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Abstract
Storage systems in general and databases in particular usually balance between write durability and performance. It is not

uncommon that write durability often relies on transaction systems that also offer a relaxed model of durability for

performance. As hardware vendors provision more cores and faster storage devices, attaining fast data durability for

concurrent file writes is demanding to high-performance storage systems in large-scale cluster systems. We approach the

challenge by proposing a system that uses a small amount of fast persistent memory for buffering concurrent file writes

while preserving data durability. The main technical issue in designing a durable file buffer is allowing concurrent file

writes to store data in a shared and limited space of persistent memory without incurring lock or resource contention. This

article addresses such issue and presents AUTOBAHN, a durable file buffer that expedites file I/O operations. To prove

practicality and effectiveness, we implemented a prototype of AUTOBAHN in Linux-4.8.7 and ran several key-value sys-

tems—Redis, RocksDB, and WiredTiger—on AUTOBAHN. Evaluation results on a multicore server demonstrate that all the

key-value systems achieved performance levels almost matching the non-durable counterpart. AUTOBAHN is a useful

method that can efficiently deal with concurrent file I/O streams on multicores and fast storage devices.
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1 Introduction

Synchronous I/O delay has been of pivotal concern to

system architects since the emergence of non-volatile

storage. Although modern storage devices such as NVMe

SSDs strive to reduce I/O latency, there remains an

intractable barrier between volatile memory and

stable storage as the major cause of the limited perfor-

mance of computer systems. One of the main hurdles in

overcoming the latency gap using a software technique is

providing durability for the write-requested data. In the

aspect of I/O performance, durability is expensive, and

there is a trade-off between them; the ext4 file system

uses the metadata journaling mode as its default mode

instead of the data journaling mode, and some commercial

database management systems (DBMS) provide several

options that alleviate durability on purpose and gain some

performance benefit.

With the advent of non-volatile memory (shortly,

NVRAM), traditional memory hierarchy is gradually

changing its paradigm. Data in NVRAM can be accessed in

a comparable time as DRAM access, while preserving
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durability at the same time [1]. We can effectively exploit

these characteristics of NVRAM for enhancing the overall

I/O performance by using NVRAM as a buffer cache.

However, in multicore systems, designing an efficient

NVRAM-based buffer cache is not a simple task. Since the

buffer cache is a kind of shared kernel data structure among

the processes (or threads) involved in I/Os, concurrent

access to the buffer needs to be controlled. This concur-

rency control problem has attracted little attention in

designing an I/O buffer cache management scheme, until

now, since a simple synchronization protocol is believed to

be enough to solve the problem. However, we found that it

is not a simple problem anymore because (1) current high-

end systems have tens of or hundreds of cores that can

invoke unprecedented number of I/Os concurrently, and (2)

state-of-art storage devices can accommodate up to mul-

tiple gigabytes of data I/O in each second. A simple coarse-

grained synchronization scheme, such as using a global

lock or mutex, can act as a new performance bottleneck in

multicore systems equipped with multiple high perfor-

mance storage devices (e.g., NVMe SSDs). Therefore, a

carefully designed concurrency control scheme is desired

to be incorporated in the NVRAM buffer cache manage-

ment scheme.

In this article, we concentrate on the concurrency con-

trol problem in the NVRAM buffer under a multicore

environment. Specifically, we present AUTOBAHN, a kernel-

level concurrency control framework, that both maximizes

I/O throughput to an existing storage device and provides

the fast guarantee of durability using a small capacity of

non-volatile memory. The NVRAM buffer cache in AU-

TOBAHN, located between DRAM and the storage media,

also acts as a burst buffer in the middle of the write

operation so that it can efficiently accommodate intensive

writes from applications. AUTOBAHN accelerates requested

I/O in NVRAM and maximizes the utilization of storage

devices. The centerpiece of AUTOBAHN is the pipeline

technique using a lock-free FIFO queue, which is a highly

concurrent data structure.

For the evaluation, we implemented a prototype of AU-

TOBAHN as a kernel module for Linux-4.8.7, and AUTOBAHN

module ensures fast durability for regular file writes con-

ducted by multithreaded programs or multiple processes.

To measure the performance, we use three open-source

key-value storage systems: Redis [19], RocksDB [20] and

WiredTiger [25]. The results show that AUTOBAHN attains

fast durability for regular file writes with negligible syn-

chronization overhead.

This article is an extended version of our prior work

[10]. The details of the enhancements are as follows: (1)

we present the performance bottleneck in the current ext4

file system when multiple threads access their private files

and identify the main culprit for the problem, (2) we list

implementation issues of AUTOBAHN to Linux and present

our solutions to them, and (3) we conduct additional

experiments using YCSB benchmark to evaluate the per-

formance of AUTOBAHN under real world key-value

workload.

This article is organized as follows: we first present

related prior work in Sect. 2. Section 3 presents the syn-

chronization overhead in the current I/O stack, which

motivated this work. Section 4 introduces the overall

design of AUTOBAHN. In Sect. 5, issues and our solutions in

implementing AUTOBAHN to Linux are presented. Section 6

evaluates AUTOBAHN’s synchronous write performance

with YCSB workload on Redis, RocksDB and WiredTiger

as well as synchronous random and skewed performance

with our microbenchmark. Finally, we conclude in Sect. 7.

2 Related work

File systems design rooted in the nature of slowness of

storage devices has suffered from poor scalability in

modern multicore platforms. This is unwelcome to both

vendors and customers as the cluster equipped with

expensive devices can become an white elephant. One of

early approaches to address the performance concern is to

improve system utilization by using latency-hiding tech-

niques [5, 17]. This has gained significant attention from

both database and systems communities, since durability in

system software is regarded as an inevitable property for

ensuring persistence of data. Prior proposals, developed

based on latency-hiding techniques, are trying their best to

reduce the I/O latency without sacrificing durability, but

still cannot overcome the nature of the slowness of per-

sistent storage. Proposals [3, 24] in the HPC community

also pursue similar goals.

