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Abstract
Today, cloud providers represent their individual services with several functional and non-functional properties in various

environments. Discovering and selecting an appropriate atomic service from a pool of activated services are a main

challenge in the multi-cloud service composition. Minimizing the number of cloud providers is a critical matter in the

service composition problem, which effects on energy consumption, response time and total cost. This paper presents a

hybrid formal verification approach to assess the service composition in multi-cloud environments though the decreasing

number of cloud providers to gain final service composition with a high level of Quality of Service (QoS). The presented

approach provides behavioral modeling to examine the procedure of user’ requests, service selection, and composition in a

multi-cloud environment. Also, the proposed approach permits analysis of the service composition using a Multi-Labeled

Transition Systems (MLTS)-based model checking and Pi-Calculus-based process algebra methods for monitoring the

functional specifications and non-functional properties as the QoS standards. In addition, the proposed approach satisfies

the functional properties for the multi-cloud service composition. The experimental results proved the feasibility of the

proposed approach with performance evaluations and some confirmation setups.
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1 Introduction

In recent years, cloud computing helps information tech-

nology-based organizations to subcontract web service

applications [1, 2]. Development growth of this technology

has replaced current practices [3]. Cloud environment redi-

rects the distribution of web services, including cloud pro-

viders, and smart applications over the internet [4]. There are

many reasons to consider cloud computing over general

server-based computing, few of the reasons are cost

efficiency, high speed, global scale, productivity, perfor-

mance, and reliability [5, 6].

The multi-cloud environment is considered by a set of

simultaneous cloud providers such as private and public

clouds to perform a set of appropriate services. The concept

of Multi-Cloud Service Composition (MCSC) approach is

applied to the process of numerous cloud service aggrega-

tions for generating appropriate composited services. In the

composition procedure, user requests are received for cre-

ating a composite service [7]. After authenticating the user’s

request, the accepted service is found between the activated

services in multi-cloud providers. Then, service description

is composed of a transitional language and composer engine

executes it on the selected services [8–10]. In themulti-cloud

environment, finding the composition of cloud services is a

key challenge [11, 12]. Therefore, finding composited ser-

vice in all of the candidate services that are created with

minimal cloud providers is a challengeable issue in themulti-

cloud environment.

Some research studies have discussed the evaluation of

service composition approach with simulation results
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[13–15]. Simulation results illustrate that statistical tech-

niques can facilitate performance analysis of non-func-

tional properties such as response time, reliability,

availability, and cost. In opposite, formal methods repre-

sent that verification techniques can simplify the efficiency

of functional properties such as deadlock-free, reachability,

fairness, and liveness to evaluate the correctness of system

behavior [16]. Therefore, a study directed towards model-

ing approaches that permit engineers to verify and satisfy

the service composition during the early design phase is

required [17]. The service composition procedure is per-

formed by finding a particular proof from a set of activated

services as assumptions that satisfy related Quality of

Service (QoS) factors of each user’s request [18].

The main effort of the verification approach in this

research is converting semantic interfaces of the cloud

service descriptions into verifiable atomic propositions

[19]. Satisfying the functional properties with existing

atomic propositions of a multi-cloud service composition

approach with numerous candidate services has an essen-

tial confirmation to support scalable state exploration in

verification results [20]. To achieve this effort, a hybrid

formal verification approach is presented to support qual-

ified functional properties using model checking approach

and proving the correctness of complex service composi-

tion behavior in a highly scalable multi-cloud environment

with Pi-Calculus-based process algebra. This hybrid

approach provides all advantages of two powerful verifi-

cation methods for a complex multi-cloud service compo-

sition approach. Due to complementary characteristics of

both model checking and process algebra methods [21],

model checking approach has some advantages such as

automatic state exploration [22, 23], automated verifica-

tion, and counterexample generation but cannot provide

qualitative analysis for large-scale systems with dynamic

behavior [24, 25]. Even though process algebra supports

scalability analysis to verify enumerated general mathe-

matical terminologies in large-scale systems.

This research provides complementary nature benefits of

both verification approaches to prove the correctness of the

integrated multi-cloud service composition methodology.

Thus, the main goal of this research is to present a formal

study where the behavioral parameters of the system can be

easily modified to obtain new results. This paper presents a

hybrid formal verification architecture to the cloud service

composition in the multi-cloud environment. Also, a Multi-

Labeled Transition System for Multi-Cloud Service Com-

position (MLTS_MCSC) method presents to decrease the

number of cloud providers to gain final service composi-

tion with a high level of Quality of Service (QoS). The

presented approach provides behavioral modeling to

examine the procedure of user’ requests, service selection,

and composition in a multi-cloud environment.

The key contributions of this research are illustrated as

follows:

• Proposing the MCSC scenario with supporting QoS of

user’s requirements.

• Presenting a hybrid formal verification approach to

evaluate the correctness and feasibility of the proposed

MCSC approach with supporting minimum cloud

providers.

• Providing minimum cloud providers selection to com-

pose the examined cloud service using a Multi-Labeled

Transition Systems (MLTS)-based model checking.

• Defining critical specification rules using process

algebra method to prove the correctness and scalable

exploration of the MLTS_MCSC method.

• Demonstrating the use of the NuSMV model checker to

evaluate the functional specifications and QoS factors

of the MLTS_MCSC method.

The rest of the research study is organized as follows:

Sect. 2 illustrates a state of the art related works in this

field according to some analytical comparisons. Section 3

illustrates a brief description of multi-cloud computing and

service composition approach. Also, the main presentation

of considered MCSC architecture in this research is given

in Sect. 3. Section 4 shows the formal verification methods

for the MCSC approach. Section 5 presents the analytical

and experimental results obtained from the NuSMV tool.

Finally, Sect. 6 shows the conclusion and future work of

this research.

2 Related work

Formal specification and verification of cloud service

composition is an emerging matter in the correctness and

guarantee of the QoS factors. Most of the research studies

have evaluated formal verification on web service com-

position using model checking and process algebra meth-

ods. This section illustrates a brief literature review for

comparing existing verification approaches.

