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Abstract
The widespread adoption of smartphones dramatically increases the risk of attacks and the spread of mobile malware,

especially on the Android platform. Machine learning-based solutions have been already used as a tool to supersede

signature-based anti-malware systems. However, malware authors leverage features from malicious and legitimate samples

to estimate statistical difference in-order to create adversarial examples. Hence, to evaluate the vulnerability of machine

learning algorithms in malware detection, we propose five different attack scenarios to perturb malicious applications

(apps). By doing this, the classification algorithm inappropriately fits the discriminant function on the set of data points,

eventually yielding a higher misclassification rate. Further, to distinguish the adversarial examples from benign samples,

we propose two defense mechanisms to counter attacks. To validate our attacks and solutions, we test our model on three

different benchmark datasets. We also test our methods using various classifier algorithms and compare them with the

state-of-the-art data poisoning method using the Jacobian matrix. Promising results show that generated adversarial

samples can evade detection with a very high probability. Additionally, evasive variants generated by our attack models

when used to harden the developed anti-malware system improves the detection rate up to 50% when using the generative

adversarial network (GAN) method.

Keywords Adversarial machine learning � Android malware detection � Poison attacks � Generative adversarial network �
Jacobian algorithm

1 Introduction

Nowadays using the Android application is very popular on

mobile platforms. Every Android application has a Jar-like

APK format and is an archive file which contains Android

manifest and Classes.dex files. Information about the

structure of the Apps holds in the manifest file and each

part is responsible for certain actions. For instance, the

requested permissions must be accepted by the users for

successful installation of applications. The manifest file

contains a list of hardware components and permissions

required by each application. Furthermore, there are envi-

ronment settings in the manifest file that are useful for

running applications. The compiled source code from each

application is saved as the classes.dex file. Android appli-

cation corporate machine learning (ML) algorithms to

analyze the manifest information and user profiles/histories

to customize the functionality and speed up the user

demands [3, 33]. Also, ML algorithms utilize an Android

& Mohammad Shojafar

mohammad.shojafar@unipd.it; m.shojafar@ieee.org

Rahim Taheri

r.taheri@sutech.ac.ir

Reza Javidan

javidan@sutech.ac.ir

P. Vinod

vinodp@scmsgroup.org

Mauro Conti

conti@math.unipd.it

1 Computer Engineering and IT Department, Shiraz University

of Technology, Shiraz, Iran

2 Department of Mathematics, University of Padua, Padua,

Italy

123

Cluster Computing (2020) 23:3233–3253
https://doi.org/10.1007/s10586-020-03083-5(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03083-5&amp;domain=pdf
https://doi.org/10.1007/s10586-020-03083-5


application to detect anomalies and malware software [30].

The aim of the malware as a malicious software in mobile

applications is to steal confidential data and to obtain root

privileges of each APK [34]. Malware authors (i.e.,

adversaries) look for the length of malware propagation

cycle to launch attacks on ML-based detectors [25]. To

accomplish this, malware applications are repackaged with

attributes extracted from legitimate programs to evade

detection [14, 22, 38]. In a nutshell, the generated malware

sample is statistically identical to a benign sample. To do

so, adversaries adopt adversarial machine learning algo-

rithms (AML) to design an example set called poison data

which is used to fool machine learning models. Adversaries

adopt several AML methods like DroidAPIMiner [1],

Mystique [23], PIndroid [16], and DroidChameleon [32] to

reduce the detection rate of classification algorithms.

According to [29], the methods used by AML focus on

two general axes: (i) Attack Complexity this involves

reducing the complexity to craft attacks, and (ii) Attacker’s

Knowledge this is related to knowledge about architecture,

training examples and algorithm to gain knowledge about

the detector. If an adversary is aware of the architecture,

training data or features derived from applications, the

attack is called a white-box attack (see some approaches

like [11]). On the other hand, if the Adversary’s knowledge

is limited, then the attack is a black-box attack (see some

approaches like [9]). Adversarial classification can be

False positive or False negative. In the former, an attacker

generates a negative sample to misclassify as a positive

one. On the contrary, in the latter case malware is injected

with part of the benign data to bypass detection. Adver-

sarial specificity can be targeted or non-targeted.

In targeted malware detection systems, an adversary can

fool a classifier and predict all adversarial samples as the

same class. This also maximizes the probability of a tar-

geted adversarial class. Conversely, non-targeted adver-

saries can arbitrarily target a class. To do so, this group of

adversaries conducts several targeted attacks and takes the

one with the smallest perturbation from the results or

minimizes the probability of the correct class. Finally,

adversarial attack frequencies can be One-time or multiple

times/iterative. If a set of poison data is required to be

generated in real-time, adversaries should choose a one-

time attack; otherwise, the attack strategy can be iterative

to update the poison data. Moreover, it requires more

interactions with the victim classifier, and it costs more

computational time to generate them. To cope with these

attacks, we need some adversarial training which injects

poison data into training data to increase robustness and

detect the malware [36, 37].

1.1 Contribution

Different questions arise about this context, such as: How to

find a way to produce poison data that will be added to the

current ML model and will be unrecognized by the current

anti-malware solutions? How can we leverage machine

learning to improve system security by presenting some

adversary-aware approaches? Do we require retraining of

the current ML model to design adversary-aware learning

algorithms? How to properly test and validate the counter-

measure solutions in a real-world network? The purpose of

this paper is to clarify these issues. To be precise, the main

contribution of this research is proposing a white-box AML

mechanism against poison attacks.

To sum up, we make the following contributions:

– We propose five different attack scenarios to generate

poisoned malicious apps to disguise the learned model.

– We implement two countermeasure methods as defense

mechanisms that improve the detection accuracy of the

compromised classifier.

– We evaluate attack and defense using three benchmark

malware dataset. Additionally, we conducted theoreti-

cal analysis by estimating space and time complexity to

prove the scalability of our approach.

– Furthermore, we compared the proposed attack scenar-

ios against the state-of-the-art method employing the

Jacobian matrix [11]. Moreover, we conclude that the

attacks modeled by us have the net effect identical to

prior research work, in terms of misclassification rate.

1.2 Roadmap

The paper is divided and arranged as follows: in Sect. 2,

discusses the literature review of related works. Section 3

details the preliminary different attack scenarios proposed

in AML architecture and the related components. Section 4

reports the proposed approaches for malware detection

systems, including poison attack scenarios using AML,

while Sect. 5 presents the defensive strategy against

attacks. Next, in Sect. 6 we present the performance

analysis of proposed methods. In Sect. 7 we describe the

achievement of the experiment and provide some open

discussion regarding our method. Finally, Sect. 8 con-

cludes the paper and presents future directions of work.

2 Related work

We divide related works into three different classes:

(i) AML methods in different contexts which we present

them in Sect. 2.1, (ii) AML in Android malware that we
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exemplify them in Sect. 2.2, and (iii) AML applies in

Android malware with static features and their presented

countermeasures that we add them in Sect. 2.3. Then, we

describe the works that fall into each class.

