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Abstract
Workload prediction is one of the important parts of proactive resource management and auto-scaling in cloud computing.

Accurate prediction of workload in cloud computing is of high importance for improving cloud performance, mitigate

energy consumptions, meeting the required quality of service (QoS) level, predicting the energy consumption of data

centers (DCs), and improving the cloud service providers’ scalability. However, in cloud computing context workload

prediction is a challenging issue and various schemes using machine learning, data mining, and mathematical methods to

deal with this issue. This scheme presents an extensive literature review of the workload prediction schemes proposed in

the literature to improve resource management in the cloud DCs. It first provides the required knowledge regarding the

workload prediction context and presents a taxonomy of the workload prediction schemes according to their applied

prediction algorithm. Moreover, the main contributions of these schemes are illustrated and their major advantages and

limitation are specified. At last, the open research opportunities in the workload prediction field are focused and the

concluding remarks are presented.
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1 Introduction

Cloud computing is a promising technology aimed to bring

various visualized resources, software, and platforms as

services to its customers based on the pay-for-use model

[1]. To provide high-performance cloud services for end-

users, conducting resource management in cloud DCs is of

high importance [2, 3] and it can decrease the energy

consumption costs as well as CO2 emissions [4, 5]. At

general, resource management scheme can be classified as

reactive and proactive categories which in the first case,

when the workload increases/decreases to a predefined

specific threshold, resource management will be conducted

[6]. But, regarding the boot time of the VMs, the reactive

method cannot deal with the sudden burst of the workload

[7] and may result in service level agreement (SLA) vio-

lations. On the other hand, proactive methods solve this

problem by predicting the future workload of DC by rec-

ognizing the possible resource usage patterns and provi-

sioning the required resource. Consequently, by effective

prediction, the performance degradation can be deterred

and idle resources can be reduced to further improve the

profit. However, conducting proactive resource manage-

ment is not a trivial process and variable workload of the

cloud-hosted services may lead to the following problems:

• Under-provisioning: The applications do not get enough

resources to process all their requests and may cause

SLAV.

• Over-provisioning: Virtual resources are assigned to the

application more than needed, which incurs more cost

to the customer. However, up to some level, over-

provisioning is required to handle the fluctuation of

workload up to some level.

• Oscillation: A combination of over-provisioning and

under-provisioning problems happens as a result of

auto-scaling.
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Consequently, accurate workload prediction is a crucial

factor in conducting effective proactive resource manage-

ment schemes and allocating on-demand resources to the

user requests [8]. Thus, cloud resource management sys-

tems, on one hand, should be able to allocate the desired

virtual resources in order to prevent performance loss and

on the other hand should prevent the resource wastage by

de-allocating the idle resources(auto-scaling) [9, 10]. To

deal with these issues, as shown in Fig. 1, the cloud-hosted

services should be monitored and their loads should be

logged. Then, this historic load data can be processed and

fed into a workload predictor to forecast future load. For

this purpose, various resources such as CPU, memory,

network bandwidth, and even I/O operations can be

employed in the prediction process. Using this information,

resource management and auto-scaling schemes can scale

up/down the virtual resources as needed [11]. At general,

cloud resources can be scaled horizontally and vertically

which in the horizontal case [12], more VMs are provi-

sioned as predicted to deal with the future loads and in the

vertical case, the existing VMs’ resources should be

increased [7, 13, 14], but often operating systems do not

allow such changes because of the security risks [15–18].

However, workload prediction in cloud computing is a

challenging issue, since unlike HPC systems and Grid

computing, cloud workloads have higher variance, are

shorter, more interactive, and their average noise is almost

20 times of grid computing. In addition, since cloud

resources are shared by several users or tasks they may

suffer from some fluctuations and also new workload pat-

terns can continuously emerge. Besides, non-stationarity

workloads in cloud infrastructure, which their pattern

change over time, make retraining of the prediction models

more frequent and increases the overheads correspond-

ingly. To solve these problems and regarding the impor-

tance of accurate workload prediction in the effective

resource management of the cloud DCs, a significant deal

of attention has been paid for load prediction by using

various mathematical models and machine learning-based

prediction algorithms [8, 19–24]. This article presents a

thorough investigation of the state-of-the-art workload

forecasting schemes, their applied techniques, and moti-

vations to conduct them. It categorizes these schemes

regarding their applied predicting method and describes

how each framework tries to predict the future load and

employs these results in resource management, auto-scal-

ing, and scheduling. After conducting an in-depth analysis

of the literature, open research issues in this context are

provided which can lay the foundation of future studies.

To the best of our knowledge, this is the first article

aimed to carry out a comprehensive study on the workload

prediction schemes in the cloud computing context. The

main contributions of this article are as follows:

• The background knowledge and existing challenges

about the load prediction are presented.

• A classification of the recently published load predic-

tion schemes is conducted according to their applied

prediction algorithm. Also, the main contributions of

each load prediction scheme are summarized and in

each category of workload prediction schemes, their

applied simulation factors, simulation environments,

workloads, predicted factors are listed and compared.

• A critical discussion and a comprehensive comparison

of the load prediction schemes are provided and their

features are analyzed which can be useful in determin-

ing the future studies area.

• Illuminating the future researches challenges and open

problem in the load prediction context.

The remaining of this article are organized as follows:

Sect. 2 provides background concepts about load predic-

tion and Sect. 3 presents the classification and overview of

the literature. Also, Sect. 4 provides discussion and com-

parison results and presents the concluding issues and open

research directions. Table 1 specifies the abbreviations

applied in the rest of this article.

1.1 Workload prediction

Generally, the workload can be defined as all inputs

requests which are sent from online interactions of the end-

users with the cloud services or to batch-processed jobs.

This section is trying to provide the main challenges,

advantages and various details of the workload prediction

in cloud DCs.