Gao et al. [26] presented an approach that utilizes rec-

ommendation of formal verification to offer the most

appropriate services for abstract workflows. This services

combination approach based on cost control, in the first step

introduces an inverted index based to improve service search

efficiency. Then defines formalize the service composition

behavior through model of service and workflows. The dis-

advantage of this article is that investigated only in the

uncertain environment. Also, Li et al. [27] have presented a

platform through combination of description model, inter-

action scenario model and composition process formal

model thatmanufactures cloud service composition based on

process calculus cause describes the quality of service (QoS).
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The prototype of this platform focused on user and service

management, service of cloud manufacturing resource and

formal verification.

Bourne et al. [28] proposed a developing type of cloud

service to suggest customer’s executable and configurable

processes of business over the internet using templates of

temporal logic. The Business Process as a Service (BPaaS)

verified transactional behaviors and requirements of the

customers by model checking also BDD analysis guaran-

tees that BPaaS features don’t breach the domain service

provider constraints. This approach using differences

modeling technique such as: BPMN, state charts and fea-

ture models. In other work, Souri et al. [29] applied a

service composition based on social customer relationship

management (CRM) through formal verification methods.

They divided behavioral models into the three operational,

analytical and collaborative behaviors and then according

to the Kripke structure modeling the KP features supported

through the three behaviors existing. They translated the

models and specification properties into the SMV code.

Ghobaei-Arani et al. [30] proposed a moth-flame opti-

mization (MFO) to solve the Web Service Composition

(WSC) problems also it was improving criterion of QoS. In

first, the model based approach was presented defines some

attributes such as reachability, safety specification, liveness

and deadlock. And then they analyzed correctness of their

behavior model with NuSMV model checker. Mezni et al.

[31] presented an algorithm to solve multi cloud service

composition problems through taking analysis advantages

of formal concept. Their experimental results showed that

the grouping ability of FCA reduce number of providers

and clouds and classify it also minimized execution time.

This method effects on service composition high quality.

Also, Entezari-Maleki et al. [32] proposed a model timed

colored Petri nets (TCPNs) based to minimize the number

of composite service request clouds. Atomic services pro-

vided all the request of composite service. This graphically

model was presented represents the request submission

process, service selection and composite service analysis

furthermore cans evaluate the performance system.

Rai et al. [33] have presented a modeling and verifica-

tion approach for interaction of web service based on

recursive composition graph. They employed it to take the

specifications about service interactions and show the

interactions between recursive composition specification

language (RCSL) and web service. They solved the prob-

lem of search for automated composition and recursive

composition. Khai et al. [34] have presented a clustering

method of web services to improve web service verification

and composition based on clustering logic. The results of

this approach applied in an on-the-fly sematic for verify

service. The advantage of this study is find the exact

solution cause don’t discard any cluster.

Table 1 shows a comparison analysis for existing

research studies on this topic.

3 Multi-cloud service composition

This section illustrates a brief explanation of the service

selection and composition approach in the multi-cloud

environment. First, a QoS-aware service composition

approach is presented to illustrate the non-functional

specifications according to user’s requirements in service

selection and composition. Second, the proposed Multi-

Cloud Service Composition (MCSC) approach is presented

for mapping the multi-cloud composition scenario into the

formal verification approaches.

3.1 QoS-aware service composition

In this paper, four criteria of QoS are considered that

include response time, availability, cost and reliability as

presented in Table 2. Also in this paper, the SLA is defined

with respect to these four criteria [35].

In the QoS-aware service composition, the service

composer presents a candidate composition plan for spec-

ifying each atomic service functionalities according to

user’s requirements.

There are four basic patterns to illustrate the service

composition in cloud computing according to Fig. 1 [36]:

serial (a), parallel (b), combined switch (c), and loop (d).

Calculating the QoS of the sequential pattern provides a

basis for calculating other patterns.

Table 3 depict aggregation of QoS factors based on four

basic composition patterns for the composited service. Pi

shows the possibility that executes i-th atomic service.

3.2 Multi-cloud selection scenario

To achieve an optimal cloud service composition with

minimal sub-set of clouds and a high level of QoS, a set of

multiple clouds are proposed that hold cloud providers with

their existing services. Tominimize energy consumption and

communication time between cloud providers and user’s

requests, a multi-cloud selection scenario is provided to find

the reduced combination of cloud services that potentially

provides the service composition according to minimal sub-

set of clouds and high level of QoS factors. Table 4 presents

an example to illustrate theMSCS approach. In this example,

32 services with different functional and QoS factors named

S1…S32 have existed with 7 providers namedP1…P7, which

are hosted in 3 clouds namedC1,C2, andC3.A cloud service

provider P can distribute various atomic services Si… Sj in a

cloud such as C1 or even numerous clouds such asCi and Ck.

For example, according to Table 4, service S3 is distributed
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into three different cloudC1,C2, andC3with cloud provider

P2.

Suppose a user request is confirmed in form of RS = (S1,

S5, S8), all of the candidates composited services are sug-

gested in forms of Cloud i (Provider j) according to the

requested QoS factors as follows in Table 5.

After suggesting the candidate services, all three cloud

indexes are compared with together. This comparison is a

cloud provider reduction method. If we find the same cloud

index in candidate clouds, then the cloud indexes are

merged together as follows in Table 6.

Also, all three provider indexes are compared together.

If we find the same provider index in candidate providers,

then the provider indexes are merged together as follows in

Table 7.

After specifying all candidate composited services with

cloud provider reduction method, the communication time

between appropriate cloud providers is calculated for each

candidate composited service. We proposed Tables 8 and 9

that illustrate the communication time between cloud

connections and provider connections consequently.