Trying to approach the issue from a different perspec-

tive, researchers found that the scalability problem inherent

in file systems is mainly based on using shared data

structures among multiple actors, and many studies have

been conducted to improve the scalability of file systems in

various ways. One example is SpanFS [12] that partitions

the device blocks into multiple domains and makes each of

them to manage its micro file system independently to

disperse contention on shared data structures. Another

scalable file system is ScaleFS [2] which separates in-

memory file system from on-disk one and uses operation

logs per core to avoid cache conflicts.

Exploiting the attractive characteristics of NVRAM

presented in Sect. 1, a large number of schemes, in which

NVRAM is used for write buffering and caching, have

been proposed [3, 6, 7, 11, 13, 14, 21]. This approach, that

is exploiting NVRAM as an I/O buffer cache, has been

explored with the assumption that NVRAM can enhance
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overall I/O performance due to improved cache hit ratio,

while preserving data durability. Therefore, researchers

have primarily focused on maximizing the hit ratio to

minimize the storage access under the limited capacity of

NVRAM. However, they did not pay attention to the

shared nature of the buffer cache, and did not present any

solution to the concurrency control problem.

Despite all these efforts, contention on the shared buffer

cache and the performance bottleneck caused by the con-

tention do still exist. Hence the primary focus of this article

is on addressing such long-standing issues in order to make

file systems scalable and better suitable for high perfor-

mance storage in HPC systems.

3 Nonscalability in concurrent file I/O

Prior studies [13–15, 18] on a fast, durable write buffer

using non-volatile memory have placed conventional buf-

fer cache on fast non-volatile memory. This design has its

own advantage in that it needs not understand the file

system semantics to preserve the correctness, and this

approach works well on a single-socket server platform

where inter-socket cache invalidation would not be nec-

essary. As core count has increased dramatically since

early 2000s, all the then-latent performance bottleneck

issues have now begun to arise in numerous places in file

systems [16]. This would definitely render the previous

approach less effective in maximizing both CPU and

storage device utilization. And scaling the performance of

concurrent file writes with data durability is of importance

to general-purpose (or key-value) storage systems deployed

in the large-scale cluster systems, where such workloads

often take place. This section describes the motivation of

the present work by exploring the performance bottleneck

issues in file systems and identifying the main culprit for

the problem. To this end, we conduct a few experiments on

the unmodified ext4 file system and present evaluation

results. The performance issues that are left unresolved

with the non-volatile buffer being placed under file systems

are the main motivation of the present work.

3.1 Experimental setup

To evaluate the performance of file writes on fast storage

devices, we use a simple multithreaded microbenchmark.

Each thread is designed to append fixed-sized (either 4 KiB

or 256 Bytes) data to the end of its private file. Our

microbenchmark runs on a 36-core Supermicro server

(Table 1). The server has fast non-volatile storage con-

sisting of two enterprise NVMe SSDs, each of which

produces the peak I/O speed of 3.5 GiB/s with a 50 ls
delay for the sequential writes of the 16 KiB block. Each

thread creates its private file randomly in one of the NVMe

SSDs, thus spreading the I/O workloads evenly. The Linux

kernel that our experiment is conducted on is version 4.8.7,

and the ext4 file system with journaling turned off is used

to maximize the writing throughput. The configuration of

the background kernel flusher threads to write out dirty

data to the disk is set to default as of Ubuntu 16.04.

3.2 Multithreaded file I/O to private files

Concurrent file writes to the shared file incur substantial

lock contention, which undoubtedly becomes worse on

multicore platforms. A recent study [16] has shown unex-

pected results suggesting that concurrent file reads on the

same file block also incur performance collapses on a

multi-socket server platform, mainly due to the spurious

cache invalidation messages generated by atomic opera-

tions executed on the shared variables. We focus here on

the performance of multithreaded file writes to per-thread

private files, and the normal expectation is that such file

writes should be scalable since there is no interference

between concurrent writes owing to the fact that the threads

act on their private file.

We run the microbenchmark with two write units: 4 KiB

and 256 bytes. The experiments with a small write unit is

of significance to storage system designers, since it gives

an important intuition about the performance of key-value

database systems that must guarantee the durability of

database logs whose size is around several hundreds bytes

for online transaction processing (OLTP) workloads.

However, Fig. 1b shows that the throughput of ext4 with a

small write unit (i.e., 256 bytes), compared to the

throughput with a large write unit (i.e., 4 KiB), cannot

attain commensurate improvement as load increases,

although each thread is appending data to its private file. In

addition, the figure indicates that small writes cannot uti-

lize the full device bandwidth even without calling fsync.

An in-depth look through profiling reveals that this

limited throughput is mainly ascribed to excessive atomic

operations performed on shared variables in the

buffer_head structure during concurrent writes to the

ext4 file system (See CPU utilization in Fig. 1b). The

buffer_head is a structure for buffer pages to represent

blocks in the page and is maintained for fast access to

superblocks, inode blocks, and discontinuous disk blocks.

When writing to each file, the buffer_head pointing to

the associated inode block needs to be marked as dirty. At

this time, file system increases the reference counter for the

buffer_head or changes some bits inside the

buffer_head (dirty bit, etc.) atomically. As mentioned

earlier, because each thread writes to its own file, the

contention due to the atomic operation does not seem to

occur, but the reality is different.
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The size of an inode block is normally smaller than that

of a page buffer. In this experiment, the sizes of an inode

block and a buffer page are 256 Bytes and 4 KiB,

respectively, which are the default values of the Ubuntu

16.04. Hence, multiple inode blocks can be stored in the

same buffer page and so multiple threads accessing their

private files can share the same buffer_head, as

depicted in Fig. 2. It is notable that concurrent atomic

operations (e.g., atomic fetch-and-increment) performed by

multiple threads on a shared data structure can indeed be

limited by the performance upper bound of the hardware-

based synchronization, as detailed in [4]. And we found the

phenomenon in our experiment (Fig. 1b) when multiple

threads access their shared buffer_head using atomic

operations, as shown in Fig. 2. The codes that invoke these

atomic operations exist mainly in the following functions:

ext4_mark_inode_dirty(), __find_get_-

block(), and

__ext4_handle_dirty_metadata().

To confirm that the concurrent accesses to the shared

buffer_head limits the write throughput of file systems

on many cores, we conducted the same experiment by

varying inode size from 256 Bytes to 2 KiB, with the buffer

page size being set to 4 KiB. Larger inode size lets less

number of threads share the same buffer_head, incurs

less contention in it and, as a result, is expected to show

higher throughput. Figure 3 confirms it. As inode size

increases, the portion of the ‘atomic operations’ in the CPU

utilization decreases while ‘user’ portion increases, which

results in larger throughput, as anticipated. It is notable that

we can hardly see the ‘iowait’ portion regardless of the

inode size. This implies that although we use cutting-edge

semiconductor-based storage devices such as enterprise

SSDs, the IO performance in the high performance storage

systems can be limited by the software bottlenecks rather

than the storage device.