1.2 Motivations and objectives

Using workload prediction, dynamic resource management

and proactive auto-scaling can achieve several important

objectives. For instance, accurate forecast of the near futureFig. 1 Elasticity using workload prediction
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workload has a direct effect on the reducing response time,

SLAV, over-provisioning, and under-provisioning prob-

lems. Effective handling of the workloads increases the

scalability and throughput of the systems. Also, by pre-

venting the over-provisioning of the virtual resources, the

power consumption of the cloud DCs, cost, and the number

of failed requests can be decreased, and customer satis-

faction can be improved.

Figure 2 indicates the main steps of the auto-scaling

process which should be executed in the cloud environment

to provide elasticity and deal with the fluctuating work-

loads. As shown in this figure, these four steps known as

MAPE loop, are monitoring, analysis, planning, and exe-

cution steps. In the monitoring step, auto-scaler should

monitor the specified performance indicators to determine

the need for scaling operations. In the analysis step, the

auto-scaler determines whether it is necessary to perform

scaling actions according to the monitored information.

To be more specific, the following issues should be

considered in these items:

• Scaling timing: The auto-scaler should decide about the

scaling action. It can reactively/proactively provision or

de-provision the resources.

• Load prediction: if the auto-scaler is proactive, the load

should be predicted accurately.

• Adaptiveness to changes: The auto-scaler should handle

the changes and timely adapt its model and tunings to

the new situation.

• Oscillation mitigation: scaling oscillation happens when

the auto-scaler performs opposite scaling actions in a

short period of time. Since this problem causes high

resource wastage and SLAV, it should be prohibited.

The planning step estimates the total virtual resources

which should be provisioned/de-provisioned in the next

scaling action regarding constraints such as monetary cost

to be more specific, the following operations will be per-

formed in this section:

• Resource estimation: the planning step should be able

to estimate how many resources are just enough to

handle the current or incoming load. This is a difficult

task as the auto-scaler requires to determine needed

resources without being able to actually execute the

scaling plan to observe the real application perfor-

mance, and it has to take the specific application

deployment model into account in this process.

• Resource combination: to provision resources, the auto-

scaler can use vertical scaling or horizontal scaling. If

horizontal scaling is employed, as the CSPs offer

various types of VMs, the auto-scaler can choose one of

them.

In the last step or the execution phase, the scaling plan

should be executed to provision or de-provision the deci-

ded resources.

Fig. 2 MAPE loop

Table 1 Abbreviations and Acronyms

Abbreviation Description

ARIMA Auto-regressive integrated moving average

ARMA Autoregressive moving average

ANN Artificial neural network

BPNN Backpropagation neural network

DC Data center

GA Genetic algorithm

HMM Hidden markov modeling

KNN K-nearest neighbors

LR Linear regression

LSTM Long short-term memory

LTM Long short-term memory

MAPE Mean absolute percentage error

MAD Mean absolute deviation

NRMSD Normalized root mean square deviation

PSO Particle swarm optimization

PM Physical machine

QoS Quality of service

RNN Recurrent neural network

SLA Service level agreement

SLAV Service level agreement violation

SVM Support vector machine

VM Virtual machine
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1.3 Challenges

Figure 3 depicts the main challenges of the workload

prediction in cloud computing DCs, which can be elabo-

rated as follows [8]:

• Adaptability: The prediction model should be adapt-

able to the behavior changes of the hosted applications

and must learn the applications dynamic behavior to

decrease the prediction error. However, workload

prediction schemes my fail when the workload data

does not have any specific distributions.

• Proactive: Since the VM provisioning and migration are

time-consuming, the prediction should be proactive.

Thus, before the load burstiness occurs, the model

should predict future demand so that the resource

manager has enough time to provide the appropriate

resources.

• Historic Data: An effective prediction model should

investigate all effective resources and parameters on the

workload behavior. It should consider the correlation

between resources patterns extracted from historical

data could show the application behavior in various

dimensions and estimate the future behavior accurately.

However, the proactive resource management schemes

suffer from clod start problem, in which there is not

required workload historic data to train the workload

predictor.

• Complexity: To be efficient, time and space complex-

ities of the prediction model should not be significant.

• Data Granularity: The initial phase for designing the

prediction model is to determine which resources

should be monitored. Then, the length of the sampling

intervals should be defined, because the coarse-grained

long-term sampling causes the model to lose the

dynamism of the system while the short-term sampling,

fine-grained, increases the cost of data collection and

processing. It may include the details that are not useful

and the model complexity increases to capture them.

• Pattern Length: Choosing the pattern length is a

challenging issue and it should be selected to find the

most popular patterns and the application behavior. In

most prediction models, the pattern length is fixed and a

sliding window is used to extract the patterns. Improper

pattern length prevents the model to learn the specific

patterns.

1.4 Workload type

Generally, the Cloud DCs workloads consist of a collection

of diverse applications and services which have their own

performance and resource requirements and by constraints

specified in the form of SLAs.

The workloads can be classified according to their pro-

cessing model, architectural structure, resource require-

ments, and non-functional requirements. In this context,

regarding the processing model used by the workloads,

online (interactive) and offline (batch) can be considered

for them which have different behaviors, requirements, and

impact on the resource management policies. For instance,

an interactive workload can have short tasks, while the

batch ones consist of resource-intensive and long tasks.

Also, cloud workloads can be classified according to

their architectural structure expressed regarding the data

flows and processing of each individual application. For

example, multi-task applications can be structured by

pipeline model, parallel model, and hybrid models. Fur-

thermore, regarding the amount of applied resources

workloads can be classified as I/O intensive, compute-in-

tensive, and bandwidth sensitive. At general, network

bandwidth is important for online interactive workloads,

but storage and computing resources indicate batch work-

loads. Moreover, the resource requirements of some

workloads may be stable, while as shown in Fig. 4, others

may have specific temporal patterns such as periodic,

bursting, growing and on/off. These patterns typically

depend on the intrinsic characteristics of the applications,

as well as on the workload intensity. A communication-

intensive phase can be followed by a computation-inten-

sive phase. The burstiness of the workload intensity in

cloud DCs can increase resource demands and may have a

negative impact on cloud performance.

