
Secure and efficient publicly verifiable outsourcing of matrix
multiplication in online mode

Fatemeh Erfan1 • Hamid Mala1

Received: 30 April 2019 / Revised: 3 November 2019 / Accepted: 6 January 2020 / Published online: 23 January 2020
� Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
With the emergence of cloud computing paradigm in many scientific applications, outsourcing of computation has attracted

a great amount of attention from the research community. Outsourcing of heavy computations such as multiplication of two

large matrices has raised some security concerns. Data and the result of computation should be protected not only from

attackers, but also from the cloud servers. Moreover, data owner should be able to verify the correctness of computation

with complexity less than the original computation. The previous schemes either have expensive offline phase or do not

support public verifiability. In this paper, first we find a security vulnerability in the Zhang-Lei’s scheme for outsourcing of

matrix multiplication where the cloud server can forge the result and pass the verification phase. Then, we present a secure

and efficient publicly verifiable outsourcing of matrix multiplication scheme which achieves privacy protection of out-

sourced data and result, unforgeability of result, public verifiability and high efficiency. Our analyses show that compared

with the related work, the proposed scheme is superior in terms of functionality, computation, communication and storage

overhead, especially in verification computation overhead.

Keywords Cloud computing � Matrix multiplication � Public verifiability � Secure outsourcing � Unforgeability �
Privacy � Forgery

1 Introduction

With the explosive growth of data volume and computing

scales in recent years, now many users and corporations are

unable to afford their heavy storage and computing

equipment with the same rate. Fortunately, cloud technol-

ogy with its extensive storage and processing capacity

offers an attractive solution.

Based on a pay-per-use model, a client with limited

computational power can easily outsource large-scale

computational tasks to a cloud server [31]. However, when

the data to be outsourced is valuable and private, this

solution is not so straightforward. The untrusted cloud may

misuse or sell the data. Not only must the outsourced data

be kept secret from the cloud but the result of computation

over this private data also must be blind to the cloud.

Therefore, the data owner (or client) and the cloud server

need a security protocol that (1) protects the data not only

against outsider eavesdroppers but also against the cloud,

(2) allows the cloud to perform computation over this

blinded data without finding the final result of its compu-

tation, (3) allows the data owner to efficiently discover the

final result from the blinded result the cloud has computed,

and (4) makes the data owner sure about the correctness of

the final result. The latter requirement is known as verifi-

ability. Verification of the result may be performed by the

data owner itself or by any public verifier. The public

verifier must not learn neither the original data nor the final

result. In this paper, we focus on the secure outsourcing of

multiplication of two large matrices of private entries. Our

proposed protocol provides public verifiability.

& Hamid Mala

h.mala@eng.ui.ac.ir

Fatemeh Erfan

fatemeh.erfan@eng.ui.ac.ir

1 Department of Information Technology Engineering, Faculty

of Computer Engineering, University of Isfahan, Hezar Jerib

St., Isfahan 81746-73441, Iran

123

Cluster Computing (2020) 23:2835–2845
https://doi.org/10.1007/s10586-020-03049-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7789-452X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-020-03049-7&domain=pdf
https://doi.org/10.1007/s10586-020-03049-7

1.1 Motivation

Matrix multiplication is a basic computational operation in

many scientific and engineering fields and has numerous

applications including computer graphics, image com-

pression, image transformation and so on [15, 17]. A client

with limited computational resources might be unable to

tolerate huge overhead of multiplying large matrices.

Therefore, it prefers to outsource matrix multiplication and

verification of the results. On the other hand, the client

wants to protect privacy of its sensitive data. In many

cases, the client is unwilling to share the data with others,

including the cloud server [31]. Also, we require that the

total running time for the client, including blinding (or

encrypting) the matrices, unblinding (or decrypting) the

blinded result and verifying the correctness of the result,

must be less than the time of the original computation. If

not, the client would perform the computation on its own

rather than outsource the computation [22].

The existing work mainly suffer from the massive

overheads [3, 8, 10, 24]. In many previous schemes the

client has to declare the matrices that he may require their

multiplication in the future. In these schemes, the client

declares two groupsMA andMB of matrices, each identified

with a unique ID, to the cloud server in the offline phase.

Later, in the online phase, he is only allowed to request for

the multiplication of a matrix from MA by a matrix from

MB. Only a few schemes such as [19] allow the client to

request for the multiplication of two fresh (not previously

announced to the cloud server) matrices. As an instance of

this, in Lei’s scheme [19] the client can directly outsource

its two matrices to the cloud server and request for the

multiplication of these two fresh matrices. However, this

scheme does not consider public verifiability. Moreover,

some of them cannot protect the privacy of outsourced data

and results [8, 10]. Therefore, we are motivated to design a

secure and efficient protocol for outsourcing of multipli-

cation of two freshly generated large matrices with public

verifiability.

1.2 Challenges

Although it is quite promising, outsourcing computational

problems to the commercial public clouds inevitably brings

in new security concerns and challenges [19]. The first

challenge is privacy of outsourced data and result. Gener-

ally speaking, the issue of security and privacy has become

a major concern when the sensitive data is not processed in

a fully trusted cloud environment [31]. Recently, a number

of publications have been proposed to design specific

secure schemes for outsourcing computation operations. In

most of them data owner, i.e. a person who has sensitive

data, tolerates massive overheads. But the privacy of sen-

sitive data is not protected completely. In our scheme we

consider that a client can outsource multiplication of two

large matrices to a cloud server and even the verification of

the result to a third party as a verifier.

The second challenge is verifying the result returned by

the server. A cloud server might not always provide the

correct result of a given computational task [19]. It might

be lazy in order to save its resources and return random

result to the data owner. In some cases, servers are not

willing to report their failures and may return accidental

results in order to keep their clients. Hence, the cloud

servers need to prove their honesty by sending an

unforgeable proof.