2.1 AML in general

Adversaries apply complex algorithms to generate small

perturbations on original datasets in order to increase the

probability of fooling ML algorithms. Some of the most

efficient and important methods are presented in

[5, 7, 8, 19, 20, 35, 36]. For the first time, authors in [36],

introduce a set called adversarial examples1 that have

directly emerged as an input to a classification model using

gradient-based optimization. This set of data is similar to

misclassified data and shows that they can target a class

without emulating any of the human-perceptible attributes

of that class. Recently, several authors have incorporated

adversarial examples for different realistic case studies,

such as the audio adversarial example reported in [5],

manipulating a traffic sign recognition system to detour

autonomous vehicles [20], and a perturbed physical objects

model to evade object detection methods [7]. Recently,

Papernot et al. [27] study the positive effect of attack

distillation for neural networks (NNs) and propose a

defense mechanism against adversarial perturbations.

2.2 AML in Android malware

Having applications initially requesting less permission

during installation time can defeat a machine-learning

system based on permissions. In particular, an adversary

may create malicious applications to have a uniform dis-

tribution of permissions as in a benign dataset. Since static

analysis necessarily does not extract all the Android apps

features, the training process of the detection model will

not be trained based on all of the features. Therefore, in

cases where malware has been distinguished from benign

by these additional features, the proposed models do not

have the ability to discriminate between them. Conse-

quently, the developed models will yield a higher mis-

classification rate. Studies in [24] report the extraction of

sensitive data from devices with apps demanding zero

permission during installation. Meanwhile, the authors in

[26] illustrate that a zero permission app could be used to

infer the user’s location and routes traveled using an

accelerator, magnetometer, and gyroscope. Besides, the

authors in [12] present a new hypothesis which identifies

adversarial inputs based on classifier output. They validate

this method using statistical tests before they are even fed

to the ML model as inputs. The approach is exciting and

moves one step further on adversarial example appliances

in ML. However, they did not present any countermeasure

to manage such malicious behavior. Conversely, we

introduce two re-training defense strategies to mitigate this

limitation. Moreover, in [4], the authors present a classi-

fication system which helps adversaries to craft misclassi-

fied inputs and easily evade a deployed system. This attack

method, which is established during the test phase, learns

to increase the attacker’s knowledge of the system, is

classified as a targeted iterative attack, and helps the

attacker to manipulate attack samples. This is a skillful

method that increases the attacker’s flexibility and perfor-

mance. It also injects poison examples into training data to

fool the learning algorithm and causes misclassification

errors. However, it was only tested on one dataset and did

not discuss countermeasure for such a white-box attack,

while our paper addresses these aspects.

2.3 AML in Android countermeasures

The authors in [9] present two new adversarial models

inspired by generative adversarial network (GAN) [9] that

is based on minimax two-player between the generator

(adversary) and the discriminator (classifier or system). In

other words, GAN is a game which terminates at a saddle

point that is a minimum with respect to the generator and a

maximum with respect to the discriminator.

In another work [11], the authors adopt adversarial

examples to construct an effective attack against malware

detection models. Unlike the previous solution, such attack

directs discrete and binary input datasets, like the Drebin

dataset, which is a targeted, iterative white-box method.

The interesting point in this method is that it also incor-

porates some potential defense mechanisms, e.g., defensive

distillation [28] and adversarial training [20], using deep

neural networks (DNNs) to handle malware detection

models. Their achievements indicate that their counter-

measures provide robustness based on the perturbation of

the distribution and reduce the rate of misclassified

adversarial examples. The paper is of some interest; how-

ever, our method has two significant benefits compared

with this method. First, our method uses a different type of

attack strategies on various datasets, which enables

adversaries to easily target the discrete domains based on

the form of the distributed datasets. Second, we use GAN

and retraining as defense strategies to improve detection

rate.

Recently, in [15], the authors analyze white-box and

grey-box attacks to an ML-based malware detector and

conduct performance evaluations in a real-world setting.

Their main goal is to investigate the vulnerabilities of an

ML-based malware detector and generate some

1 In this paper, poison data is used interchangeability as the

adversarial example.
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countermeasures for such type attacks. In their attack

scenario, they can bypass the real-world ML-based mal-

ware detector only by modifying one bit in the feature

vector.

3 Preliminaries

In the following, we briefly introduce data modeling for

static malware detection methods in Sect. 3.1 and ML-

based detection methods in Sect. 3.2.

3.1 Data modeling for static malware detection

The purpose of constructing adversarial instances in mal-

ware detection systems is to fool the classification algo-

rithms used by these systems and cause that system work in

the way the attacker intends. In this paper, we consider the

standard setting for designing a classifier in a problem that

includes discrimination between benign (B) and malware

(M) samples. In this way, we first select the learning

algorithms and performance evaluation settings. Then, we

collect a dataset D that includes n labeled examples and

extract m features for each sample. Hence we have

D ¼ fðxi; yiÞ j 8i ¼ 1; . . .; ng; ð1Þ

where xi is the ith sample vector of a dataset in which each

element shows the selected feature and yi is the related

label of the samples, and yi 2 f0; 1g: Let xij be the value of
the jth feature in ith sample where f8j ¼ 1; . . .;mg: If

vector xi has the jth feature then xij ¼ 1; else xij ¼ 0: In this

definition n is the number of samples in dataset, and X �
f0; 1gm is a feature space with m dimension.

Furthermore, we consider binary classification algo-

rithms in which the adversary changes the malicious

dataset to prevent detection. The adversary tries to change

the malicious data set yi ¼ 1 in each direction by adding a

non-zero value to the feature vector. For instance, adver-

saries may add benign-related features to the only malware

samples to evade detection by classifiers. Therefore, we

can construct an adversarial example x� from a benign

sample x which is misclassified by the classifier F and

present it in Eq. (2):

X� ¼ X þ dx; s.t. FðX þ dxÞ 6¼ FðXÞ; ð2Þ

where dx is the minimum value can used as a perturbation

and cause misclassification.

3.2 Machine learning based detection method

Goodfellow et al. [10] validate that practical attack in deep

neural networks is possible because these models are

locally linear. Also, they confirm that boosted trees are

even more susceptible to attack than neural networks.

Therefore, it can be a good reason that we apply our attack

scenarios on existing tree type classifiers. Hence, in this

paper, we use three classifiers: Random Forest, Bagging,

and SVM. We provide a short description of each of them

in the following:

– Random Forest (RF). RF is a machine learning

algorithm that creates multiple decision trees and

combines the results to provide more accurate and

reliable predictions.

– Bagging. A Bagging classifier is an estimator that

combines the base classifier results on random sets and

builds an ensemble learning-based classifier. Each

classification training set is randomly generated, with

replacement.

– Support Vector Machine (SVM). Support Vector Net-

works are learning models with supervised learning

algorithms that inspect the data used for classification

and regression analysis.

4 Adversarial approaches for malware
detection system

We define five different scenarios which are detailed in the

following subsections. Our attack scenarios are a targeted

attack. This means that the attacker generates some mis-

classified samples to infect a particular device. The main

notations and symbols used in this paper are listed in

Table 1.

