
HRM smart contracts on the blockchain: emulated vs native

Ray Neiheiser1 • Gustavo Inácio2 • Luciana Rech1 • Joni Fraga2

Received: 27 August 2019 / Revised: 23 January 2020 / Accepted: 28 January 2020 / Published online: 6 February 2020
� Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In the past years numerous scandals in hiring processes of public institutions revealed significant weaknesses of the existing

process. This lead to a lose of trust of citizens and applicants in these processes. Besides that, even honest processes often

lack transparency for applicants, the company and, in the case of public institutions, also for citizens. Distributed ledger

technology has been used in numerous past projects to establish trust between entities. Especially smart contracts have been

a useful tool to execute programs in this setting. Thus, in the context of this project we developed an approach based on

smart contracts to decentralize this process and improve its transparency and reliability. We enhance the system with game

theory mechanics to encourage reviewers and candidates to participate honestly, further increasing the likelihood of a fair

selection process. Nonetheless, not all blockchains support smart contracts and their usage comes with an elevated

additional monetary cost. Due to that, in the blockchain environment, many businesses only emulate smart contracts by

executing them on external servers which improves the scalability but decreases the decentralization. In the context of this,

we compare the advantages and disadvantages of emulating smart contracts compared to native smart contracts in our

concrete usage example. Our approach, compared to existing solutions, can be employed on any distributed ledger which

allows to store some sort of metadata on the chain resulting in a significantly lower creation and maintenance cost (up to 30

times cheaper). The developed solution and discussion gives useful insight into safety and cost considerations which have

to be made when deciding between native and emulated smart contracts.

Keywords Blockchain � Smart-contracts � Distributed ledgers � Transparency

1 Introduction

In each company or public institution there is a sector

called Human Resource Management (HRM) which is

responsible for hiring new employees. In past studies, it has

been shown, that how well this organ performs has a

significant impact on the overall performance of the com-

pany or institution [5, 17].

In this context, it is very important for the company as

well as for the applicants that this process is as transparent

as possible. For the company it is important to guarantee

that the most qualified applicant is selected and for the

applicants it is crucial to know for which reason they

passed to the next phase or not, which enables them to

improve these points for future selection processes. Besides

that, in the context of public institutions, these processes

have to be especially transparent for the citizens of the

corresponding country to guarantee a fair selection process

for all applicants and to avoid corruption. Unfortunately, in

practice, in most cases these processes lack transparency

since they rely on trust into a single central department (the

HRM).

In Brazil, where public institutions often offer excellent

salaries and stability they, therefore, easily attract corrupt

agents competing with honest applicants, this has become a

huge problem. As an example of this, there were countless

& Ray Neiheiser

ray.neiheiser@gmail.com

Gustavo Inácio

inacio.gusta@gmail.com

Luciana Rech

luciana.rech@ufsc.br

Joni Fraga

joni.fraga@ufsc.br

1 Departamento de Automação e Sistemas, Universidade

Federal de Santa Catarina (UFSC), Florianópolis, Brazil

2 Departamento de Informática e Estatı́stica, Universidade

Federal de Santa Catarina (UFSC), Florianópolis, Brazil

123

Cluster Computing (2020) 23:2105–2122
https://doi.org/10.1007/s10586-020-03063-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-7227-8309
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03063-9&domain=pdf
https://doi.org/10.1007/s10586-020-03063-9

scandals of manipulation during these processes in Brazil.

In 2017, in one operation of the federal police, 98 selection

processes had been found manipulated [20, 27]. More

recently, the police discovered the corruption of several

processes involving multiple municipals [18, 19] over

several years. Nevertheless, this is not an occurrence which

is exclusive to Brazil or to public institutions.

We, therefore, propose a more transparent and decen-

tralized solution based on the Distributed Ledger Tech-

nology (DLT). The DLT, which had initially been

developed to solve the double spending problem, has been

applied to solve a wide range of problems in the fields of

economy, sociology, politics, biology, and many more

[2, 8, 37]. The blockchain, which is the most popular

storage module of the DLT, consists of blocks which are

chained together by including the hash of the previous

block in every subsequent block. This is usually combined

with an algorithm which establishes byzantine fault toler-

ant consensus to build the distributed ledger [23].

Instead of relying on a centralized system, which

requires trust, the distributed ledger removes this necessity

and distributes the application over several nodes.

In the context of this, smart contacts have been devel-

oped, which are self-executable programs (code) which are

stored in a distributed ledger for future invocation. This

allows, for example the creation of escrow mechanisms

which do not require any trusted third party since the

contract is executed automatically on all nodes when cer-

tain criteria are met. Some distributed ledgers allow any

user to create smart contracts and store them on the

blockchain (as in Ethereum). This kind of contract we call

native smart contracts in the context of this work, other

more specialized distributed ledgers have smart contracts

embedded into the base code of the blockchain and do not

allow to add additional smart contracts (Steem is an

example of that). In the case of these blockchains, more

flexible smart contract functionality can only be emulated

on an external server.

Several start-up companies propose solutions to decen-

tralize the job market and facilitate the search of employees

for companies using DLT. Most of these solutions run on

specialized blockchains with embedded smart contracts.

Examples of this are Ouna [26] or Cverification [10]. But,

while many of these proposals verify the curriculum by

storing diplomas and certificates on the chain, most of

these approaches rely on the universities or previous

employers to sign the data to certify its validity. Addi-

tionally, most existing proposals neither include mecha-

nisms to protect the privacy of the applicant nor improve

the transparency of the process.

By executing the selection process using smart contracts

on the blockchain, as explained in our previous paper [24]

we decentralize the selection process in a manner that

guarantees transparency and protects both the applicant and

the selecting institution from malicious actions.

Nonetheless, executing the smart contract code is

expensive since they have to be executed deterministically

by all servers participating in the distributed ledger, espe-

cially considering that all invocations have to be executed

in the same order. Due to this, on most platforms (as

Ethereum) the number of smart contracts the system can

execute is computationally bound leading to a bottleneck.

Some works, like Chainspace [1], optimize this by dividing

the distributed ledger into partitions (clusters) where each

smart contract is only executed in one of the partitions.

Thus, allowing to execute several different smart contracts

in parallel. While this increases the performance signifi-

cantly, it decreases the decentralization due to the reduced

number of servers participating in the contract execution

and verification. Besides that, while solving the scalability

problem, the volatility of the execution cost, depending on

the load of the system, is still a problem. As visible in the

Ethereum gas price history in [13] the price to invoke or to

create a smart contract often spikes to more than 100 times

the average price.

Due to that, many blockchain applications nowadays

only emulate smart contracts to reduce the complexity and

reduce the execution cost. Examples of this are many

popular applications like Splinterlands, Next Colony or

Actifit which are built on top of popular distributed ledgers

without native support for smart contract (like Steem [32]).

Emulated smart contracts work similar to native smart

contracts but are only executed on a restricted number of

dedicated servers outside of the distributed ledger. In this

case, a single server or a cluster of servers is created which

polls new blocks from the blockchain and then reacts

accordingly to certain invocations. While this may cen-

tralize the execution, all the invocations and their results

are still stored on the blockchain which maintains the level

of transparency of native smart contracts. Besides that, if

the code of the emulated smart contracts is open source it is

easy to verify the correctness of the execution of the con-

tract maintaining a similarly high trust factor. In this case,

if no exchange of assets is involved, the only disadvantage

is the maintenance of external server infrastructure.

In this paper we propose and evaluate emulated HRM

smart contracts and compare it with native implementa-

tions in terms of cost but also in terms of security impli-

cations. This is particularly interesting for anyone who

wants to build an application on the blockchain but might

not need to harness the full decentralization of smart con-

tracts and thus also should not have to bear the full costs of

them.

Based on this our paper makes the following core

contributions.

2106 Cluster Computing (2020) 23:2105–2122

123

– We show a more detailed description of the model we

proposed in [24].

