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Abstract
High demand for computational power by business, science, and applications has led to the creation of large-scale data

centers that consume enormous amounts of energy. This high energy consumption not only imposes a significant operating

cost but also has a negative impact on the environment (greenhouse gas emissions). A promising solution to reduce the

amount of energy used by data centers is the consolidation of virtual machines (VMs) that allows some hosts to enter low

consuming sleep modes. Dynamic migration (replacement) of VMs between physical hosts is an effective strategy to

achieve VM consolidation. Dynamic migration not only saves energy by migrating the VMs hosted by idle hosts but can

also avoid hotspots by migrating VMs from over-utilized hosts. In this paper, we presented a new approach, called

extended-placement by learning automata (EPBLA), based on learning automata for dynamic replacement of VMs in data

centers to reduce power consumption. EPBLA consists of two parts (i) a linear reward penalty scheme which is a finite

action-set learning automata that runs on each host to make a fully distributed VM placement considering CPU utilization

as a metric to categorize the hosts, and (ii) a continuous action-set learning automata as a policy for selecting an underload

host initiating the migration process. A real-world workload is used to evaluate the proposed method. Simulation results

showed the efficiency of EPBLA in terms of reduction of energy consumption by 20% and 30% compared with PBLA and

Firefly, respectively.

Keywords Energy consumption � Learning automata � Placement of virtual machines � Cloud computing �
VM migration

1 Introduction

Cloud computing is a new computing paradigm emerged in

recent years. It is a model that enables ubiquitous, conve-

nient and on-demand network access to a shared pool of

configurable computing resources that can be rapidly pro-

visioned and released with minimal management effort or

service provider interaction. In recent years, the IT

infrastructure is rapidly growing due to the demand for

computing power used by applications. In addition, modern

data centers in cloud computing are hosting a variety of

advanced applications. The high energy cost and green-

house gas emissions are significant problems arising due to

high energy consumption in large data centers. Nowadays,

given the importance of energy in the world, reduction of

energy consumption is regarded as a key challenge in both

academia and industry. In addition to the operating costs,

high energy consumption leads to an increase in tempera-

ture which in turn reduces the reliability and longevity of

hardware resources. Low-utilized servers are the major

factors contributing to low energy-efficiency of data cen-

ters. For example, reports showed that in a Google data
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center, the average utilization of physical machines is less

than 30% [1].

The IT infrastructures provided by data centers must

meet various Service Level Agreements (SLAs) established

between the provider and the clients. SLAs could be related

with either the resources such as amount of computing

power (e.g., number of CPUs), memory, storage capacity,

and network bandwidth or performance metrics (e.g.,

availability). Virtual machines (VMs) consolidation not

only focuses on minimizing energy consumption but also

should consider SLA as the important constraints. Using

energy-aware scheduling mechanisms could result in con-

siderable savings in energy consumption. According to the

saved energy, these mechanisms should make a compro-

mise between the performance and reduced service cost.

According to the performance requirements, energy-aware

data centers support the dynamic migration of VMs

between the physical nodes. When VMs do not use all of

the provided resources, they can be modified to a reason-

able size and deployed to the minimum number of physical

nodes. To reduce the energy consumption by the idle node

and also data center, total energy consumption changes

those nodes to sleep mode or turns them off [2]. Virtual-

ization capabilities can be also exploited to reduce the

energy consumption. In a general definition, virtualization

creates an abstract level of computing resources that can be

applied at different levels of a machine. It is a key enabler

for emerging cyber-physical production systems [3].

Before the virtualization, the resource categories in each

granularity level and the virtualization models of different

resources should be defined [4]. The functionality of a

resource at various granularity levels should be modeled

[5]. Virtualization improves productivity by making effi-

cient use of their resources. It also can reduce the amount

of hardware resources needed. As VMs sit on a hardware

resource, they are independent of each other, so the finish

time of their activity is different from one another and this

makes the part of capacity on hardware machines remain

unused. A new technique which has been developed to

address this problem is migration. Through using this

technique along with moving and finding a better place for

each VM, it is possible to have data centers with higher

performances on the other hand, it is applicable to reduce

the lateral cost including electricity costs.

In this paper we extend our previous work (PBLA) [6],

called as Extended-PBLA (EPBLA), a new approach based

on Learning Automata for dynamic replacement of virtual

machines in data centers to reduce power consumption.

EPBLA unlike the past algorithms does not use previous

solutions but tries to use the ability of learning automata to

do virtual machine placement. The proposed approach can

effectively handle heterogeneous infrastructures and

heterogeneous VMs and does not require any knowledge

about applications running on VMs. Live migration and

forcing idle nodes to sleep are the main policies used in

EPBLA.

Compared to our previous work (PBLA) our contribu-

tions are:

1. Testing the impact of number of VMs on the algorithm

performance.

2. Investigating the impact of an energy-aware method on

the energy consumption against the none-power-aware.