4.1 Attack strategy and scenarios

The attack strategy defines how the attacker compromises

the system, based on the hypothesized goal, knowledge,

and capabilities. In this paper, we characterize the attack-

er’s knowledge in terms of a set S that encodes knowledge

of the data X, the feature set M and the classification

Table 1 Notation and symbols used in this paper

Notations Description

X Input data (unmodified data), x 2 f0; 1gm; j X j¼ n

Y Label of class in the classification problem, y 2 f0; 1gm

X� Adversarial example (modified input data)

Y� Label of adversarial class in target adversarial example

M Number of features, a 2 M; j M j¼ m

f ML model, f : X ! Y

h Parameters of ML model f

k Percentage of features
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function f. Furthermore, we assume the attacker has com-

plete knowledge of the target system, and formally repre-

sent the model as V� = ðX;M; f Þ 2 S: We assume that the

initial set of input data (i.e., or samples) X is given. The

attack strategy is to modify the data samples using a

modification function XðXÞ:
Assume that the attacker’s knowledge x�; we define a set

of manipulated attacks as X� 2 XðXÞ � Z; then, we can

define the attacker’s goal as an objective function

WðX�;V�Þ 2 R which evaluates the extent to which the

manipulated attacks X� meet the attacker’s goal. Hence, we

can define the optimal attack strategy as:

OPTðX�Þ ¼ arg maxX�2XðXÞ WðX�;V�Þ: ð3Þ

To this end, we summarize each attack scenario as follows:

Scenario 1 the attacker randomly manipulates the fea-

tures of the malware applications without having knowl-

edge of which feature is prominent; we call this a trivial

attack.

Scenario 2 the attacker manipulates the malware

instances in training set by altering features statistically

relevant in the legitimate application distribution; we call

this a Distribution attack.

Scenario 3 the attacker computes the similarity of the

malicious sample with the distribution of benign samples

and tries to modify those samples which are closest to the k

(e.g., k ¼ 10) nearest benign samples; we called this KNN

based attack.

Scenario 4 the attacker manipulates the feature vector

corresponding to each sample using the logistic regression

function (LR) that fits the data points. We select those data

points which are close to the benign feature vector. Such

well-crafted attacks are referred to us as Logistic Regres-

sion attack or LR.

Scenario 5 the attacker manipulates the malware

instances by adopting the LR function and bio-inspired

solution to find a global solution. In this scenario, we adopt

ant colony optimization (ACO) as a sample of the bio-

inspired method to produce poison malware samples found

close to goodware. We name this attack as ACO attack.

We repeat each algorithm 10 times and select the

average values for each parameter. For all these scenarios,

we divide the training and test datasets based on the class

parameters into Malware and Benign datasets. Subse-

quently, we apply feature ranking on benign examples and

select 10% of the top-ranked features. The ranking reflects

those attributes which can classify an unseen sample to

benign class with high probability. Furthermore, we choose

some percentages of the selected features among the

selected malware samples and modify the feature values.

Formally speaking, we select the feature with zero value

which has not been selected before and changes zero to

one. At this stage, we add such modified malware samples

to the test dataset and classify the dataset using classifi-

cation methods.

4.2 Trivial attack

In Algorithm 1, focusing on lines 1 and 9–18, the list

variable k explains the features applied. To be precise, first,
we select three features from the list variables and modify

them; then, we repeat this process on all of the members in

the feature list k: In the loop, for each selected sample, we

check the selected feature a in the k set and change the zero
values of the feature to one and save that sample in x�

(lines 8–10 of Algorithm 1). Then, it is important to check

the modified sample and understand if it changes to a

benign sample or not. We use Fðx�Þ ¼ y� to check this

condition. If it is satisfied, we can call x� as an adversarial

sample (i.e., poison sample) which is the output of

Algorithm 1.

4.3 Distribution attack

In this scenario, we randomly manipulate the selected

ranked features of malware samples placed in the malware

dataset (see line 2 and loop lines 9–18 of Algorithm 1).

After the modifications, we feed the modified malware with

the benign sample of the test dataset to the learning model

and update the learning parameters.
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4.4 KNN based attack

In this scenario, we first rank the k features of the samples

in the benign dataset. Second, we randomly select 10% of

the malware data (samples). We calculate the Manhattan

distance of each selected sample with benign files. More-

over, we select the K (in this paper, we consider k ¼ 10)

nearest benign vectors to the corresponding sample the k
highest ranked features. Indeed, we have k new poison

samples for each malware sample. We should recall that

the ranking is used to understand the highest features in the

benign samples. Then, we add these poison samples with

benign data from x to the learning model (see lines 3–7 and

loop lines 9–18 of Algorithm 1).

4.5 Logistic regression attack

In this scenario, we apply an LR algorithm on the training

dataset, and the result of this algorithm will be the dis-

criminator. The nearest malware samples to this discrimi-

nator are the best choices for the modifications. Therefore,

we select 10% of the malware samples in the training

dataset which are near to the discriminator. After that, we

compare the selected malware (selected based on 10% of

the malware samples in the training dataset) with the

malware samples in the test dataset and add 10 malware

samples to the test dataset for each malware sample in the

training dataset. In this step, for 10% of the training data-

set, we select the samples with all zero features and apply

logical ‘OR’ with randomly selected malware samples in

the same dataset. The resulting sample will be poison data

which can be used for the classification (see lines 8–7 and

loop lines 9–18 of Algorithm 1).

4.6 Ant colony based attack

In this scenario, new adversarial samples are generated

using an ant colony optimization (ACO) algorithm (see line

1 of Algorithm 2). First, we apply a linear regression

algorithm to select the malware samples which are most

similar to the benign samples in the training dataset (i.e.,

10% of the malware samples in the training dataset). For-

mally speaking, we find the nearest malware to the dis-

criminator in the training dataset (i.e., we search only in the

10% of the malware samples in the training dataset) (see

line 5 of Algorithm 2). In Algorithm 2, the function

ACOFunction is used to find the adversary sample data. In

this way, the ACO pheromone value is the number of the

feature that is going to be changed. First, we start the ACO

with one feature, and we generate new samples by

modifying the malware samples with the absence of attri-

butes which are present in legitimate applications. We

repeat this action by using more features. If the distance

between the newly generated sample and the discriminator

is within the range of the selected malware and the dis-

criminator, then we add this newly generated sample to the

recently generated samples; otherwise, we discard this

sample and change the feature and re-calculate the dis-

tances. We continue this process until the maximum iter-

ation is reached or the classifier misclassifies malware

samples. The algorithm of the ACO scenario attack is

described in Algorithm 2.

5 Defensive strategies against attacks

In this section, we discuss two countermeasures as the main

solution for the raised attacks.

5.1 Adversarial training

In the first defense method, we re-train the classification

algorithm [20]. The main difference between the new re-

trained classification dataset and the current version is that

we add the poison data with the training dataset. Figure 1

presents the structure of the adversarial training counter-

measure. In Fig. 1, the left-side boxes illustrate the training

set which is used as a training model and the lower-side

boxes are used as a testing phase for the learning model.

The presented model uses different classification algo-

rithms such as SVM, Bagging, and Random Forest in this

paper.
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We present the steps of retraining method in the Algo-

rithm 3. The input of this algorithm is the dataset, and

corresponding labels of adversarial examples (i.e., poison

data) and the original dataset, and the output will be the

new retrained model using the Random Forest classifier

[13]. First, we randomly select 60% of the dataset and

corresponding labels and save them in the training subset

for the original and poison data (see lines 1 and 2 of

Algorithm 3). Then, we build the new training data as

presented in lines 3 and 4 of Algorithm 3. Next, we feed

the adversarial model using such new trained data with the

help of the Random Forest Classifier and retrain the model.

The new model is used to implement data classification. It

is rational that the new model which is produced by the

poison data and the preliminary dataset has higher preci-

sion in data classification compared to the existing model.