Table 1 Supermicro Server 6028R-TR specifications

Component Specification Component Specification

Processor 18-Core Intel Xeon E5-2699 v3 Processor sockets 2 Sockets

Hardware threads 36 (hyper threading enabled) Clock speed 2.3 GHz

L1 D-cache 32 KiB (per core) L1 I-cache 32 KiB (per core)

L2 cache 256 KiB (per core) L3 cache 45 MiB (per socket)

Memory 488 GiB DDR4 2400 MHz Storage Samsung SM1725 NVMe SSD (3.5 TB)
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3.3 Challenges

We have discussed the unexpected performance issues

arising in concurrent file writes to private files. The per-

formance issues unveiled here have a few important

implications: (1) placing non-volatile write buffer under-

neath file systems may suffer scalability bottlenecks which

are inherent in file systems (e.g., bottleneck in the shared

buffer_head) and (2) the design of a scalable non-

volatile write buffer should be done delicately to maximize

device utilization and to avoid possible contention issues.

We address all the issues and present AUTOBAHN, which is

designed to overcome these challenges.

4 AutoBahn: design

The inherent bottleneck issues of file systems due to the

excessive execution of hardware-based synchronization

constitute the main motivation of the present work. We

approach the issues mainly to relieve synchronization

bottlenecks. In this section, we present the overall system

design of AUTOBAHN. We first describe the overall archi-

tecture and then explain the data structures and relevant

algorithms with the design rationale.

4.1 Overall architecture

The main design rationale of AUTOBAHN is to escape the

hardware-based synchronization overhead while ensuring

data durability, when operating systems need to handle

concurrent file I/O requests, which unfortunately have

negative impacts on the performance of well-known gen-

eral-purpose file systems. In this work, we aim at designing

AUTOBAHN to achieve the goals, regardless of I/O size and

write patterns. Figure 4 shows the overall architecture of

AUTOBAHN with a flow diagram of a regular file write

operation. As illustrated in the figure, AUTOBAHN, unlike

other proposals sitting below the file systems, is placed

above the file system layer, and works as a durable write

buffer. The durable write buffer placed above the file

system can substantially improve the performance of dur-

able file writes and alleviate inherent contention in the file

system.
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The architecture of AUTOBAHN consists of two compo-

nents. The first consists of buffer blocks and their associ-

ated meta-data residing in non-volatile memory (i.e.,

NVRAM) for ensuring fast data durability, and the second

component includes concurrent data structures and related

algorithms for handling concurrent file I/O requests with

reduced hardware-based synchronization overhead.

NVRAM-resident and DRAM-resident data structures for

managing durable buffer blocks are first discussed in Sect.

4.2, and discussions on efficient algorithms for achieving

high utilization and concurrency are presented in Sects. 4.3

and 4.4.

To make it easy for applications to use the system,

AUTOBAHN intercepts a few system calls relevant to file I/O

operations. For instance, the general flow of a write()

operation is shown in Fig. 4 with colored arrows. When

applications request synchronous writes to files, the AU-

TOBAHN system call handler comes in and copies user data

to durable buffer blocks in NVRAM. At this point, the

requested data is made durable so that the AUTOBAHN

system call handler returns the write system call. This

ensures fast durability. The next step is to sync durable

buffer blocks to persistent storage devices to make room in

NVRAM for other file I/O requests. Flushing the dirty

buffer blocks and recycling clean buffers for future use

should be handled efficiently for sustaining high device

utilization, and AUTOBAHN processes these tasks asyn-

chronously, using a multi-stage pipeline structure with

dedicated kernel threads (see Sect. 4.3). For the efficient

processing of multiple file I/O requests with reduced syn-

chronization overhead, we use lock-free FIFO queue data

structures (Sect. 4.4).

4.2 Data structures

Since AUTOBAHN works as a durable write buffer for

underlying file systems, the data structures for managing

buffer blocks in NVRAM should be properly designed.

Two types of data structures exist in AUTOBAHN: (1) data

structures in NVRAM and (2) data structures in DRAM.

The first type refers to non-volatile buffer blocks and their

control blocks, which are essential for ensuring the dura-

bility of data and need to be in NVRAM. The second type

includes concurrent data structures for high concurrency

without incurring a hardware-based synchronization bot-

tleneck. Figure 5 clearly summarizes the NVRAM-resident

and DRAM-resident data structures used in AUTOBAHN.

4.2.1 NVRAM-resident data structures

Data structures organized in NVRAM resemble disk-resi-

dent structures in file systems. Extra information needed

for NVRAM is information required for the correct

recovery of unflushed data buffers. NVRAM-resident data

structures include durable buffer blocks to store file data.

Along with the data blocks, NVRAM stores inodes for

managing data blocks, one for each data block. The meta-

data for identifying files is called a volume, which is

assigned to each file. Table 2 provides a summary.

4.2.2 DRAM-resident data structures

Unlike NVRAM-resident data structures, AUTOBAHN needs

DRAM-resident ones for achieving high concurrency and

so high storage utilization when multiple file I/O requests

arrive. To access inodes quickly, each volume entry uses a

hashmap of inodes indexed by a logical block number

(LBN). Additionally, inodes representing different states of

buffer blocks are managed by three lock-free queues; the

three states of a data block are free, dirty and clean. With

these structures, AUTOBAHN utilizes a three-stage pipeline

system, which is described in next two sections.