Fig. 3 Workload prediction challenges
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1.5 Datasets

Also, the workloads applied to evaluate the workload

prediction approaches can be synthetic or real. Synthetic

workloads are generated with workload generators, while

real workloads can be achieved from benchmark datasets

such as Google Cluster trace, NASA dataset, etc. or must

be retrieved from real cloud platforms. Various datasets

and workloads are used to evaluate the workload prediction

approaches. Figure 5a depicts a host load from the Google

traces and Fig. 5b indicates a trace load from the Auver-

Grid dataset. Google workload contains over 40 million

task events at minute resolution across about 12,000 hosts

in 2011 over a 1 month period. These traces specify the

resource and scheduling information of each task, such as

scheduling class, event type, resource request, priority,

resource usage rate, etc. Host load at a given time point is a

total load of all running tasks on that host. Often the

workload prediction schemes conduct seasonal and non-

seasonal studies on the workload time series.

1.6 Evaluation factors

To evaluate the effectiveness of the workload prediction

and analyze its impact on the resource the following met-

rics are used:

• Accuracy: The prediction models are mainly evaluated

by the accuracy of their predicted results and whose

outputs are closest to the actual values is the best. The

deviation or error metrics measure the difference

between the real behavior and the predicted behavior

of the application the result of the prediction error, may

result in problems such as under-provisioning and over-

provisioning can. Figure 6 indicates some of the basic

prediction error metrics utilized in the evaluation of the

workload prediction approaches.

• Cost: prediction errors can lead to SLAV and low

resources utilization. The cost metrics are employed to

measure the cost resulted from the prediction error.

• Success: Success metrics specify how much the

prediction method is able to forecast the future behavior

of the application. Success Rate is defined as the ratio of

the number of accurate estimations to the total number

of estimations. The accurate prediction falls within

some delta of the actual value.

• Profit: Profit metrics are applied to compute the profit of

the CSP computed according to the revenue obtained

from renting out the resources, preventing the SLAV

and resources wastage.

Fig. 4 Workload type

Fig. 5 A host load in two workload datasets
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2 Load prediction schemes in cloud
computing

A number of workload prediction schemes such as [25–50]

have appeared in the literature. This section presents a

classification of the proposed workload prediction frame-

works and describes their main contributions and their

utilized techniques for cloud workload prediction. Figure 7

depicts the classification of the workload prediction

frameworks in the cloud computing environment according

to their applied algorithms in the forecasting process. To be

more specific, this section highlights the following issues

about the investigated forecasting schemes:

• What are the main contributions of each workload

prediction scheme?

• Which prediction algorithms are used to forecast the

workload accurately?

• Which workload datasets are applied in each forecast-

ing scheme?

• Which environments are used to evaluate each work-

load prediction scheme?

• Which evaluation factors are applied to assess the

accuracy and effectiveness of each load forecasting

scheme?

• Which resources are predicted by each scheme to

recognize the incurred workload?

2.1 Regression-based schemes

This subsection is aimed to conduct a review on the

regression-based workload prediction frameworks [51]

designed for various cloud environments.

In [52], Antonescu et al. presented two predictive SLA-

aware VM-scaling algorithms for dEIS systems for finding

better scaling conditions using distributed applications

derived from constant-load benchmarks, with SLA con-

straints. They used autoregressive predictive SLA-aware

scaling to guarantee performance in the distributed cloud

applications. As an advantage, the authors provide a

comprehensive evaluation of their work regarding various

metrics such as RMSD, execution time, number of VMs,

and so on.

In [53] Yang et al. presented a linear regression model to

estimate the load and applied it in an auto-scaling mech-

anism to scale virtual resources in real-time scaling and

pre-scaling. They considered the pre-scaling using integer

programming and introduced a greedy method for accurate

forecasting which incurs a lower cost and SLAV.

2.1.1 ARIMA-based schemes

This subsection is aimed to conduct a review on the

ARIMA-based load prediction frameworks such as

[54, 55]. In [56], Li et al. presented ARIMA-DEC, a load

prediction-based VM provisioning technique. This

scheme employs an ARIMA-based load predictor with

dynamic error compensation and applies it in TBAMP, a

time-based cost-aware provisioning algorithm. ARIMA-

DEC can reduce SLA default rate and TBAMP algorithm

can save rental cost. TBAMP algorithm considers the cost

of adjusted VMs and takes the cost of released VMs into

account.

In [57], Kumar et al. tried to conduct a better forecast of

the load to reduce the power cost. They compared forecast

performance of the ARIMA, SARIMA (seasonal integrated

ARMA), and ARFIMA (fractionally integrated ARMA)

with the singular spectrum analysis method using CPU,

RAM and network trace collected from Wikimedia Grid.

They showed that increasing the input size does not nec-

essarily provide better forecasting results, but the ARFIMA

model suffers from high computation time when the input

size increases.

In [58], Calheiros et al. provided a proactive approach

for dynamic provisioning resource regarding forecasting

performed with the ARIMA model. It applies a load ana-

lyzer component which provides its estimations to the other

components to enable them to properly scale the resources.

However, because of the limitations of the ARIMA model,

this model is not able to predict the peak resource

consumption.

In [59], Messias et al. tried to predict requests arriving in

the next time period to prevent overloading. This problem

becomes complicated when historical data is not available

to be evaluated. They proposed a prediction approach using

GA to aggregate time series-based forecasting models. The

authors conducted workload prediction using the ARMA

and ARIMA methods. They also applied the Holt-Winters

Fig. 6 Prediction error metrics
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approach to capture seasonality, but they do not provide a

cost model to be optimized.

2.1.2 Support vector regression-based schemes

This subsection is aimed to conduct a review on the support

vector regression or SVR-based load prediction frame-

works which a number of them have been proposed in the

workload prediction literature. For instance, in [60], Barati

et al. provided TSVR, a tuned SVM-based approach which

trains three SVR-based factors using the GA and PSO

algorithms. It uses a chaotic sequence to improve predic-

tion accuracy and prevented premature convergence by

increasing the exploration and diversity in the search space.

It also reduces the computational burden of generating

random numbers in comparison to GA. In addition, kernel-

based methods are applied to forecast memory and CPU

loads. They performed simulation using Google cloud

traces. Nevertheless, the TSVR takes a long time for tuning

SVR parameters at the beginning of the algorithm.