– We rework this approach to support emulated smart

contracts which allows to execute it on any blockchain;

– We compare native smart contracts with emulated

smart contracts in terms of cost, usage and safety

implications in the light of this usage scenario.

The next section explains the background knowledge

which is necessary for the comprehension of this paper.

Following that we head into the proposals including the

native as well as the emulated approach. After that, we

compare the performance of both approaches before we

head into a brief discussion about the implications of both

approaches. Then, we finish with the related work and

finally, with the conclusion.

2 Theoretical background

This section aims at elaborating the theoretical background

knowledge which is necessary for the comprehension of

this paper. In this context, we explain several details sur-

rounding distributed ledgers, the blockchain and smart

contracts. Besides that, we also present a case study of a

traditional selection process on which we based our model

and prototype.

2.1 Blockchain

As displayed in Fig. 1, the blockchain is similar to a linked

list where each node is connected to the previous node by

its hash. This way, when trying to change any part of any of

the elements in the list, all following nodes had to be

adapted to include the new hash. This makes it computa-

tionally expensive and difficult to manipulate past blocks

since all following blocks had to be adapted as well. Thus,

the blockchain is defined as immutable.

While most blockchains are public (permissionless),

where anyone can participate in the consensus, there also

are consortium and private blockchains (permissioned)

with higher privacy guarantees but access, transparency

and decentralization are limited.

Most public blockchains rely on Game Theory for cor-

rectness by paying an incentive to reward processes for

honest participation to make it more worthwhile to

participate honestly in the system than trying to corrupt it.

In this context, the replicas which confirm the validity of

the transaction and participate in the costly consensus

(called miners) receive an incentive in cryptocurrency [23]

for doing so.

As noted earlier, the blockchain is mainly known for its

application in distributed ledgers. A distributed ledger

consists of a replicated blockchain on several sites. A

consensus is required in order to guarantee that all sites, or

at least the majority of them, hold the same copy of the

blockchain. Since most ledgers are public, which means

anyone can launch a server to participate in the consensus,

byzantine failures have to be tolerated. These special fail-

ures englobe arbitrary behaviour as bit flips but also

intentional malicious behavior and collusion. Traditional

Byzantine consensus requires a majority of 3f þ 1 out of

n replicas to guarantee safety. Nevertheless, since most

distributed ledgers as, for example, Bitcoin [23] or Ether-

eum [36] are public, anyone could deploy multiple replicas

to change the consensus to his favor.

For this reason, Proof of Work (PoW) had been devel-

oped where the participants in the consensus (also referred

to as miners) have to solve a cryptography riddle in order to

propose a block. This transforms the consensus from one

process/one vote to one CPU/one vote making it essentially

more difficult and costly to influence the consensus mali-

ciously. Nevertheless, also with PoW, at least 50% of all

replicas have to be correct, and, as some recent research

showed, some Byzantine attacks as selfish mining1 may be

effective with 25% computing power already [35].

Clients within the blockchain are identified by a key-pair

consisting of a public and a private key where the public

key serves as its identity, establishing pseudo-anonymity.

In the typical work-flow a client submits a transaction to

several nodes in the network, nodes verify the transaction

and then include it in the next block they are building.

After some period of time or when the block is full, the

replica tries to solve a computational riddle. If the replica

was the first to solve the riddle the majority of the other

replicas will receive its block, check for its validity and if

valid append it to their blockchain. Since this process is

optimistic, there is a chance of two servers creating and

distributing a block in the exact same moment. In this case,

parts of the ledger can theoretically have different block-

chains. Nevertheless, depending on which replica solves

the next riddle, it will force the other replicas to accept its

view of the blockchain. This way it is guaranteed that

eventually the right order of blocks is figured out and a

data

prev: Hash

data

prev: Hash

data

prev: Hash
Hash

Fig. 1 The blockchain—Blocks connected by the hash of the previous

block

1 Selfish mining describes an attack scenario where an attacker forks

a blockchain deliberately and continues mining on its own fork until it

has the longer queue of blocks and then imposes its own view of the

ledger on the remaining consensus replicas.

Cluster Computing (2020) 23:2105–2122 2107

123

majority of the participating servers agree on the same

state. Other models exist, as for example Proof of Stake

(PoS) where the stake of the owner of the replica in the

ledger is considered this reduces the computational costs

significantly since servers with higher stakes in the system

also have less interest in corrupting it, thus the order of the

servers is often decided deterministically based on the

stake of the servers. Besides that, approaches based on

traditional Byzantine fault tolerance exists in, for example,

Hyperledger [6]. Nevertheless, these follow a permissioned

model where the entry or exit of consensus nodes requires

consensus which improves the overall performance but

restricts the decentralization (since less independent parties

are going to be responsible for guaranteeing the safety of

the consensus).

2.2 Smart contracts

In the context of blockchains, smart contracts had been

developed by Szabo [33], these smart contracts can be

deployed on the blockchain and executed similarly to

replicated state machines. This allows deploying state

machines dynamically in a replicated setting extending the

application possibilities of blockchains over the traditional

use of peer-to-peer asset transfer. Smart contracts have

been used in several works to implement escrow mecha-

nisms, games, digital identity management or even to

replace traditional contracts. Since we are dealing with a

replicated state machine all smart contracts must execute

the same code at all locations deterministically. At the

same time, it is important that the code finishes in finite

time which is an essential property of SMR (State Machine

Replication). This means that smart contracts have to be

deterministic and Turing complete. For example, ledgers

like Ethereum guarantee this by creating an artificial lan-

guage which only allows deterministic code and by

applying a cost on the execution of a transaction. This cost

is often referred to as gas. Every transaction invoking a

smart contract costs a certain quantity of gas which has to

be sent together in the transaction which creates or invokes

a smart contract. If the contract runs out of gas during

executing time it will be rolled back and the gas is lost.

Since gas has monetary value this motivates the creator of

the smart contract to limit the required computation time

and memory usage. Other systems, as Hyperledger, rely on

an execute-order protocol similar to deferred update [31],

where the smart contract (called chaincode) is first invoked

on local servers and the results are then sent to the con-

sensus protocol to guarantee that all replicas receive the

same result in the same order. The local servers only stop

running the chaincode if a certain time-out is reached.

Since only a limited number of replicas execute the con-

tract and since the execution of independent contracts can

be on different threads, it is difficult to affect the system

liveness and safety by sending non deterministic chain-

code. Thus, chaincode can be written in a number of dif-

ferent languages.

2.3 Public selection processes in Brazil

According to the Brazilian Law 8.112 section 3 article 11, a

public selection process consists of exams or exams and

evaluations of titles. These can be executed in two phases

where the candidate applies by paying an alleged amount

specified in a notice of the vacancy.

Each selection process must define a statute which

introduces all necessary details and rules related to the

vacancy and selection process. As an example we analyze

the statute 053/2018/DDP/UFSC from 05/07/2018 of the

Federal University of Santa Catarina defining the following

steps: One written exam, the verification of titles and

publications, and one oral presentation.

In the context of this, first a committee of the local

university has to be created which is then responsible for

installing a board of professors including at least one

external professor responsible of evaluating the candidates.

The task of this board is to evaluate the candidates.

Depending on the number of candidates the selection

process can take several months, including the publication

of the statute, registering of the applicants, elaboration,

supervision and correction of the exams.

Analyzing this selection process, the complexity and

time consumption for the participating professionals of the

existing process, besides several central points of failure,

become apparent. For example, a possibly corrupt com-

mittee could easily instantiate a biased board of professors

which in turn can easily make biased decisions regarding a

candidate. Following the issues described above, it is

clearly visible that there is a need for a more transparent

and decentralized selection process. Our proposals to solve

these issues are described in the next Section.