Fig. 1 The service composition

patterns: a serial, b parallel,

c combined switch, d loop

Table 1 Comparison of the proposed work with other methods for verification of service composition

Research Formal model Correctness

property

Specification logic Tool/Method Development

phase

Case study

[26] Model checking Yes CTL PRISM Implementation Web service

[27] Process algebra No CTL MyEclipse Implementation Cloud service

[28] Model checking No CTL NuSMV implementation Cloud service

[29] Model checking Yes CTL NuSMV/Kripke structure Implementation Cloud service

[30] Model checking Yes CTL,LTL NuSMV Implementation Web service

[31] Process algebra Yes Operational Flow Language Formal concept analysis Implementation Multi-cloud service

[32] Theorem proving No – CloudSim/colored petri net Design Multi-cloud service

[33] Process algebra Yes CTL,LTL NuSMV/Kripke structure Implementation Web service

[34] Process algebra No Clustering logic Labeled transition system Design Web service

Table 2 Examples of QoS metrics for web services [9]

QoS metrics Description Unit

Response time Executing time between the moment a requisition and the moment when the result is achieved ms

Cost The money that the applicant should pay to the service provider for using the service $

Availability The probability of the availability of a service %

Reliability The reliability of the service %
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According to the communication time of existing clouds

and providers, Total Communication Time (TCT) for each

candidate service is evaluated as follows (Eq. 1) that Cij(-

time) and Pij(time) show communication time between

clouds Ci and Cj and providers Pi and Pj respectively:

TCT ¼
Xn

i;j¼1

Cij timeð Þ þ
Xn

i;j¼1

Pij timeð Þ ð1Þ

After evaluating the TCT of each candidate composited

service, the minimum value of the TCT is considered as

final service composition as follows: Min 8 TCTi where

1\ i\ n that n is the number of candidate services.

We examine the total communication time TCT for each

candidate service between each cloud and provider as

follows where a , b denotes the TCT value for each

communication between a and b according to Tables 8 and

9:

• TCT1 ¼ C1 P1ð Þ; C2 P5ð Þ; C3 P7ð Þf g ¼ ððC1
, C2Þ þ ðC2 , C3Þ þ ðC1
, C3ÞÞ

þ P1 , P5ð Þ þ P5 , P7ð Þ þ P1 , P7ð Þð Þ
¼ 200þ 250þ 180ð Þ þ 25þ 30þ 16ð Þ ¼ 701

• TCT2 ¼ C1 P1ð Þ; C3 P5; P7ð Þf g
¼ C1 , C3ð Þ þ ððP1 , P5Þ þ ðP5
, P7Þ þ ðP1 , P7ÞÞ ¼ 180ð Þ þ 25þ 30þ 16ð Þ
¼ 251

• TCT3 ¼ C1 P1ð Þ; C3 P8ð Þf g
¼ C1 , C3ð Þ þ P1 , P8ð Þ ¼ 180ð Þ þ 22ð Þ
¼ 202

• TCT4 ¼ C1 P1ð Þ; C2 P6ð Þ; C3 P7ð Þf g
¼ C1 , C2ð Þ þ C2 , C3ð Þ þ C1 , C3ð Þð Þ

þ P1 , P6ð Þ þ P6 , P7ð Þ þ P1 , P7ð Þð Þ
¼ 200þ 250þ 180ð Þ þ 27þ 30þ 30ð Þ ¼ 717

• TCT5 ¼ C1 P1ð Þ; C2 P6ð Þ; C3 P8ð Þf g
¼ C1 , C2ð Þ þ C2 , C3ð Þ þ C1 , C3ð Þð Þ

þ P1 , P6ð Þ þ P6 , P8ð Þ þ P1 , P8ð Þð Þ
¼ 200þ 250þ 180ð Þ þ 27þ 22þ 25ð Þ ¼ 704

• TCT6 ¼ C1 P1ð Þ; C3 P5; P8ð Þf g
¼ C1 , C3ð Þ

þ P1 , P5ð Þ þ P5 , P8ð Þ þ P1 , P8ð Þð Þ
¼ 180ð Þ þ 25þ 22þ 20ð Þ ¼ 247

By comparing total communication time for each candidate

composited service, we see that final cloud composited

service is Candidate 3 with interconnecting clouds C1 and

C3, by providers P1 and P8 with minimum total commu-

nication time 202 ms.

According to the MCSC example, some preliminaries

are defined as follows:

Definition 1 (Multi-Cloud Services). A MCS is a set of

Cloud providers MCS = {CS1, CS2… CSN}, where CSi

(1 B i B N) is a cloud that gets a set SP of service pro-

viders, SP = {Pi1, Pi2… PiG}, where Pij (1 B j B G) is

the j-th service provider in cloud CSi. A service provider

has belonged to more than one atomic service. A service

provider suggests a set of services S = {Sj1, Sj2… SjL},

where Sjk (1 B k B L) is the k-th service suggested by

service provider Pj [31].

Definition 2 (User requests). For showing a multi-cloud

composition candidate, user requests are denoted by

requested services RS = {S1, S2, S3,…, Sn} that is respon-

ded using a selected services with W = {CS1(CP1), CS2(-

CP2), …, CSi(CPj)}, where CS1, CS2, …, CSk are the cloud

services involved in the service composition method, and

CP1, CP2,…, CPk represent the minimum Cloud providers.

According to the above definitions, the MCSC approach

is specified as the minimum set of applied cloud providers

by evaluating total communication time and selected QoS

factors. Next section illustrates the formal verification of

the proposed MCSC approach to cover proof analysis of

the functional specifications in the selection and composi-

tion procedure.