Fig. 7 Taxonomy of the load prediction schemes in cloud computing

Cluster Computing (2020) 23:2399–2424 2405

123



The work in [61], provided a decision-maker to handle

the VM migration by estimating the load and combining it

with predicted performance factors of the migration pro-

cess. Thus, the migration can be started when the required

resources are available and no performance degradation of

applications happen. Figure 8 depicts the architecture of

load prediction in this scheme.

Table 2 determines the datasets, simulation software,

evaluation factors, and predicted factors applied in the

evaluation of the regression-based schemes.

2.2 Classifier-based schemes

This part of the paper discusses the load forecasting

approaches which have applied various types of classifiers

for workload prediction.

2.2.1 SVM-based schemes

This subsection is aimed to conduct a review on the SVM-

based load prediction frameworks designed for various

cloud environments. For instance, in [62], Tong et al.

proposed a feature periodical coefficient and some existed

classification methods are implemented. Experiments on

the real-world dataset invalidate the efficiency of the new

proposed feature, which is in the most effective combina-

tions of features, it boosts successful rate and decreases the

MSE. The SVM method can achieve nearly the same

performance as the Bayes methods and their performance

is higher.

In [63], the authors presented WWSVM, a load pre-

diction model using weighted wavelet SVM to estimate the

PMs’ load in the cloud DC. They used the wavelet trans-

form as a kernel function in the SVM to assign a weight to

the samples according to their importance and enhance the

prediction accuracy. They have applied the PSO algorithm

for parameter optimization and used the Google dataset to

verify their approach. As shown in Fig. 9, this

scheme consists of data preprocessing and load prediction

phases, in which the first phase performs workload nor-

malization and autocorrelation analysis. To validate the

performance of this load prediction scheme, experiments

are conducted using the Google dataset and chose CPU

utilization in the load prediction process.

In [64], Nikravesh et al. try to improve the prediction

accuracy of auto-scaling using SVM and ANN classifica-

tion. They indicated that prediction accuracy of SVM and

ANN depends on their load pattern, but, SVM provides

better prediction accuracy with periodic and increasing

load patterns, while ANN has better results in forecasting

unpredicted load patterns. They evaluate this scheme by

using Amazon EC2.

2.2.2 Random forest-based schemes

In [65], Cetinski et al. provided AME-WPC, a model for

workload forecasting in the DCs which improves the pre-

diction accuracy. They handled load prediction using

classification and regression methods and tested it with the

random forest classifier. The architecture of this approach

is depicted in Fig. 10. But, the influencing events in the

workload fluctuations are not considered in this scheme.

2.2.3 Artificial neural network-based schemes

This subsection is aimed to conduct a review on the ANN-

based workload estimation schemes [66–70] designed for

cloud environments. For instance, in [71], Imam et al.

employed a time delay ANN and a regression method to

forecast jitter in the load. This regression model applies

moderately to the trace, as evident by spline interpolation.

Nevertheless, the analysis depicts more improvement in

regression modeling techniques when dealing with such

traces.

The work provided in [72], introduced POSITING, a

forecasting model which conducts the sequential pattern

mining, applies the correlation between various resources

and finds applications’ behavioral pattern. They investi-

gated the capabilities of online learning for POSITING to

provide reliable results, but it is not adaptable to the load

variations. As an advantage, this scheme considers the

correlation between different resources and extracts

behavioral patterns of applications independently.

In [73], Kumar, et al. proposed a load prediction model

using ANN and DE algorithm which is capable of learning

proper mutation method and crossover rate. The simula-

tions performed on NASA provided HTTP traces. As an

advantage, this scheme avoids the risk of being trapped in

Fig. 8 Dynamic resource provisioning in [61]
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local optima. Figure 11 exhibits the ANN structure applied

in this scheme.

In [74], Lu et al. introduce RVLBPNN, a load prediction

model which uses the BPNN algorithm to exploit the

relationships among the arriving loads. RVLBPNN

improves prediction accuracy compared to the HMM and

naive Bayes classifier-based models by a considerable

margin. However, issues such as periodicity of the work-

load are not considered in this scheme.

In [75], Zhou et al. presented a solution for dynamic

load-based on AHPGD and HHGA-RBF ANN which

focuses on the load balancing of the allocation of user

request tasks in a cloud. This load prediction model uses a

hybrid hierarchical GA and the recursive least-squares

method to train parameters of RBF ANNs. It is aggregated

with the weighted round-robin algorithm and updates the

weights of each node within the time period. They pro-

posed three modules in their algorithm: node load infor-

mation monitoring module, load prediction module, and

request scheduling module. The architecture of this

scheme is shown in Fig. 12.
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Fig. 9 The block diagram of the prediction model in [63]

Fig. 10 Load forecasting in [65]

Table 2 Comparison of the regression-based schemes load estimation solutions

Schemes Datasets/workloads Simulators/environments

Google Self-collected NASA EPC Wikipedia LANA MATLAB Amazon CloudSim

[56] 4 4

[57] 4

[58] 4 4

[59] 4 4

[60] 4 4

[61] 4 4

[55] 4 4

Schemes Evaluation factors Predicted factors

RMSD MAPE NRMSD MAD Cost Exaction Time CPU Disk I/O Memory Bandwidth

[56] 4 4 4 4

[57] 4

[58] 4 4 4 4 4 4

[59] 4 4

[60] 4 4 4

[61] 4 4 4 4 4

[55] 4
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In, Imam, et al. presented a resource allocation

scheme to support the increasing need for VMs. They used

time delay ANN and regression techniques for load pre-

diction. They utilized real load traces for performance

evaluation to show that time delay ANN can predict the

load in a cloud environment.

2.2.4 Bayesian-based schemes

This subsection is aimed to conduct a review on the

Bayesian-based schemes [76–79] designed for load pre-

diction frameworks various cloud environments.