3 Proposals

As elaborated earlier, in this paper, we propose two dif-

ferent approaches to solve the previously discussed issues

of selection processes. Unlike existing approaches, our

solutions are blockchain agnostic which means that a

prototype can be developed for any existing distributed

ledger. While both processes follow a similar scheme, the

first model, also discussed in [24] proposed an approach

and architecture which can be applied to any blockchain

that supports smart contracts and has a built-in cryptocur-

rency. These premises are necessary since we use smart

contracts for execution and automation and the

2108 Cluster Computing (2020) 23:2105–2122

123

cryptocurrency as an incentive in that model. The second

model runs completely blockchain agnostic, independently

if the blockchain offers smart contract functionality or not,

nonetheless, we still require some sort of currency as an

incentive. We assume that malicious adversaries may

control up to f out of n ¼ 3f þ 1 of the reviewers and

similarly a maximum of f out of n ¼ 3f þ 1 of the block-

chain nodes. These adversaries can collude but we assume

they don’t have sufficient computing power to compromise

the cryptographic principles of the blockchain.

In any of the two proposals, we assume three types of

entities which can be identified by their public key in the

system: the applicant, the reviewer and the institution.

3.1 Smart contracts of the proposals

Both proposals use the abstraction of smart contracts.

Nonetheless, the first proposal runs them natively as actual

smart contracts on the blockchain and the second proposal

runs the code separately on a dedicated server. Thus, the

general approach of the two proposals is very similar, while

principally the invocation dynamic and setup changes.

Following that, there are two types of smart contracts in

the system. There is the List of Institutions smart contract

which holds a list of participating institutions which itself

contains a list of viable reviewers. And the Vacancy

Contract which holds vacancy information and can be

invoked to register for a vacancy or to execute the phases

of the selection process.

The proposed system shows several advantages com-

pared to the existing system:

– Increased transparency: by showing the results on the

blockchain after every application step.

– Pseudo-anonymity of the evaluating reviewers and

applicants.

– Smart contracts are context-free: with no room for

speculation as they are defined in a context-free

language (Opposed to contract in natural languages).

– Increased trust: by decentralizing the evaluation to

random reviewers of different institutions to decrease

corruption.

– It decreases the amount of manual work required of the

participating reviewers by automatizing and distribut-

ing the process.

3.1.1 Institution list contract

The Institution List contract consists of a list of institutions

with a common interest (a consortium). New institutions

can be included (registered), but require a certain quantity

of existing institutions to accept the new member (con-

sensus). As noted earlier, an institution can be identified by

its public key, which, for example, can be included in the

browser certificate of the institutions home page to allow

easy identification.

This constructs a semi-permissioned model on top of the

permissionless blockchain allowing to maintain the privacy

of the applicants since only reviewers from selected insti-

tutions will have access to the private data of the

applicants.

Additionally, each institution introduces in this contract

a list of reviewers which the institution can register and

unregister freely. The Institution List Contract is invoked

by the Vacancy Contract (explained in the next subsection)

to obtain a random selection of reviewers of different

institutions. To guarantee reproducibility and to make sure

that the random selection is deterministic, a random seed

based on block parameters as the block hash is chosen.

Since this block hash is not previously known it is difficult

to manipulate or maliciously influence this process.

3.1.2 Vacancy contract

The Vacancy Contract which is created by the institution

itself to include all the necessary requirements of a given

selection process, is the only contract the applicant and

reviewers will have to interact with. Following the selec-

tion process outlined in Sect. 2.3, an applicant may register

with the contract until a certain deadline is met, afterwards

the Vacancy Contract invokes the corresponding institution

list contract to obtain the list of random reviewers. Then,

the applicants must provide the necessary data for each step

of the selection process. The reviewers, on the other hand,

ought to provide the evaluations for each applicant until a

certain deadline is met and will finally be rewarded for

their participation in the process. After the application

process is finished, the resulting data can be obtained

transparently from the blockchain.

3.2 Native smart contracts

This subsection gives a detailed technical overview of the

proposal using native smart contracts as proposed in [24].

3.2.1 Institution list

Following the execution scheme shown in Fig. 2, the first

step of the protocol is the creation of the smart contract by

any institution (step 1). This involves writing the smart

contract in the language supported by the platform (i.e:

Solidity in the case of our prototype) and submitting the

code in a signed transaction to the blockchain (step 2).

Depending on the platform the transaction will cost a

certain quantity of currency.

Cluster Computing (2020) 23:2105–2122 2109

123

If successfully deployed (step 3), the server to which the

transaction was submitted, will return an acknowledgement

of the inclusion in a block. All successfully included

transactions return an acknowledgement to the sender.

Nonetheless, since there is a probability of forks (as

explained earlier) the transaction is only guaranteed with a

high probability after several blocks passed (Most Proof of

Work blockchains do not offer finality). Thus, to simplify

the figures of the interaction with the blockchain we neither

display the transaction acknowledgements nor the waiting

time.

After that, at any moment, in step 4, where n determines

the total number of already registered institutions in the

list, any institution (nþ 1), can request to be registered by

sending a signed transaction to the address of the smart

contract on the blockchain. Then, in step 5, the transaction

gets included in the blockchain which invokes the contract.

As a result of this, the previous n institutions have the

opportunity to vote on the request (step 6) which also,

eventually, get included in the blockchain in step 7. After a

majority of votes has been done, the last vote will trigger a

transaction back to institution nþ 1 (step 8) notifying the

institution about the result. If successful, the institution can

now send transactions to the contract to start registering

reviewers (step 9).

3.2.2 Vacancy contract

The initial dynamic of the Vacancy Contract is very sim-

ilar, as depicted in Fig. 3. In the first step the institution

creates the Vacancy Smart Contract based on the require-

ments of the process including deadlines, number of pha-

ses, etc. This then gets sent in the second step in a signed

transaction to the blockchain and then, eventually, included

in a block (step 3). After included in the block, applicants

are able to request their registration by sending a certain

quantity of currency in a signed transaction to the address

of the smart contract on the blockchain (step 4). If suc-

cessful, this transaction also gets included in the blockchain

(step 5). Then, after a certain defined timeout (registration

deadline at step 6), the smart contract stops accepting new

registrations and the next transaction (step 7) addressed at

the contract (from any party) will trigger the institution list

to obtain a random list of reviewers (step 9). In this case,

the Vacancy Contract executes a read request to obtain a

certain quantity of random reviewers from the list of

institutions. It depends on the Vacancy Contract to deter-

minate how many reviewers to fetch. Based on on the

quantity of available reviewers in the list of institutions the

request can include details as the area of expertise but also

exclude certain reviewers due to a conflict of interest with

some candidates. The request also includes the random

seed used for the execution to guarantee a deterministic

result on all servers.

In Fig. 4 the typical process of the application phase is

then displayed. In the first step, applicants store their per-

sonal data, encrypted with the public keys of the reviewers

on a server outside of the scope of the blockchain. By

encrypting it with the public key of the reviewer it is

guaranteed that the data cannot be read by any unautho-

rized party. The public keys of the reviewers are their

identifiers on the blockchain and thus can be easily

obtained. In the next step (step 2), the applicant then stores

the hash of the data on the blockchain by sending a signed

transaction to the smart contract to guarantee that all

reviewers receive the same dataset from the applicant.

Institution 1 Blockchain Institution n+1

1

2

3

4

tx

6

tx

9

tx

1

2

3

4

5

6

7

8

Institution List Smart Contract creation

Institutions 1..n

Submission of Contract to Blockchain

Inclusion in Block

Transaction to Contract for
Registration of Institution

Inclusion in Block

Transaction to Contract for Vote on
Registration Request

Inclusion in Block

Confirmation Transaction from Smart
Contract to Applying Institution8

tx

9
Transaction to Contract for
Registration of Reviewer

5

7

Fig. 2 Institution list smart

contract dynamic

2110 Cluster Computing (2020) 23:2105–2122

123

After being included on the blockchain (step 3), the

reviewers will fetch the user data from the private reposi-

tory in step 4 and then obtain the hash the applicant stored

from the smart contract. Since it is merely a read request to

one of the nodes, no transaction is required and, thus, also

no consensus on the blockchain. After that the reviewer

will compare the hash from the blockchain with the hash of

the data he obtained from the private repository, evaluate

the data and send back a transaction with the review to the

blockchain (step 6). This is then included in the blockchain

in step 7 until a certain deadline is reached again (step 8).