3. Adopting the MMT policy among the two policies used

in our previous study which were originally proposed

by Beloglazov and Buyya [2]. The reason to adopt

MMT is that the number of migrations to the number of

shutdown hosts is optimal in MMT.

4. Considering two new factors that significantly affect

the overall energy consumption. The factors list below:

(A) Meantime before a host shutdown.

(B) Meantime before a VM migrate.

The rest of the paper is structured as follows: previous

works are discussed in Sect. 2. In Sect. 3, Learning Auto-

mata is introduced. VMs energy-aware Extended-Place-

ment by Learning Automata (EPBLA) is discussed in

Sect. 4. Evaluation of the proposed method is represented

in Sect. 5. The conclusions are given in Sect. 6.

2 Related work

A lot of works have been done to deal with VM placement

in data centers.

Beloglazov et al. [7] proposed an energy-aware resour-

ces allocation algorithm. Their approach was based on the

idea of ‘‘mixed utilization thresholds’’. Tsai et al. [8]

studied a parallel-machine scheduling including both task

processing and resource allocation using an Improved

Differential Evolution Algorithm (IDEA). Their method

works based on their proposed cost and time models in

cloud computing environment. Compared to our LA

approach, Learning Automata has more accurate decisions

and it is not very expensive.

Wei et al. [9] introduced an energy-efficient VM

placement scheme, which tried to descend communication

cost and power consumption over traffic-aware data center

networks by using an improved Ant Colony Optimization

with an adaptive parameter setting. The problem of VM

placement and energy efficiency in the cloud using an Ant

Colony System (ACS) is targeted in [10]. The authors also

use a local search technique for order exchange and

migration (OEM). Furthermore, a combination of First Fit

and Ant Colony is employed by authors in [11]. Their goal

is the reduction of energy consumption in data centers.
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Barlaskara et al. [12] addressed VM placement issues by

two meta-heuristic algorithms namely, the enhanced

modified Firefly algorithm (MFF) and the Hierarchical

Cluster-based Modified Firefly algorithm (HCMFF), pre-

senting the comparative analysis of energy optimization.

EPBLA, unlike the mentioned algorithms, uses the ability

of Learning Automata to do VM placement. Combining the

Genetic Algorithm (GA) with the Tabu Search algorithm,

the authors in [13] proposed an energy-aware algorithm

named GATA. Their goal was energy efficiency while

maximizing load balance among varieties of resources. In

[14], the authors presented an alternative multi-objective

optimization (MOP) approach to solve the VM placement

problem. Their method is based on a combination of the

Slap Swarm and Sine–Cosine algorithms.

The authors in [15] provided a VM consolidation algo-

rithm with multiple usage prediction (VMCUP-M; referred

to resource types and the horizon) to improve the energy

efficiency of cloud data centers. In this context, multiple

usage refers to both employed to predict future utilization.

The joint use of resources allowed for a reliable charac-

terization of overloaded and under loaded servers, thereby

decreasing the load and the power consumption after

consolidation.

Similar to our method, some articles analyzed the per-

formance of their approaches by the CloudSim toolkit. Shu

et al. [16] proposed an improved clonal selection algorithm

based on time cost and energy consumption models in

cloud computing environment. This approach had immense

potential as it offered significant improvement in energy

efficiency of the data center and could effectively meet the

service level agreement requested by the users. In [17], the

authors proposed a predictive anti-correlated placement

algorithm (PACPA), which assumed both CPU and band-

width resource consumption. Ranjbari et al. [18] proposed

a new algorithm according to Learning Automata, which

improves resource usage and reduces energy consumption.

This algorithm reduces the number of migrations, and shuts

down idle servers to reduce the energy consumption of the

data center.

Esfandiarpoor et al. [19] proposed several VM consol-

idation algorithms based on network infrastructure,

shelves, and connectivity to decrease energy consumption.

Furthermore, migration performance was determined in

two stages that comprise migrating the selected VM on the

overloaded server and all VMs on the servers in the unused

shelf. In [20], authors introduced Fit Decreasing Algorithm

that use the Learning Automata theory to improve energy

consumption and SLA violation. By this aim, Mosa et al.

[21] proposed the method based on Utility-based approach.

Addis et al. [22] proposed a unifying framework which

satisfy performance and availability guarantees and mini-

mize energy costs in very large cloud centers. They pro-

posed a scalable distributed hierarchical framework

according to a mixed-integer nonlinear optimization data.

Arianyan et al. [23] proposed a new holistic cloud resource

management procedure and a heuristic according to multi-

criteria decision making method for determination of under

loaded hosts and placement of the migrating VMs. Kessaci

et al. [24] provided an energy-aware Multi-start Local

Search algorithm (EMLS-ONC) that optimizes the energy

usage of an OpenNebula-based cloud. Dai and Li [25] used

immune algorithm for energy optimization in cloud com-

puting by designing an experimental platform for resource

allocation, energy optimization and performance analysis.