The third challenge is efficiency. On one hand, a key

requirement is that the amount of local work performed by

the client must be substantially cheaper than performing

the original computational problem on its own. Otherwise,

it does not make sense for the client to resort to the cloud.

On the other hand, it is also desirable to maintain the

amount of work performed by the cloud as close as pos-

sible to that needed to compute the original problem by the

client itself. Conversely, the cloud may be unable to

complete the task in a reasonable amount of time, or the

cost of the cloud may become prohibitive [19]. In addition,

most of the clients have no powerful resources to verify the

result. Thus, a public verifiable outsourcing protocol with

low computation overhead is needed.

1.3 Contribution

The contributions of this paper are summarized as below:

1. We present a forgery attack by the malicious cloud

server against the Zhang-Lei’s scheme for outsourcing

matrix multiplication.

2. We propose a cryptographic protocol for secure

outsourcing of multiplication of two arbitrary large

matrices.

3. In our proposed scheme, the problem of high compu-

tation overhead in both client and verifier side is well

addressed.

4. We show that the proposed protocol is efficient in

terms of computation, communication and storage

overhead.

1.4 Organization

The rest of the paper is organized as follows. Section 2

reviews related work on outsourcing of matrix multiplica-

tion to the cloud server. Section 3 describes the prelimi-

naries including system model, threat model and design

goals. In Sect. 4, we briefly review the Zhang-Lei’s

2836 Cluster Computing (2020) 23:2835–2845

123

scheme and present a security attack against this scheme.

Section 5 presents our proposed scheme. Section 6 dis-

cusses correctness and security analysis of our scheme. In

this section, we evaluate performance of our scheme and

compare it with related work. Finally, Sect. 7 concludes the

paper.

2 Related work

As previously stated, the problem of outsourcing compu-

tation has attracted extreme attention in academia.

Recently, various papers has discussed secure outsourcing

of heavy operations such as modular exponentiation

[13, 22, 23, 28], bilinear pairing [5], Fourier transformation

[26], matrix inversion [4, 14, 18], determinant computation

[20] and matrix multiplication [16, 33]. In this paper, we

focus on secure outsourcing of matrix multiplication. The

schemes proposed for matrix multiplication in the literature

can be classified into two categories as reviewed below.

Multiplication of two arbitrary matrices In some

schemes [9, 15, 24, 30] two matrices involved in the pro-

tocol are variable. In fact, the client has two arbitrary

matrices A and B and wants to outsource the computation

of A� B . These schemes are more flexible inasmuch as

both input matrices involved in the protocol are of arbi-

trary, yet compatible, dimensions.

For the first time, in 2002, Atallah et al. investigated the

problem of outsourced scientific computations like matrix

multiplications and introduced an outsourcing computation

framework. This schemes suffers from information leakage

[1]. After that, in 2008, Benjamin et al. presented a private

and cheating-free protocol for outsourcing algebraic com-

putations where the data owner outsources its computations

to two remote servers. One disadvantage of this technique

is that the two servers have to be non-colluding. Moreover,

the above protocol requires heavy computations that

degrades the efficiency of the outsourcing process [3]. In

2010, Gennaro et al. proposed a scheme by combining fully

homomorphic encryption (FHE) [12] and Yao’s Garbled

Circuits [27]. This scheme provides the formalized defi-

nition of non-interactive verifiable outsourcing computa-

tion using the pseudo-random functions (PRF) [11]. In

addition, Atallah proposed protocols for secure outsourcing

of matrix multiplication based on Shamir’s secret sharing

scheme. In this scheme the client outsources its data to at

least two servers [2]. In 2011, Mohassel proposed a secure

protocol for outsourcing linear algebra computation with

verifiable results based on homomorphic encryption

scheme that has high costs and overhead [24]. Zhang et al.

presented a protocol for secure outsourcing of matrix

multiplications. This approach has significant computation

overhead in verification phase [32]. In 2017, a secure and

efficient protocol is proposed for outsourcing large matrix

multiplication in online mode. This scheme protects pri-

vacy of outsourced data and result. But it does not support

public verification [9]. Recently, Zhang et al. designed a

protocol for outsourcing matrix multiplication. This

scheme has a massive offline phase [33]. Kong et al. pre-

sented a protocol of matrix multiplication based on simi-

larity transformation. This scheme does not support public

verification [17].

multiplication of an arbitrary matrix by a fixed matrix In

some protocols [8, 10, 21, 29, 33], one of the two matrices

must be constant. As a matter of fact, the client sends a

constant matrix to the cloud server in offline phase, before

starting an online phase. These schemes are not suitable for

many real applications due to the massive communication

overhead and runtime. In 2012, Fiore et al. presented a

publicly verifiable protocol for outsourcing matrix multi-

plication based on bilinear pairing and algebraic PRFs.

Based on [15], this approach not only fails to achieve high

efficiency, but also fails to achieve data privacy [10]. In

2015, Jia et al. proposed a protocol for outsourcing matrix

multiplication under amortized model. This scheme does

not protect privacy of multiplication result and has a heavy

preprocessing phase. Moreover, it does not provide public

verification [15]. In 2016, Elkhiyaoui et al. proposed a

protocol for outsourcing matrix multiplication. In this

scheme, one of the matrices must be constant and the client

tolerates massive computation [8].

3 Preliminaries

As mentioned above, our scheme is designed for publicly

verifiable outsourcing of multiplication of two matrices

with arbitrary sizes which is just executed in online mode.

In Sect. 3.1, we present notation used in this paper and also

the required mathematical background. In the next sub-

sections, the system model, threat model and design goals

of our scheme are clarified.

3.1 Notation and mathematical background

We denote notations used in this paper in Table 1. Based

on [21, 32] we define the notion of bilinear pairing utilized

in Zhang-Lei’s scheme [30] which is explained in Sect. 4.