After the deadline any user can send read requests to obtain

the results from the application phase (step 9).

At the end of the application process, a part of the

currency the users sent for the application process is

returned to the users if they received a higher grade than a

given threshold to encourage the user to send valid data. At

the same time, another share of the currency is rewarded to

the reviewers which came to similar conclusions as the

other reviewers as an incentive to review the applications

honestly and thoroughly.

Each vacancy may consist of several application phases

for which different reviewers may be chosen. This process

depends on the necessities of the institution. Different

reviewers could also be chosen for each user indepen-

dently, resulting in a higher execution cost.

Institution Blockchain Applicants x

1

2

3

4

tx

1

2

3

4

5

6

Vacancy Smart Contract creation

Submission of Contract to Blockchain

Inclusion in Block

Transaction to Contract for
Registration with Vacancy

Inclusion in Block

Deadline Reached

9

Inclusion in Block

5

6

8

9

Vacancy Contract Call Institution List
to obtain Random Reviewer List

77

8

Any Transaction to Contract after
Deadline

tx

Fig. 3 Vacancy smart contract

registration dynamic

Blockchain Applicants x

1

2

Store Encrypted Personal Data in
External Storage
Transaction to Contract with Hash for
Review Phase

3 Inclusion in Block

Reviewers x

2

tx

3

14

4
Retrieving Decrypted Personal Data
from External Storage

5
Read Request to Smart Contract to
Get Application Data Hash

5

6

tx

6
Transaction to Contract including the
Review

7 7 Inclusion in Block

8
8 Deadline Reached

9

9
Read Request to Smart Contract to
obtain Results

Fig. 4 Vacancy smart contract

application phase dynamic

Cluster Computing (2020) 23:2105–2122 2111

123

3.3 Emulated smart contracts

This section describes the approach which emulates smart

contracts on a common blockchain which does not offer

smart contract support. The proposed approach is very

similar to the native contracts but requires some additional

setup.

3.3.1 Emulated institution list contract

Figure 5 shows the dynamic to set up the emulated smart

contract for the institution list. In the first step, a server has

to be setup to be able to run the smart contract code. Then,

in the second step, similarly to the native smart contracts,

the code of the Institution List Contract has to be created.

But, different to the native smart contracts. this contract

can be written in any programming language but, addi-

tionally code has to be created that regularly polls updates

from the blockchain to detect invocation of the smart

contracts. Besides that, in the code of the contract the

public key to invoke the smart contract has to be defined

(Thus a wallet for this has to be created). In the next step,

this code is then sent and deployed on the dedicated server.

Following that (in step 5), a transaction containing the

keyword ‘‘create’’ with the destination address (as specified

in the contract code) has to be sent to the blockchain. After

included in the next block (step 6), through regular polling

(step 7), the contract detects the invocation to the specified

contract, creates a new instance of the contract and issues a

confirmation transaction to the blockchain with the id of

the new instance (step 9). This allows to run several

independent instances of the emulated smart contract using

the same server. Any instance can be individually invoked

by sending a transaction to the defined address with the

resulting id.

Figure 6 shows the dynamic of the emulated Institution

List Contract. For the institutions it stays quite similar to

the native smart contract. But, different to native smart

contracts each transaction not only includes the specific

address of the contract but also contains the id of the

specific instance to be invoked and name of the operation.

In the first step, a new institution (nþ 1) sends a transac-

tion to the specified address, to the ledger, with the spec-

ified id. After this has been included in the blockchain, in

step 2, the smart contract script on the dedicated server

detects the invocation (steps 3–4) and answers with a

transaction to the blockchain confirming the registration

(step 5). Then, this last transaction is included in the next

block and any of the existing institutions 1, 2, ...n can send

a transaction consisting the keyword ‘‘vote’’ and the public

key of the institution they want to vote, to the ledger, to

vote on the entry of any new institution (step 7). Again, this

has to be included in the blockchain, polled and detected by

the emulated smart contract and each time a confirmation

transaction is created (steps 8–11). After the last necessary

vote, the contract will issue a transaction to the blockchain

to confirm the result of the consensus about the inclusion

into the institution list (also step 11). If successful, the

institution nþ 1 can then start registering its reviewers

with the contract (step 12), by including the ‘‘registerRe-

viewer’’ keyword which again have to go through the steps

of inclusion in the blockchain, polling and detection (steps

13–15).

3.3.2 Emulated vacancy contract

Similar to the creation of the Institution List, also the Va-

cancy Contract has to be setup as shown in Fig. 7. This

starts with the setup of the dedicated server (where the

same server of the Institution List can be reused) in the first

Fig. 5 Creation of the emulated

institution list smart contract

2112 Cluster Computing (2020) 23:2105–2122

123

step and then the creation of the actual smart contract code

which is sent and deployed on the server (steps 2–4).

Following that, a vacancy instance can be created by

issuing a transaction with the ‘‘create’’ keyword to the

address specified in the contract (step 5). This will be

detected by the contract code which polls the blockchain

updates and then results in a confirmation transaction

which contains the id of the newly created instance of the

contract (steps 6–9).

The registration dynamic for vacancy contracts works

the following (Fig. 8): An applicant sends a transaction

with the keyword ‘‘register’’ and a previously specified

quantity of currency to the address specified in the contract

and the ID of the specific instance he wants to register with.

Blockchain Institution n+1

1

tx

1

2

3

4

5

6

7

8

Transaction to defined Address with
defined ID for Registration of Institution

Institutions 1..n

Inclusion in Block

Polling new Blocks from Blockchain

Detection of Request to Contract

Transaction to Confirm Registration
Request of Institution with Contract

Inclusion in Block
Transaction to defined Address with
defined ID for Vote on Registration
Request
Inclusion in Block

9 Polling new Blocks from Blockchain

Dedicated Server

3

2

4

5

tx

7

tx

6

8

9
10 Detection of Request to Contract

10

11

tx
11

Confirmation Transaction to Applying
Institution

12

tx

13

14
15

12
Transaction to defined Address with
defined ID for Registration of Reviewer

13 Inclusion in Block

14 Polling new Blocks from Blockchain

15 Detection of Request to Contract

Fig. 6 Dynamic of the emulated institution list smart contract

Fig. 7 Creation of the emulated

vacancy smart contract

Cluster Computing (2020) 23:2105–2122 2113

123

Following this, the transaction will be included in the

blockchain (step 2), polled by the server (step 3) and

detected (step 4). Then, similar to the institution list con-

tract, the vacancy contract responds with a transaction to

the user to confirm the registration (if successful) or with a

refund if the deadline has been reached or not enough

currency was attached (step 5-6). After the deadline has

been reached (step 7) any transaction to the specified

address with the correct ID will trigger the selection pro-

cess of the reviewers (steps 8, 9). Then, the server polls and

detects this transaction (steps 10, 11). The Vacancy Con-

tract will directly invoke the Institution List Contract (from

server to server without blockchain as an intermediary),

including the random seed based on the block number (step

12). This read request will return the list of randomly

selected reviewers which are then posted on the blockchain

to confirm the selection in a transparent manner (steps 13,

14).

The dynamic of each application phase is depicted in

Fig. 9. Similar to the native setup, the applicant stores its

data which it encrypted with the public keys of the

reviewers on an external server and then sends the hash of

the actual data to the blockchain addressed to the address

specified in the contract including the ‘‘hash’’ keyword.