The authors in [26] introduced an adaptive Genetic Algo-

rithm (GA) to diminish energy consumption while con-

sidering the response time of the tasks in a cloud data

center.

In [27], different types of tasks are considered which are

ignored in our paper and could be a future work. In [28],

minimization of completion time of tasks considered.

Similarly, a multi-objective service placement using Fuzzy

algorithm presented in [29].

Compared to the aforementioned related works listed in

Table 1, our contributions are:

1. Each host concerning its CPU consumption indepen-

dently which is able of learning to enhance its

performance. As a result of this autonomy, there is

no need for a global manager or doing a local search.

2. A few articles use Learning Automata, however their

method only focus on designing the special policy or

using categorization of VMs, not for physical

machines.

3. Authors in the previous works use only one kind of

Learning Automata whereas we use two types of LA.

4. In some articles, authors only consider only the

overloaded status and ignore other status of the hosts

in term of their CPU’s usage.

5. Only in a few works two important factors are taken

into account including: (i) meantime before a host

shutdown and (ii) meantime before a VM migrates.

Simulation results show that these factors are important

for QoS and energy consumption.

6. Methods that use meta-heuristics like, GA and Ant

Colony find the optimal solution after many iterations

which imposes a lot of overload and make them

inappropriate for dynamic systems.
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3 Learning automata

3.1 Finite action-set learning automata

Learning Automata [30] is an adaptive decision-making

unit that improves its performance by learning how to

choose the optimal action from a finite set of allowed

actions through repeated interactions with a random envi-

ronment. The action was chosen randomly based on a

probability distribution kept over the action-set and at each

instant, the given action was served as the input to the

random environment. The environment responded to the

taken action in turn with a reinforcement signal. The action

probability vector was updated based on the reinforcement

feedback from the environment.

The objective of a Learning Automata was to find the

optimal action from the action-set so that the average

penalty received from the environment is minimized.

Learning Automata was found to be useful in systems

where incomplete information about the environment

exists. Learning Automata were also proved to perform

well in complex, dynamic and random environments with a

large amount of uncertainties.

Every environment was represented by E = {a; b; c},
where a ¼ fa1; a2; . . .; arg was a set of inputs, b ¼
fb1; b2; . . .; brg is a set of outputs, and c ¼ fc1; c2; . . .; crg
was a set of penalty probabilities. Whenever set b has just

two members, the environment was a kind of P. In this

environment b1 ¼ 1, b2 ¼ 0 were considered as penalty

and reward respectively. Similarly, environment in a kind

of Q contained a finite set of members. Also, environment

in a kind of S had an infinite number of members. Ci was

the penalty probability of taken actionai.
Learning Automata can be classified into two main

families: fixed structure Learning Automata and variable

structure Learning Automata. Learning Automata with

variable structure was introduced as follows; Learning

Automata with variable structure is represented by {a; b;
p,T}, where a ¼ fa1; a2; . . .; arg is a set of actions, b ¼
b1; b2; . . .; brf g was a set of inputs, p ¼ fp1; p2; . . .; prg is

the action probability vector, and p(n ? 1) = T [a(n), b(n),
p(n)] was the learning algorithm. Learning Automata

operated as follows; Learning Automata chooses an action

Table 1 Taxomony of VM placement approaches in could system

Placement approaches VM or task

consolidation

Need to know task

execution time

Optimization algorithm

method

Objective(s)

EPBLA VMs No Meta heuristics Energy consumption, meantime before a host

shutdown, meantime before a VM migrates

An improved ant

colony optimization

[9]

VMs No Meta heuristics Energy consumption, communication cost

OEMACS [10] VMs No Local search techniques Energy consumption, multiple resources

MFF and HCMFF [11] VMs No Meta heuristics Energy consumption, different workload

GATA [12] VMs No Meta heuristics energy consumption, load balancing

MOSSASCA [13] VMs No Meta heuristics Energy consumption, meantime before a host

shutdown, improving SLA

THE MBFD

TECHNIQUE [18]

VMs No Modified best fit

decreasing

Energy consumption, idle servers and racks

EMLS-ONC-MO [21] Task Yes Multi-start local search

algorithm

Energy consumption, VMs efficiency

Adaptive GA [23] Task Yes Integer linear

programming, Meta

heuristics

Energy consumption, consider the response time

Utility-based approach

[25]

VMs No Meta heuristics Energy consumption, improving SLA

Fuzzy-AHP [26] VMs Yes Heuristics Energy consumption, improvement of

performance

Ant colony [27] VMs No First fit, meta heuristics Energy consumption

UMC [28] VMs No Best fit decreasing, meta

heuristics

Energy consumption, improving SLA

Optimal VM placement

algorithm [29]

Task Yes Queuing Approach Processing cost
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from its probability vector randomly (Pi) and took it.