Definition 1 (Bilinear Pairing) Let G1, G2 and GT be

three multiplicative cyclic groups of the same prime order

q, and g1 and g2 be a generators of group G1 and G2,

respectively. The map e : G1 � G2 ! GT is called a

bilinear pairing if it satisfies the following properties.

– Bilinearity: for any a; b 2 Zq, any g 2 G1 and any h 2
G2 the equation eðga; hbÞ ¼ eðg; hÞab holds.

Cluster Computing (2020) 23:2835–2845 2837

123

– Non-degeneracy: for any g 2 G1, if for all h 2 G2

equation eðg; hÞ ¼ 1 is true then g ¼ 0. Moreover, for

any h 2 G2, there exists some g 2 G1 such that

eðg; hÞ 6¼ 1.

– Efficiency: there exists an efficient algorithm for

computing e.

3.2 System model

As shown in Fig. 1 our proposed scheme has three entities:

a computationally weak client, a powerful cloud server and

a verifier.

Client: the client wants to outsource matrix multiplica-

tion of two large matrices with compatible sizes to a

powerful cloud server for decreasing its computational

overhead. In order to protect the privacy of data, the client

encrypts and sends data to the cloud server. The client

performs computations on encrypted matrices to obtain the

encrypted result. After receiving encrypted result that is

verified by the verifier, the client accepts and decrypts it.

On the whole, in our scheme the client can choose some

verifiers to verify the correctness of the result. Particularly,

public verifiability means that everyone can verify the

correctness of the result. It helps the client to be sure about

the correctness of the result.

Cloud server: The computational resource-limited cli-

ent outsources its heavy computations to the cloud server

with unlimited computing resources. In our scheme, the

cloud server computes multiplication result in encrypted

form and a non-interactive proof. Then, it sends the non-

interactive proof to the verifier. It is worthwhile to know

that one of the reasons that the client outsources its

matrices and verify the result by utilizing public verifia-

bility is that some servers may be reluctant to report their

failures in order to increase client retention for their own

services.

Verifier: the verifier is the third party who can check

validity of the result. It receives the encrypted result and

the proof from the cloud server and verifies them by using

the public keys. If the results are true, the verifier sends

them to the client. Now the client is sure about validity of

the result.

3.3 Threat model

Generally, there are two types of threat models in out-

sourcing: semi-honest cloud and malicious cloud. The

semi-honest cloud follows the protocol correctly, but it

tries to learn additional information about input and output

data. While, the malicious cloud can arbitrarily deviate

from protocol specification [19]. The malicious cloud ser-

ver may send random result to the client for saving its

resources. In this paper, we assume the cloud server treats

as a semi-honest cloud server.

3.4 Design goals

In this part, we define our goals as follows.

Table 1 Notations

Symbols Meanings

A, B The matrices before multiplication

Ai;j The (i, j)-th element in matrix A

aA0bA The secret columnar vectors for A

aB0bB The secret columnar vectors for B

gRes The encrypted result computed by the server

Res The original result computed by the client

C1 The result of offline phase

C2 The result of online phase computed by the server

p The proof of the returned result

sk The secret key for the client

h The hash function

PK Public key generated by the client

Kcv The common key between the client and the verifier

½n1� f1; 2; . . .; n1g
n The size of matrices

Zm f0; 1; 2; . . .;m� 1g
e(g, h) Bilinear pairing Fig. 1 System Model

2838 Cluster Computing (2020) 23:2835–2845

123

Privacy protection of outsourced data: the privacy of

outsourced matrices must be protected. In this scheme, we

use secret keys to protect privacy of matrices.

Privacy protection of multiplication result: our pro-

posed scheme provides protection of multiplication result

by secret matrices.

Unforgeability of proof: We have to guarantee that the

cloud server cannot forge the proof.

Arbitrary large matrix: Most of existing works are not

flexible enough since one of matrices involved in the

multiplication should be fixed. The proposed scheme en-

ables a flexible way to outsource multiplication of any two

arbitrary matrices.

Efficiency: In this paper, the proposed scheme will be

executed in online mode and does not need any offline

preprocessing phase. Therefore, the client tolerates less

overhead in total.

Public verifiability: Any verifier can check validity of

the result by checking the correctness of the proof.

Therefore the client can outsource even the verification of

the result.

4 Review of the Zhang-Lei’s scheme

In this section, we first describe Zhang-Lei’s scheme [30]

which contains five phases namely, Encryption, Request-

ing, Computing, Verification and Decryption phases. In

this scheme, the matrices are categorized into two groups

as MAn1�n2
and MBn2�n3

beforehand, where each matrix has

a unique identifier.

Encryption phase In this phase, the client encrypts

matrices A 2 MA as ~A ¼ Aþ aAb
T
A and B 2 MB as ~B ¼

Bþ aBb
T
B , where aA 2 Zn1

q ; bA 2 Zn1
q ; aB 2 Zn2

q and bB 2
Zn2
q are columnar vectors. It computes Wn1�n2 , where Wi;j ¼

g
ri ~ai;j
1 and pk2i ¼ gci2 , where ri ¼ HðIDAkikSKÞ and cj ¼

HðIDBkjkSKÞ and sends them to the cloud server.

Requesting phase In this phase, the client computes

pkti;j ¼ g
ricj
T , where gT ¼ eðg1; g2Þ and sends it with iden-

tifiers of matrices to the cloud server.

Computing phase The cloud server computes gRes ¼
~A� ~B and a non-interactive proof pn1�n3 , where its (i, j)-th

element is computed as pi;j ¼
Qn2

k¼1 W
~bk;j
i;k . Then it sends the

(encrypted result, proof) pair ðgRes; pÞ to the verifier.

Verification phase The verifier judges the correctness of

equation for each element of gRes as

eðpi;j; pk2jÞ ¼ ðpkti;jÞ
fResi;j . If all the conditions are true, it

sends the encrypted result gRes to the client.

Decryption phase After that, the client computes R ¼
ðAaBÞbTB þ aAðbTABÞ þ aAðbTAaBÞbTB and obtains the final

result as Res ¼ gRes � R.