In [80], Di et al. proposed a forecasting method to

estimate load over long-term intervals and the average load

in future time intervals, based on the Bayes model. They

detected predictive features of the load to capture the

predictability and host load pattern. They determined the

effective combinations of these features for prediction. As

an advantage, this scheme can detect the mean load for the

future hours with high accuracy and low MSE, regardless

of fluctuations.

In [81], Dietrich et al. provided a linear predictor for

Least Mean Squares, a regression model system parameter

identification. Load fluctuation is estimated via a linear-in-

parameters model. This observation reduces the complexity

of parameter estimation as the LMS learns the parameters

of the model iteratively as the game progresses. However,

the LMS cannot always outperform a hand-tuned PID

controller.

In [82], Tian et al. Minimizing Content Reorganization

and Tolerating Imperfect Workload Prediction for cloud-

based Video-on-Demand Services Nguyen et al. try to

reduce content reorganization and tolerate imperfect load

forecasting. They presented a video-on-demand servicing

system according to a pay-as-you-go cloud. They proposed

a load absorber and designed a provisioning algorithm

called Absorb Window. Load absorbers eliminate the

bandwidth wastage and reduce the content reorganization.

The architecture of this approach is depicted in Fig. 13.

2.2.5 Deep learning-based schemes

Deep learning approaches are suitable for long-term pre-

diction of workloads and their performance can be further

Fig. 11 Load predictor model in [73]

Fig. 12 RBF neural network training by HHGA in [75]

Fig. 13 Control loop in [82]

2408 Cluster Computing (2020) 23:2399–2424

123



improved by increasing the size of training data and the

depth of the model. A number of deep learning-based

approaches are provided to forecast workload in the cloud

DCs. For instance, in [83], Patel et al. tried to find a cor-

relation among the workload of VMs regarding and pre-

dicted the workload of the next VMs with accuracy. In

addition, they optimized granularity of training data, acti-

vation functions, and the number of layers. They have used

predicted workload information for VM management and

migration plan choice will be transferred to application

provisioner which will receive the accepted user request

and apply the suitable VM placement strategy to map the

VM to PMs. They evaluated the effectiveness of their deep

learning model using PlanetLab traces and showed that the

LSTM can improve the performance of workload predic-

tion while convolutional ANN gives a low performance.

The architecture of this approach is depicted in Fig. 14.

Their model receives the CPU utilization of VMs as input

and forecast CPU utilization in the future.

In [84], Gupta et al. applied multivariate LSTM models

to forecast resource usage in the cloud DCs. They used the

Google cluster traces and evaluated the LSTM model and

bidirectional LSTM model with fractional difference-based

methods. They indicated the LSTM model long-range

dependencies in time series-based resource consumption

data and produced better out of sample estimations. As an

advantage, these multivariate extensions of LSTM and

BLSTM models generate better estimations than univariate

ones.

In [85], Zhang et al. introduced a deep learning model

using the canonical polyadic decomposition to forecast the

cloud load. They used the deep learning model to learn

important features of the complex load data in VMs and

applied the canonical polyadic decomposition to compress

parameters to enhance the training efficiency. Table 3

determines the datasets, environments, evolution factors,

and predicted factors applied in the classifier-based load

forecasting schemes.

2.3 Stochastic-based workload prediction
schemes

This subsection addresses the stochastic prediction

schemes designed to estimate various loads in the cloud

DCs using stochastic models.

2.3.1 Markov model-based schemes

A Markov chain is a mathematical tool to model a system

during the time which experiences the transition from one

state to another according to certain probabilistic rules.

Markov chains can be classified as discrete-time and con-

tinuous-time Markov chains. Also, based on the number of

previous states which they consider for deciding the next

state, they can be classified as the first order and high order

Markov chains. By definition, in the first-order Markov,

each state only depends on its previous state, while in the

high order Markov, each state depends on some of its

predecessors. Markov chain models are successfully

applied by various schemes such as [86, 87] to model the

workload prediction. This subsection is aimed to conduct a

review on the Markov chain-based schemes such as [88].

For example, in [89], Pacheco et al. studied the web load

fluctuations to find how to achieve virtual resources in

fluctuating traffic. They investigated the Markovian arrival

processes or MAP and the related M/M/1 queueing model

for performance forecasting of the deployed servers. MAPs

are a special type of Markov models applied as a compact

description of the time-varying characteristics of loads.

MAPs can be used for heavy-tail distributions in HTTP

traffic and can be applied within analytical queueing

models to estimate system performance.

In [90], Shen et al. presented CloudScale, to automate

resource scaling by using requests prediction and predic-

tion error handling. It deals with scaling conflicts using

migration. They used CloudScale on top of the Xen

hypervisor and conducted simulations using the RUBiS

benchmark driven by real Web server traces. As an

advantage, this scheme employs DVFS for mitigating the

energy usage regarding the SLA.

2.3.2 Hidden markov model-based schemes

HMM, or hidden Markov model is one of the most widely

applied statistical Markov modeling tools for discrete-time

series [91]. In contrast to the Markov chain models where

all states are visible, an HMM uses hidden states which are

unobservable. The HMM can be used to predict the future

state of a stochastic variable. HMM are also used for

workload prediction. For example, in [92], Khan et al.

provide a co-clustering solution to find groups of VMs that

Fig. 14 Utilization-aware load forecasting in [83]
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have correlated load patterns and their activation periods.

They introduced an HMM-based method to detect the

temporal correlations in the VM clusters and to forecast

fluctuation in their pattern.

In [56], Xu et al. tried to forecast and categorize the

short-term cloud load using an HMM-based clustering

approach. The Bayesian information criterion and Akaike

information criterion are used to find the optimal HMM

model size and cluster numbers. Trained HMMs are

applied to detect the cluster that may possess the current

load and with its data, a GA optimized Elman network is

provided to forecast future load. Figure 15 depicts the

block diagram of this forecasting scheme. However, they

have not considered the correlation among the CPU,

memory, and disk workloads.