Suppose that the chosen action isai. Learning Automata

after receiving reinforcement signal from environment

updated its action probability vector according to formulas

1 and 2 in case of desirable and undesirable received sig-

nals respectively. In formulas 1 and 2, a and b are reward

and penalty parameters respectively. If a = b, then, the

algorithm was named LR-P. Also, if b\ \ a then the

algorithm was named LR e P. Similarly, if b = 0 then the

algorithm was called LR-I [31].

pi nþ 1ð Þ ¼ pi nð Þ þ a � 1� pi nð Þð Þ
pj nþ 1ð Þ ¼ pj nð Þ þ a � pj nð Þ

ð1Þ

pi nð Þ ¼ 1� bð Þ � pi nð Þð Þ

pj nþ 1ð Þ ¼ b

r � 1
þ 1� bð Þpj nð Þ

ð2Þ

3.2 Continuous action-set learning automata
(CALA)

So far, the LA model was considered where the set of

actions was finite. Hence, while finding the optimal

parameter values to maximize a performance index, it is

needed to discretize the parameter space so that the actions

of LA could be the possible values of parameters. A more

satisfying solution would be to employ an LA model where

the action-set could be continuous. Such a model is called

continuous action-set learning automaton or CALA [30].

The action-set of CALA was the real line. The action

probability distribution at k was Nðl kð Þ; rðkÞÞ, the normal

distribution with mean l kð Þ and standard deviation rðkÞ.
At each instant, the CALA updated its action probability

distribution by updating l kð Þ and rðkÞ. Let a kð Þ 2 R be

the action chosen at k and let bðkÞ be the reinforcement at

k. Here, instead of reward probabilities for various actions,

we now have a reward function F : R ! R defined by

f xð Þ ¼ E b kð Þja kð Þ ¼ x½ �. We shall denote the reinforce-

ment in response to action as f xð Þ ¼ Ebx: The objective for
CALA was to learn the value of x at which attains a

maximum f . That is, we want the action probability dis-

tribution N l kð Þ; r kð Þð Þto converge to N x0; 0ð Þ where x0
was a maximum of f . However, it was not allowed r kð Þ
converge to zero to ensure that the algorithm did not get

stuck at a no optimal point. Therefore, another parameter

was used,0\r‘ (with r‘ sufficiently small) and kept the

objective of learning as r kð Þ converging to r‘ and l kð Þ
converging to a maximum of f .

The learning algorithm for CALA was described next.

Since the updating given for r kð Þ did not automatically

guarantee r kð Þ[ r‘, a projected version of r kð Þ is always
used, denoted by £ðr kð ÞÞ, while choosing actions. Fur-

thermore, unlike FALA, CALA interacted with the envi-

ronment through a choice of two actions at each instant.

At each instant k, CALA chose a at random

from its current action probability distribution

Nðl kð Þ;£ðr kð ÞÞÞ, where £ was the function specified

below. Then, it got the reinforcement from the environment

for the two actions: l kð Þ and x kð Þ: Let these reinforcements

be .

4 Extended placement by using learning
automata (EPBLA)

VMs are allocated into two categories: First part is the

acceptance of new applications for securing VM and

placing VMs on the hosts. The second part is to optimize

the current allocation of VMs. The current allocation of the

VM optimization is performed in two steps: First, select the

VM that requires migration. Secondly, the VM selected in

the previous step, is put on a suitable host.

The use of distributed reinforcement learning model

might be helpful according to the parallel, non-determin-

istic, stochastic and distributed nature of cloud systems.

One of the reinforcement learning tools is stochastic

Learning Automata which are used in this paper to access

to distribution feature and the local Community. As

described in the previous section, the random automaton

without any information about the optimal action (means

considering equal probability for all its actions at the

beginning) was trying to answer to the problem. (A) As a

component of a network of Learning Automata with a finite

number of actions in which each automata’s decision was

independent of the others. The proposed system schema

shows in Fig. 1. (B) For learning the optimal value of a

continuous parameter, a certain type of Learning Automata

is applied to, and have set its action on continuous interval

exists. Furthermore, each of these areas are explained

completely.
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The proposed system in the cloud’s data center has N

heterogeneous physical nodes. Any physical nodes are

considered as automata which made the decision inde-

pendently from the others. The categories behavior of the

physical nodes as the sender, receiver, and neutral are

provided. Their features included: Virtualization, support-

ing multiple system resources like CPU, disk storage, and

network interface. Their Elements are heterogeneous. The

techniques to save energy is ‘‘turn off the physical

machine’’. Their goal was to reduce the energy

consumption.

VMs: Multiple VMs can start dynamically and they can

stop on a physical machine based on the respond to the

accepted requests.

Physical machines: Physical servers offered the context

of hardware infrastructures physical computing to create

virtual resources to meet the demands of the service.