This is then included in the block, polled and detected by

the contract which then confirms the reception in a trans-

action to the blockchain (steps 3–6).

Afterwards the reviewer gathers the information from

the personal storage, decrypts the data with its private key

and obtains the hash in a read operation from the dedicated

server (steps 8, 9). Following that, the reviewer analyzes

the data and sends the review to the blockchain in a

transaction to the address of the smart contract (step 10),

with the ID of the instance and the ‘‘review’’ keyword. This

is then again, included in the block, polled and detected by

the emulated smart contract (steps 11–13) which then

confirms the reception of the review in step 14. After the

deadline is then reached, the final result of the reviews is

calculated from the reviews (step 16) and any applicant but

also anyone else can issue a read request to obtain the

results from the API of the server.

4 Prototype

To prove the viability of the proposed approaches we

developed both proposed solutions.

4.1 Native smart contract

The native smart contract has been developed in the pro-

gramming language Solidity [11] and deployed on the

Ethereum testnet Ropsten [29]. This has been used in

combination with Remix [28] to calculate the execution

cost in the form of Gas2. To compare the resulting Gas cost

with the real-world cost of this process we considered the

median Gas price in Ethereum of the last three months

which is 14.66Gwei. The current cost of participating in the

selection processes in Brazil lies between approximately

Fig. 8 Registration of the

emulated vacancy smart

contract

2 Gas represents the execution cost of an operation on the Ethereum
blockchain. This cost of Gas is fixed for each type of operation

depending on the resource usage.

2114 Cluster Computing (2020) 23:2105–2122

123

66$ full time and 15.77 half time, per candidate3. Since the

Gas price per operation is constant all operations have only

been executed once.

4.2 Emulated smart contract

The emulated smart contracts have been developed in

javascript using the node.js and express [14] frameworks.

For data storage we usedMongoDB [22] to store the data of

each contract instance, allowing to run several instances of

the smart contract in parallel.

We executed the scripts on a Dell Inspiron 5567 laptop

with an i5-7200U quad-core 2.50GHz CPU and 8 GB

RAM. For the blockchain we chose the Steem blockchain

for the application due to the vast quantity of available

documentation, easy setup and the fast execution times (3 s

block production). The execution cost on the Steem

blockchain is calculated in Resource Credits (RC) which

are required to execute contracts on the blockchain. In

order to obtain RC, currency has to be staked or staked

currency has to be rented from another user. Per unit of

currency (1 STEEM POWER (SP))4, approximately

1987676410 RC are available for the user. Since the RC

cost per operation fluctuates with the network load, we

executed all transactions 10 times and took the average.

All transactions have been executed on the public

blockchain (not on the test-net). To obtain the required

value of RC per operation we measured the available

quantity before and after the execution of the transaction.

Since Resource Credits recover around 10% per day, we

executed the tests on an account with 100 STEEM Power.

and added the minutely recovered quantity (of RC) to the

measured execution cost to avoid the recovery rate influ-

encing the result (Thus the resulting cost is slightly higher

than the actual cost). All executed transactions can be seen

on the block explorer5. We used two transaction types,

namely there is the ‘‘transfer’’ type to transfer cryptocur-

rency between several accounts and the ‘‘customJson’’ type

which allows to post json files on the blockchain. The smart

contract posts responds to any correct invocation on the

blockchain to allow verifying the correct execution of the

single dedicated server for every step. Nonetheless, even

Fig. 9 Emulated vacancy smart contract application phase dynamic

3 All values in this context are given in US dollar and converted

either from Ethereum with a conversion rate from 1:266 or from

Brazilian Real with 1:0.26920.

4 Where Steem is the name of the platform (blockchain) STEEM its

cryptocurrency and STEEM POWER (SP) the staked form of STEEM.
5 https://steemd.com for @hrm-user and @hrm-institution

Cluster Computing (2020) 23:2105–2122 2115

123

https://steemd.com

without this extra data (resulting in an extra cost) it is

possible to verify the correctness of the overall process if

only the final result is included in the blockchain.

Due to the additional cost of the dedicated server we

considered an additional fixed cost of 7$ for hosting the

smart contracts on a dedicated server6.

5 Evaluation

This section aims to compare the cost of the native

implementation with the cost of the emulated smart con-

tract. This includes the deployment cost, the maintenance

cost and the cost per applicant. To account for the volatility

of the currencies we used the max price of Ethereum and

STEEM over the last three months (360$ of Ethereum and

0.45$ of STEEM). The conversion of the units can be seen

in Table 1.

5.1 Deployment

The deployment cost of both solutions is depicted in

Fig. 10. While the deployment of the Institution List using

native smart contracts on the Ethereum blockchain costs

8.46$, using emulated smart contracts on the Steem

blockchain it is 3.54$ of which 3.5$ are spent on the

dedicated server. Since several contracts can be hosted on

the same dedicated server, the 3.5$ stay constant with

emulated smart contracts and only 0.04$ are necessary for

each additional instance (additional server power is only

required after a certain threshold of instances and read

requests).

If we consider the deployments of both smart contracts,

Institution List and Vacancy, the difference of the Vacancy

contract is much bigger with native smart contracts due to

its additional memory and computing overhead. While the

price of the deployment using emulated smart contracts is

basically the same (3.54$ of which 3.5$ are also due to the

server hosting), using native smart contracts the price more

than doubles if we compare the Institution List to Vacancy

(8.46$ to 19.69$) per contract deployment.

5.2 Maintainance

As visible in Fig. 11 the comparison in the context of the

maintenance of the Institution List is much more complex.

Since with emulated smart contracts the cost is only based

on the number of bits in the json and transfer operations

(which has to be included in the blockchain), operations

using native smart contracts blockchain are also taxed in

terms of memory occupation and computing overhead.

Thus, using emulated smart contracts, any vote as well as

any registration operation results in the same cost, while

with native smart contracts (on Ethereum) ‘‘True’’ and

‘‘False’’ votes as well as the first vote come with a slightly

different price. The same can be applied to the addition of

reviewers where the overhead is the same using emulated

smart contracts, using native smart contracts adding the

first reviewer of an institution has a slightly different cost

(due to the setup cost of the data structures).

Nonetheless, it is still very clearly visible that the

deployment of the emulated smart contract has a cost

advantage of up to 20 times in the case of addition of

reviewers. The difference in the case of registration of a

reviewer or the last deciding vote (finalize) are slightly

smaller. This occurs since we opted to do registration via

the transfer operation which comes with a higher base cost

and thus also an overally higher cost.

5.3 Vacancies

The total cost of the selection process depends essentially

on the number of reviewers the institution defines, the

number of phases and the quantity of applicants.

Figure 12 shows the complete simulation of the contract

with 25, 50 and 100 applicants while maintaining the

number of reviewers at 5 and the number of phases at 4

(similar to the contract described in Sect. 2.3). While we

understand that the values of the cheapest operations of the

simulated smart contracts are difficult to read, we main-

tained the graph in the current form to display the strong

cost differences between the two solutions.

Table 1 Unit conversion for execution cost calculation

Blockchain Steem Ethereum

Currency STEEM Ethereum

Execution Price Unit RC Gas

Currency to Ex. Price 1987676410 RC 68212824 Gas

Currency Price 0,45 360

Fig. 10 Contract deployment cost

6 https://www.heroku.com/pricing

2116 Cluster Computing (2020) 23:2105–2122

123

https://www.heroku.com/pricing

As depicted in the Figure, the main cost, are not com-

putationally heavy tasks, but tasks which have to be exe-

cuted numerous times (also heavily related to the

transaction base costs). The most expensive operation

(‘‘SendReview’’) has to be sent every phase, for every

reviewer and every applicant (phases 9 reviewers 9

applicants). This is followed by the cost of sending the

hash (each phase for each applicant) and the registration of

the applicants (once per applicant). Following that there is

the cost of the setup of the smart contract and the switching

of the phases.