5.2 Generative adversarial network (GAN)

In the second defense method, which is called generative

adversarial network (GAN), we exploit the Random Forest

Regression to select 10% of malware samples that have the

greatest similarity to the benign samples in the training

dataset and generate a Lesslikely malware set. We use the

GAN as a synthetic data generator set. The GAN has two

functions called Generator and Discriminator. The gener-

ator function is used to modify the Lesslikely malware

samples. To do so, one random feature from the highest

ranked features with zero value in the training dataset is

selected and its value is changed to one and generates a

new sample. The new sample is fed to the second function,

the discriminator—which works like a classifier—to pre-

dict the class variable. The discriminator module modifies

the features until the discriminator function is cheated and

labels such a sample among the benign samples. Further,

we gather the wrongly estimated malware samples into a

synthetic data generator set. Besides, we use 80% of the

synthetic data generator set with the training dataset to

update the adversarial learning model. We use the

remaining synthetic data generator samples (i.e., 20% of

the data samples) with the test dataset to analyze the

classification. Figure 2 presents the GAN defense

architecture.2

It uses a generative adversarial network (GAN) for

building new samples. The GAN applies two neural net-

works which use the back-propagation technique. One

network generates candidates (called generative), and the

other evaluates them (called discriminator). In the GAN,

the training process is applied in the generative function in

such a way as to increase the error rate of the discriminator

function. The GAN structure is a competitive setting, i.e.,

versus the discriminator function and simplified Turing

learning [21].

Algorithm 4 clearly explains the steps of the GAN-wise

countermeasure. In detail, we give the samples as an input

set to the generator function. We modified these samples

using the important features of benign samples to fool the

discriminator function by producing novel synthesized

instances that appear to have come from the benign dataset.

In other words, the discriminator function’s task is to dis-

cover the benign samples from the malware ones. If the

discriminator function correctly recognizes a malware

sample, that sample returns to the generator function to re-

train the sample. In this algorithm, we first generate a

poison model, called Model_poison, using the logistic

regression algorithm (see line 1). Then, in line 2 of

Fig. 1 Adversarial training model

2 GAN is also can be used to generate adversarial example and fool

the classifier which is out of the scope of this paper.
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Algorithm 4, we build 10% samples of the malware dataset

which are KNN nearest to the established poison model

and save these samples in Lesslikely set. Indeed, Lesslikely

set is composed of samples that have the greatest similarity

to the malware dataset. For each sample in Lesslikely, if it

belongs to the poison model we label it as ‘M’ for Mal-

ware, then we try to modify it with the most important

features in the benign dataset until it falls out from the

malware dataset and is classified as part of the benign

dataset (see the lines 5–7 of Algorithm 4).

Hence, if a sample in GAN is recognized as a benign

sample, we add it to the synthetic_data set. After analyzing

all the samples, we use 80% of the synthetic_data samples

set with the training dataset (malware and benign) to

generate the new model and feed it to the classification

algorithms. The remaining samples are in the synthetic_-

data with a test dataset for analyzing the new model. In a

nutshell, we will see that the new model improves the level

of accuracy.

5.3 Time/space complexity of the attack
and defense algorithms

In the following section, we conduct time and space

complexity analysis on the presented attacks and defenses.

5.3.1 Time complexity

Focusing on the time complexity of Algorithm 1, we

consider four attack scenarios which have similar code

interactions from lines 10 to 19. Note that this common

part (for loop presents in lines-10–19) runs off the order of

Oðk � nÞ for all samples (i.e., we have a total of n samples),

where k is the selected features of our m total number of

the featured applied per sample in this paper. Also, we

know that in malware dataset k\m � n: So, we can list

the time complexity of each attack scenario as follows:

– Trivial attack. In this scenario, we select k features

from a total of m features in the original dataset (i.e., X).

In the worse case, it runs off the order of Oðk � nÞ for all
samples. As a result, the overall complexity of a trivial

attack is about Oðm � nÞ:
– Distribution attack. In this scenario, we put the feature

in descending order and select the k highest ranked

features. Hence, in the worse case, it runs off the order

of Oðm2Þ per sample. As a result, the overall complex-

ity of distribution attack, considering the common

block of the Algorithm 1, is about Oðm2 � nÞ:
– KNN based attack. In this scenario, we first select k

features of the ordered vector of m features [the time

takes is of the order of Oðm2Þ�: Second, we randomly

select 10% of the malware samples (the time takes is of

the order of OðnÞ). Finally, we select the K sample, so

the time taken for selecting is of the order ofOðk � k � nÞ
[18], where we use k as a fixed value in this scenario.

As a result, the overall time complexity of the KNN

attack is about Oðk � k � nÞ:
– LR based attack. In this scenario, we randomly select k

important features from the benign dataset using the LR

algorithm and select 10% samples of the malware

dataset which are near to the legitimate samples, which

takes of the order of OðnÞ: Considering the common

block of Algorithm 1, the overall time is taken for the

LR attack is about Oðk � nÞ:
– ACO attack. In this scenario which is detailed in

Algorithm 2, we first build a discriminator and select

10% of the malware samples near the discriminator,

which takes of the order of OðnÞ: The main for loop n

times run the ACO algorithm. Therefore, the overall

time taken for the ACO attack is about Oðn4Þ.
We present two defense mechanisms in this paper. In each

method, we try to modify the current model and build an

updated model that has more intelligence against the

attacks mounted. In the following, we describe the time it

takes to build the new retrained model:

– Adversarial training defense. In this method, which is

detailed in Algorithm 3, we first randomly select 60%

of original and poison data and build new training set

which runs for around OðnÞ: Then, we gather the

trained and poison data which run for around OðnÞ:
Then, we run the Random Forest regression function on

these two datasets and build a new model. The Random

Forest regression function utilizes a decision tree for

classifying the data and identifies the important features

based on the results of the classification. Since we have

n samples and m features, the time taken to establish

Fig. 2 GAN defense architecture
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each tree is about Oðm � n � lognÞ: As a result, the

overall time taken for the adversarial training defense

method is in the order of Oðm � n � lognÞ:
– GAN defense. According to Algorithm 4, building the

poison model takes in the order of OðnÞ: Then, we use

the KNN method to make a Lesslikely matrix which

takes for about Oðm � nÞ: The loop runs for each sample

out of Lesslikely matrix and for each of them while the

instruction is checked on the poison model (see lines 5–

7). Hence, the duration of the for loop runs for about

Oðn2Þ: As a result, the overall time taken for the GAN

defense method is in the order of Oðn2Þ:

5.3.2 Space complexity

Focusing on the space complexity of Algorithm 1, for the

Trivial attack, we need a vector space to select k features

among m available features, so the required space is in the

order of Oðk � nÞ for all samples. Regarding the Distribu-

tion attack, we also need to select lambda features out of m

features, so the overall space complexity of this scenario

runs of the order of Oðk � nÞ for all samples. Regarding the

KNN based attack, first, we rank the features, which is

applied as in-place ordering that runs of the order of Oðk �
nÞ for all samples. Then, we need a space to save 10% of

the malware dataset, which runs off the order of Oðm � nÞ:
Finally, the overall space complexity required for this

scenario runs of the order of Oðm � nÞ: Regarding the LR

attack, LR takes at most a dataset space to randomly select

k features in the benign dataset and occupy Oðm � nÞ space
to find 10% of nearest malware dataset to the discriminator.