4.1 Forgery attack against Zhang-Lei’s scheme

In this section, we find a security vulnerability in Zhang-

Lei’s scheme and in the next section, we present a new

secure and efficient publicly verifiable scheme for out-

sourcing multiplication of large matrices which fixes this

vulnerability. If the cloud server behaves dishonestly, it can

pass the verification equation eðpi;j; pk2jÞ ¼ ðpkti;jÞ
fResi;j .

More precisely, the attack procedure is as follows.

1. The client and the cloud server proceed the Zhang-

Lei’s protocol until the cloud server computes the true

values for the encrypted result and the proof as

ðgRes; pÞ.
2. Then it chooses an arbitrary scalar x 2 Z�

q:

3. It computes x:gRes as the manipulated encrypted result

and tunes the corresponding proof as px:

4. Finally, it sends ðgRes0; p0Þ ¼ ðx:gRes; pxÞ as a new

(encrypted result and proof) to the verifier. Now we

show that this incorrect pair of ðx:gRes; pxÞ passes the

verification equation eðp0i;j; pk2jÞ ¼ ðpkti;jÞ
fRes

0

i;j .

Since pi;j ¼
Qn2

k¼1 W
~bk;j
i;k ;Wi;k ¼ g

ri ~ai;k
1 , pkti;j ¼ g

ricj
T and

pk2j ¼ g
cj
2 we have that

e p0i;j; pk2j
� �

¼ e pxi;j; pk2j
� �

¼ e
Y

n2

k¼1

W
~bk;j
i;k

 !x

; pk2j

 !

¼ e

��

Y

n2

k¼1

ðgri ~ai;k1 Þ ~bk;j
�x

; g
cj
2

�

¼ e
��

g

Pn2

k¼1
ri ~ai;k : ~bk;j

1 Þx; gcj2
�

¼ e g1; g2ð Þ
ri:cj:x

P

n2

k¼1

~ai;k : ~bk;j

¼ gTð Þ
ri:cj:x

P

n2

k¼1

~ai;k : ~bk;j

¼ pkti;j
� �

x
P

n2

k¼1

~ai;k : ~bk;j

¼ pkti;j
� �x:fRes ¼ pkti;j

� �
fRes

0

The last equation is true because
Pn2

k¼1 ~ai;k:
~bk;j is the (i, j)-

th element of gRes ¼ ~A� ~B. Thus, the verifier accepts gRes
0

as the correct encrypted result and sends it to the client.

Then the client decrypts gRes
0
as Res0 ¼ gRes

0 � R which is

Cluster Computing (2020) 23:2835–2845 2839

123

not equal to A� B. But the client accepts it as the result

A� B. Therefore, this is a successful forgery attack.

Besides, this security vulnerability, the Zhang-Lei’s

scheme has a preprocessing phase in offline mode. So the

client tolerates heavy computational overhead. Also the

verifier has to compute n2 pairings in the verification phase.

Therefore this protocol requires heavy computations that

may degrade the efficiency of the outsourcing process.

Moreover, their scheme is not flexible in the sense that the

client is only allowed to request of the multiplication of

matrices who has already committed to beforehand. In

other words, the client cannot outsource the multiplication

of two freshly generated matrices. So we are motivated to

enhance Zhang -Lei’s scheme in order to make it work for

freshly generated matrices, fix the mentioned security

vulnerability and finally increase efficiency and computing

speed. Specifically, we remove the offline phase and matrix

identifiers. In addition, the computational overhead of the

verifier side would be reduced into 2n2 exponentiations.

5 The proposed scheme

We assume a client outsources two encrypted matrices to

the cloud server. The cloud server computes matrix mul-

tiplication and also provides a proof p to the verifier. The

verifier checks the proof. If the correctness of the result is

proved, then the verifier computes MAC of the result. Then

it sends gRes and MAC to the client. Finally, the client

checks the validity of MAC. IfMAC is validated, then he

accepts the result and decrypts it. It is important to say that

the client and the verifier have a common key to compute

MAC.

In this section, we explain the proposed scheme which

consists of five phases: the first phase is Setup. The second

phase is Encryption phase that is executed by the client.

Then the Computing phase is done by the server. The

Verification phase is executed by the verifier and finally

the client executes the Decryption phase.

Setup phase The client chooses two large primes p and q

such that qjp� 1. Then it generates a subgroup G of Z�
p

with the generator g of order q. Then it chooses a private

key sk 2 G and a hash function H : ½n1� � G ! Z�
q . After

that, the client publishes parameters as param ¼ ðq; g; hÞ
which is used by the whole outsourcing system.

Encryption phase in this phase, the client processes

matrices before sending them to the cloud server. First the

client chooses vectors aA 2 Zn1
q ; bA 2 Zn2

q ; aB 2 Zn2
q and

bB 2 Zn3
q Then it encrypts matrices A and B into ~A ¼

Aþ aAb
T
A and ~B ¼ Bþ aBb

T
B , respectively. After that it

sends ~A and ~B to the cloud server. Also the client computes

matrix Wn1�n2 , where Wi;j ¼ gri ~ai;j and ri ¼ HðijjskÞ and sk

denotes the client’s secret key. Then it computes the public

key as PKn1�n2 ¼ ðpki;jÞ ¼ ðgriÞ and sends it to the verifier.

The details are shown in Algorithm 1.

Algorithm 1 Encryption Phase by the Client
1. Input: Matrix A, B
2. Output: C1
3. Select αA ∈R Zn1

q , αB , βA ∈R Zn2
q , βB ∈R Zn3

q

4. Compute Ã = A + αAβT
A and B̃ = B + αBβT

B

5. for i = 1 to n1 do
6. Compute ri = h(i||sk)
7. for j = 1 to n3 do
8. Compute and save PK = (PKi,j)n1×n3 = (gri)
9. Compute W = (Wi,j)n1×n2 = (griãi,j)n1×n2

10. end for
11. end for
12. return C1 = (Ã, B̃, W, PK)

Computing phase the cloud server receives matrices ~A

and ~B and computes matrix multiplication result as gRes ¼
~A� ~B and a non-interactive proof as p ¼ ðpi;jÞ ¼

ð
Qn2

k¼1 W
~bk;j
i;k Þ where 1� i� n1; 1� j� n3: Then it sends

ðgRes; pÞ to the verifier. The details are shown in Algorithm

2.