Both the native smart contracts as well as the emulated

smart contracts follow similar tendencies in this case.

Nonetheless, there is a significant difference in price. The

execution of the native smart contract on Ethereum costs

around 20 times more than the emulated smart contracts on

Steem.

Native smart contracts, thus, result in a fixed cost of

around 18$ per selection process and a per user cost of over

23$. The emulated smart contracts, in this case, have a

fixed cost of around 0.3$ for the execution plus 7$ for the

dedicated server. The per user cost of 0,75$ is also sig-

nificantly under the cost of using native smart contracts.

Additionally, we have to note that while on the Ethereum

blockchain we pay to run this entire process only once, on

Steem, since we obtain the Resource Credits by staking the

Fig. 11 Institution list maintenance cost

Fig. 12 Vacancy simulation cost

Cluster Computing (2020) 23:2105–2122 2117

123

currency, we can execute one process every 10 days (due to

the recovery rate of credits) while only having to pay once

the cost of the server to run the scripts.

Considering the peak prices of Ethereum (the currency)

and STEEM to run these processes, and considering that in

the analyzed selection process each applicant has to pay

between 15.77$ (emulated contract) and 66$ (native con-

tract). This makes the approach using native smart con-

tracts only viable for the more expensive processes and

doesn’t leave a lot of space for rewarding the reviewers and

covering the costs of the process for the institutions. On the

contrary, using emulated smart contracts there is plenty of

space for rewarding the reviewers for their honest partici-

pating and paying the institution for the cost of running the

application process.

Nonetheless, there are several security implications

when running this process on the emulated smart contracts

which will be discussed in the next section.

6 Discussion

This section will discuss concerns related to the proposed

models and how it could be manipulated. In this context we

also discuss the safety implications related to the differ-

ences between emulated and native smart contracts.

In terms of privacy concerns, the user data in our pro-

posed model is more protected than in the classical selec-

tion process since in our model all the data is encrypted by

the user using the reviewers public keys and stored at a

place where the reviewers can access it only the reviewers

themselves (and no administrative intermediates or people

with access to the servers) have access to the user data. To

guarantee that all reviewers receive the same data, the hash

of the data is stored on the blockchain. This way, the

reviewers can confirm the integrity and correctness of the

data by comparing the hash of their encrypted data with the

hash on the chain.

In relation to anonymity, all applicants and reviewers

maintain pseudo-anonymity since they are only either

identified by a chosen pseudonym or by their public key.

The public key of the reviewer is only tied to the institution

which is the only organ which knows the true identity of

the reviewer enforcing a certain level of accountability.

Nonetheless, to avoid corruption, the institutions don’t

have knowledge of the identities of the reviewers of the

other institutions.

Similarly, the reviewers, during the selection process,

find out the identities of the applicants through the sub-

mitted data. Thus, to increase the anonymity, the applicants

should create a new key pair for each vacancy process they

participate in. Since users are prone to avoid that (due to

the additional work), they can be forced to create a new key

pair through a dedicated front-end. In relation to the

reviewers, it is possible to change the public key of the

reviewers regularly to make it more difficult to tie them to

real-world entities (Resulting in an increased maintenance

cost).

Transparency is improved by pushing all the operations

on the blockchain, in this sense, it is transparent how many

people participate in a process, how many reviewers out of

a pool of a certain size are chosen and, at the end of the

process, which applicants passed which phases based on

the reviews of which reviewers.

Additionally, due to the supplied deadlines in the con-

tract, the transparency of the process is always guaranteed

since results have to be delivered until the deadline. Unlike

in the case of the real-world statutes where there is no

stopping the institution from supplying the results after a

given deadline or not supplying results at all.

While, in the case of emulated smart contracts, the

institutions might not supply any results, or supply them

after the deadline. The results, since the data is stored on

the blockchain, can already be calculated. If an institution

allows late registrations or reviews, users can go to court

against the institution since this goes against the previously

defined contract. Nonetheless, in the case of emulated

contracts this is not naturally enforced by the blockchain.

In this case, the emulated and native smart contracts,

have some fundamental differences. Native smart contracts

are completely transparent since the code of the smart

contract is published on the blockchain and thus publicly

available. This way everyone the decentralized execution

guarantees the deadlines and rules of the process.

Different to the native smart contracts, emulated smart

contracts are only executed on a subset of servers or even

on only a single server. Since these servers might be run by

the institution which also created the contract or a single

external third party, these servers might produce incorrect

results or have their API return invalid data. This way, to

obtain a similar level of transparency, the code has to be

published externally. Nevertheless, there is no guarantee

that the published code is exactly the same code as the one

running on dedicated server. This can only be guaranteed

by verifying all operations of the selection process and

comparing the outcome with the published code. Since all

results are on the blockchain transparently, this can be

verified easily. An applicant, other institutions or in the

case of public institutions any citizen could, for example,

run their own instance of the emulated contract but disable

the confirmations to the blockchain. This way anyone can

compare their results of the process with the results the API

of the centralized server returns. This allows to easily

detect inconsistencies. In case of failure of servers, for

some time, or completely since all results are on the

2118 Cluster Computing (2020) 23:2105–2122

123

blockchain, a server can easily re-run the entire process to

obtain the same state.

As discussed earlier, manipulating the process in our

proposed system is more difficult compared to the current

model since a set of unknown random reviewers of random

institutions is selected which makes it much more unlikely

to have a corrupt selection board.

Nevertheless, how safe the process actually is, depends

on the defined parameters of the smart contract. With an

increasing number of possible reviewers and an increasing

number of selected reviewers the safety of the process

improves gradually. For example: If an institution takes

part in an institution list of four institutions, choosing a

random reviewer of a certain area is easier to corrupt as if it

is in a list of 100 institutions. Similar, if the vacancy only

selects two random reviewers it will be not as secure

against corruption as if it selects 10.

In the case of public institutions, how many reviewers

are selected could be defined by law to guarantee an

unbiased process. Since the smart contract code is public,

everyone is able to verify if the contract obeys the given

rules. In the case of emulated smart contracts, an external

tool can be used to verify this. The development of such a

tool can be simplified by creating a certain standard for

public institutions which is followed by all institutions of a

certain country. This way one tool can be used to verify the

correctness of all the selection processes which follow this

standard. Still, even without a specific tool, as mentioned

earlier, anyone can execute the published code to verify the

results. Thus, in order to guarantee the correctness of the

process all the code of the emulated smart contracts has to

be open source while native smart contracts are automati-

cally open source since their code is deployed on the public

ledger directly.

Another important topic of this process is the com-

plexity inherent from the interaction with the blockchain,

most users are not used to this environment and might face

issues handling wallets, transactions and transaction data as

well as cryptocurrencies. Additionally, we cannot expect

users to handle encryption, decryption and verification of

hashes. For this reason, most of this complexity should be

hidden behind a user-friendly interface which allows the

client to interact with the blockchain as it would be the

homepage of the institution they are applying to. The main

difference is that the blockchain is used as the underlying

storage and execution environment which makes this pro-

cess more transparent and secure since anyone is able to

develop an interface which can display and send the

required information.

Additional smart contracts can be developed to help to

decentralize the elaboration of oral and written exams.

Scans of the written or records of the oral exams can then

be also sent to the reviewers and the hash stored on the

blockchain.

While public institutions are obligated to notify the

applicant about the results, in the industry, in practice, due

to discrimination laws, companies often avoid notifying the

candidate about the result. Our proposed model also con-

siders this, as, for example, only the ranking of an applicant

can be calculated in the smart contract. This way, while the

users know when and in which step of the process they

were disqualified they still do not know the reasons.