4 Formal verification of the MCSC approach

This section illustrates a hybrid formal verification

approach to prove the correctness of the proposed MCSC

approach. This formal approach uses the Multi-Labeled

Transition System (MLTS) method as the model checking

Table 3 Aggregation of QoS

factors based on four basic

composition patterns [36]

QoS criteria Abbreviation Sequential Parallel Probabilistic Circular

Response time RT(Si)
Pn

i¼1 RT Sið Þ Min RT Sið Þð Þ Pn
i¼1 Pi � RT Sið Þ k � RTðSÞ

Cost C(Si)
Pn

i¼1 C Sið Þ MinðCðSiÞÞ
Pn

i¼1 Pi � C Sið Þ k � CðSÞ
Availability A(Si)

Qn
i¼1 A Sið Þ Max A Sið Þð Þ Qn

i¼1 Pi � A Sið Þ AðSÞk

Reliability R(Si)
Qn

i¼1 R Sið Þ MaxðRðSiÞÞ
Qn

i¼1 Pi � R Sið Þ RðSÞk
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approach through NuSMV tool and the Pi-Calculus method

as the process algebra approach [37]. Figure 2 presents the

hybrid formal verification approach. According to Fig. 2, a

multi-cloud composition scenario is proposed as a Business

Process Model (BPM) workflow, which behavioral mod-

eling is applied to this model [38]. For satisfying scalability

of the proposed MCSC approach, the Pi-Calculus method

is applied for proving the soundness of the minimum subset

cloud services in the composited scenario. So, the formal

specification of the proposed MCSC approach is applied

using Pi-calculus expressions. To verify the MCSC

approach, the proposed workflow is translated into the

MLTS method to the behavioral modeling of the MCSC

approach. After translating the MLTS model, this model

can be converted to SMV codes. Consequentially, the

specification rules of the behavioral model as the functional

specifications are defined in forms of Computation Tree

Logic (CTL) formulas [31]. Finally, the converted SMV

codes and temporal logic formulas are inputted to the

NuSMV model checker.

Figure 3 illustrates a service composition workflow

according to the presented multi-cloud example in Table 4.

A user requests a set of priority-based services in forms of

UR = {S1, S5, S6, S8, S2, S7, S3, S4, S5, S7} to the com-

position navigator, which there are some composition

results in the various clouds that may fulfill the proposed

request. For behavioral modeling this scenario, the next

subsection presents formal specification and verification of

the MCSC approach.

4.1 A formal specification using the Pi-Calculus
method for service composition

The proposed formal specification provides a sound foun-

dation for automated verification of the proposed MCSC

approach. First, a conceptual model of the multi-cloud

composition scenario is proposed. Then, the syntaxes and

semantics of Pi-Calculus are summarized. Afterward,

based on this model, a formal specification approach is

defined for the MCSC approach.

There are four semantic abbreviations for the Pi-Cal-

culus method that represent the service composition pat-

terns in forms of sequential, parallel, conjunctive, and

disjunctive operators consequently as follows

&; j; � ; and � . Also, data transactions and existing

channels are illustrated with lowercase letters such as a, b,

and c. The process conditions are represented by uppercase

types such as U, D, and S. The intuitive meanings of

concepts and prefixes are listed in Table 10 [39–41].

Definition 3 The main channel ‘ = {a, b, c, d, e, f} is a set

of channel’s names that input and output messages with the

relations a (msg).P and a\msg[ .P consequently with

process P in a Pi-Calculus relation formula.

There are 5 functional processes for navigating MCSC

approach that is described as follows, where each func-

tional process can have a set of sub-processes Pro-

cess = (p1, p2, p3,…, pn) and messages Mprocess= (msg1,

msg2, msg3,…, msgn) that interconnect with channel link c

[ ‘:

• User request:: U = (start, assignment, set), MU= (ini-

tialize, process, send) by channel link a.

• Service discovery:: D= (discover component, workflow

synthesis, semantic analysis), MD= (check, compare,

calculate) by channel link b.

• Service selection:: S = (concept matchmaking, SLA

filtering, proper cloud, proper provider, reduce com-

munication, final set, notify inappropriately), MS=-

(check, unsuitable, suitable, forward, send-back,

process) by channel link c.

• Composition generation:: G = (graph generation,

workflow analysis, workflow execution, candidate ser-

vice), MG= (build, process, investigate, perform) by

channel link d.

• Optimal composition:: O = (optimal search, graph

optimization, Max QoS, Min communication, optimal

composition, end), MO = (process, choose, perform,

satisfy, finish) by channel link e.

For each functional process, a Pi-Calculus expression is

demonstrated as follows according to the channel links,

processes and existing messages [24]:

1. User request: A user request process is created from a

set of constructed processes as an input in the MCSC

approach.

U = a\initialize[ .Start & a(initialize).assign-

ment, a\process[ .assignment & a(process).set,

a\send[ .set & a(send).discover_component.

2. Service discovery: This process shows a set of

preliminary processes for discovering existing cloud

Table 4 Existing multi-cloud attributes and providers with service

distribution

Clouds C1 C2 C3

Providers P1 P2 P3 P2 P4 P5 P6 P2 P5 P7 P8

Services

S1 S3 S2 S3 S2 S3 S5 S3 S3 S2 S3

S2 S6 S3 S6 S3 S5 S6 S6 S5 S6 S4

S3 S4 S6 S6 S7 S6 S7 S5

S4 S7 S7 S8 S8
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services according to the QoS levels of the user’s

request. First, the same QoS components are discov-

ered between all of the cloud providers. Then, a

workflow synthesis process is started in order to

compare each QoS factor that is activated in each

cloud service. In addition, a semantic analysis is

applied to recognize service suitability for use. Finally,

semantic analysis results are used to find applicable

cloud services as well as multiple cloud service

composition with high QoS levels using matchmaking

concepts [42].

D = b\check[.discover_component & b(check).

Workflow_synthesis, b\compare[.Workflow_synthesis

& b(compare).semantic_analysis, b\calculate[.seman-

tic_analysis & b(calculate).concept_matchmaking.

3. Service selection: In this stage, semantic matching of

QoS parameters is performed that filters user’s restric-

tions according to the SLA conditions. By selecting

each discovered service from the appropriate cloud, the

communication time is computed for selecting the

proper provider that supports existing service. The

optimal cloud and provider selection are done accord-

ing to the minimum communication time factor.

S = c\check[.concept_matchmaking & c(check).