As a result, the overall space complexity of the LR scenario

is in order of Oðm � nÞ: Focusing on the space complexity

of Algorithm 2, we first select k features out of m features

for each sample, so we need a space of the order of Oðm �
nÞ for this. Then, we need to consider the order of Oðm � nÞ
for the required space to find 10% of the nearest malware

dataset to the discriminator. In the for loop, we build the

dataset at most n times. As a result, the overall space

complexity of the ACO scenario is in the order of Oðm �
n2Þ: Focusing on the space complexity of Algorithm 3 for

adversarial training defense, similar to the previous algo-

rithms, the space required for running the lines 1–4 runs for

around Oðn � mÞ: Also, the space required to generate

Random Forest Classifier function is in the order ofOðNT �
n � mÞ [31], where NT is the number of trees we need to

consider to run this function. As a result, the overall space

complexity takes about OðNT � n � mÞ: Focusing on the

space complexity of Algorithm 1 for GAN defense, similar

to the previous algorithms, the space required for the Lo-

gistic Regression function and Lesslikely matrix is in the

order of Oðn � mÞ: All the classification algorithms using

the Lesslikely dataset can consume space in order of Oðn �
mÞ: As a result, the overall space complexity is in the order

of Oðn � mÞ:

6 Experimental evaluation

In this section, we report an experimental evaluation of the

proposed attack algorithms and their countermeasures by

testing them under different scenarios.

6.1 Simulation setup

In the following, we present the classifiers, datasets,

training/testing structure, test metrics, and hyper-parameter

tuning.

6.1.1 Classifiers

We use three classifiers as described in Sect. 3.2, in which

we set the k-fold variable to 10. As explained previously,

the random forest (RF) algorithm classifies the data by

constructing multiple decision trees. In this paper, the

number of decision trees used is 100. In RF, the maximum

number of features used to find the best split of the features

is set to 3. In the Bagging algorithm, we use the Decision

Tree Classifier as the base estimator. The number of

decision trees used is 100. We average our results over 10

independent runs for each classifier.

6.1.2 Datasets

We conducted our experiments using three datasets, as

detailed below:

– Drebin dataset The Drebin dataset [2] is a set of

Android samples that we can straightforwardly apply in

a lightweight static analysis. For each Android appli-

cation, we perform a linear sweep over the app’s

content and obtain the manifest and the disassembled

dex code. We then extensively analyze all the extracted

features, which are represented as a set of binary

strings. These features are classified into permissions,

intents and API calls. The samples contain 131,611

applications over about 2 years (2010–2012) containing

both benign and malware/malicious software. The

Drebin dataset contains 96,150 applications from the

GooglePlay store, 19,545 applications from the Chinese

market, 2810 applications from the Russian market and

13,106 samples from other sources such as Android

websites, malware forums, and security blogs.

– Genome dataset In Genome project which was sup-

ported by the US National Science Foundation, NSF
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[17], the authors gather about 1200 Android malware

samples from various categories from August 2010 to

October 2011. They categorize them based on their

installation methods, activation mechanisms, and their

malicious payloads.

– Contagio dataset Contagio mobile dataset presents a

list of uploaded dropbox samples that are gathered from

various mobile applications. It includes 16,800 benign

and 11,960 malicious samples of mobile apps in 2015

[6].

6.1.3 Mobile application static features

The datasets we tested have several syntax features. The

malicious applications gathered have various permissions,

intents and API calls, and we assume that malicious

applications are distinguishable from benign ones. We

summarize the different application syntax features as

follows:

– Permission each application (APK) of an Android file

has an essential profile that includes information about

the application, known as permission. The Android OS

needs to process these permission files before installa-

tion. This profile file indicates the permission types for

each application when interacting with an Android OS

or other applications.

– API this feature can monitor various calls to APIs in the

Android OS, e.g., sending an SMS, or accessing a

user’s location or device ID. The Android OS provides

an API framework that helps the applications to interact

with the OS easily.

– Intent this type of feature is used to represent commu-

nication between different components. It is also called

a medium, as it can serve as a communication link

between the asynchronous data exchange information

and the calls to various applications.

In order to find the optimal number of features for modi-

fication in each attack, we repeat our experiments for

k ¼f1%; 2%; 3%; 4%; 5%; 6%; 7%; 8%; 9%; 10%; 20%g of

the manifest features (i.e., M).

6.1.4 Parameter setting

We run each attack and defense algorithm 10 times and

report the average results. At each repetition, we randomly

consider 60% of the dataset as training samples, 20% as

validation samples and 20% as testing samples. This

enables us to evaluate the degree to which a classifier can

maintain its detection of malware from different sources.

We set the maximum iteration of the ACO attack algorithm

to 1000. Besides, we modify 300 variables corresponding

to the ranked feature vector using the ACO algorithm for

each iteration. We fix the evaporation ratio to 0.1 and the

pheromones rate per path that is corresponding to the

coefficient of experience and collective knowledge to 0.99.

All of the experiments (four attacks and two defenses using

three datasets with three classification algorithms) were run

on an eight-core Intel Core i7 with speed 4 GHz, 16 GB

RAM, OS Win10 64-bit using Python 3.6.4. Also, we keep

the source code of the paper in Footnoote.3

6.1.5 Feature selection

Due to a large number of features, we first ranked the

features using the Random Forest Regressor algorithm. We

then selected 300 of these features with higher ranks.

6.1.6 Comparison of solutions

We compare our defense algorithms with the Jacobian

saliency map used to craft malware samples in [11], called

JSMA. The Jacobian-matrix-based algorithm is used to

craft adversarial examples, since the binary indicator vec-

tor used by these authors to represent an application does

not possess any particular structural properties or inter-

dependencies. Hence, they apply a regular, feed-forward

neural network with an architecture consisting of two

hidden layers, each involving 200 neurons. In [11], the

authors consider at most 20 feature modifications to any of

the malware applications. Our solution uses a SoftMax

function for normalization of the output probabilities in the

malware detection system, as follows:

FiðXÞ ¼
exi

ex0 þ ex1
; xi ¼

Xmn

j¼1

wj;i � xj þ bj;i; ð4Þ

where F is the gradient function, x is the input sample, and

mn is the number of features. The above authors follow two

steps when building adversarial examples. In the first step,

they calculate the F gradient according to X to estimate the

direction in which the perturbation in X can calculate the

output of function F [see (5)]:

JF ¼ oFðXÞ
oX

¼ oFiðXÞ
oXj

� �

i2f0;1g;j2½1;m�
: ð5Þ

In the second step, a perturbation d for X with a maximum

positive gradient is selected in the target class Y 0: For

presenting the attack mechanism, the index i changes the

target class to 0 by changing Xi; as described in (6):

i ¼ arg maxj2½1;m�;Xj¼0F0ðXjÞ: ð6Þ

3 https://github.com/mshojafar/sourcecodes/blob/master/Taher

i2019APIN-AdverserialML_Sourcecode.zip.
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This process continues until one of the two following

conditions is fulfilled: (i) the maximum number of changes

allowed is reached, or (ii) a misclassification is successfully

caused.

6.1.7 Test metrics

We use certain metrics to evaluate the results, which are

listed as follows:

– True Positive (TP) denote malware correctly classified

as malware.

– True Negative (TN) is the number of legitimate

applications precisely identified by the classification

algorithm.

– False Positive (FP) denote the number of misclassified

benign applications.