Algorithm 2 Computing Phase by the Cloud Server
1. Input: Ã, B̃ and W
2. Output: C2

3. Compute R̃es = Ã × B̃
4. for i = 1 to n1 do
5. for j = 1 to n3 do
6. for k = 1 to n2 do
7. Compute π = πi,jn1×n3

= (
∏n2

k=1 W
b̃k,j

i,k)n1×n3

8. end for
9. end for
10. end for
11. return C2 = (R̃es, π)

Algorithm 3 Verification Phase by the Verifier
1. Input: C2, z ∈ {0, 1}
2. Output: C3 or ⊥
3. for i = 1 to n1 do
4. for j = 1 to n3 do

5. if (πi,j = (pki,j)r̃esi,j and πi,j =
∏n2

k=1 W
b̃k,j

i,k)
then

6. z = 1
7. continue;
8. else
9. z = 0
10. return ⊥
11. end if
12. end for
13. end for
14. if z = 1
15. return C3 = (MACKcv

(PK||R̃es), R̃es)

2840 Cluster Computing (2020) 23:2835–2845

123

Algorithm 4 Decryption Phase by the Client
1. Input: C3
2. Output: Res or ⊥
3. if MAC is validated then
4. Compute R = (AAαB)βT

B+αA(βT
AB)+αA(βT

AαB)βT
B

5. Compute Res = R̃es − R
6. return Res
7. else
8. return ⊥
9. end if

Verification phase according to the Algorithm 3, this

phase is executed by the verifier. After receiving gRes and

p, the verifier checks if pi;j ¼ ðpki;jÞ eresi;j and

pi;j ¼
Qn2

k¼1 W
~bk;j
i;k .

If these equations hold, it generates MAC of ðgRes; pÞ as
MACKcv

ðPK; gResÞ by the common key Kcv previously

shared between the client and the verifier. The verifier

sends the MAC with gRes to the client.

Decryption phase as shown in Algorithm 4 to ensure the

integrity of the received messages , the client checks theMAC.

If the MAC is confirmed , it computes matrix R as R ¼
ðAaBÞbTB þ aAðbTABÞ þ aAðbTAaBÞb

T
B and decrypts gRes as

Res ¼ gRes � R . Otherwise the client rejects it and sends ?.

6 Security and performance evaluation

In this section first, we prove the correctness of verification

and decryption phases. Second, we evaluate the perfor-

mance of our scheme and compare it with the related work

in terms of functionality as well as computation, commu-

nication and storage.

6.1 Correctness and security analysis

We prove the correctness of verification and decryption

phases and guarantee the security of our scheme as follows.

Correctness guarantee in this scheme, the verifier

checks the equations pi;j ¼ ðpki;jÞ eresi;j and
pi;j ¼

Qn2
k¼1 W

~bk;j
i;k . If the computation is performed cor-

rectly, the above equations hold. First according to the

equation Wi;j ¼ gri ~ai;j , we replace Wi;j by gri ~ai;j .

pi;j ¼
Y

n2

k¼1

ðWi;kÞ
~bk;j

¼
Y

n2

k¼1

ðgri ~ai;kÞ ~bk;j

¼
Y

n2

k¼1

ðgÞri ~ai;k ~bk;j

Now according to the equation
Pn2

k¼1 ~ai;k
~bk;j ¼ gResi;j, we

have

pi;j ¼ gri
Pn2

k¼1
~ai;k ~bk;j

¼ ðgriÞfResi;j

Finally, according to the equation Wi;k ¼ gri ~ai;k , the above

equation is written as:

pi;j ¼
Y

n2

k¼1

ðgri ~ai;kÞ ~bk;j

¼
Y

n2

k¼1

ðWi;kÞ
~bk;j

Now, we evaluate correctness of decryption phase as stated

below

gRes � R ¼ ~A� ~B� R ¼ ðAþ aAb
T
AÞðBþ aBb

T
BÞ � R

¼ ABþ AaBb
T
B þ aAb

T
ABþ aAb

T
AaBb

T
B

|ffl{zffl}

R

�R

¼ AB

Security guarantee as mentioned before, the client out-

sources multiplication of two arbitrary matrices A and B to

the cloud server. Actually, it has to send its sensitive data to

the untrusted entity. The semi-honest cloud server may

send incorrect results to the client. To ensure that the

protocol is secure, we analyze security properties of our

scheme. The security properties that we focus on are

described as follows.

Privacy Protection of Outsourced Data: We demon-

strate that our scheme achieves the privacy protection of

outsourced data. We assume a semi-honest cloud server

tries to learn more information about matrices. To protect

of revealing outsourced data, the matrices are encrypted. In

this way, the client encrypts matrices A and B as ~A ¼
Aþ aAb

T
A and ~B ¼ Bþ aBb

T
B , respectively. To achieve

matrices A and B, the cloud server has to know vectors

aA; b
T
A; aB and bTB . These vectors are randomly chosen and

kept secret from the cloud server. Therefore, the private

information about outsourced matrices could not be

obtained by the cloud server and our scheme achieves

privacy protection of outsourced matrices.

Privacy protection of result One of the most important

properties of outsourced computing is the privacy protec-

tion of the result. The cloud server needs matrix R to

achieve the decrypted result Res. But matrix R is private

and created by the client and the cloud server cannot learn

any more information about the original result Res. So the

privacy protection of result is achieved.