The proposed approach considers in the two-stage

optimization phase which is sub-divided into four steps as

follows:

Step 1: Select the sender host. To select a set of sender

hosts that needs to migrate some of their VMs.

Step 2: Select the VM to migrate. Migration of VMs

from the current place to the other physical machines is

performed.

Step 3: Select the receiving host. At this stage, a set of

receiver hosts can be specified.

Step 4: Allocation of VMs. VM assigned to the appro-

priate receiver host.

In the following, each of these steps will be

explained further. Pseudo-code for EPBLA is presented

in Algorithm 1.

LA1

User

Computer

S2

S3

S4

LA1 LA3 LA4LA2 LA5 LA6 LA7 LA8 LA9 LA10 LA11 LA12 LA13 LA14 LA15

LA16 LA18 LA19LA17 LA20 LA21 LA22 LA23 LA24 LA25 LA26 LA27 LA28 LA29 LA30

LA31 LA33 LA34LA32 LA35 LA36 LA37 LA38 LA39 LA40 LA41 LA42 LA43 LA44 LA45

LA46 LA48 LA49LA47 LA50S1

Idle AVG U�

Ac�ve 
U� Over U�

LA1

Idle AVG U�

Ac�ve 
U� Over U�

LA2

Idle AVG U�

Ac�ve 
U� Over U�

LA50…

Physical Machines 1-50

State of each LA

Fig. 1 Proposed system schema
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The first step is the selection of a set of sender hosts that

need to migrate some of their VMs. Hosts are classified

according to their CPU usage; this classification is based on

the fixed parameters in the ranges of 0–1. This classifica-

tion is updated in each time frame, meaning that the

amount of CPU usage of each host is calculated, and the

hosts categories are determined. These statuses are men-

tioned as Overloading host, Underload host, Average uti-

lization host, Active host Selection of the sender host

which is done according to which status (The use of the

host processor) host is in.

(a) If it is in Overloading host status, then its utilization

of CPU is more than a specific value and its VMs is chosen

to migrate according to avoid hotSpots and ensuring the

QoS. (b) If it is in Active host status then the node is active

and fulfilling service level agreements.

And if the VM is taken from it, there is still a sufficient

number of VMs on that node, so it cannot be switched off,

for these reasons the algorithm will avoid migrating from

the active host, so that not to impose the cost of vain

migration. (c) If it is in Average utilization host, algorithm

tries to migrate its VM and change its status to an under-

load host so it can be shut down to save more energy in the

data center. (d) If the CPU usage is very low (0–0/1) in

order to reduce energy consumption, it is better to move

VMs on the host and make the idle host turn off.

When a host is selected as the sender, the second step is

choosing which VMs have to migrate from the sender host.

The Minimization of Migrations (MM) policy migrate the

least number of VMs to minimize the migration overhead.

This policy is used for choosing which VMs have to

migrate in all state of Learning Automata except underload

Cluster Computing (2020) 23:3013–3027 3019
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status. When a host is in the underload status as explained

before, its utilization of CPU is very low, so all of its VMs

are chosen to migrate according to the amount of saved

energy so that all of them must be migrated in a way that

the host can be turned off.

Since migration of VM is expensive, it is better to

choose less VMs to migrate and avoid unnecessary

migrations. When an underload volunteer host is added to

its VMs to move to another node, it is essential that all

VMs on that nodes find a suitable receiver node to migrate

to it and that idle node be turned off. It should be con-

sidered that if all VMs are not moved, the underload node

should not be turned off, due to the imposed cost of

migration systems.

To find out if there is receiver host for all VMs located

on an underload node and avoiding unnecessary migration,

Learning Automata with continuous action-set is used.

With the help of this automata, the probability of finding a

receiver host for all VMs settled on the underload host is

estimated. If the obtained probability of a certain amount

which has been gained from the initial assumption with the

use/help of statistical tools is higher than the mentioned

probability, the host’s VMs will be selected for migration,

otherwise, the migration of VMs on that underload host

will be regardless. Environment response (b) is considered
as a binary value, where one is assumed as a favorable

result and zero is considered as the unfavorable response.

In underload status all VMs should be migrated as

explained, before using CALA for this situation. Algorithm

2 shows pseudo-code of the proposed algorithm. The effect

of changing the initial values on the accuracy and precision

of the Learning Automata parameters are investigated. The

simulations are carried up to 3000 iterations with step size

k = 0.1, r_L = 0.01 and k = 5. The results of simulation

for various initial conditions are indicated in Table 2.

After the selection of VMs to migrate, the set of receiver

hosts must be specified. At this step, a suitable destination

host for the selected VM should be found which chooses to

migrate from sender host at the previous steps. So the third

step is finding a suitable destination host for VMs which

were chosen by VM selection policy. The notations used in

the paper are defined in Table 3.

To select the receiver host, the host having the following

characteristics will be selected.