– False Negative (FN) is the count of malware files

misclassified as goodware.

– Accuracy this is the ratio between the number of correct

predictions and the total number of input samples. A

higher value of accuracy indicates that the algorithm is

able to correctly identify the label of the samples with a

higher probability. Thus, we have

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
: ð7Þ

– Precision this is the fraction of relevant instances

among the retrieved instances. Hence we have:

Precision ¼ TP

TPþ FP
: ð8Þ

– Recall this is the fraction of retrieved instances over the

total amount of relevant instances. Both precision and

recall are therefore based on an understanding and

measure of relevance. This can be written as:

Recall ¼ TP

TPþ FN
: ð9Þ

– False Positive Rate (FPR) this is defined as the ratio

between the number of negative events incorrectly

classified as positive (false positive) and the true

number of negative events (false positive ? true neg-

ative). Therefore we have

FPR ¼ FP

TPþ TN
: ð10Þ

– Area Under Curve (AUC) this defines a metric for

determining the best class prediction model using all

possible thresholds. Thus, AUC measures the tradeoff

between (1 - FPR) and FPR. The intrinsic goal of

AUC is to solve the situation in which a dataset consists

of unbalanced samples (or a skewed sample distribu-

tion), and it is necessary that the model is not overfitted

to the class consisting of a higher number of instances.

This can be written as:

AUC ¼ 1

2

TP

TPþ FP
þ TN

TN þ FP

� �
: ð11Þ

6.2 Experimental results

In this section, we apply the above attacks to our originally

trained classifiers to examine the impact of GAN and

adversarial training as defensive mechanisms against

adversarial examples in the domain of malware detection.

6.2.1 Evaluation of different features

In the first results, we present the machine learning metrics

for our attack scenarios and defense algorithms versus the

JSMA attack method [11] for different numbers of selected

features. We present three sets of plots. In the first group,

we compare the FPR metric described in Sect. 6.1 for

various attack algorithms; in the second group, we compare

the aforementioned FPR ratio for the defense algorithms;

and in the last group, we validate the AUC metric for the

defense and attack algorithms to indicate the success of the

proposed attacks and defenses.

Comparison of attack algorithms in the following fig-

ures, we compare the FPR values for our attack algorithms

and the JSMA attack algorithm, using the API and per-

mission data from the Drebin, Contagio and Genome

datasets. As we can see, the three sets of comparison plots

(Fig. 3a–c, d–f, g–i) show that for the API and intent type

files, the LR attack performs much better than the other

algorithms (i.e., for each of the four selected samples, the

LR attack can modify the features of one of them in such a

way to fool the classifier). This effect can be explained by

considering that performing predictive analysis on promi-

nent features avoids overfitting in the poison learning

model, which leads to a greater FPR. For permission type

apps, the FPR value fluctuates and depends on the features

selected. Hence, the FPR values for all attacks do not

change smoothly. This value is always higher for the LR,

Distribution and KNN attack algorithms than for the JSMA

method [11].

6.2.1.1 Comparison of AUC for different datasets Com-

parison of the defense algorithms to fully evaluate our

defense algorithms, we test the FPR rate for the various

number of feature and file types using various datasets, as

shown in Fig. 4. The following figures show the adversarial

training and GAN defense algorithms. From Fig. 4, we can

elicit two main conclusions: firstly, the performance of the

GAN defense method (the latter defense method) is better
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than the former defense algorithm, and the differences

between the FPR rates for GAN and the adversarial train-

ing algorithm for API files are about 1.1%, 1%, and 0.75%

for the Drebin, Contagio and Genome datasets,

respectively; and secondly, the differences in the FPR rates

for the GAN defense method compared with the LR

algorithm for API files (i.e. the highest FPR rate attack

algorithm for API files) for the Drebin, Contagio and
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Fig. 3 Comparison between attack algorithms in terms of FPR for various numbers of selected features using an RF classifier for API, intent and
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Genome datasets are about 25%, 9%, and 6%. This indi-

cates that our GAN defense algorithm is an efficient

method for reducing the misclassification rate of authentic

programs as malware, and is comparable with other results.

In Fig. 5, we present the AUC values for the attack and

defense algorithms. Figure 5a shows the AUC values for

the attack algorithms (including JSMA [11]) for the per-

mission, API and intent data for the Drebin, Bagging, and

Gnome datasets using RF classifier. For an attacker’s point

of view, it is vital to obtain smaller AUC values that allow

adversarial samples to be generated and the learning model

to be easily modified. From this figure, we can draw three

conclusions. Firstly, attack algorithms perform better for

permission data than for API and intent data. This means

that our attack algorithms can manipulate the sample data

to produce adversarial samples and fool the classification

algorithm more easily. Secondly, the LR and distribution

attack algorithms have lower values for AUC for all

datasets compared with the JSMA algorithm and with

respect to the FPR values presented in Fig. 3. Hence, these

two algorithms can be selected as stronger attack methods.

Finally, our algorithms show better AUC results for the

Drebin dataset for all three file types. This means that the

average rate of AUC for all of our attack algorithms

applied to permission data from the Drebin dataset is about

15%, which is 11% lower than for the API and intent data.

However, the average AUC rate for all three file types is

approximately the same for the Contagio dataset.

A comparison between the defense algorithms presented

in Fig. 5d–f shows that it is essential to obtain a significant

value of AUC. Hence, from these figures, we can see that

the results for the proposed defense methods applied to the

API data of the Contagio dataset perform better than for the

Drebin and Genome datasets. In contrast, when we perform

our defense algorithms on the permission data, the AUC

results for the Contagio dataset have smaller values com-

pared with the Drebin and Genome datasets. When we run

the defense algorithms on the intent files, the AUC ratio for

the Drebin dataset is higher than permission and API file

types for the two other datasets. Moreover, the GAN

defense method has higher AUC values than the adver-

sarial training defense algorithm, and the rates are

approximately the same for both file types. Hence, GAN is

an efficient solution that can be applied to all datasets, and

especially the Drebin dataset, as a defense against the

adversarial example produced by the attack algorithms. As

a conclusion, we understand that Drebin dataset can be an

efficient dataset that we can perform attack/defense algo-

rithms on it and evaluate our methods compared with the

JSMA method [11].

6.2.2 Performance of attack/defense algorithms
on the Drebin dataset

First, we evaluate the average FPR values for all feature

lengths for the various attack algorithms, using three types
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of files for the Drebin dataset and all classifiers, as

described in Sect. 6.2.2. We then select the much more

easily modifiable features, which can accelerate the attack

process as described in Sect. 6.2.2. Finally, we evaluate the

robustness of the attack and defense strategies against the

JSMA method [11] and present the ML metrics for the

selected features described in Sect. 6.2.2.

Performance of FPR vs. file types vs. classifiers as an

attacker, we need to narrow the attack algorithm targets

using the specific classifier and file types. We therefore

calculate the FPR value for each file type when manipu-

lated with attack algorithms for various classification

methods. Figure 6 demonstrates the results of this evalua-

tion and suggests two findings. Firstly, the average FPR

value ratio for the API and permission files is lower than

for the intent files. This drives the attack algorithms to

concentrate on the last group of files (see the right-hand set

of bar charts in Fig. 6). Hence, the intent file type is much

easier to modify using attack algorithms. Secondly, most of

our algorithms can produce a larger value of FPR than the

JSMA method, for all classification methods. However, the

SVM classification algorithm is the weakest classification

algorithm, and RF is the strongest.