4.3 Three-stage circular pipeline

AUTOBAHN uses NVRAM as a durable write buffer. How-

ever, as shown in Sect. 3, adopting naive buffer manage-

ment algorithms for AUTOBAHN may not be efficient when

processing concurrent file I/O requests. Since processing

file I/O requests can be divided into multiple tasks, AU-

TOBAHN uses a three-stage circular pipeline structure to

handle concurrent file I/O requests while maximizing CPU

and device utilization. Figure 6 shows the overall archi-

tecture of AUTOBAHN pipeline structure. In AUTOBAHN,

there are three stages separated in the pipelining: write,

flush and reclaim stages. We assign dedicated kernel

threads for each stage, which are responsible for processing

the given work. We denote these dedicated threads as

writer, flusher and reclaimer threads, respectively. Blocks

in NVRAM are managed by a lock-free FIFO queue

(LFQ), which is placed between the stages. Lock-free FIFO

queues, depending on the state of blocks they manage, are

denoted as free, dirty, or clean LFQ, and a dedicated thread

plays a role as either a consumer of one queue or a pro-

ducer of another queue. These lock-free queues enable

NVRAM
lock-free queuesvolume 

table
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…
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…
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Fig. 5 Data structures of AUTOBAHN
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AUTOBAHN to maximize performance without incurring a

synchronization bottleneck and scale well. The details of

LFQ are presented in Sect. 4.4. Following is a brief

description of what happens during each stage in

pipelining.

4.3.1 Write stage

The first stage of AUTOBAHN is the write stage. When an

application requests the write I/O with an ordinary write

system call, this invokes the AUTOBAHN write system call

handler. The AUTOBAHN write system call handler iterates

(1) finding a free block from the free LFQ, (2) copying data

to that block, (3) updating the block state to dirty, and (4)

inserting the block into the dirty LFQ, until the entire set of

data is written to the NVRAM buffer. In order to benefit

from caching, AUTOBAHN adopts delayed flushing for dirty

blocks that may be served without being reloaded from

storage. AUTOBAHN manages the file layout with a hashmap

in memory and expects to get the target block in constant

time. When copying user data to NVRAM, AUTOBAHN

perserves atomicity per block (i.e., block-level atomicity in

Sect. 5.2.

4.3.2 Flush stage

The primary job of a flusher thread is to write dirty blocks

in the NVRAM buffer to the persistent storage device. In

the flush stage, the flusher thread (1) fetches previously

written blocks from the dirty LFQ, (2) writes them to

storage device, (3) changes their states to clean, and (4)

puts them into the clean LFQ. The target blocks to be

flushed can also be accessed by writer threads, and this may

create noticeable synchronization overhead. This issue is

addressed in Sect. 5.1. Also, during the flush stage, it

includes the heaviest operation (i.e., write out to disk).

Therefore, AUTOBAHN uses various optimization techniques

in the flush stage. The detailed description is covered in

Sect. 5.3.1.

4.3.3 Reclaim stage

The main job of the reclaimer thread is to reclaim clean

blocks and convert them to free blocks so that writer

threads can handle write requests without showing a per-

formance hiccup due to the limited capacity of the

NVRAM buffer. The reclaimer thread (1) dequeues the

blocks from the clean LFQ and (2) marks their corre-

sponding hashmap entries as invalid. Then the reclaimer

thread (3) initializes the inodes of the blocks and (4) inserts

the blocks into the free LFQ. The initialized inode contains

the NULL volume and lbn, free block state, and a pointer to

the block. Once the hashmap entry is invalidated, the ini-

tialized inode and its corresponding block can be returned

for reuse. Validation occurs when the writer thread reenters

that entry, assigning a new inode value to that entry. As in

the flush stage, the writer thread and the reclaimer thread

can simultaneously access the same block during the

reclaim stage; the synchronization between them is

addressed in Sect. 5.1.

4.4 Lock-free FIFO queue (LFQ)

In AUTOBAHN pipeline structure, durable shared buffers are

processed by a dedicated worker thread and then delivered

to the next pipeline stage. This naturally raises a contention

Table 2 Description of

NVRAM metadata structures
Structure Field name Description

Volume fullpath Full path name of a file

is_partial A flag bit that indicates if a file is opened with O_NVMPARITAL (Sect. 5.4)

file_size Size of a file

Inode volume Back pointer to its volume entry

lbn Logical block number of an inode

state Current state of its block (e.g., free, dirty and clean)

block Pointer to its block

Writer

Flusher

Writer

Flusher Reclaimer

Free

Clean

Clean

Clean

Dirty

Dirty

Dirty Free

Clean blocks (LFQ)

Writer

Flusher

Free

N
V

M
 B

uf
fe

r 
B

lo
ck

s

Fig. 6 The pipeline structure in AUTOBAHN
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issue between concerned workers. Since a naive design for

buffer management brings the synchronization overhead

again, we designed a concurrent multi-producer and multi-

consumer lock-free FIFO queue that is a building block for

AUTOBAHN pipeline system. An LFQ utilizes only one

hardware-based synchronization instruction (i.e., atomic

fetch_and_increment) and is intended to manipulate dur-

able buffer blocks without causing lock contention. It is

implemented with a bounded circular array. An enqueue

operation holds a unique producer ticket number (i.e.,

p_position), and stores its data in the circular array

indexed by that ticket number. A dequeue operation, then,

gets its unique consumer ticket number (i.e., c_posi-

tion) and consumes the buffer with the matching ticket

number. Both enqueue and dequeue operations, if the target

array entry is not ready for use, do spin-wait shortly until it

becomes ready (i.e., while loop). Figure 7 shows the

implementation overview of our LFQ with pseudocodes for

enqueue and dequeue operations. Since assigning a unique

ticket to producers and consumers enforces workers to

check their target entry only, an LFQ would never allow

excessive execution of hardware-based synchronization on

a single hot spot, thus alleviating synchronization bottle-

necks observed in file systems before.