SLA_filtering, c\suitable[.SLA_filtering & c(suit-

able). proper_cloud, c\unsuitable[.SLA_filtering

&c(unsuitable).notify_inappropriate, c\forward[.

proper_cloud &c(forward). proper_provider, c\for-

ward[. proper_provider & c(forward).reduce_commu-

nication, c\process[.reduce_communication &

c(process).final_set, c\sendback[.notify_inappropri-

ate & c(sendback).concept_matchmaking, c\for-

ward[.final_set & c(forward).graph_generation.

4. Composition generation: After selecting a set of cloud

services, the composition graph is generated that

navigates workflow execution process to create all of

the possible candidate cloud services.

G = d\build[.graph_generation & d(build).work-

flow_analysis, d\process[.workflow_analysis& d(pro-

cess). workflow_execution, d\investigate[.workflow_

execution & d(investigate).candidate_service, d\per-

form[.candidate_service& d(perform). optimal_search.

5. Optimal composition: The optimal composite process

explains selecting the near optimal composite service

after comparing maximum QoS levels and minimum

communication time of each candidate composed

Table 5 Suggested candidate cloud services in the first step

Requested Service S1 S5 S8

Candidate 1 C1 (P1) C2(P5) C3 (P7)

Candidate 2 C1 (P1) C3 (P5) C3 (P7)

Candidate 3 C1 (P1) C3 (P8) C3 (P8)

Candidate 4 C1 (P1) C2 (P6) C3 (P7)

Candidate 5 C1 (P1) C2 (P6) C3 (P8)

Candidate 6 C1 (P1) C3 (P5) C3 (P8)

Table 6 Suggested candidate cloud services after cloud index

reduction

Requested Service S1 S5 S8

Candidate 1 C1 (P1) C2 (P5) C3 (P7)

Candidate 2 C1 (P1) C3 (P5, P7)

Candidate 3 C1 (P1) C3 (P8, P8)

Candidate 4 C1 (P1) C2 (P6) C3 (P7)

Candidate 5 C1 (P1) C2 (P6) C3 (P8)

Candidate 6 C1 (P1) C3 (P5, P8)

Table 7 Suggested candidate cloud services after provider index

reduction

Requested Services S1 S5 S8

Candidate 1 C1 (P1) C2 (P5) C3 (P7)

Candidate 2 C1 (P1) C3 (P5, P7)

Candidate 3 C1 (P1) C3 (P8)

Candidate 4 C1 (P1) C2 (P6) C3 (P7)

Candidate 5 C1 (P1) C2 (P6) C3 (P8)

Candidate 6 C1 (P1) C3 (P5, P8)

Table 8 Communication time

between existing clouds
C1 C2 C3

C1 0 200 180

C2 200 0 250

C3 180 250 0

Table 9 Communication time between existing cloud providers

P1 P2 P3 P4 P5 P6 P7 P8

P1 0 20 15 30 25 27 30 22

P2 20 0 18 15 26 12 24 23

P3 15 18 0 28 34 25 28 25

P4 30 15 28 0 17 15 25 27

P5 25 26 34 17 0 18 16 20

P6 27 12 25 15 18 0 30 25

P7 30 24 28 25 16 30 0 15

P8 22 23 25 27 20 25 15 0
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service. Finally, the optimized service composition

workflow is allocated to the user.

O = e\process[.optimal_search & e (process).-

graph_optimization, e\choose[.graph_optimization

& e(choose).Max_QoS, e\perform[.Max_QoS &

e(perform).Min_communication, e\satisfy[.Min_-

communication & e(satisfy).optimal_composition,

e\finish[.optimal_composition & e(finish).end.

Definition 4 To verify the Pi-Calculus expressions, some

specification patterns are presented in forms of u
w, where u

denotes a condition rule then w is satisfied according to the

operational semantics of u.

• Specification pattern (1):

U�!msg
D

This relation denotes that the process U performs the

action msg then, process D becomes.

• Specification pattern (2):

U�!msg
D

S&U�!msg
D

This relation denotes that if the process U performs

msg and becomes D; then, the process S and U can

sequentially perform msg and become D.

• Specification pattern (3):

U�!msg
D

S Uj �!msg
D

This relation denotes that if process U executes the

action msg and becomes process D; then, the process

S and process U can be perfumed parallel transportation

by the action msg to achieve the process D.

• Specification pattern (4):

U�!msg
D

Sþ U�!msg
D

This relation denotes that if process U executes the

Fig. 2 The hybrid formal verification method for the MCSC approach

Fig. 3 A composition workflow

in a multi-cloud environment
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action msg and becomes process D; then, the process

S and process U can be perfumed conjunction by the

action msg to achieve the process D.

• Specification pattern (5):

U�!msg
D

S� U�!msg
D

This relation denotes that if process U executes the

action msg and becomes process D; then, the process

S and process U can be perfumed a disjunction by the

action msg to achieve the process D.

• Specification pattern (6):

U�!msg1
D&D�!msg2

S

U �!msg1 &msg2
S

If process U executes the action msg1 and becomes

process D then process D performs the action msg2 for

achieving the process S, then process U can be perfumed by

the actions msg1 and msg2 sequentially to achieve the

process S.

After describing some specification patterns, the

MSCSC approach can be modeled as a proposed formal

specification Eq. (2):

OptimalMCSC ¼ ðU MU#að Þ þ [ MD#bð Þ
þ \S MS#cð Þ þ

Y
G MG#dð Þ

þMax
X

ðMinðO MO#eð Þ
� �

ð2Þ

According to Eq. (2), the user’s request is sent with func-

tional process U and set of messages MU by an intercon-

necting channel a. So, service discovery stage is performed

with process D and set of messages MD by interconnecting

channel b in a union of enabled cloud services. Then, the

service selection stage applies the intersection of appro-

priated services to generating QoS-based workflow with

process S and set of messages MS by interconnecting

channel c. Afterward, composition generation stage pro-

duces candidate composed services according to the pro-

duct of the SLA and beneficial cloud providers with

process G and set of messages MG by interconnecting

channel d. Finally, optimal composition stage chooses

optimal service composition set according to the summa-

tion of the minimum communication time value of each

candidate composited service and maximum QoS level

with process O and set of messages MO by interconnecting

channel e.