Unforgeability of result When the verifier sends the

result to the client, the attacker can manipulate the result

Cluster Computing (2020) 23:2835–2845 2841

123

gRes and sends it to the client. To prevent this attack, the

verifier computes MAC of public key and result as

MACKcv
ðPK; gResÞkgRes that receives from the cloud server.

The verifier sends MAC to the client and the client checks

the validity of the MAC.

Unforgeability of proof Based on the threat model of

this scheme, the cloud server may send incorrect results to

the client. So the client has to check the correctness of

result. It delegates verifying phase to the verifier. The cloud

server sends the encrypted result gRes and the proof p to the

verifier. The cloud server needs ri ¼ HðikskÞ to forge the

proof and pass the verifier filter. But, based on hardness of

the discrete logarithm problem (DLP), the cloud server

cannot achieve ri in the equation PK ¼ ðpki;jÞ ¼ ðgriÞ: Also
it cannot achieve ri by using equation W ¼ ðWi;jÞ ¼ ðgri ~ai;jÞ
and having encrypted matrix ~A . On the other hand, due to

the one-way hash function H, the cloud server also cannot

achieve any information about ri ¼ HðikskÞ and private

key sk. If the cloud server sends gRes and p randomly, it can

pass the first equation. To prevent this attack, the verifier

has to check the second equation pi;j ¼
Qn2

k¼1 W
~bk;j
i;k . If the

cloud server forges the proof p, it cannot pass the second

equation. As a result, our proposed scheme will provide the

property of unforgeability of proof.

6.2 Performance evaluation

Now, we evaluate the performance of our scheme and

compare it with the related work in terms of functionalities

as well as computation, communication and storage.

Table 2 presents some notations used in this section.

Functionality we compare functionalities among

[9, 10, 15, 21, 30, 33] and our scheme. All schemes except

[30] are protected against the forgery attack. Also all

schemes except [9, 15] have public verifiability. Protocols

[10, 15] do not provide privacy protection of multiplication

result. Moreover, protocols [10, 21] do not provide privacy

protection of outsourced data and one of the matrices

involved in the computing has to be fixed, which makes the

scheme unsuitable for many applications. In [15, 30, 33]

the client chooses matrices among two categories as MA

and MB which are created in the preprocessing phase.

While in our scheme and [9] the matrices are selected

arbitrarily whenever the client wants, and the protocol can

just be executed in the online mode. The details are shown

in Table 3.

Computation overhead as shown in previous section,

[9] does not have public verifiability. So in this section, we

compare our protocol with [10, 21, 30, 33] in term of

computation overhead. First the computation overhead in

the offline phase and second the computation overhead in

the online phase will be compared. As shown in Table 4

our scheme does not have any offline phase. While

[10, 21, 30, 33] have heavy preprocessing phases. As

mentioned in Table 3, N is the number of matrices in

categories MA and MB. Based on [33] we consider

N ¼ 104. In this section we also compare computation

overhead of the verifier. The verifier in the verification

phase of [10, 21, 30] has to compute n2 pairings and n2

exponentiations and in [33] 2n2 pairings and 2n2 expo-

nentiations. While the proposed scheme has to compute

only 2n2 exponentiations. So, not only our scheme fixes the

mentioned security vulnerability of [30], but also its

computation overhead in client side and verifier side are n

exponentiations and n2 pairings less than [30], respectively.

As a result, our scheme is more efficient than related work

in term of computation overhead.

To support this inference in reality, we estimate the

running time of our protocol on a system with core i5

processor 2.7 GHz and 4.0 GB RAM and compare it with

[10, 21, 30, 33]. Our estimation is based on the run times of

the cryptographic operations reported in [6, 7, 25]. Let all

the matrices be square, where n1 ¼ n2 ¼ n3 ¼ 103.

To clarify, as mentioned before, we specify time of

multiplication, exponentiation, pairing and hash function

computation in Table 5 based on [6, 7, 25]. In addition, we

Table 2 Notation for performance evaluation

Symbols Meanings

M Time for a multiplication operation over Zp

E Time for an exponentiation operation over G

P Time for a pairing operation over G�G

H Time for computing a hash function

M0 Time for checking a MAC

jZpj The size of a number in Zp

SID The length of a matrix identifier ID

n1; n2; n3 The dimensions of matrix

N The Number of matrices in the MA and MB

Table 3 Comparison of functionality

Properties [9] [10] [15] [21] [30] [33] Ours

Public

verifiability

� p � p p p p

Variable matrix
p � p � p p p

Privacy of input
p � p � p p p

Privacy of output
p � � p p p p

Online mode
p � � � � � p

Security
p p p p

Forgeable
p p

2842 Cluster Computing (2020) 23:2835–2845

123

estimate the run time of protocols presented in

[10, 21, 30, 33] and compare them with our scheme in

terms of client side and verifier side which is shown in

Tables 6 and 7, respectively. It is necessary to mention that

all the values reported in these tables are in terms of sec-

onds. Further, the dimensions of matrices are supposed to

be 1000 to 6000. As can be seen in Table 7, our scheme is

at least 15 times faster than the related work in verification

side when dimensions increase.

As shown in Figs. 2 and 3, the running time of our

scheme are obviously less than those of previous schemes.

Therefore, our scheme is more efficient than others in the

client and verifier sides. The most striking feature observed

from tables and figures is that our proposed scheme has

overwhelmingly decreased verifier’s computation overhead

which demonstrates a major achievement of our proposed

scheme clearly.

Communication overhead In this part, we compare

communication overhead of related work with our scheme.

Our scheme does not have any offline mode. But

[10, 21, 30, 33] have an offline phase where the client

tolerates massive communication overheads. As a matter of

fact, the communication overhead is measured in terms of

the number of elements exchanged between the client and

the server. This comparison is shown in Table 8.

Storage overhead in this section, we analyze the storage

overhead of the client side. In [30] the client has to save

secret key, secret parameters and public keys.

