of Technology) (2015)

43. Saurav, S.K., Raghu, H.V., Bapu, S.B.: Self-adaptive power

management framework for high performance computing. In:

2017 International Conference on Advances in Computing,

Communications and Informatics (ICACCI) (pp. 1913–1918).

IEEE (2017)

44. Kominar, J.L., Adams, N.P.: U.S. Patent Application No.
15/152,926 (2017)

45. Orozco, D., Garcia, E., Pavel, R., Khan, R., Gao, G.: TIDeFlow:

The time iterated dependency flow execution model. In: 2011

First Workshop on Data-Flow Execution Models for Extreme

Scale Computing (pp. 1–9). IEEE (2011)

46. Gong, Q., Zhang, L., Ding, L.: U.S. Patent No. 9,559,898.
Washington, DC: U.S. Patent and Trademark Office (2017)

47. Sharifi, M., Mirtaheri, S. L., Khaneghah, E. M., & Khaneghah, Z.

M. (2011). Process Management Reviewed

48. Khaneghah, E.M.: PMamut: runtime flexible resource manage-

ment framework in scalable distributed system based on nature of

request, demand and supply and federalism.’’ U.S. Patent No.

9,613,312. 4 Apr. 2017

49. Wu, J.: Distributed system design. CRC Press, Boca Raton (2017)

50. Zarrin, J., Aguiar, R.L., Barraca, J.P.: ElCore: dynamic elastic

resource management and discovery for future large-scale

manycore enabled distributed systems. Microprocess. Microsyst.

46, 221–239 (2016)

51. Sharifi, M., Khaneghah, E.M., Tirado-Ramos, A., Mirtaheri, S.L.:

Formulating the real cost of DSM-inherent dependent parameters

in HPC clusters. In: 2010 IEEE International Symposium on

Parallel & Distributed Processing, Workshops and Phd Forum

(IPDPSW), pp. 1–6. IEEE

52. Krekhov, A., Grüninger, J., Schlönvoigt, R., Krüger, J.: Towards

in situ visualization of extreme-scale, agent-based, worldwide

disease-spreading simulations. In: ACM SIGGRAPH Asia 2015

Visualization in High Performance Computing, p. 7. (2015)

53. Kumar, P., Deokar, S.: Optimal design configuration using

HOMER. In: Advances in Systems, Control and Automation,

pp. 101–108. Springer, Singapore (2018)

54. Khaneghah, E.M., ShowkatAbad, A.R., Ghahroodi, R.N.: Chal-

lenges of Process Migration to Support Distributed Exascale

Computing Environment. In: ACM Proceedings of the 2018 7th

International Conference on Software and Computer Applica-

tions, pp. 20–24.

55. Castain, R.H., Solt, D., Hursey, J., Bouteiller, A.: Pmix: Process

management for exascale environments. In: Proceedings of the

24th European MPI Users’ Group Meeting (p. 14). ACM (2017)

56. Lefèvre, L., Pierson, J.M.: Introduction to special issue on sus-

tainable computing for ultrascale computing (2018).

57. Mousavi Khaneghah, E., Noorabad Ghahroodi, R., Reyhani

ShowkatAbad, A.: A mathematical multi-dimensional mecha-

nism to improve process migration efficiency in peer-to-peer

computing environments. Cogent Eng. 5(1), 1458434 (2018)

58. Cha, M.H., Kim, D.O., Kim, H.Y., Kim, Y.K.: Adaptive metadata

rebalance in exascale file system. J. Supercomput. 73(4),
1337–1359 (2017)

59. Mirtaheri, S.L., Fatemi, S.A., Grandinetti, L.: Adaptive load

balancing dashboard in dynamic distributed systems. Supercom-

put. Front. Innov. 4(4), 34–49 (2017)

60. Mirtaheri, S.L., Khaneghah, E.M., Sharifi, M., Minaei-Bidgoli,

B., Raahemi, B., Arab, M.N., Ardestani, A.S.: Four-dimensional

model for describing the status of peers in peer-to-peer distributed

systems. Turk. J. Electr. Eng. Comput. Sci. 21(6), 1646–1664
(2013)

61. Mirtaheri, S. L., Khaneghah, E.M., Sharifi, M.: A case for kernel

level implementation of inter process communication mecha-

nisms. In: ICTTA 2008. 3rd International Conference on IEEE

Information and Communication Technologies: From Theory to

Applications, 2008, pp. 1–7. (2008)
62. Sharifi, M., Hassani, M., Mousavi, E., Mirtaheri, S.L. (2008,