After formalizing the proposed MCSC approach, some

specification rules are modeled according to the Pi-Calcu-

lus expressions.

(1) r1 = ( a\process[ assignment & a(process).set) �
(a\send[.set & a(send).discover compo-

nent) ? (b\compare[.workflow synthesis) ||

(b\calculate[.semantic analysis) � (b(compare ^
calculate).concept matchmaking).

Table 10 The used terminologies in the Pi-Calculus method

Terminology Description

Uppercase U, D, S, G, C, O The functional processes

Lowercase a, b, c, d The channels in the system

:: U Define a new process

0 The null process in the system

U&D A sequence composition

U || D A parallel composition

U � D A conjunctive composition

U � D A disjunctive composition

msg1, msg2, msg3 The existing messages as actions

a(msg).P A message input

a\msg[.P A message output

^, _ And, Or for messages

Fig. 4 The comparison of the

verification time for each

specification rule in scenario 1
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(2) r2 = ( c\suitable _ unsuitable[.SLA filtering) �
((c(suitable). proper cloud) || (c(unsuitable).notify

inappropriate)) ? (c\forward[. proper cloud &

c(forward). proper provider) || (c\send back[.notify

inappropriate & c(send back).concept matchmaking).

(3) r3 = (c\forward[.proper cloud &c(forward).proper

provider) � (c\forward[. proper provider & c(for-

ward).reduce communication) ? (c\forward[.final

set & c(forward).graph generation) || (d\process[.-

workflow analysis& d(process).workflow execution)�
(d\investigate[.workflow execution&d(investigate).-

candidate service)

(4) r4 = (d\perform[.candidate service) ? e

\choose ^ perform[.graph optimization?(e (choo-

se).Max QoS) � (e (perform).Min communication)

(5) r5 = (a\process[.assignment) � (b\check[.dis-

cover component) � (c\check[.concept

matchmaking)� (d\investigate[.workflowexecution)

� (d\perform[.candidate service) � (e\per-

form[.Max QoS) � (e\satisfy[.Min communication)

� (e\finish[.optimal composition).

In the next subsection, the proposed MCSC approach is

translated to the LTS model for verifying and proving

above specification rules.

4.2 MLTS-based model checking approach

After describing the formal specification of the MCSC

approach, mapping the MCSC approach into MLTS

method is presented. An MLTS is an action-based model

that presents the communications between the states and

the events of the behavioral model [43]. First, we define the

LTS method as an initial model.
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Table 11 The CTL specification rules

CTL

rule

Description

C1 AG(assignment & process ? set & send) ? AX (discover component & send ? EF (workflow synthesis & compare & semantic
analysis & calculate)) ? EX (concept matchmaking & calculate & compute)

C2 EG((SLA filtering & suitable ? proper cloud) | (SLA filtering & unsuitable ? notify inappropriate)) ? EX (proper cloud &
forward ? proper provider)

C3 AG(proper provider & forward ? reduce communication & final set) ? AX (graph generation & forward) ? EF(workflow
execution & process ? candidate service & investigate)

C4 EG(candidate service & perform ? graph optimization) ? EX (Max QoS & Min communication ? optimal composition & choose)

C5 AG(EF(assignment & process ? discover component & check ? concept matchmaking ? workflow execution &
investigate ? candidate service & perform ? Max QoS & choose ? Min communication & satisfy ? optimal composition &
finish))
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Definition 5 A Labeled Transition LT is a 4-tuple LT = (S,

s, E, T) where [13]:

• S is a set of states.

• s is the primary state: s [ S.

• E is a set of exsting events.

• T is an overall transition relation: T � S � E � S. In

other words, the relation s1 �!
e

s2 s1; s2 2 S and e 2 Eð Þ
is applied for stating that s1; e; s2ð Þ 2 T .

Definition 6 A Multi-Labeled Transition System MLTS is

a 7-tuple MLTS = (Q, q, A, E, M, T) where:

• Q is a set of states.

• q is the set of initial state: q 2 Q.

• A is a set of attributes.

• E is a set of events.

• M is a set of multi-action labels that can have a multi-

event and multi-attribute schema with some events

E and some attributes A as follow:

(e1\att1.value[, e2\att2.value[, e3\att3.value[, …
en\attn.value[) where e1, e2, e3,…, en[E, att1, att2,

att3,…, attn [ A and value [ N (N is set of the natural

numbers).

• T is a final transition relation: T � q � M � q. This

means the relation q1 �!
a

q2 (q1, q2 [ q and a = e\att.-

value [ M) is used for stating that (q1, a, q2) [ T.

Definition 7 A labeled transition path LTP is a determi-

nate sequence of the states and events starting from state q1
and finishing at state q2 (q1 and q2 [ q) denoted as [44]:

LTP ¼ q1 �!
a1

q2 �!
a2

q3. . . qn�1 �!
an

qn such that 8 k; vð Þ
: qk; av; qkþ1ð Þ 2 T :

Definition 8 A cloud service provider cs is a 6-tuple

cs = (P, ws, Q) where:

• P is a set of service providers where P = (p1, p2, p3,…,

pn).

• ws is an atomic service type for service provider

p where p1= (ws11, ws12, ws13,…, ws1n).

• Q is a set of QoS attributes for each web service wsij [
pi that QoS = (Cv, tv, Av, Rv):

• Cv is a set of cost values in QoS attribute for each

wsij [ pi.

• tv is a set of response time values in QoS attribute

for each wsij [ pi.

• Av is a set of availability values in QoS attribute for

each wsij [ pi.

• Rv is a set of reliability values in QoS attribute for

each wsij [ pi.