2.3.3 Queuing model-based schemes

This subsection addresses schemes such as [93–95] which

have used queueing models for workload prediction. For

instance, in [96], Sahni et al. provide a heterogeneity-aware

solution to handle the dynamic loads and keep the required

QoS level. It conducts estimation using online resources

profiling and workload history. It also provides the required

resource configurations to achieve QoS at reduced cost and

improved resource utilization. It captures the performance

variation in the VMs and uses the request arrival pattern

Table 3 Comparison of the classifier-based workload prediction schemes

Schemes Datasets/workloads Simulators/environments

Google Self-collected Planet Lab LANA MATLAB Amazon EC2 CloudSim

[62] 4

[63] 4 4

[65] 4 4

[66] 4 4

[67] 4 4

[68] 4 4

[69] 4 4

[70] 4 4

[71] 4 4

[72] 4 4

[73] 4 4

[74] 4 4

[75] 4 4

[76] 4 4

Schemes Evaluation factors Predicted factors

CPU Cost NMSE RMSE MSE MAPE Exaction Time Error Workload CPU Disk I/O Memory Bandwidth

[62] 4 4

[63] 4 4 4 4 4

[65] 4 4 4 4 4

[66] 4 4 4

[67] 4 4 4 4 4

[68] 4 4

[69] 4

[70] 4 4

[71] 4

[72] 4 4 4 4

[73] 4 4

[74] 4

[75] 4 4 4 4 4

[76] 4 4
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and the service rate to configure resources. However, this

model only considers independent applications and does

not support dependencies among the incoming requests.

The work in [97], provided a VM level resource auto-

scaling scheme for a web application which can forecast its

requests to determine optimal resource demand using

queuing theory and multi-objective optimization. This

scheme takes into account factors such as cost, latency, and

SLAV factors in each time-unit re-assignment. They

employed the Amazon cloud and evaluated their

scheme using three real datasets.

Table 4 gives the datasets, simulation environments,

and evaluation factors applied in the evaluation of the

stochastic workload forecasting schemes.

2.4 Grey predicting-based schemes

The scheme in [98], presented a load predicting approach

using grey predicting model to allocate VMs. The authors

have used the time-dependent load in the same period in

each day and forecasted whether the VM load tendency is

towards increasing or decreasing? They have compared the

forecasted value with the workload of the previous time

period, and decide which VM in the PM should be

migrated to have a balanced workload and less energy

usage. Their experiments indicated that this scheme uses

fewer data in the prediction process and can allocate the

VMs resources with energy-saving. The architecture of this

approach is depicted in Fig. 16.

2.5 Autocorrelation clustering-based schemes

The work in [99], Kluge et al. have employed autocorre-

lation clustering to predict the load of a periodic soft real-

time application. Using this forecasting method, they tuned

Fig. 15 Block diagram of the forecasting process in [56]
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the processor performance to meet all deadlines. Never-

theless, they have not handled the numerical instabilities

induced by the implicit rounding during the autocorrelation

clustering algorithm execution.

2.6 Chaos-based schemes

In [100], Ardagna et al. applied capacity allocation tech-

niques to coordinate multiple distributed resource con-

trollers working in geographically distributed cloud sites.

Capacity allocation solutions are integrated with a load

redirection mechanism which forwards the incoming

requests between various domains. The advantages include

reducing the costs of the allocated VMs and meeting QoS

constraints such as the average response time.

In [101], Qazi et al. presented PoWER that tries to

predict the behavior of the cluster and distributes VMs in

the cluster and turns off unused PMs for reducing power

consumption. They have used chaos theory to make pre-

diction indifferent to the loads’ type and inherent cycles in

them, and by conducting experiments indicated that their

approach outperforms better than FFT-based time series

method in load prediction.

2.7 Kalman filter model-based schemes

In [102], Hu et al. presented three models to estimate load

using a Kalman filter model and put forward a pattern

matching model to forecast the load. They applied its

results to provide a new trigger strategy for cloud elasticity

automatic scaling mechanism. This model improves the

forecasting accuracy and reduces the automatic scaling

delay, but it should be extended to support other workload

prediction scenarios and improve its predicting accuracy.

Table 5 determines the datasets, simulation software,

evolution factors, and predicted factors applied in the

outlined workload prediction schemes.
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2.8 Wavelet-based schemes

This part of the article tries to discuss the wavelet-based

load estimation schemes such as [103–107] designed for

cloud computing DCs. For example, in [108], Liu et al.

proposed a VM migration solution which applies a time

series-based load forecasting algorithm. They tuned the

upper and lower bounds of load for hosts and predicted the

tendency of their subsequent loads by creating a load time

series using the cloud model. Afterward, they stipulated a

VM load-aware migration WAM which chooses a source

PM, a destination PM, and a VM on the source PM to be

migrated. Also, in this scheme, the authors have considered

CPU consumption as workload and applied the PlanetLab

dataset and the CloudSim software for evaluation. The

flowchart of this framework is provided in Fig. 17.

In [109], Lyu et al. introduced a forecasting method

consisting of a forecast module, an adjustment module, and

a collection module. The first module applies machine

learning methods to enhance forecasting accuracy. As an

advantage, they introduced an effective way of recognizing

the dual-threshold load rate forecast mechanism to balance

availability and profit. The architecture of this approach is

depicted in Fig. 18.

In [110], Qazi et al. presented an efficient method to

predict the cluster behavior based on its history and re-

distribute VMs to free under-utilized PMs and turned them

off to save power. They evaluated real loads and used a

chaotic time series. Chaos theory with optimizations makes

this framework indifferent to the loads’ type and inherent

cycles in them.

2.9 Collaborative filtering-based schemes

In [111], Duggan et al. presented a learning-based solution

for load forecasting for analytical databases applied by

different CSPs. Enabling load performance estimations that

can be ported across hardware configurations it could help

cloud users with their service-purchase decisions and CSPs

in their provisioning decisions. This approach applies

collaborative filtering to forecast lightweight load finger-

prints that model the behavior of concurrent query loads for

choosing hardware configurations.

In [112], Zhang et al. provided a prediction-based

scaling solution which uses collaborative filtering with a

pattern matching technique. It enhances reactive rule-based

scalability techniques and provides a method to link SLA

according to lower-level metrics from the infrastructure.