1. In order to save more energy, the number of turned-off

hosts must be raised up, so the receiver host should not

be one of the turned-off hosts. To check this condition,

Eq. 3 examines whether at least one VM is assigned to

the considered host.

2. The receiver host must have sufficient resources to

accept the VM.

3. The sender host cannot be a volunteer to receive a VM

because by removing a VM form the sender host its

status may be changed to idle which can be turned-off.

We divide the hosts into two separate lists (sender and

receiver). A host is not allowed to participate in both

lists simultaneously.

4. Only after the migration process, the state of the host

can be specified. So, the receiver host could not accept

any other VMs until the migration process is completed

because after accepting the VM, it may violate some of

the conditions (Eqs. 3 to 7) for the admission.

5. After the adoption of the VM, the condition that the

status of the receiver host did not change to overload-

ing status must be established. Because the receiver

host must have sufficient space for accepting a VM, on

the other hand, according to providing QoS and SLA

the overloaded host should be in a sender host list not

in a receiver one.
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6. Once the host accepts the VM and before the VM starts

to run, the status of the host should be checked to

ensure that the host is not overloaded. If so, the

migration must be canceled and the VM is removed.

The relations which showed these constraints were listed

in Table 4.

The host is evaluated for admitting the selected virtual.

After accepting all stipulated conditions, this host is placed

in the receiver host list.

At the final step, the selected VMs have to be allocated

to the appropriate receiver hosts. This is solved through a

network of Learning Automata having a finite actions and

independent of other decision making automata. Each

automaton is a physical machine in the cloud data center

that its learning was done through the acceptance or

rejection of the VM from the source node to the destination

node.

Each automaton has two actions which only one of them

is active at a time. As we explained before, according to the

utilization of processors, we define four statuses. From a

mathematical point of view, each of these statuses are

equivalent to the state of a Markov chain [32]. The tran-

sition from one state to another state was identical to the

change state of a physical machine to another state after

VM admittance. Each automaton has its own Markov chain

and at each of these states of the chain are doing their

learning separately from other states. By reason of the

different benefit of each action in the individual case,

without being a particular case, automata would not be

capable of learning. According to the source and destina-

tion nodes reward and penalty of automata would be

determined. In the next iteration, destination host uses this

environment response, until the new assignment is created

to be closer to the optimal schedule.

In fact, the VM moved from the source host to the

destination host by using migration. After receiving the list

of selected VMs to migrate and suitable receiver hosts list

for the selected VMs, if the host satisfied all conditions

mentioned before, the selected action of Learning Auto-

mata is checked according to its current status. If the

selected action of automata is the acceptance of VM, the

VM on the source host that we assume it as a sender host in

EPBLA, migrated to that host. We also consider the des-

tination host for the selected VMs as a receiver. After the

allocation, the amount of energy uses by both nodes are

calculated in watt. But if the selected action of automata is

a rejection of the VM, host do not accept the VM although

the host satisfies all conditions. The rejected VM tries on

the chance of admission another eligible recipient host

which would be able to migrate from the source host to that

host. The code of the proposed method is uploaded to

Github for public access [33].

We assume M as the number of physical machines and

N as the number of VMs. If we consider I as the set of idle

state node I 2 o Sð Þ: Mhost. is the capacity of each host in

the receiver host candidate list and MVM. is the least

amount of memory needed by the VM which is selected to

migrate on the available receiver host. S is the set of sender

list candidate and R is the set of receiver list candidate.

Thus, the complexity of the algorithm is h Mð Þ þ h S � Ið Þ þ
h Mð Þ þ O R �Mhost=MVMð Þð Þ ffi o M2

� �
.

Table 2 Simulation result of CALA

Initial values Step(k) After 3000 repetition Final function

l 0ð Þ r 0ð Þ l (8000) £ r 8000ð Þð Þ

0.5 0.3 0.1 0.9309 0.2053 0.7409

0.2 0.6 0.1 0.4444 0.1987 0.2204

0.8 0.3 0.1 2.1696 0.195003 2.60029

0.8 0.6 0.1 5.09417 0.205607 5.01161

0.7 0.3 0.1 1.16558 0.120736 304,241

0.4 0.6 0.1 0.07944 0.205096 0.0768

0.4 0.1 0.1 0.0304 0.20316 0.0175

Table 3 Notations used in constrains modeling

Symbol Definition

M Number of physical machine

N Number of VM

Vi The ith VM

Pj The jth physical machine

VPij VM Vi assign to Pj

V Set of N VM v1; v2; . . .; vn

p j
cpu %CPU utilization of Pj

p j
mem %RAM utilization of Pj

vicpu The CPU demand of Vi

vimem The RAM demand of Vi

0 The host is shutdown

1 At least one VM assign to the host

S Set of Sender list candidate

R Set of Reciever list candidate

Table 4 Constraints for choosing a host as a reciever

PN

i¼1

vpij 6¼ 0
(3)