Table 12 State reachability comparison in verification results

CTL rule MLTS_MCSC method LTS_MCSC method

Total states Reachable states Reachability (%) Total States Reachable States Reachability (%)

C1 566,224 537,913 95 3,223,762 2,321,108 72%

C2 328,407 318,554 97 1,970,447 1,517,244 77%

C3 728,691 670,395 92 4,372,148 3,016,782 69%

C4 122,326 121,102 99 733,958 601,845 82%

C5 1,636,534 1,456,515 89 Timeout Timeout Timeout

Table 13 A side by side comparison of verification analysis for the first scenario

CTL

rule

MLTS_MCSC method LTS_MCSC method MLTS_MCSC method LTS_MCSC method

Result #State #Transition Result #State #Transition Verification

time (S)

Memory

(MB)

Verification

time (S)

Memory

(MB)

C1 True 566,224 1,26,241 True 3,223,762 6,101,475 524 220 2750 806

C2 True 328,407 720,779 True 1,970,447 4,530,221 358 135 1700 675

C3 True 728,691 1,902,645 True 4,372,148 7,665,041 721 359 1430 1080

C4 True 122,326 330,263 True 733,958 1,530,221 200 53 953 257

C5 True 1,636,534 2,963,338 Timeout Timeout Timeout 2024 653 Timeout Timeout
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Definition 9 (Cloud Services to MLTS) Let CS = (S1,…,-

Sn) be a set of cloud services, the MLTS model for cloud

services is a guarded MLTSCS where:

• q = (s1, s2, s3,…, sn) is a set of service states.

• q is the set of initial service state.

• A ¼
Pn

i CV
� �

�
Pn

i TV
� �

�
Qn

i AV
� �

�
Qn

i RV
� �

is a

2-arrays aggregation of attributes as QoS factors that

consists of a binary valued functions (attribute, value)

between four QoS attributes in terms of cost, response

time, availability and reliability for wsij [ Pi.

• E is a set of events.

• M¼fðe1;hCV1:valuei;hTV1:valuei;hAV1:valuei; hRV1:

valueiÞ; . . .;ðen;hCVn:valuei;hTVn:valuei; hAVn:valuei;
hRVn:valueiÞ:

• T is a total transition relation where Si� ðe1; hcv1:
valuei; htv1:valuei; hav1:valuei; hrv1:valueiÞ � Sj:

Since each QoS value is evaluated in various bounds, a

boundary normalization based on unity feature is applied to

balance different QoS values in the instance (0, 1) in

Eq. (3) [45, 46]. The hb is 1 as the high bound and the lb is

0 as low bound. The amax and amin are the maximum and

minimum values of each QoS attribute. The a0 is the nor-

malized value.

a0 ¼ lbþ a� aminð Þ hb� lbð Þ
amax � amin

ð3Þ

For example, s1 and s2 are two services in provider p1
that holds their QoS factors as follows, where cv1 is cost,

tv1 is response time, av1 is availability and rv1 is reliability

of service s1 that are normalized in [0,1]. All of the QoS

attributes are activated using event calculate. The value of

each factor is determined with (factor.value), for examle,

cost with value 0.2 is denoted by\cv1.0.2[.

s1.calculate\cv1.0.2[,\tv1.0.3[,\av1.0.9[,\rv1.0.8[&

s2.calculate\cv2.0.1[,\tv2.0.4[,\av2.0.8[,\rv2.0.8[.

To design the CTL specification rules of the proposed

MCSC approach, the CTL grammar is shown as follow

[19]

• True shows a correct proposition.

• The AP illustrates set of atomic propositions, p [ AP.

• The A is ranged over CTL formulas.

• Eventually (E) and Always (A) are the quantifiers on the

paths.

• Globally (G), neXt (X) and Future (F) show temproal

benchmarks.

The Pi-calculus-based specification rules of the MCSC

approach (r1, r2, r3, r4, r5) are translated to the CTL

formulas which can be evaluated for the MLTS model.

These specification rules are converted into functional

properties in terms of CTL formulas according to Table 11.

We can let ? as the logical implication. Each specification

rule can be satisfied with state space of model and violated

using a counterexample in the NuSMV model checker.

5 Experimental results

In this section, some experimental results are presented

using a model checking approach in different scenarios.

The first experiment depicts the verification analysis for

functional properties of proposed MCSC approach with

MLTS method called MLTS_MCSC in compare to the

labeled transition system (LTS_MCSC) method that pre-

sented in [29] and the Commercial Multi-clouds Service

Composition (CMSC) method that presented in [47]. The

second experiment illustrates experimental analysis to

evaluate the non-functional properties of the MLTS_MCSC

and other methods. The experimental results are imple-

mented on a system using an Intel Core i5 (2.60 GHz),

8 GB RAM, Windows 10 (64 bit) and the NuSMV model

checker. According to real-business scenarios, a cloud

service cannot be represented in the great number of cloud

providers by notice to management complexity and high

communication costs. To do this, two scenarios for eval-

uating the MLTS_MCSC method are proposed. In the first

scenario, we have considered 3 clouds, 8 providers that

present 35 services. The second scenario shows a scalable

environment with 6 clouds, 20 providers that present 100

services.
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5.1 Verification analysis

The goal of the first experiment is to analyze the correct-

ness of the specific rules that should be satisfied in the

MCSC approach. To achieve the best performance by

proving the specification rules, we have considered the

proposed workflow approach according to Fig. 3 that is

mapped on the behavioral model of the MLTS_MCSC

method. Table 12 demonstrates the number of reachable

states in the proposed MLTS_MCSC method and

LTS_MCSC method for each specification rule. Also, the

percentage of the state reachability in the MLTS_MCSC

method is higher than the LTS_MCSC method for each

examined specification rule.

Afterward, Table 13 illustrates the verification results of

the existing specification rules with the number of exam-

ined states and transitions. According to Table 13, we

observed that the C5 specification rule was timed out in the

LTS_MCSC method. Also, the number of states and tran-

sitions for the MLTS_MCSC method are lower than the

number of states and transitions for the LTS_MCSC

method. In addition, memory consumption of the

MLTS_MCSC method is lower than the other approach

according to satisfaction of existing specification rules.

Finally, the verification time and memory consumption of

running the C5 rule are out of model checking rate.