Nevertheless, for fine-tuning of this approach, more

infrastructure metrics should be considered.

Table 6 determines the dataset, simulation software

environment, and the factors predicted and evaluated the

wavelet, collaborative filtering-based schemes-based

workload prediction schemes.

2.10 Ensemble-based schemes

Even though some of the previously discussed workload

prediction schemes have applied a single prediction

method, their accuracy may not be as required and also the

prediction length may not be increased. To mitigate these

problems several ensemble-based load forecasting frame-

works have been proposed in the literature which this

subsection is aimed to review them.

For example, in [113], Cao et al. introduced propose an

ensemble method which uses multiple models to increase

Fig. 17 Load forecasting in [108]

Fig. 18 Workload predicting architecture in [109]
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performance and CPU load forecasting. They apply a two-

layer ensemble model which consists of predictor and

ensemble layers. The predictor optimization layer applies

new predictor instances and removes those ones with poor

performance. The ensemble layer produces the final fore-

casting based on the results of multiple predictor instances

and can provide feedback to the predictor optimization

layer, which helps it to adopt appropriate optimization

strategies. In this scheme, predictor replacement is used

regarding the performance evaluation for maintaining the

performance of a predictor set. Then, the poorest predictor

should be removed and another predictor should be added.

The architecture of this approach is depicted in Fig. 19.

The work in [114], provided a prediction method to

enhance accuracy in the auto-scalers using an ensemble-

based load forecasting approach. They evaluated several

predicting models for in predicting various load patterns.

This ensemble technique is implemented using three real-

world loads. They trained each model in real-time and

aggregated the forecasted results based on the weights

computed using inverse errors of the fitted values for the

training data. However, further work is needed to identify

the optimum input window size to maximize accuracy

while meeting the temporal restrictions on calculating the

forecasts in real-time.

In [115], Singh et al. tried to reduce PMs’ power usage,

cooling, and CO2 emissions to improve the sustainability of

the cloud infrastructure. They used load forecasting tech-

niques that guide in identifying servers, time intervals, and

other critical parameters needed in the cloud DCs. This

scheme is able to deal with non-stationarity workloads and

by updating its learning parameters, avoids re-training of

its prediction models. Furthermore, they applied Weighted

Majority and Simulatable Experts to deal with the exten-

sive non-stationarity and massive online streaming data.

In [116], Sommer et al. proposed PRUF, an ensemble-

based forecasting module to predict future utilization of

VMs. They proposed a proactive VM migration policy

using predictive overload detection and performed a study

in the CloudSim. The architecture of this approach isTa
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depicted in Fig. 20. Table 7 compares the properties of

ensemble-based methods.

2.11 Hybrid load prediction schemes

This subsection attempts to discuss the load forecasting

designed using a combination of the before mentioned

predicting methods.

2.11.1 SVR 1 kalman filter

In [117], Hu et al. presented KSwSVR, a multi-step-ahead

load predicting method, which integrates SVR and Kalman

smoother. Public trace is applied to verify its forecasting

accuracy, stability, and adaptability. CPU allocation

experiment indicated that the KSwSVR can reduce

resources usage while meeting SLA requirements. In this

scheme, the Kalman smoother is employed to reduce the

noise of resources usage data, caused by measurement

errors.

2.11.2 Deep learning 1 SVM

In [118], Tarsa et al. used hierarchical sparse coding,

which is a form of deep learning to model user-driven

loads using on-chip hardware performance counters. They

predicted periods of low instruction throughput, which

frequency and voltage can be scaled to reclaim power.

Using a multi-layer coding structure, this method codes

counter values features learned from data and passes them

to an SVM classifier where they act as signatures for

predicting future load states.

2.11.3 ARIMA 1 RNN

In [119], Janardhanan et al. focused on the time series

predicting of CPU usage in DCs using LSTM network and

evaluated it against the ARIMA model.

2.11.4 ARIMA 1 wavelet decomposition

In [120], Bi et al. introduced a hybrid method which uses

wavelet decomposition and ARIMA to forecast the future

Fig. 20 Forecasting architecture in [116]
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load. It tries to smooth the task time series by using Sav-

itzkyGolay filtering and decomposes it into multiple com-

ponents via wavelet decomposition. Their forecasting

results are reconstructed via wavelet reduction to estimate

the number of arriving tasks. However, better data

smoothing algorithms can be used to further improve the

prediction accuracy of this scheme.

2.11.5 LR 1 SVM

In [121], Liu et al. proposed an adaptive approach for load

forecasting, which classifies load into various classes

assigned for various forecasting models regarding the load

features and assigns various prediction models regarding

the workload features. They transformed the load classifi-

cation problem into a task assignment problem using a

mixed 0–1 integer programming model and provided an

online solution for it. For prediction, they have used linear

regression and SVM which is good at the prediction of

nonlinear data. They applied the Google cluster trace to

evaluate this approach. The architecture of this solution is

exhibited in Fig. 21. As an advantage, this approach

improves the platform cumulative relative forecasting

errors.

2.11.6 ANN 1 regression

In [122], Tang et al. introduced MLWNN which applies

linear regression and wavelet ANN to forecast short-term

load. They provide a heuristic power-aware job scheduling

with a load forecasting method and employed the error

backpropagation algorithm to train a three-layered feed-

forward WNN model and get a minimum error. The

authors presented a job scheduling approach, which

includes a resource management method based on the

MLWNN workload prediction. They conducted their

experiments using CloudSim software and indicated that

their approach can reduce power usage and increase

resources utilization.

In [123], Gandhi et al. tried to improve resources allo-

cation in cloud DCs to reduce SLAV and power usage.

They employed a predictive resource provisioning method,

which deals with load estimation at coarse time scales and

reactive provisioning to deal with any excess of load at

finer time scales. The combination of predictive and reac-

tive provisioning achieves an improvement in meeting

SLA, conserving power, and reducing provisioning costs.

The architecture of this scheme is shown in Fig. 22.