4.5 Recovery

Correct data recovery is of importance in ensuring data

persistence in storage devices, not in NVRAM, and

recovery must preserve data persistence in the face of

unexpected failure. In AUTOBAHN, data is temporarily and

durably stored in NVRAM and later flushed to the desig-

nated place in storage. AUTOBAHN always runs the recovery

procedure, once the operating system restarts, to make sure

that data in NVRAM is correctly synced to the storage

devices. By doing this, AUTOBAHN can make durable buffer

blocks clean, thus persisting all data in the stable storage

devices. To this end, AUTOBAHN upon restart iterates

through the volume entries and inodes to find candidate

buffer blocks to flush. Dirty blocks, if found, are flushed to

storage. When a buffer block is successfully flushed, its

state is set to clean. Since the recovery process is idem-

potent, flushing the dirty buffer blocks multiple times due

to consecutive failure events preserves the correctness of

the AUTOBAHN recovery process.

5 AutoBahn: implementation issues

We have presented the overall system design of AUTOBAHN.

This section describes the implementation details for

robustly materializing the general designs and advanced

techniques used for overcoming a few technical challenges.

5.1 Destressing synchronization bottleneck

As the prior study [4] thoroughly acknowledged and as our

preliminary experiments showed the side effects in file

systems, the maximum number of atomic instructions that

can be executed on a shared variable is limited by the

performance of hardware-based synchronization. This

definitely has negative impacts on the performance of

multithreaded file I/O, especially when the I/O unit is

small. Destressing such a hardware-based synchronization

bottleneck is one of the technical issues we must deal with

in designing AUTOBAHN. Although the pipeline structure of

AUTOBAHN makes the best use of lock-free queues when

different worker threads access shared data structures with

alleviated synchronization overhead, there are two worri-

some situations where synchronization overhead between

different worker threads may grow. The essential problem

in two cases involves the enqueuing of a buffer block to a

lock-free queue, which inevitably needs to change the state

of the buffer, and changing the state variable should be

done correctly (i.e., mutual exclusion). A naive solution is

to use a big lock, which again brings lock contention

problems. To mitigate the issue, we maintain a per-block

lock variable.

The first case is the synchronization between the writer

thread and the flusher thread. This situation occurs when

the writer thread tries to update the dirty data block in a

dirty LFQ, which is also the target block to be flushed to
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!= cur_p_pos - capacity) 
; // wait un�l a consumer is done

LFQ[offset].data = new_data;
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Fig. 7 Operations in the lock-free FIFO queue: Producers (or consumers), once they get a unique ticket, check their target entry to detect that

either a queue is empty or full. If the entry is ready, they enqueue/dequeue a data buffer
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storage by the flusher thread. To solve this case with

reduced synchronization overhead, AUTOBAHN sets the

policy when both the writer thread and the flusher thread

try to access the same block. When the writer thread

acquires the lock first, the writer can update the block as

shown in Fig. 8. The flusher thread that failed to acquire

the lock cannot flush the block and reinserts the block to

the end of the dirty queue, hoping that it can flush that dirty

block next time. Since the flusher thread would insert the

block to the queue, the writer thread does not have to

enqueue the block again. Otherwise, if the flusher thread

acquires the lock first, the writer thread is waiting for the

block to be flushed. This looks odd at first, but our deferred

flushing policy (i.e., batched flushing in Sect. 5.3.1) would

reduce the occurrence of such spin-waiting under a variety

of workloads.

The second case is the synchronization between the

writer thread and the reclaimer thread, when the writer tries

to reuse the cached block in the clean LFQ. Similar to the

previous case, both the writer thread and the reclaimer

thread compete to acquire a per-block lock, but this case is

much simpler. If the writer thread successfully acquires the

lock, it can reuse the clean block that still holds file data

(i.e., data cache). The reclaimer thread that failed to

acquire the lock skips that block and proceeds to check the

next block from the clean queue (i.e., opportunistic lock-

ing). Otherwise, the winner (i.e., the reclaimer thread) just

invalidates the block, and the loser (i.e., the writer thread)

obtains a new block from the free LFQ, instead of spin-

waiting. As such, opportunistic locking by the reclaimer

and the opportunistic trial for grabbing the same block by

the writer thread would indeed need the one-time execution

of a hardware-based read-modify-write (RMW) instruction

(e.g., compare-and-swap, or CAS). The optimized tech-

nique used here eliminates bad spin-waiting on a lock

variable, thus avoiding a potential synchronization

bottleneck.

5.2 Guaranteeing block-level atomicity

Write operations inside SSDs are aligned to page size,

which ranges from 4 to 16 KiB depending on the model of

the SSD. While some SSDs show shorn write behavior on

system crash [26], in many SSDs, page-level atomicity is a

guaranteed behavior owing to their power-loss protection

functionalities [9, 23]. AUTOBAHN also guarantees block-

level atomicity when data is written to NVRAM.

5.2.1 Out-of-place update

The well-known shadow paging (or out-of-place update)

technique to ensure a block-level atomicity was originally

proposed in the mid 1970s in the database community. The

out-of-place update forces new updates to be written to a

free buffer block first and then atomically updates the block

pointer of an inode to point the new block. For a partial

block write, the data in the old block needs to be copied to

the free block before updating the new data, and this incurs

an extra memory copy operation. Due to this, random write

workloads incur substantial overhead, thus slowing down

the performance.

5.2.2 Optimized in-place update

The inherent copy overhead in the out-of-place update

technique that is particularly notable in partial write

workloads can be significantly alleviated when write

workloads are append-only. The optimization we devise

here is to allow an in-place update with a file offset being

atomically updated after copying the data. The optimized

in-place update technique indeed improves the perfor-

mance of append-only file I/O workloads, such as database

logging and file system journaling (see Sect. 6). Figure 9

depicts how the optimized in-place update is performed for

the new data appended to the end of a block. AUTOBAHN

updates to an existing block first and then atomically

updates the offset of a file. Under any failure situation, the

block can be recovered to either old data or new data, not

something in between. This ensures the block-level

atomicity while attaining better performance than the out-

of-place update.

5.3 Optimizing write performance

The trade-off between maximizing device utilization and

attaining short latency is a well-known issue in storage

systems. Placing the NVRAM buffer cache between

DRAM and the storage device in AUTOBAHN can naturally
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Fig. 8 Synchronization between the writer and the flusher on the same

dirty block: Both the writer and the flusher tries to acquire the per-

block lock of a dirty block C. (1) The writer successfully acquired the

lock, (2) the flusher failed. (3) The writer updates the dirty (cached)

block while the flusher skips the block and re-enqueue the block to the

end of the dirty LFQ. (4) The flusher writes dirty blocks whose per-

block locks have been acquired
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reduce the latency of durable I/O, but the throughput

improvement is another challenge we have to deal with.