Remarkably, in [10, 33] the client has to keep encryp-

tion parameters. Whilst, in our scheme the client only saves

the secret key and the secret parameters. In fact, the storage

overhead is measured in terms of the number of elements

stored in the client side. Overall consideration, the storage

overhead of our scheme is acceptable. The details are

shown in Table 9.

7 Conclusion

In this paper, we presented a secure and efficient protocol

for publicly verifiable outsourcing of large matrix multi-

plication. Our proposed scheme provides a more secure and

efficient way for the client to compute multiplication of

any two arbitrary matrices in an online mode with public

verifiability. More particularly, security analysis

Table 4 Comparison of computation overhead

Schemes Computation overhead

Offline Online

Client Client Verifier

[10] 3n2ðM þ EÞ 3n2M þ 4n2E n2ðPþ EÞ
[21] ðn3 þ n2ÞM þ n2Pþ ð2n2 þ nÞE ð3n2 þ nþ 1ÞM þ E þ P n2ðPþ E þMÞ
[30] ð3n2ÞM þ ðn2 þ nÞE þ 2nH ð6n2 þ nÞM þ n2E þ 2n2H n2ðPþ EÞ
[33] Nð5n2 þ 9nÞM þ Nð3n2 þ 5nÞH þ Nð8nþ 3ÞE ð2n2 þ 4nÞM þ 3nE þ 2nH 2n2ðPþ E þ H þMÞ
Ours – ð7n2 þ 3nÞM þM0 þ 2nðH þ nEÞ 2n2E

Table 5 Running time of

operations
Operation Time (l s)

Pairing 6040

Exponentiation 210

Hash function 0.22

Multiplication 0.13

Table 6 Comparison of client runtime

n [10] [21] [30] [33] Ours

1000 751.78 6591 421.83 29,930 420.9

2000 3007.12 26,883 1686.7 86,054 1683.6

3000 6766.02 61,655 3795.12 168,378 3788.1

4000 12,028.48 104,199 6746.7 276,904 6734.4

5000 18,794.5 177,764 10,541.3 411,645 10,522.5

6000 27,064.1 260,660 15,179.3 572,556 15,152.4

Table 7 Comparison of verifier runtime

n [10] [21] [30] [33] Ours

1000 6250 6250.2 6250 12,500.7 420

2000 25,000 25,000.5 25,000 50,002.8 1680

3000 56,250 56,251.1 56,250 112,506 3780

4000 100,000 100,002 100,000 200,011 6720

5000 156,250 156,253 156,250 312,517 10,500

6000 225,000 225,005 225,000 450,025 15,120

Cluster Computing (2020) 23:2835–2845 2843

123

demonstrates that our scheme achieves privacy protection

of outsourced data, privacy protection of multiplication

result, unforgeability of proof and public verification of the

result in online mode. We compared our scheme with

related work in terms of functionality, computation, com-

munication and storage overhead. In consequence, the

runtime of our protocol has dramatically plummeted due to

declining computation overhead of verification side and

eliminating offline phase in the client side. Hence, this

scheme has a lighter computation, communication and

storage overhead than previous works.

References

1. Atallah, M., et al.: Secure outsourcing of scientific computations.

Adv. Comput. 54, 215–272 (2002)

2. Atallah, M., Frikken, K.: Securely outsourcing linear algebra

computations. In: Proceedings of the 5th ACM Symposium on

Information, Computer and Communications Security, pp. 48–59

(2010)

3. Benjamin, D., Atallah, M.: Private and cheating-free outsourcing

of algebraic computations. In: PST’08. Sixth Annual Conference

on Privacy, Security and Trust, 2008, pp. 240–245 (2008)

4. Chen, Z., et al.: Secure and verifiable outsourcing of large-scale

matrix inversion without precondition in cloud computing. In:

2018 IEEE International Conference on Communications (ICC),

pp. 1–6. IEEE (2018)

5. Chen, X., et al.: Efficient algorithms for secure outsourcing of

bilinear pairings. Theor. Comput. Sci. 562, 112–121 (2015)

6. Daly, A., Marnane, W.: Efficient architectures for implementing

Montgomery modular multiplication and RSA modular expo-

nentiation on reconfigurable logic. In: Proceedings of the 2002

ACM/SIGDA Tenth International Symposium on Field-Pro-

grammable Gate Arrays, pp. 40–49. ACM (2002)

7. De Caro, A., Iovino, V.: jPBC: Java pairing based cryptography.

In: 2011 IEEE Symposium on Computers and Communications

(ISCC), pp. 850–855. IEEE (2011)

8. Elkhiyaoui, K. et al.: Efficient techniques for publicly verifiable

delegation of computation. In: Proceedings of the 11th ACM on

Asia Conference on Computer and Communications Security,

pp. 119–128 (2016)

9. Erfan, F., Mala. H.: Online privacy preserving outsourcing of

large matrix multiplication. In: 7th International Conference on

Computer and Knowledge Engineering (ICCKE), pp. 235–240,

IEEE (2017)

10. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large

polynomials and matrix computations, with applications. In:

Proceedings of the 2012 ACM Conference on Computer and

Communications Security, pp. 501–512 (2012)

11. Gennaro, R., et al.: Non-interactive verifiable computing: Out-

sourcing computation to untrusted workers. In: Advances in

Cryptology-CRYPTO, pp. 465–482. Springer, Berlin (2010)

12. Gentry, C., et al.: Fully homomorphic encryption using ideal

lattices. STOC 9, 169–178 (2009)

Fig. 2 Comparison of client side overhead

Fig. 3 Comparison of verifier side overhead

Table 8 Comparison of communication overhead

Schemes Client to server

Offline Online

[10] n2jZpj þ n2jGj n2jZpj
[21] n2jZpj þ n2jGj n3jZpj
[30] ð2n2 þ 2ÞjZpj 2SID

[33] ð2n2 þ 7nÞjZpj 2SID

Ours – 3n2jZpj

Table 9 Comparison of storage overhead

[10] ðn2 þ nþ 2ÞjG2j þ 2njZpj
[21] ðn3 þ 3n2 þ 1ÞjZpj
[30] ðn4 þ n2 þ 4nþ 1ÞjZpj
[33] ð20n2 þ 10nþ 9ÞjZpj
Ours ð3n2 þ 4nþ 1ÞjZpj