2.11.7 ARM 1 regression 1 SVR

In [124], Guo et al. proposed NUP, a hybrid forecasting

method, which uses the load type to switch forecasting

algorithms. It used autocorrelation coefficients and Hurst

exponents of loads to determine the loads belong to the

period or the trend. NUP applies linear regression and

similarities among periods to replace missing data of trend

and period loads. It uses linear regression and ARMA to

predict the trend and SVR to forecast the period.

Table 8 determines the datasets, simulation software,

evaluation factors, and the prediction factors considered in

the hybrid and ensemble-based load forecasting schemes.

3 Discussion

This subsection provides an extensive comparison of the

workload forecasting approaches designed for the various

cloud environments and its results can illuminate the future

research directions. It mainly analyzes the following issues

about these schemes:

• Publication year of the published schemes in the

workload prediction schemes.

Fig. 21 Load forecasting in [121]

Fig. 22 Hybrid resource provisioning in [123]
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• Simulator software and environments applied to ana-

lyze the outlined schemes.

• Factors applied to compare the proposed frameworks

and exhibit their effectiveness.

• Datasets and workloads employed in the investigated

prediction schemes.

• The number of the load prediction schemes which have

applied each forecasting method.

• The number of schemes which have predicted various

resources in their predictions.

Figure 23 depicts the publication year of the outlined

load forecasting schemes. As shown in this figure many

workload predictions schemes have been recently proposed

to deal with this problem and this context is an active

research field.

Furthermore, Fig. 24 exhibits the datasets employed in

the studied schemes and specifies the number of solutions

which apply each dataset. As shown in this figure, the main

datasets applied in this context are Google and NASA

datasets and the self-collected data by the authors from real

environments.

Figure 25 depicts the experiment factors applied in the

evaluation of the load prediction schemes and the number

of schemes which have applied each evaluation factor. As

it is shown in this figure, factors such as CPU load, cost,

and execution time are mostly employed by the studied

schemes. Figure 26 shows the number of loads predicting

schemes designed and proposed using the prediction

methods outlined before. As shown in this figure, ANN and

wavelet transform is used by more load forecasting

schemes. Figure 27 indicates the factors which forecasted

by the workload prediction schemes. On the other hand,

some of the schemes recognize the load with the increase

of CPU consumption while the others may consider other

factors such as memory, bandwidth, and the even the disk

I/O. As shown in this figure, CPU consumption is a critical

factor considered by more forecasting schemes to detect

workload.

Figure 28 shows the factors predicted by the workload

prediction approaches to forecast the workload. As shown

in this figure, only a few schemes have considered three or

four factors in their predictions and in future studies, this

issue can be further investigated to better predict the

workload and prevent resource wastage. Figure 29 reflects

the environments and simulators utilized in the evaluation

of the investigated schemes and determines the number of

approaches which have used each kind of simulators. As

shown in this figure, CloudSim is the most popular simu-

lator software applied in this context.

Figure 30 exhibits the number of the scheme which has

applied only one dataset and number of schemes that have

used two datasets in their simulation and verification
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process. As depicted in this figure, only a few schemes

have applied two datasets; consequently, in future resear-

ches and studies the workload forecasting schemes can

evaluate their approaches using multiple datasets to further

ensure of their approach’s accuracy.

4 Conclusion

The main objective of the cloud computing paradigm is to

provide various virtual remote resources and service to its

customers. In this context, providing the guaranteed QoS,

increasing throughput, and return on investment are of the

features which can be achieved by effective resource

management in cloud DCs. Future workload prediction in

cloud DCs is an essential step in proper resource

Fig. 23 Publication year of the

outlined load forecasting

schemes

Fig. 24 Applied datasets in the

workload forecasting schemes

Fig. 25 Simulation factors applied in the load prediction
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management and auto-scaling approaches which aids cloud

service providers in provisioning/de-provisioning virtual

resources. However, prediction errors can cause problems

such as under-provisioning or over-provisioning, which the

former reduces the cloud performance and leads to SLA

violations and the latter leads to the resource wastage

problem.

Regarding the importance of the accurate load predic-

tion based on the historical workload data and handling

issues such as workload fluctuation and Slashdot effects,

various load prediction schemes are provided in the

Fig. 26 Applied algorithms in the load predicting methods

Fig. 27 Number of the scheme which forecasted each factor

Fig. 28 Factors predicted in the load forecasting schemes

Fig. 29 Environments and simulators

Fig. 30 Datasets
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literature. This paper first presents the basic concepts and

challenges in the workload prediction process. Then, it

delivers a taxonomy and survey of the investigated load

forecasting approaches and describes their main contribu-

tions and applied algorithms to conduct predictions. Fur-

thermore, features such as the applied workload datasets,

simulation factors, predicted factors and simulators

employed by each forecasting scheme is illuminated. Fur-

thermore, an extensive analysis of the workload forecasting

schemes is provided which can be useful for future studies

and researches. In the future studies the following issues

can be further investigated:

• Exploring other machine learning techniques to further

improve the workload prediction’s performance.

• Providing better load forecasting schemes to recogniz-

ing more realistic and complex request patterns which

may happen in real life.

• Defining new workload prediction metrics, for example

on the lags in burst predictions. Also, since the cost of

prediction errors in the cloud environment is not

symmetric, defining better evaluation metrics should

be considered on this issue.

• Regarding the suitability of the non-linear prediction

models to predict time series with seasonal variations,

they can be used for optimizing processes with longer

time horizons.

• Investigating the resource management algorithms to

utilize the achieved forecasting results.

• Integrating the load prediction schemes with the

intrusion detection schemes to recognize the DDoS

attacks from the Slashdot effects.

• Creating lightweight workload prediction schemes to be

applied in the recently emerging technologies such as

IoT, cloudlets, fog computing, and mobile edge com-

puting which have limited and fewer resources than the

cloud DCs.

• One of the important directions for future researches is

the integration of the autoscaling schemes with the IDS

and IPS systems to better handle the DDoS attacks and

Yo–Yo attacks. Generally, autoscaling systems convert

the DDoS attacks to EDoS attacks to deal with

malicious behaviors. Recognizing the DDoS workload

from the users’ workload is an open issue which should

be dealt with in the future researches [55, 125–127].
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