Since the flusher in AUTOBAHN performs I/O intensive tasks

that basically write dirty blocks to storage devices, we

devise a few optimization techniques in establishing

flushing strategies to maximize the I/O bandwidth of given

storage devices. In general, to expedite the flush-out phase,

AUTOBAHN sets up several dirty LFQs to let multiple flusher

threads run concurrently.

5.3.1 Write batching and batched flushing

In AUTOBAHN, write takes place on a batch unit in the flush

stage. The batch unit consists of continuous dirty blocks for

one volume (i.e., file). We call this write batching. This

technique is the best fit strategy for append-only work-

loads, especially database logging. To implement this,

AUTOBAHN manages the dirty blocks from one volume to be

collected to the same dirty LFQ. In this manner, one flusher

thread is responsible for one volume and flushes a group of

continuous dirty blocks altogether, thus achieving better

device utilization through batching the I/O unit in append-

only workloads.

In addition to the write batching, we optimize flushing

further to improve the storage device utilization. A naive

flushing policy is to write dirty blocks in dirty LFQ

whenever the flusher detects any candidate dirty blocks,

and this eager flushing helps reducing the queueing delay

for dirty blocks. However, the eager flushing of dirty

blocks to storage devices raises an important issue in AU-

TOBAHN. Eager flushing forces flusher thread to check the

dirty LFQ continuously, although there are no dirty blocks

to flush, thus wasting CPU cycles due to the spin-waiting.

To avoid this, the flusher thread is normally inactive, and it

is awakened when the number of blocks in the dirty LFQ

exceeds a certain threshold (i.e., the watermark). Figure 10

shows that only the activated flusher thread processes its

associated dirty LFQ if the number of dirty blocks in the

queue exceeds the threshold. Once the flusher thread is

activated, it writes dirty blocks in its dirty LFQ to the

storage devices, and then it will be inactive again. This

flushing technique is called batched flushing or deferred

flushing.

Deferring the actual flushing time improves storage

utilization without sacrificing write latency since AU-

TOBAHN keeps dirty blocks in NVRAM as a durable state.

The batched flushing can be of advantage as well to the

synchronization between the flusher thread and the writer

thread, which is presented in Sect. 5.1. There are two

important situations where both the writer thread and the

flusher thread compete on access to the same block.

The first situation is when writing on hot spot blocks in a

skewed workload. This situation causes severe contention

on the same block with the naive flushing policy (i.e., eager

flushing), especially when the flush thread has acquired the

lock and the writer thread is supposed to wait until the lock

holder (i.e., the flusher) releases the lock after flushing the

dirty block. However, in batched flushing, the actual

flushing is deferred until the number of dirty blocks

exceeds the threshold so that the chance of contention can

be substantially reduced. Also, the threshold is configurable

in AUTOBAHN so that the hot spot data can remain in

NVRAM, if applicable.

The second situation is when writing small data fre-

quently in the append workload. As mentioned in Sect. 5.2,

the writer thread may access the same block repeatedly for

in-place updates. Then, eager flushing of the updated

blocks may cause severe lock contention and result in poor

throughput. Moreover, flushing small dirty data may

amplify the total amount of written data observed in the

device because writing a data block should be aligned to

the block size in the storage devices. AUTOBAHN mitigates

those issues by batched flushing since the flush thread

would not be active until the number of dirty blocks reach

the threshold. When it is activated, the blocks located in the

front of the dirty LFQ at that time would start to be flushed

to storage while the block updated by the writer thread is

located in the behind.
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5.3.2 Caching

In AutoBahn, NVRAM acts as a burst buffer that handles

explosive I/O requests and designed to exploit maximum

bandwidth in sequential writes. In addition, it is also

designed to get a caching effect on frequently used blocks

in random writes. As described in Sect. 4.3.1, a writer

thread can safely rewrite blocks in NVRAM. Also, by

setting the threshold for batched flushing at the flush stage,

dirty blocks remain in NVRAM until being flushed. Since

this threshold is configurable, it is possible to buffer as

much as the capacity of NVRAM. Using this caching

technique, AutoBahn can effectively maximize I/O per-

formance without accessing the storage device for hot-spot

blocks. In that point of view, NVRAM in AUTOBAHN takes

the same role as the existing buffer cache. However, since

AUTOBAHN assumes small sized NVRAM, it proactively

flushes out dirty blocks to reclaim the nonvolatile buffer

block via batched flushing.

5.4 System calls implementation

AUTOBHAN is implemented as a pluggable kernel module on

the Linux VFS layer and uses ext4 as the underlying file

system for evaluation. As shown in Fig. 4, AUTOBAHN

module is located in between system call interface and file

system layer. In this way, AUTOBAHN can intercept some

fundamental system calls related to file system and handle

those in its way alleviating bottlenecks in existing file

system. For applications to access a file via AUTOBAHN, the

file must be opened using the O_NVM flag. The files

opened with this flag are managed by AUTOBAHN using

NVRAM as a fast durable buffer with its own caching

instead of existing buffer caching in file system. Applica-

tions requesting fast durable file writes using AUTOBAHN are

successfully returned once user data are safely copied to

NVRAM. Physical data copy to NVRAM is guaranteed by

flushing cache line using either of CLWB or CLFLUSHOPT

instructions [8], followed by proper memory fence

instructions. To preserve block-level atomicity (Sect. 5.2),

AUTOBAHN by default only accepts block size aligned write

requests. However, it can accept unaligned writes (i.e.,

partial writes) when a file is opened with another AU-

TOBAHN-specific flag, O_NVMPARTIAL. This flag is

useful for append-only workloads, such as database log-

ging and file system journaling. Since NVRAM in AUTO-

BAHN keeps the durable buffer blocks intact with their own

recently written versions, application can read blocks

instantly from NVRAM without incurring disk I/O unless

those blocks are not flushed by the internal mechanism of

AUTOBAHN (Sect. 4.3.2).