ðvicpu � p j
cpuÞ and vimem � p j

mem

� �
(4)

Pi 6¼ Pj8Pj 2 S (5)

8Pj : If Pj accept Vi then R� Pj

� �
(6)

If vpij ¼ 1 and p j
cpu [ 0:8 then R� Pj

� �
(7)
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5 Evaluation

We improve EPBLA against PBLA by 20% in terms of

energy consumption. The results in [1] proved the effi-

ciency of PBLA. For appropriate simulation experiments,

the workload of a real system is used. The details of the

workload are taken from the CoMon [34] project, a mon-

itoring infrastructure for PlanetLab. We simulate a data

center by using CloudSim [35] simulator. We repeat the

experiments by different numbers of heterogeneous VMs

submitted by the user, and the features of heterogeneous

physical nodes are set as the following: EXP1 is a small

data center with only 50 hosts and 100 VMs and EXP2 has

a large number of hosts 500 and only 100 VMs. The

number of VMs is the same in both EXP1 and EXP2 to

show the performance of the method for different number

of hosts. The various experiments have been conducted to

further investigate the effectiveness of the proposed

method in a data center with a large number of hosts and

VMs, EXP3 has 600 hosts and 1052 VMs which are sub-

mitted by the user.

The results from EXP1 is shown in Fig. 2. In this

experiment, the number of hosts is half of the number of

VMs thus raising migration is natural for proper placement.

Due to the number of turned off nodes, the results indicate

a good performance of the proposed approach. Due to the

reduced size of the data center (low number of hosts),

energy consumption has declined but remained high in

terms of the rate of violation of the service agreement.

Therefore, it can be used in systems that the service level

agreement is not critical there. The results of EXP2 are

shown in Fig. 3. In EXP1 and EXP2, the number of VMs

are identical, however, in EXP2 the number of hosts rises

to show the flexibility of the algorithm. The reducing

number of migrations beside the increasing number of

switch off nodes indicate proper functioning of the pro-

posed approach. Due to the high number of hosts and the

service level agreement violations mean, energy con-

sumption of the system is suitable.

The results of EXP3 is shown in Fig. 4. As seen in the

Fig. 4, the number of hosts is much less than VMs; hence,

the increase in the number of migrations for proper

placement is natural (though the number of migration, the

migration is expensive, it is not excessive). Due to the

number of inactive nodes, the results indicate a good per-

formance of the proposed approach. Due to the large data

center, energy consumption has declined in the system

considerably. Reducing energy consumption requires pay-

ing the cost of violation of service level agreements. The

violation of service level agreement is high. Comparing

these three experiments in the amount of energy which
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each of them used, the result is shown in Fig. 5. In EXP2,

which the number of its idle hosts was very high, the

energy consumption was certainly less than EXP1.

Because, the number of VMs that must allocate to them is

very less than number of hosts and the proposed method

shows its efficiency. The amount of energy consumption in

EXP3, which is a great data center, were more than other

experiments and this is perfectly normal. But, the amount

of energy in this experience is really low according to its

size.

Continuing to compare the rates of the three tests as

violations of service level agreements can be paid out. The

results are shown in Fig. 6. Perhaps, one can understand

from the consequences of violating the service level

agreement with large data center systems that the value is

not change dramatically. This meant that it is not very high;

it seems much more in a small data center. The results

illustrate that this value depends on the number of physical

machines. In EXP 3, average of SLA violation is slightly

more than the two other experiments. As the chart shows,

there is no significant difference between the amount of the

average of SLA violation in Exp1 and Exp2, as a result of

their data center’s size that they are identical. The impact

of the data center’s size on the number of migration and

switched off hosts according to all three experiments is

shown in Fig. 7.

Changes in energy consumption in each time frame for

all the experiments are shown in Figs. 8, 9 and 10. As the

three charts illustrate when simulations begin, the amount

of energy consumption is zero. Then it rises to the highest

amount in all experiments, because, VMs are randomly

allocated to physical machines based on the non-power-

aware method. Then, suddenly it decreases because at each

frame the amount of energy that is consumed by each node,

takes into account to improve energy consumption. At
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6000, the Exp2 has plateau but in Exp1 it happens in the

time frame of 10,000. At this time frame, there is a deep

reduction in Exp3 then it rises up again until 40,000. In

Exp3, after time frame 40,000 as the chart indicates, there

is no alternation and the amount of energy consumption is

quite reduced. The amount of energy consumed in Exp2 is

less than two other experiments and there is less fluctuate

in Exp2.

The results obtained from the meantime before a host

shutdown in the experiments is shown in Fig. 11. We

evaluate the results by using T-Test by 90% accuracy. As

the result shows, EXP1 in which the number of hosts is half

of the VMs numbers, meantime to shut down a host is

much more than the other tests. In EXP2, regarding that

many of the hosts are switched off, the required time is

much lower than the other two tests and it indicates good

performance of the proposed approach. In the Exp3,

according to the large data center, this factor plays an

important role to reduce more energy consumption.