Finally, due to the volatility of the prices of Gas and the

price of Ethereum other blockchains offering smart con-

tracts (as EOS [15]) can be chosen. To further heavily

decrease the cost and impact of volatility, emulated smart

contracts can be used on a Blockchain as Steem since the

main cost of the emulated contracts comes from the

maintanance of the dedicated server (which is independent

of the price of the cryptocurrency). Nonetheless, while

these contracts can be made legally binding, emulated

smart contracts do not have enforced deadlines on the

blockchain layer which makes it easier to meddle with the

process. Thus, tools have to be developed to detect these

inconsistencies and a legal framework has to be available

to punish the infringements.

Nonetheless, while in this case emulated smart contracts

show decent advantages, this does not apply in all usage

scenarios of smart contracts. In our case we have parties

(the institutions) which are known and can be held

accountable for their actions as well as applicants which

will identify with the institutions and can be, a posteriori

held accountable for their actions and, therefore, lose the

advantage they gained from gaming the system. This does

not apply to usage scenarios which involve transfers of

assets between two not trusted pseudo-anonymous parties.

7 Related work

This section compares existing approaches from the

literature and economy with our proposal. Smart contracts

have been studied exhaustively already in the literature

[34]. More specifically, the creation of groups on the

blockchain with the help of smart contracts also found

application in numerous studies. Smart Pools, for example,

pool different miners together to decentralize mining pools

and distribute mining rewards fairly [21]. Decentralized

Autonomous Organizations (DAO) on the other hand have

also risen more recently to give access to decentralized

resources to a pool of people [25]. Usually in DAOs a

group of people votes on proposals do distribute a pool of

rewards to a common cause. The creation of these groups is

fairly similar to our approach but voting and participating

Cluster Computing (2020) 23:2105–2122 2119

123

within these groups usually depends on the held stake of a

certain asset. While in our case we build a more restricted

model where the existing institutions in the list vote on the

entry of a new member and base their decision on the real

world entity of the registering institution. As described

previously, each of the universities publishes the public key

they use to identify on the blockchain within a certificate

(on their website or similar for example) to harden this

connection. Thus, differently to DAOs there is a sense of

responsibility and, contrary to most DAOs, our proposed

model is not subject to many of the issues pointed out in

[9].

Projects related specifically to application processes are

usually dedicated distributed ledgers to these kind of use

cases.

One of these projects is Ouna [26]. Ouna allows can-

didates to define an anonymous profile based on a ques-

tionnaire. Companies fill in a similar questionnaire to get

candidates based on this. The initial user profile does not

contain personal data which protects the anonymity and

privacy of the candidate. Then the candidate can exchange

personal information only when he is willing to do it.

Nevertheless, while this seems like a handy tool for com-

panies it does not do the validation of the curriculum of the

applicant.

Cverification, aims at facilitating the verification of

curriculum elements [10]. Similar to Ouna it focuses on

matching companies and possible candidates. For the ver-

ification of the diplomas, certificates and licenses, it will

rely on the institutions which created the certificates to sign

them on the blockchain to remove the need for a back-

ground check.

Similar to the previously discussed solutions, Disciplina

focuses on matching companies and applicants [12]. They

enhance this by cooperating with educational institutions

which verify student curricula. This way they protect the

employer from falsified diplomas.

Different to the previous solutions Hirematch offers the

possibility to match companies and candidates and also

allows companies to outsource the selection process to

specific agents on the system which will be rewarded for

the verification [16].

Also, there are other solutions ([3, 7]) but, in our point

of view, they don’t differ significantly from those already

cited.

As shown in Table 2, none of the existing solutions

protect the applicant and the hiring company at the same

time. While some of them like Hirematch decentralize the

evaluation they do not offer any level of privacy or trans-

parency to the applicant. While other approaches try to

improve the transparency and privacy issues, they rely on

the educational institutions to verify the diplomas and lack

a decentral validation method. Our proposed solution will

validate the curricula and diplomas in a decentralized way

while maintaining transparency and privacy of the user by

not storing unencrypted data on the blockchain.

A survey in [4] compares different types of smart con-

tracts on different blockchains but leaves out the possibility

of emulated smart contract.

Thus, in regard to the comparison of emulated and

native smart contracts, to the best of our knowledge, there

are no academic works comparing the advantages and

disadvantages in terms of safety and doing a thorough cost

analysis.

8 Conclusion

We conclude that both our proposed systems allow insti-

tutions to automatize certain parts of the selections pro-

cesses, and therefore, reduce the work of the participating

committees. This way it not only adds additional levels of

transparency but also of trust. Besides that, they also offer

incentives to applicants and reviewers to meet the given

deadlines and participate honestly in the system which

further increases the probability of a fair and honest pro-

cess. This way the trust in public selection processes can be

improved and a fair and unbiased process for all applicants

can be guaranteed more easily.

The emulated smart contracts, had a significant cost

advantage compared to native smart contracts. Addition-

ally, we conclude that this advantage would also hold if

emulated contracts were executed on other popular block-

chains as Thron, bitshares or EOS [15, 30] because the

Table 2 Comparison of

approaches
Curriculum validation Transparency Decentralization of evaluation Privacy

Ouna – – – 4

Cverification – – – –

Disciplina 4 – – 4

Hirematch 4 – 4 –

Appii 4 – – –

Caerusconnections – 4 – –

Our proposals 4 4 4 4

2120 Cluster Computing (2020) 23:2105–2122

123

main cost of the emulated approach is the dedicated server

which is not subject to fluctuations of the price of the

cryptocurrency.

Thus, we recommend the use of emulated smart con-

tracts when the main concern of the usage scenario is to

provide transparency and immutability to detect possible

inconsistencies in certain processes and the participating

parties can be held accountable after the detection of unfair

behaviour after the execution of the process.

In the future we want to study different smart contract

usage scenarios where, in the literature, native smart con-

tracts are used, but emulated smart contracts could also be

applied to reduce the cost of the execution (for example in

the field of IOT or in the field of autonomous vehicles).

References

1. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis,

G.: Chainspace: A sharded smart contracts platform. arXiv:1708.

03778 (2017)

2. Angraal, S., Krumholz, H.M., Schulz, W.L.: Blockchain tech-

nology: applications in health care. Circulation 10(9), e003800
(2017)

3. Appii: Employee background checks and cv verification under-

pinned by blockchain technology. register now!. https://appii.io/

(2018). Accessed 22 Aug 2019

4. Bartoletti, M., Pompianu, L.: An empirical analysis of smart

contracts: platforms, applications, and design patterns. In: Pro-

ceedings of the International conference on financial cryptogra-

phy and data security, pp. 494–509. Springer (2017)

5. Becker, B., Gerhart, B.: The impact of human resource man-

agement on organizational performance: progress and prospects.

Acad. Manag. J. 39(4), 779–801 (1996). https://doi.org/10.5465/

256712

6. Cachin, C.: Architecture of the hyperledger blockchain fabric. In:

Proceedings of the Workshop on Distributed Cryptocurrencies

and Consensus Ledgers, vol. 310 (2016)

7. Caerusconnections: Find a career you’ll love today. https://www.

caerusconnections.io/ (2018). Accessed 22 Aug 2019

8. Catallini, C.: How blockchain applications will move beyond

finance. Harvard Business Rev 2, (2017)
9. Chohan, U.W.: The decentralized autonomous organization and

governance issues. SSRN 3082055, (2017)

10. Cverification: Blockchain-based recruitment and background

verification platform. https://cverification.com/ (2018). Accessed

22 Aug 2019

11. Dannen, C.: Introducing Ethereum and Solidity. Springer, New

York (2017)