5.5 Limitations

Since the prototype AUTOBAHN system is implemented as a

kernel module for Linux to focus on validating important

functionality, AUTOBAHN may not be fully compatible with

the POSIX standard. Our future work will seek to make

AUTOBAHN POSIX compatible so that there is no disruption

to legacy applications to make use of AUTOBAHN.

Currently, we do not allow multiple opens on a file to

prevent concurrent writes to a single file. To the best of our

knowledge, concurrently writing in a shared file does not

perform very well in all file systems due to lock con-

tention [16]. In this study, we focus on the performance

improvement of concurrent writes in private files and scope

out concurrent writes in a shared file.

6 Evaluation

In this section, we evaluate the performance of AUTOBAHN.

For the evaluation, we use our synthetic I/O microbench-

mark and the real-world benchmark—the key-value

workload (YCSB) running on three open source key-value

systems: WiredTiger [25], RocksDB [20], and Redis [19].

We have implemented a prototype of AUTOBAHN in Linux

kernel 4.8.7. For the evaluation, NVRAM is emulated as a

contiguous physical memory space of DRAM, with the size

of NVRAM being set to 4 GiB and the block size being set

to 16 KiB for the I/O unit. As we described in Sect. 3.1, we

ran experiments on a machine with two sockets of 18-core

Intel Xeon E5-2699 v3 (with hyperthreading being

enabled) and two NVMe SSD devices each of which

achieves the peak I/O bandwidth of 3.5 GiB/s. For dis-

tributing file I/O workload over two storage devices evenly,

we configure the benchmark (or NoSQL databases) to

create regular (or log) files in a randomly chosen device.

Unless stated otherwise, for the rest of the evaluations, our

experiments are conducted with the ext4 file system with a

default journaling mode: the ordered mode.

6.1 YCSB workload

Distributing partitioned data to multiple database server

instances, called database sharding, is widely used for load-

balancing, scalability, high-performance, and high avail-

ability. In our key-value workload evaluation, we used the

database sharding configuration in a single machine; mul-

tiple database processes run each of their own database

instances individually. As described in [22], our sharding

configuration has better performance benefits than the

configuration with a database instance that manages
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multiple database tables, mainly because lock contention in

many places can be substantially reduced (or avoided).

For the performance evaluation with a key-value

workload, we used the YCSB benchmark with the type-A

workload (50% PUT and 50% GET), and database shard-

ing is applied to all databases tested. For the experiments,

we used three popular key-value storage engines: Wir-

edTiger [25], RocksDB [20], and Redis [19]. In all the

experiments, each update transaction is forced to flush its

log to the storage device when it commits (i.e., strict

durability). For the experiments with AUTOBAHN, we

slightly modified the logging components so that the I/O

operations for database logs are processed through

AUTHOBAHN. We compare AutoBahn-based logging to two

existing systems; ext4-based logging on NVMe SSD and

tmpfs-based logging.

Figure 11 shows the transactions per second of each

DBMS engine. In WiredTiger, AUTOBAHN (9.92 million

Txns/s) shows 19:9� better performance than ext4 (497

kTxns/s) in 64 database instances. This is attributed largely

to the fast synchronous I/O operations of AUTOBAHN for the

database logging. The performance of tmpfs in 64 database

instances is 11.6 million Txns/s, which is 17.3% better than

AUTOBAHN. A similar result is shown with RocksDB.

AUTOBAHN (4.74 million Txns/s) performs 4:25� better

than ext4 (1.11 million Txns/s) in 64 database instances.

Meanwhile, tmpfs (5.07 million Txns/s) performs 7.16%

better than AUTOBAHN. In the case of Redis, the peak per-

formance is reached under 32 database instances in all

three cases. The peak performance of AUTOBAHN is 4.82

million Txns/s while those of ext4 and tmpfs are 342

kTxns/s and 4.78 million Txns/s, respectively. AUTOBAHN

is 14� faster than ext4 and no slower than tmpfs. The

performance with more than 32 database instances drops

for all cases since the Java-based Redis client takes up the

CPU that could be utilized by the Redis server.

Figure 12 shows the commit latency of the YCSB

benchmark on the three database engines. The experi-

mental configuration is the same as the configuration for

the previous experiment, except the benchmark process

executes only update transactions. Overall, the average

latency of the system with AUTOBAHN is much smaller than

that of the ext4-based system and close to the latency

measured in the tmpfs-based system, showing that the

AUTOBAHN-based system can deliver transaction responses

faster than the competitors. The average commit latency of

AUTOBAHN in WiredTiger with 1 database instance is 1.23

ls, whereas ext4 and tmpfs show 38.207 ls and 1.31 ls,
respectively. When the number of WiredTiger database

instances is 32, AUTOBAHN shows 2.94 ls of the average

commit latency, whereas ext4 and tmpfs have 132.8 ls and
1.69 ls, respectively. In the cases of RockDB and Redis,

we see similar behaviours. In RocksDB with 1 instance (32

instances), the average commit latency measured in AU-

TOBAHN is 4.04 (6.62) ls while ext4 and tmpfs are mea-

sured as 80.56 (230.2) ls and 3.61 (5.43) ls. In Redis, the

average latency of AUTOBAHN with 32 instances is 0.88 ls,
and it is 99.6% reduced compared to ext4 (214.9 ls).

6.2 Microbenchmarks

To explore the various performance metrics of AUTOBAHN,

we use our write-based synthetic microbenchmark. In the

microbenchmark, we set multiple threads to write 16 KiB

blocks repeatedly to its private file. We run three different

write workloads; append-only, uniform, and skewed (i.e.,

zifian). We run our benchmark program under 16 GiB of

DRAM to exclude the effect of the larger buffer cache size

and set the size of NVRAM to 4 GiB of DRAM for

experiments with AUTOBAHN. To evaluate AUTOBAHN, we

compare the I/O throughput and latency of the AUTOBAHN-

based system with those of two ext4-based systems; sys-

tems with ext4 (w/ fsync) and ext4 (w/o fsync). In the case

of ext4 (w/ fsync), the benchmark program is designed to

open files with the O_SYNC option, and this forces each

write call of the benchmark process to immediately flush

data (fsync) to the storage device for durable I/O. In
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contrast, the system with the ext4 (w/o fsync) fully utilizes

the buffer cache, and the durability depends on the buffer

replacement policy of the Linux kernel.