Figure 4 shows verification time for satisfying each

specification rule in the MLTS_MCSC, LTS_MCSC and

CMSC methods. We observed that the verification time of

the MLTS_MCSC method is lower than the other methods

according to the satisfaction of existing specification rules.

Also, the verification time of the C5 specification rule was

timed out in the LTS_MCSC method. Also, Fig. 5 presents

the memory consumption of the verification results for the

CTL rules in the first scenario according to a number of

user’s requests for composited services. Based on the

multi-labeled method, the proposed MLTS_MCSC method

has minimum memory consumption than other methods.

The memory consumption value of the C5 specification

rule was timed out in the LTS_MCSC method.

Figure 6 illustrates verification time for satisfying each

specification rule in the second scenario with 6 clouds, 20

providers that present 100 services. We observed that the

verification time of the MLTS_MCSC method is lower

than the other methods according to the satisfaction of

existing specification rules. Also, the verification time of

the C3, C4, and C5 specification rules were timed out in the

LTS_MCSC method and verification of the C5 specifica-

tion rule was timed out in the CMSC method.

Moreover, Fig. 7 shows the memory consumption of the

verification results for the existing specification rules in the

second scenario the MLTS_MCSC, LTS_MCSC, and

CMSC methods. The experimental results showed that the

proposed MLTS_MCSC method has minimum memory

consumption than other methods. The memory consump-

tion value of the C3, C4 and C5 specification rules were

timed out in the LTS_MCSC method. Also, the memory

consumption value of the C5 specification rule was timed

out in the LTS_MCSC method.

5.2 Experimental analysis

Figure 8 shows the execution time for the first scenario

according to the number of user’s requests for composited

services in proposed MLTS_MCSC, LTS_MCSC and

CMSC methods. We observed that the execution time

growths when the number of requests in the LTS_MCSC

and CMSC methods increases exponentially. The mean

execution time of composited requests in the

MLTS_MCSC is lower than the other methods. When the

number of requests is increased, this is a realistic com-

parison since the growth level of the MLTS_MCSC is

lighter than the other methods.

Figure 9 shows the execution time of the MCSC

approach for the second scenario according to the number

of user’s requests for composited services. We observed

that the MLTS_MCSC method has minimum growth of

execution time than other methods when the service com-

position problem is applied up to 150 requests.

In addition, Figs. 10 and 11 depict the number of

examined cloud providers in the service composition of the

scenarios 1 and 2 respectively for the MLTS_MCSC,

LTS_MCSC and CMSC methods. We have observed that

by applying the MLTS_MCSC method, the minimum

number of cloud providers are selected and composed for

user’s requests. This reduction leads to decrease commu-

nication time, cost and energy consumption between cloud

data centers. According to Fig. 7, when the number of

requests is specified between 1 and 3, the number of

selected final cloud providers are equal for two multi-cloud

approaches.

When the number of requests is increased, the capability

of the scalable proposed MLTS_MCSC method can be

observed to select minimum cloud providers from the set of

candidate composited services. For example, when the

number of requests is increased between 80 and 100

requests (Fig. 11), the number of selected cloud providers

are fixed to compose existing cloud services with 6 cloud

providers in the MLTS_MCSC method. In opposite, the

number of examined cloud providers are 16, 17 and 18

respectively for the existing number of requests in the

LTS_MCSC method.
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5.3 Discussion

Using a hybrid formal verification approach can support

the complementary advantages of the model checking and

the process algebra in the multi-cloud service composition.

On the other hand, by reducing the number of cloud pro-

viders for interconnecting users and cloud services in the

multi-cloud environment, some beneficial aspects of the

SOA are affected to the efficiency of the cloud service

composition as follows [48–50]:

• Performance of cloud resources is an important matter

for the multi-cloud environment. Selecting the mini-

mum number of cloud providers in the composition

procedure can affect the performance of cloud

resources.

• Bandwidth usage is the main challenge for decreasing

consumed cost and time in composited cloud services

with the minimum number of cloud providers.

• Interoperability is one of the main factors to inter-

change information and resources between smart

devices and cloud services in the multi-cloud service

composition. The multi-cloud interoperability offers a

large-scale architecture to manage the interconnection

of the cloud providers with each other. By reducing

cloud providers in the selection and composition of

appropriate services, interoperability is managed and

data migration can be applied effectively with high

scalable coverage.

6 Conclusion and future work

This paper presented a hybrid formal verification approach

to analyze cloud service composition problem in the multi-

cloud environment. Also, a Multi-Cloud Service Compo-

sition (MCSC) approach was presented to decrease the

number of cloud providers to gain final service composi-

tion with a high level of Quality of Service (QoS). The

presented approach provided behavioral modeling to

examine the procedure of user’ requests, service selection,

and composition in a multi-cloud environment. Also, the

presented approach permitted the analysis of the service

composition using a Multi-Labeled Transition Systems

(MLTS)-based model checking and Pi-Calculus-based

process algebra methods for monitoring some functional

specifications and non-functional specifications as the QoS

standards. In addition, the proposed verification approach

satisfied the functional specifications. The experimental

results supported the feasibility of the proposed approach

with performance evaluations and some confirmation set-

ups. We observed that the verification time of the

MLTS_MCSC method was lower than the other methods

according to the satisfaction of existing specification rules.

Also, the proposed MLTS_MCSC method has a minimum

memory consumption than other methods. To evaluation of

execution time factor, we observed that the execution time

of the MLTS_MCSC method is lower than the LTS_MCSC

and CMSC methods. In addition, the MLTS_MCSC

method selects minimum cloud providers to compose the

examined cloud service in multiple clouds that can

decrease the communication time and energy consumption.

In the future work, we will try to use meta-heuristic

algorithms in the model checking approach for avoiding

the state space explosion problem in a highly scalable

multi-cloud environment with a huge number of requested

services. Also, a general computational intelligence design

framework can be utilized to produce the smart design

process of the specification rules informs of CTL and LTL

formulas.
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