2844 Cluster Computing (2020) 23:2835–2845

123

13. Hen, X., et al.: New algorithms for secure outsourcing of modular

exponentiations. IEEE Trans. Parallel Distrib. Syst. 25(9),
2386–2396 (2013)

14. Hu, C. et al.: A secure and verifiable outsourcing scheme for

matrix inverse computation. In: IEEE INFOCOM 2017-IEEE

Conference on Computer Communications pp. 1–9. IEEE (2017)

15. Jia, K., et al.: Enabling efficient and secure outsourcing of large

matrix multiplications. In: Conference on IEEE Global Com-

munication (GLOBECOM), pp. 1–6. San Diego, California

(2015)

16. Jiang, X., et al.: Secure outsourced matrix computation and

application to neural networks. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Secu-

rity, pp. 1209–1222. ACM (2018)

17. Kong, S., et al.: Cloud outsourcing computing security protocol

of matrix multiplication computation based on similarity trans-

formation. Int. J. Wirel. Mob. Comput. 14(1), 90–96 (2018)

18. Lei, X., et al.: Outsourcing large matrix inversion computation to

a public cloud. IEEE Trans. Cloud Comput. 1(1), 1–1 (2013)

19. Lei, X. et al.: Achieving security, robust cheating resistance, and

high-efficiency for outsourcing large matrix multiplication com-

putation to a malicious cloud. In: information Science, vol. 280,

pp. 205–217 (2014)

20. Lei, X., Liao, X., Huang, T., Li, H.: Cloud computing service: the

case of large matrix determinant computation. IEEE Trans. Serv.

Comput. 8(5), 688–700 (2014)

21. Li, H., et al.: Enabling efficient publicly verifiable outsourcing

computation for matrix multiplication. In: International

Telecommunication Networks and Applications Conference

(ITNAC), pp. 44–50. IEEE (2015)

22. Liu, M., et al.: Verifiable outsourcing computation for modular

exponentiation from shareable functions. Clust. Comput. (2019).

https://doi.org/10.1007/s10586-019-02930-4

23. Ma, X., et al.: Outsourcing computation of modular exponentia-

tions in cloud computing. Clust. Comput. 16(4), 787–796 (2013)

24. Mohassel, P.: Efficient and Secure Delegation of Linear Algebra.

IACR Cryptology ePrint Archive, Report 605 (2011)

25. Speed benchmarks for some of cryptographic algorithms. https://

www.cryptopp.com/benchmarks.html

26. Xiao, X., et al.: Efficient and secure outsourcing of DFT, IDFT,

and circular convolution. IEEE Access 7, 60126–60133 (2019)

27. Yao, A.C.: Protocols for secure computations. In: SFCS’08. 23rd

Annual Symposium on Foundations of Computer Science, 1982,

pp. 160–164. IEEE (1982)

28. Ye, J., et al.: Secure outsourcing of modular exponentiations in

cloud and cluster computing. Clust. Comput. 19(2), 811–820

(2016)

29. Zhang, L.F., Safavi-Naini, R.: ’Private outsourcing of polynomial

evaluation and matrix multiplication using multilinear maps.

International Conference on Cryptology and Network Security,

pp. 329–348. Springer, Cham (2013)

30. Zhang, S., et al.: Efficient secure outsourcing computation of

matrix multiplication in cloud computing. In: Global Communi-

cations Conference (GLOBECOM), pp. 1–6. IEEE (2016)

31. Zihao, Sh, et al.: Practical secure computation outsourcing: a

survey. ACM Comput. Surv. 51(2), 31–71 (2019)

32. Zhang, Y., Blanton, M.: Efficient secure and verifiable out-

sourcing of matrix multiplications. In: International Conference

on Information Security, pp. 158–178 (2014)

33. Zhang, S., et al.: Verifiable outsourcing computation for matrix

multiplication with improved efficiency and applicability. IEEE

Internet Things J. 5(6), 5076–5088 (2018)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Fatemeh Erfan received her B.S.

degree in Computer Engineer-

ing from Isfahan University of

Technology (IUT) in 2014. She

received her M.S. degree in

Information Security Engineer-

ing from University of Isfahan

(UI) in 2018. Her main research

interests are in the area of big

data, network security, cloud

computing and cryptographic

protocols.

Hamid Mala received his B.S.,

M.S. and Ph.D. degrees in

Electrical Engineering from

Isfahan University of Technol-

ogy (IUT) in 2003, 2006 and

2011, respectively. He joined

University of Isfahan (UI) in

September 2011 as an Assistant

Professor in the Department of

Information Technology Engi-

neering. Currently, he is with

the Faculty of Computer Engi-

neering at UI as an Associate

Professor. His Research inter-

ests include design and crypt-

analysis of block ciphers, cryptographic protocols and secure

multiparty computation.

Cluster Computing (2020) 23:2835–2845 2845

123

https://doi.org/10.1007/s10586-019-02930-4
https://www.cryptopp.com/benchmarks.html
https://www.cryptopp.com/benchmarks.html

	Secure and efficient publicly verifiable outsourcing of matrix multiplication in online mode
	Abstract
	Introduction
	Motivation
	Challenges
	Contribution
	Organization

	Related work
	Preliminaries
	Notation and mathematical background
	System model
	Threat model
	Design goals

	Review of the Zhang-Lei’s scheme
	Forgery attack against Zhang-Lei’s scheme

	The proposed scheme
	Security and performance evaluation
	Correctness and security analysis
	Performance evaluation

	Conclusion
	References