Performance of reasonable feature selection in this

study, an attacker needs to know the minimum number of

features of each sample in order to manipulate them and

falsify the classifier. We therefore compare and evaluate

the FPR rate for different numbers of selected features.

Table 2 shows the FPR rate for each attack algorithm for

the various numbers of features chosen to run the intent

data in the Drebin dataset using the RF classifier. From

Table 2, we can conclude that when increasing the number

of features for testing in each scenario, the average FPR

remains approximately fixed, while the time of execution

clearly increases.

Performance of ML metrics for three selected features in

the following, we evaluate the robustness of our classifiers

when encountering five different attacks and two defense

scenarios for three selected features. Table 3 shows the

results of the proposed algorithms for the intent data from

the Drebin dataset. As shown in this table, we first apply

classification algorithms without an attack strategy. It is

noticeable that the accuracy of the classifiers without an

attack is above 84%. The maximum FPR value with no

attack is 13.23% for the RF classifier. Furthermore, the

FPR values for the two other classifiers are even less than

13%.

The trivial algorithm inserts random noise into samples.

Hence, the accuracy value for the trivial algorithm is

approximately the same for all classification algorithms

and is about 72%. Conversely, the FPR value increases, but

due to the lack of targeted changes in this method, the FPR

is lower than for the other proposed attacks. The distributed

attack only manipulates the features of the malware sam-

ples that are within the distribution of benign samples in

the training set. As can be seen from Table 3, this algo-

rithm is more successful in reducing the accuracy than the

other methods for the Bagging classifier and reduces it by

about 9% compared to the rate before the attack. The

distribution algorithm also has the lowest precision com-

pared to the other proposed attack scenarios and has a value

similar to the JSMA method of about 26%. Hence, this

attack offers a reasonable level of accuracy and can be a

suitable option for the Drebin dataset using the Bagging

 21
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 26

 27

 28

 29

Trivial

Distrb

KNN
LR ACO

JSM
A

Trivial

Distrb

KNN
LR ACO

JSM
A

Trivial

Distrb

KNN
LR ACO

JSM
A

Permission API Intent

FP
R

 (
%

)

RF Bagging SVM

Fig. 6 Comparison of average FPR values for attack algorithms for

the Drebin dataset using different classifiers and different file types

Table 2 FPR rate in (%) for

each attack algorithm vs. the

number of selected features for

permission data in the Drebin

dataset using an RF classifier

Scenario Number of selected features

3 6 9 12 15 18 21 24 27 30 60

Trivial 27.27 27.39 26.91 27.21 27.22 27.29 27.29 27.29 27.29 27.29 27.29

Distrbut. 27.26 27.27 27.26 27.33 27.36 27.36 27.36 27.40 27.40 27.40 27.40

KNN 27.35 27.35 27.23 27.29 27.38 26.99 27.25 27.32 26.91 26.98 26.98

LR 27.36 27.36 27.31 27.34 27.41 27.43 27.45 27.43 27.43 27.43 27.43

ACO 26.86 26.86 26.89 26.86 26.86 27.04 27.04 27.04 27.08 27.08 27.08

JSMA [11] 27.23 27.24 27.23 27.19 27.26 27.28 27.28 27.30 27.30 27.29 27.30
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classifier. The KNN attack scenario is an aggressive attack

since it reduces the accuracy to the lowest value for the RF

classifier compared to the other attack algorithms. This

attack selects k benign samples near to each malware

sample and changes their features. Hence, a KNN attack

can obtain the highest recall values. When using the LR

attack scenario as a discriminator, we tried to change the

benign samples near to this discriminator by adding fea-

tures from malware samples to fool the classifier. From the

attacker’s point of view, this algorithm is the dominant

attack, since it has the lowest value for FPR. The FPR

values obtained by applying the LR attack on the RF,

Bagging and SVM classifiers are 27.36%, 27.56%, and

27.92%, respectively. Finally, the ACO attack scenario

produces adversarial samples using the ant colony opti-

mization algorithm and adds them to the dataset. The

results of the experiments show that this method is similar

to other methods in terms of the FPR value, but the

accuracy value does not change significantly. This means

that the level of accuracy is not reduced and the value of

the FPR is no higher than for the other attack algorithms.

For the defense algorithms, we expect the accuracy of

the classification to increase and the FPR value to decrease.

From Table 3, we observe that the GAN-based method

always has higher accuracy than the adversarial training

method. The FPR values for the adversarial training

method with the RF, Bagging, and SVM classifiers are

lower than for the GAN defense method. In Table 3, we

highlight the highest FPR and lowest accuracy values

among the attack algorithms and the lowest FPR and

highest accuracy among the defense algorithms; these

correspond to the best attack and best defense algorithms.

6.2.3 Evaluation of detection time

In this section, the execution times for the attack algo-

rithms and the defense solutions are compared. Table 4

compares the time required for training, testing, poisoning

and defense for the different proposed algorithms. As can

be seen from the proposed algorithms, the trivial attack is

the fastest attack method, since it randomly selects and

modifies the features. The ACO attack algorithm is the

slowest attack algorithm to generate adversarial samples.

The KNN attack algorithm requires the calculation of the

distance between the adjacent samples, and takes much

more time than the other attack methods. In terms of the

classification algorithms, the RF algorithm time con-

sumption for the training and testing phases is lower than

for the Bagging and SVM algorithms. By comparing the

proposed algorithms with the JSMA method, we find that

the execution time for the proposed methods is better in

most cases than for the JSMA algorithm. In terms of the

time taken by the attack algorithm on the permission, API

and intent data types, it is easy to see that the time required

for API data files is larger than for the two other files types,

and this rate is lower for the RF classification algorithm.

Both of the proposed defense algorithms need a certain

amount of time to apply the defense mechanism in the

poisoned dataset, which we call the defense period, and this

is presented in the same cell as the poisoning time for each

classification algorithm. According to the last six rows of

Table 4, the defense time for the adversarial training

algorithm is about half of the time taken by the GAN

defense learning model against adversarial example injec-

tions. However, the duration of the training and testing

phases for both defense algorithms are comparable. It is

also clear that API apps require more time than other file

Table 3 Accuracy, FPR, precision and recall values for intent data of the Drebin dataset

Type Scenarios Classifiers

Random Forest (RF) Bagging SVM

Acc. FPR Prs Rec Acc FPR Prs Rec Acc FPR Prs Rec

Norm Without 84.16 13.23 0.91 0.63 80.09 12.99 0.86 0.71 79.76 13.05 0.87 0.67

Attack Trivial 72.60 27.27 0.31 0.17 72.05 27.12 0.27 0.16 72.70 27.49 0.31 0.16

Distrbut. 72.50 27.26 0.26 0.12 71.02 27.42 0.29 0.14 72.59 27.80 0.28 0.14

KNN 71.50 27.35 0.29 0.01 72.4 27.39 0.30 0.07 71.80 27.77 0.29 0.06

LR 72.50 27.36 0.34 0.19 71.40 27.56 0.29 0.11 71.56 27.92 0.31 0.16

ACO 78.86 26.86 0.31 0.21 77.29 26.31 0.29 0.13 72.60 26.14 0.30 0.17

JSMA [11] 73.21 27.23 0.26 0.16 72.21 27.50 0.25 0.14 72.36 27.21 0.27 0.18

Defense AT 79.10 17.53 0.68 0.35 80.11 17.45 0.71 0.39 79.07 17.16 0.69 0.43

GAN 80.93 14.36 0.82 0.46 82.54 15.95 0.79 0.41 80.54 15.14 0.85 0.51

Acc accuracy, Prs precision, Rec recall, Distrbut distribution attack, AT adversarial training
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types for both defense algorithms. Overall, the SVM

classifier requires more time than RF for all three phases

(i.e., training, testing, and defense). Table 4 confirms that

GAN is the best defense algorithm; among the classifica-

tion algorithms, RF is the most efficient classifier and

requires less time than the other classification algorithms.