6.2.1 I/O throughput

Figure 13 shows the performance of AUTOBAHN, ext4 (w/

fysnc), and ext4 (w/o fsync). When we use AUTOBAHN for the

append-only workload, the device throughput is maximized

owing to the optimization techniques described in Sect. 5.3.1,

and AUTOBAHN achieves maximum bandwidth (i.e., 6.7 GiB/

s) starting from 4 threads. With 4 threads, the throughput of

AUTOBAHN (6.7 GiB/s) is 13:9� and 1:36� better than that of

ext4with fsync (0.48GiB/s) and ext4without fsync (4.9 GiB/

s), respectively. Under the skewed workload with 4 threads,

AUTOBAHN (42.65 GiB/s) performs 3:19� better than ext4

without fsync (13.35 GiB/s) owing to the caching hot spot

data on NVRAM described in Sect. 5.3.1.

In some cases, AUTOBAHN shows lower performance

than ext4 (w/o fsync) with the random workload, due to the

small size of NVRAM compared to the buffer cache size of

the ext4 file system. However, AUTOBAHN shows sub-

stantial improvements in synchronous write performance,

and it can utilize the maximum bandwidth of the high-

performance storage devices.

6.2.2 CDF for I/O latency

We also measured the latency of write operations in the

append-only workload. Figure 14 shows the latency dis-

tributions of AUTOBAHN and ext4 (w/ and w/o fsync). The

average latency of AUTOBAHN with 1 thread is 4.56 ls,

whereas ext4 (w/ sync) and ext4 (w/o sync) show average

latency of 126.21 ls and 11.36 ls, respectively. In this

case, most I/O requests (� 99.9 %) were processed within
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Fig. 12 CDF for the commit latency in YCSB (update 100%)
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Fig. 13 Write performance with append, random, and skewed

workloads. The total size of the private files is 196 GiB in the

random and skewed workloads
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20 ls in AUTOBAHN, compared to 30 ls in ext4 (w/o sync).

The average latency in 32 threads is reduced by 61% and

7% in AUTOBAHN (100.15 ls), compared to ext4 with fsync

(253.07ls) and ext4 without fsync (106.56 ls), respec-

tively. The throughput of AUTOBAHN with 32 threads (6.73

GiB/s) is 3:52� and 1:12� better than ext4 with fsync

(1.91 GiB/s) and ext4 without fsync (5.96 GiB/s).

6.2.3 The breakdown of CPU utilization

Next, we analyze the CPU usage of AUTOBAHN with the

append-only workload, which is similar to experiments in

Sect. 3. From Fig. 15, we see that the CPU usage portion

for atomic instructions (e.g., atomic fetch-and-increment)

is substantially reduced even when the I/O unit is 256

bytes. This leads the performance of file I/O to private files

to have better scalability, compared to the results shown in

Fig. 1. When the number of threads is 64 and the I/O unit is

256 bytes, the performance of AUTOBAHN peaks at 5.67

GiB/s while ensuring the write durability, thus utilizing the

storage bandwidth 1:6� better than the ext4-based system

without fsync and journaling (i.e., 3.51 GiB/s). The main

benefit comes from the durable write buffer of AUTOBAHN in

alleviating excessive hardware-based synchronization on

the shared buffer_head in the ext4 file system.

7 Conclusion

It is not uncommon to see that a cloud-based or in-house

server infrastructure is built on a cluster of computing

platforms with dozens or even hundreds of cores on a

single chip. This trend of building high-end computing

platforms poses significant challenges, especially in scaling

the performance of cluster file systems. In this article, we

address the scalability issue of file systems on high-end

servers and propose AUTOBAHN designed to enhance the

performance of concurrent write operations with durability

being strictly ensured, by using a small amount of NVRAM

as durable buffer cache. Prior proposals on the design of

file systems using NVRAM has overlooked latent perfor-

mance issues often arising from hardware-based synchro-

nization bottlenecks occurring inside a shared buffer. We

found that this can substantially degrade the performance

and scalability of modern cluster-based infrastructures

even when multiple threads attempt to write data even to

their own private files. AUTOBAHN is based on lock-free

queue data structures in order to deal with a burst of dur-

able write requests with an efficient three-stage pipelining

technique. We implemented AUTOBAHN as a Linux kernel

module, and evaluated its performance under macro- and

micro-benchmarks running against database engines.

Evaluation results demonstrated that AUTOBAHN can

improve the transaction throughput of existing key-value

storage systems by up to 19:9�, showing its practicality

and effectiveness.
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Fig. 14 The CDF for the write latency and the throughput of the

microbenchmark on an append-only workload

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64

C
P

U
 U

til
iz

at
io

n 
(%

)

No. of Threads

User
Linux(iowait)

Linux

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8 16 32 64

Device Max Throughput

T
hr

ou
gh

pu
t (

G
iB

/s
)

No. of Threads

(a) Write unit: 4 KiB

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64

C
P

U
 U

til
iz

at
io

n 
(%

)

No. of Threads

User
Linux(iowait)

Linux

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 4 8 16 32 64

Device Max Throughput

T
hr

ou
gh

pu
t (

G
iB

/s
)

No. of Threads

(b) Write unit: 256 B

Fig. 15 The breakdown of CPU utilization and the write throughput

with the append-only workload

908 Cluster Computing (2020) 23:895–910

123



References

1. Agigaram Non-volatile System. http://www.agigatech.com/agi

garam.php

2. Bhat, S.S., Eqbal, R., Clements, A.T., Kaashoek, M.F., Zel-

dovich, N.: Scaling a file system to many cores using an operation

log. In: Proceedings of the 26th Symposium on Operating Sys-

tems Principles, SOSP ’17, pp. 69–86. ACM, New York (2017).

https://doi.org/10.1145/3132747.3132779

3. Congiu, G., Narasimhamurthy, S., Süß, T., Brinkmann, A.:
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