12. Disciplina: Disciplina -we are developing the first blockchain to

create verified personal profiles based on academic and profes-

sional achievements. https://disciplina.io/ (2018). Accessed 22

Aug 2019

13. Etherscan.io: Ethereum gas price history. https://etherscan.io/

chart/gasprice (2019). Accessed 22 Aug 2019

14. Express: Fast, unopinionated, minimalist web framework for

node.js. https://expressjs.com/ (2019). Accessed 22 Aug 2019

15. Grigg, I.: Eos: an introduction. http://www.org/papers/EOS_An_

Introduction.pdf (2017). Accessed 22 Aug 2019

16. Hirematch: Hirematch connects job seekers and job finders using

the blockchain and the cryptocurrency ‘hire’. https://hirematch.io/

(2018). Accessed 22 Aug 2019

17. Huselid, M.A.: The impact of human resource management

practices on turnover, productivity, and corporate financial per-

formance. Acad. Manag. J. 38, 635–672 (1995). https://doi.org/

10.5465/256741

18. MARTINS, C.: Mp deflagra operação contra fraudes em con-

cursos públicos de seis municı́pios do rs. https://gauchazh.clicrbs.

com.br (2018). Accessed 22 Aug 2019

19. MARTINS, C.: Mp denuncia nove pessoas por fraude em con-

cursos públicos de prefeituras. https://gauchazh.clicrbs.com.br

(2018). Accessed 22 Aug 2019

20. Martins, V.: Mp-go denuncia 26 pessoas por envolvimento em

fraude em concurso para delegado em goiás. https://g1.globo.com

(2017). Accessed 22 Aug 2019

21. McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for

bribing miners. In: Proceedings of the International Conference

on Financial Cryptography and Data Security, pp. 3–18. Springer

(2018)

22. MongoDB: The database for modern applications. https://www.

mongodb.com/ (2019). Accessed 22 Aug 2019

23. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system

(2008)

24. Neiheiser, R., Inácio, G., Rech, L., Fraga, J.: Hrm smart contracts

on the blockchain. ISCC ’19. IEEE (2019)

25. Norta, A.: Creation of smart-contracting collaborations for

decentralized autonomous organizations. In: Matulevičius, R.,

Dumas, M. (eds.) Perspectives in Business Informatics Research,

pp. 3–17. Springer, Cham (2015)

26. OUNA: Find your dream employer. https://ouna.io/ (2018).

Accessed 22 Aug 2019

27. PB, G.: Saiba quais são os 98 concursos que teriam sido frau-

dados por investigados na operação gabarito. https://g1.globo.

com (2017). Accessed 22 Aug 2019

28. Remix: Solidity compiler. https://remix.ethereum.org/ (2019).

Accessed 22 Aug 2019

29. Ropsten: Ropsten testnet. https://ropsten.etherscan.io (2019).

Accessed 22 Aug 2019

30. Schuh, F., Larimer, D.: Bitshares 2.0: General overview (2017)

31. Sciascia, D., Pedone, F., Junqueira, F.: Scalable deferred update

replication. In: Proceedings of the 2012 42Nd Annual IEEE/IFIP

International Conference on Dependable Systems and Networks

(DSN), DSN ’12, pp. 1–12. IEEE Computer Society, Washington,

DC, USA (2012)

32. StateoftheDApps: State of the dapps - ranking the best ethereum,

eos & steem dapps. https://www.stateofthedapps.com/rankings

(2019). Accessed 22 Aug 2019

33. Szabo, N.: Formalizing and securing relationships on public

networks. First Monday (1997)

34. Tariq, N., Asim, M., Al-Obeidat, F., Zubair Farooqi, M., Baker,

T., Hammoudeh, M., Ghafir, I.: The security of big data in fog-

enabled iot applications including blockchain: a survey. Sensors

19(8), 1788 (2019)

35. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-

work vs. bft replication. In: Camenisch, J., Kesdoğan, D. (eds.)

Open Problems in Network Security, pp. 112–125. Springer,

Cham (2016)

36. Wood, G.: Ethereum: a secure decentralised generalised trans-

action ledger. Ethereum Project Yellow Paper 151, 1–32 (2014)

37. Zhao, J.L., Fan, S., Yan, J.: Overview of business innovations and

research opportunities in blockchain and introduction to the

special issue. Financ. Innov. 2(1), 28 (2016). https://doi.org/10.

1186/s40854-016-0049-2

Cluster Computing (2020) 23:2105–2122 2121

123

http://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1708.03778
https://appii.io/
https://doi.org/10.5465/256712
https://doi.org/10.5465/256712
https://www.caerusconnections.io/
https://www.caerusconnections.io/
https://cverification.com/
https://disciplina.io/
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://expressjs.com/
http://www.org/papers/EOS_An_Introduction.pdf
http://www.org/papers/EOS_An_Introduction.pdf
https://hirematch.io/
https://doi.org/10.5465/256741
https://doi.org/10.5465/256741
https://gauchazh.clicrbs.com.br
https://gauchazh.clicrbs.com.br
https://gauchazh.clicrbs.com.br
https://g1.globo.com
https://www.mongodb.com/
https://www.mongodb.com/
https://ouna.io/
https://g1.globo.com
https://g1.globo.com
https://remix.ethereum.org/
https://ropsten.etherscan.io
https://www.stateofthedapps.com/rankings
https://doi.org/10.1186/s40854-016-0049-2
https://doi.org/10.1186/s40854-016-0049-2

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Ray Neiheiser Did his B.S. at the

University of Media in Stuttgart

and since then has earned his

received degree in Computer

Science from the Federal

University of Santa Catarina

(UFSC) in 2017. At the moment

he is a Ph.D. student at the same

university. His main areas of

interest are the construction of

reliable distributed systems and

electronic governance. In the

context of this, he specifically

focuses on byzantine fault tol-

erant consensus and the dis-

tributed ledger technology.

Gustavo Inácio Is a undergradu-

ate student in the field of com-

puter science at the Federal

University of Santa Catarina. He

participated in this work in the

context of a scientific internship

in the distributed systems labo-

ratory. His main interests

include Cloud Computing,

Security, Distributed Systems,

and Games.

Luciana Rech Is an Associate

Professor at the Informatics and

Statistics Department (INE)of

the Federal University of Santa

Catarina(UFSC) and a member

of the Distributed Systems

Research Laboratory

(LAPESD). Graduated from

University of Cruz Alta in

Computer Science, with Mas-

ter’s degree in Computer Sci-

ence (Field: Parallel and

Distributed Computing) from

Federal University of Santa

Catarina and Ph.D. in Electrical

Engineering (Field: DAS/Information System). She has experience in

the field of computer science with a focus on computational systems

working more closely with: Distributed Systems, Intelligent Systems,

Real Time Systems and Applied Informatics.

Joni Fraga Received the B.S.

degree in Electrical Engineering

in 1975 from the University of

Rio Grande do Sul (UFRGS),

the MSE degree in Electrical

Engineering in 1979 from the

University of Santa Catarina

(UFSC), and the Ph.D. degree in

Computing Science (Docteur de

l’INPT/LAAS) from the Institut

National Polytechnique de

Toulouse / Laboratoire d’Au-

tomatique et d’Analyse des

Systèmes, France, in 1985.

Also, he was a visiting

researcher at UCI (University of California, Irvine) in 1992–1993.

Since 1977 he has been employed as a Research Associate and later as

a Professor in the Department of Automation and Systems at UFSC,

in Brazil. His research interests are centered on Distributed Systems,

Security and Fault Tolerance. He has over 280 scientific publications

and is a Member of the IEEE and of Brazilian scientific societies.

2122 Cluster Computing (2020) 23:2105–2122

123

	HRM smart contracts on the blockchain: emulated vs native
	Abstract
	Introduction
	Theoretical background
	Blockchain
	Smart contracts
	Public selection processes in Brazil

	Proposals
	Smart contracts of the proposals
	Institution list contract
	Vacancy contract

	Native smart contracts
	Institution list
	Vacancy contract

	Emulated smart contracts
	Emulated institution list contract
	Emulated vacancy contract

	Prototype
	Native smart contract
	Emulated smart contract

	Evaluation
	Deployment
	Maintainance
	Vacancies

	Discussion
	Related work
	Conclusion
	References