7 Discussion and limitations

The primary goal of crafting adversarial samples is to

evaluate the robustness of Machine Learning based mal-

ware classifier for identifying malware camouflaged as

legitimate samples. In order to ascertain the aforesaid

conjecture, we developed malicious samples statistically

identical to benign applications by implementing different

poisoning methods. In each attack scenario, the function-

ality of malicious samples was preserved. However

structural changes at the Android component level was

carried out. To be precise, we considered two restrictions

which assure app functionality. Firstly, we modify the

manifest features that are related to the AndroidMani-

fest.xml file in any Android app. Secondly, we change the

features that are added to the real application. These fea-

tures are written using a single line of code. Comprehen-

sive experiments carried in this paper clearly depict that

malware samples can be shifted to a benign class by

altering permission and intents. In the majority of cases, we

observed that there was an increase in FPR between 26.5

and 28.5%. Further, we also conclude that the transfor-

mation of a malicious app’s to trusted ones could be

undertaken with additional efforts, requiring augmentation

of large code blocks as compared to attributes like per-

mission and intents. We observed that retraining with

adversarial examples with corrected labels and GAN gen-

erated samples the trained model can appropriately identify

Table 4 Execution time in

seconds (s) for training, testing
and application/refining of the

poisoning phases on attack/

defense algorithms for all file

types, datasets and

classifications

Drebin dataset

Time (s)

Classifiers

RF Bagging SVM

Scenario File type TRN TES POS TRN TES POS TRN TES POS

Attacks Trivial Permission 3.32 1.48 0.03 2.85 3.50 0.02 3.50 3.56 0.03

API 3.95 2.76 0.22 2.43 3.62 0.28 3.73 4.34 0.218

Intents 3.09 1.97 0.02 0.59 4.09 0.15 2.5 3.85 0.96

Distrbut. Permission 3.56 1.72 0.10 4.48 4.78 0.18 3.40 3.86 0.109

API 3.38 3.21 0.36 2.09 3.43 0.37 3.84 3.05 0.296

Intents 2.82 1.91 0.06 0.57 3.84 0.062 2.42 2.9 0.093

KNN Permission 3.51 1.23 1.92 4.20 5.51 2.89 3.82 3.2 1.59

API 3.91 3.22 2.75 2.93 4.79 2.00 3.48 3.84 1.89

Intents 2.98 1.52 1.86 0.53 4.21 1.50 2.46 3.81 1.48

LR Permission 3.44 2.01 0.13 4.54 5.09 0.26 3.70 3.73 0.01

API 3.65 2.73 0.90 3.67 4.55 0.93 3.86 3.43 0.1

Intents 2.70 1.27 0.11 0.68 4.52 0.06 3.69 3.82 0.113

ACO Permission 4.00 1.96 146.13 4.21 3.04 125.6 3.56 3.53 161.24

API 2.98 3.97 151.76 3.21 4.89 139.13 3.72 3.92 109.6

Intents 2.79 1.70 143.62 0.62 4.62 99.94 3.61 3.26 176.1

JSMA [11] Permission 3.70 1.84 0.145 4.34 5.34 0.21 3.98 3.29 0.23

API 3.44 2.81 0.84 3.79 3.74 0.97 3.76 4.16 1.06

Intents 2.65 2.34 0.07 0.57 3.89 0.62 2.52 3.29 0.01

Scenario File type TRN TES DFT TRN TES DFT TRN TES DFT

Defenses AT Permission 3.61 1.83 6.99 3.29 1.71 5.51 3.43 3.72 8.20

API 3.18 3.09 7.75 3.67 3.29 7.64 3.81 3.35 7.44

Intents 2.32 1.89 3.43 2.98 1.94 3.75 2.94 3.03 3.95

GAN Permission 3.39 1.61 10.48 3.24 1.83 9.78 3.73 3.27 9.86

API 3.97 3.27 11.24 3.12 2.91 12.43 3.68 3.66 11.89

Intents 3.05 1.43 7.78 3.24 1.28 11.4 3.03 3.86 7.90

TRN training phase, TES test phase, POS poisoning phase, AT adversarial training, DFT defense time
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samples drawn from the unseen distribution. One of the

main limitations of the proposed method is the detection of

malicious samples launching an attack on execution time.

This can be addressed by creating a system call flow graph

and focusing on critical path depicting frequent operations.

Subsequently, feeding the machine learning classifier with

the statistics of a sequence of frequent operations. Alter-

natively, apps, if analyzed independently, may appear

legitimate but when they collude shows malicious behav-

ior. Detection of samples exhibiting such behavior is

beyond the scope of this work. However, such apps can be

detected by estimating flow by representing the informa-

tion flow using finite state with the output. This way of

representing an application state can exhibit fine-grained

information flow from multiple states to the subset of states

or specific states of given automata. Additionally, we can

infer the current state and next state information on an

event to discover the vulnerable source and sink pairs.

8 Conclusions and future work

In this paper, we propose five different attack algorithms: a

trivial algorithm, a benign distribution, KNN, LR, and a

bio-inspired method based on the ant colony algorithm. We

compare these algorithms with the most recent static

approach based on a Jacobian method, called JSMA, in

terms of providing adversarial examples based on Android

mobile data to fool classification algorithms. We also

propose two defense algorithms based on adversarial

training and GAN architecture. We validate our attack and

defense algorithms using three public datasets, namely the

Drebin, Genome, and Contagio datasets, using API, intent

and permission file types. We test our models before and

after implementing attacks on three classification

algorithms: the RF, SVM and Bagging algorithms. It is

observed that using 300 ranked syntax features of these

Android mobile datasets, the benign distribution and LR

attack algorithms could fool the classification algorithms

using the Drebin dataset. This was particularly true for RF,

with an FPR of more than 27%, an accuracy of less than

72% and an AUC of up to 50%. These achievements are

interesting as they are higher than the JSMA approach by

about 5% for AUC, 5% for FPR, and 5% for accuracy. The

GAN approach can also decrease the FPR value by about

10%, increase the precision by about 50%, and increase the

accuracy by up to 25%, and can be used as an efficient

solution for such attacks.

For the future development of our work, we may further

improve the level of per feature robustness against various

adversarial manipulations. To do so, we need to add the

knowledge of feature robustness to the learning model to

make it difficult for the attacker to identify the feature

characteristics which are more complicated to manipulate.
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Appendix

In this section, we use 60 ranked (ascending priorities)

dimensional feature vectors out of 300 available features

for the study for different datasets. For the sake of sim-

plicity, we present these features for the Drebin dataset

(breakdowns are shown in Table 5). For example, we select

and adopt 20 first features of the Drebin dataset for 6% of

selected feature rates.
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