The results obtained from the meantime before migrat-

ing a VM in recent experiments are shown in Fig. 12. We

evaluate the results by using T-Test with the 90% confi-

dence all experiments are equal in the time needed before a

VM migrates from the host. As the chart illustrates, there is

no large difference in the values of these experiments. This

factor plays an important role in cloud’s data center,

according to the live migration that we use it in our algo-

rithm. Live migration enables the porting of VMs and is

carried out in a systematic manner to guarantee minimum

operational downtime.

We compare EPBLA with a non-power-aware place-

ment approach where all the hosts consume the maximum

power all the time. The results are shown in Fig. 13. As

shown in Figs. 8, 9 and 10, at the beginning, our algorithm

uses the maximum power, similar to the non-power-aware

approach, however, the energy consumption then reduces

step by step until reaching an equilibrium state. This results

indicate a noticeable improvement in the amount of energy

consumption by 70% compared with the non-power-aware

approach.

Tables 5 and 6 give information about the overall per-

formance of all participating parameters with MMT

(Selection policy) used in the Firefly method compared

with EPBLA for two different workloads. Each of the

experiments is run independently and reported in Tables 5

and 6. The results in both workloads illustrate that the

Firefly algorithm consumes more energy than EPBLA.

Although the number of migrations in EPBLA is slightly
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Table 5 The simulatin results for Workload 1, #Number of

VMs:1052, #Number of Hosts:800

Algorithms Energy (KWh) SLA VM migration

IQR-MMT-Firefly 32.21 0.00007 880

LR-MMT-Firefly 32.09 0.00007 874

LRR-MMT-Firefly 30.87 0.00009 971

MAD-MMT-Firefly 32.91 0.00007 824

THR- MMT-Firefly 31.96 0.00009 853

MMT-EPBLA 20.68 0.00006 1334
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more than Firefly, it outperforms the other baselines in

terms of both energy consumption and the percentage of

SLA violation. According to Table 6, even when the

number of VMs grows the proposed algorithm performs

well in reducing the total energy consumption.

Table 7 indicates an overall comparison of our methods

with other baselines where the average improvement

percentage of our method compared to each baseline is

reported.

The ratio of energy consumption between the Firefly

algorithm and the proposed method is calculated using

Eq. 8 which is used in Figs. 14 and 15. These charts show

the efficiency of our algorithm in comparison with all the

selection policies using the Firefly method.

Energy ratio ¼ Energy of method X=Energy of EPBLA

ð8Þ

6 Conclusion

The VMs placement is a complex NP-hard problem. To

solve this problem, in this paper we presented a new

approach based on Learning Automata for dynamic

replacement of VMs among the physical hosts in a data

center. We used dynamic migration to make as much as

idle host as possible and forcing idle hosts to shut down.

The algorithm could considerably diminish energy con-

sumption while maintaining QoS and thereby reducing the

heat and greenhouse gases. Experimental results demon-

strated that EPBLA reduced the energy consumed in the

considered data center by 20% compared to PBLA (our

previous work) while maintaining the quality of services.

Compared with a non-power-aware method, the energy

consumption decreased by 70%. In comparison with the

Firefly algorithm, our approach outperformed to save

energy of the data center about 30%. Moreover, the pro-

posed approach could effectively deal with the hetero-

geneity of cloud data centers. Due to the stochastic nature

of availability of physical hosts in the cloud environments,

the use of reinforcement learning model is promising. For

future work, we aim to consider a new policy for choosing

Table 6 The simulatin results for Workload 2, #Number of

VMs:1516, #Number of Hosts:800

Energy (KWh) SLA VM migration

IQR-MMT-Firefly 33.29 0.00008 898

LR-MMT-Firefly 35.33 0.00010 867

LRR-MMT-Firefly 36.81 0.00010 988

MAD-MMT-Firefly 33.93 0.00011 855

THR- MMT-Firefly 35.56 0.00010 888

MMT-EPBLA 26.17 0.00007 1874

Table 7 Comparing the different methods with EPBLA

Improvement

for Workload

1

Improvement

for Workload

2

Average

improvement

IQR-MMT-Firefly 36% 21% 29%

LR-MMT-Firefly 36% 26% 31%

LRR-MMT-Firefly 33% 29% 31%

MAD-MMT-
Firefly

37% 23% 30%

THR- MMT-
Firefly

35% 26% 31%
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VMs to migrate. In the migration phase, we take into

account the characteristics of tasks running on the VMs.

For example, if a real-time task is running on the VM, the

VM migration is performed with respect to the real-time

constraints of the task. This implies that the VM may not

be allowed to migrate or may need to migrate to a certain

host respecting the deadline of the task.
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