April). Vce: A new personated virtual cluster engine for cluster

computing. In: 3rd International Conference on IEEE Information

and Communication Technologies: From Theory to Applications,

2008. ICTTA 2008 (pp. 1–6).

63. Mirtaheri, S.L., Khaneghah, E.M., Grandinetti, L., Sharifi, M.: A

mathematical model for empowerment of Beowulf clusters for

exascale computing. In: 2013 International Conference on IEEE

High Performance Computing and Simulation (HPCS),

pp. 682–687 (2013)

64. MM5 (weather model), https://en.wikipedia.org/w/index.php?ti

tle=MM5_(weather_model)&oldid=821918188. Last visited 13

Sept 2019

65. Weather research and forecasting model, https://en.wikipedia.

org/w/index.php?title=Weather_research_and_forecasting_mod

el&oldid=807407677. Last visited 13 Sept 2019

66. Soltani, N., Khaneghah, E.M., Sharifi, M., Mirtaheri, S.L.: A

dynamic popularity-aware load balancing algorithm for struc-

tured p2p systems. In: IFIP International Conference on Network

and Parallel Computing, pp. 77–84. Springer, Berlin, Heidelberg

(2012)

67. Arab, M.N., Mirtaheri, S.L., Khaneghah, E.M., Sharifi, M.,

Mohammadkhani, M.: Improving learning-based request for-

warding in resource discovery through load-awareness. In:

International Conference on Data Management in Grid and P2P

Systems, pp. 73–82. Springer, Berlin, Heidelberg (2011).

68. Adibi, E., Khaneghah, E.M.: Challenges of resource discovery to

support distributed exascale computing environment. Azarbaijan

J. High Pefrom. Comput. 1(2), 168–178 (2018)

69. Khaneghah, E.M., Aliev, A.R., Bakhishoff, U., Adibi, E.: The

influence of exascale on resource discovery and defining an

indicator.Azarbaijan J. High Pefrom. Comput. 1(1), 3–19 (2018)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Elham Adibi received master

degree from Shahed University

and currently is a member of the

operating systems and network

laboratory at this university. She

is interested in High Perfor-

mance Computing systems and

has done some researchers in

the mentioned fields. Her stud-

ies are detailed in Resource

Discovery in high performance

computing such as Grid, P2P

and Exascale System. From

2015 till now, he is heuristically

working on a mathematical

mechanism for improving the performance of resource discovery in

distributed peer to peer computing systems. She is also interested to

3368 Cluster Computing (2020) 23:3349–3369

123

https://en.wikipedia.org/w/index.php%3ftitle%3dMM5_(weather_model)%26oldid%3d821918188
https://en.wikipedia.org/w/index.php%3ftitle%3dMM5_(weather_model)%26oldid%3d821918188
https://en.wikipedia.org/w/index.php%3ftitle%3dWeather_research_and_forecasting_model%26oldid%3d807407677
https://en.wikipedia.org/w/index.php%3ftitle%3dWeather_research_and_forecasting_model%26oldid%3d807407677
https://en.wikipedia.org/w/index.php%3ftitle%3dWeather_research_and_forecasting_model%26oldid%3d807407677


design and develop a non-failure resource discovery for distributed

Exascale computing systems.

Ehsan Mousavi Khaneghah is a

faculty member of the Com-

puter Engineering Department

of Shahed University. His

research interest is the design

and development of distributed

computing systems. He is

researching the development of

a distributed Exascale comput-

ing system. He had a patent

called ‘‘‘‘PMamut: runtime

flexible resource management

framework in a scalable dis-

tributed system based on nature

of the request, demand and

supply, and federalism.’’ U.S. Patent No. 9,613,312. 4 Apr. 2017.’’

Which proposes a framework for managing the Distributed Exascale

System. His favorite research fields are an operating system, Exascale

systems, parallel and distributed systems, Cluster systems, Grid sys-

tems, P2P computing systems, applied mathematics, optimization,

and e-commerce. He has successful experience in running the

industrial designs in high-performance computing systems. He is also

a consultant of Master Plan designs in industrial areas like banks and

industries, which need high-performance computing systems. Now,

he is a member of the operating system and network laboratories of

Shahed University.

Cluster Computing (2020) 23:3349–3369 3369

123


	ExaRD: introducing a framework for empowerment of resource discovery to support distributed exascale computing systems with high consistency
	Abstract
	Introduction
	Related work
	Definition of generator space of resource discovery
	Failure of resource discovery procedure

	The dynamic and interactive nature of computational processes
	The impact of the dynamic and interactive nature of computational processes on recourse discovery
	The impact of the dynamic and interactive nature of computational processes on the Request Nature Set (RNS)
	The impact of the dynamic and interactive nature of computational processes on the Beta request

	Resource discovery in distributed exascale computing systems
	Evaluation
	Discussion
	Conclusion
	References




