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Abstract
The unprecedented growth of energy consumption in data centers created critical concern in recent years for both the

research community and industry. Besides its direct associated cost; high energy consumption also results in a large amount

of CO2 emission and incurs extra cooling expenditure. The foremost reason for overly energy consumption is the

underutilization of data center resources. In modern data centers, virtualization provides a promising approach to improve

the hardware utilization level. Virtual machine placement is a process of mapping a group of virtual machines (VMs) onto

a set of physical machines (PMs) in a data center with the aim of maximizing resource utilization and minimizing the total

power consumption by PMs. An optimal virtual machine placement algorithm substantially contributes to cutting down the

power consumption through assigning the input VMs to a minimum number of PMs and allowing the dispensable PMs to

be turned off. However, VM Placement Problem is a complex combinatorial optimization problem and known to be NP-

Hard problem. This paper presents an extensive review of virtual machine placement problem along with an overview of

different approaches for solving virtual machine placement problem. The aim of this paper is to illuminate challenges and

issues for current virtual machine placement techniques. Furthermore, we present a taxonomy of virtual machine placement

based on various aspects such as methodology, number of objectives, operation mode, problem objectives, resource

demand type and number of clouds. The state-of-the-art VM Placement techniques are classified in single objectives and

multi-objective groups and a number of prominent works are reviewed in each group. Eventually, some open issues and

future trends are discussed which serve as a platform for future research work in this domain.
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1 Introduction

Cloud computing is a modern direction for computing as

opposed to conventional desktop computing. This model

received significant attention from both industry and aca-

demia and being emerged as a publicly accepted style of

computing [1]. The cloud computing model offers a

number of remarkable advantages over desktop computing.

These benefits are location-independent access to the ser-

vices, rapid elasticity, measured service, minimal capital

investment, and lower maintenance cost.

A cloud service is composed of a set of data centers

around the globe. Each data center contains thousands of

servers and resides in a different geographic point for

performance enhancement and reliability purpose while

connected to other data centers with high-speed
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telecommunication link [2]. High operational cost such as

electricity cost, cooling cost, and footprint cost is the

leading challenge for today’s modern cloud data center

providers. Managing operational cost enables cloud pro-

viders to offer affordable and competitive services to their

customers [3]. However, among different costs, the ram-

pant electricity cost constitutes the largest fraction of total

cost in a data center and needs to be properly controlled

[4–7]. The steady increase of energy consumption has

appeared as a real concern in operating a data center. One

of the main reasons for high energy consumption is inef-

ficient management of resources. Particularly, most of the

servers suffer from severe underutilization which is a major

cause for power overconsumption [8, 9].

In modern data centers, virtualization as a primitive

technology provides a potential solution to enhance

resource utilization while it guarantees performance and

isolation for cloud applications [10]. Even though virtual-

ization technology offers a potential platform to improve

resource utilization, there are still some issues which

obstruct the maximum utilization of hardware. One of these

issues is the inefficient deployment of virtual machines in a

virtualized data center [11]. Having a data center with an

enormous number of PMs, the basic challenge is how to

map each input VMs to a most suitable PM so that the total

electricity consumption by all active PMs is minimized and

for each individual PM maximum resource utilization is

achieved. Optimal placement of virtual machines is one of

the prevailing approaches for efficient use of hardware in a

data center and regarded as the core of cloud computing.

Nonetheless, VM Placement is a complex computational

task and recognized as an NP-Hard combinatorial opti-

mization problem [12]. Despite past research works, the

problem still needs more attention and further research

effort should be devoted to this domain. This paper

delineates the characteristics and significance of the VM

Placement and presents a comprehensive review of dif-

ferent approaches for solving VM Placement. These

approaches are either intended to optimize a sole VM

Placement objective function or presumed to be a multi-

objective optimization approach. For each of the two cat-

egories, various research works are overviewed. In addi-

tion, VM Placement solutions are discussed based on other

perspectives and properties. Finally, a number of open

issues are listed which can serve as a platform for further

research in this domain. It is worth mentioning, many of

the research works discussed in this paper could also apply

to the private data centers and they are not exclusively

designed for a cloud computing environment.

While to the best of our knowledge there are few related

survey articles on the domain of this article, what makes

the present paper relatively distinct is its main concentra-

tion on the optimization perspective. Because the majority

of existing surveys overlooked or less concentrated on the

optimization aspect, we particularly decided to discuss the

problem under the context of a single/multi-objective

optimization framework in detail. Two common approa-

ches as weighted-sum approach and Pareto-based approach

for dealing with the VM placement having multiple

objectives are clearly explained and existing works are

discussed, classified and summarized in accordance with

these two common approaches. Furthermore, special

attention is paid to the heuristic methodologies proposed to

deal with the problem in various existing works. The

heuristic methods presented in the literature are described,

analyzed and compared including their strength and

weakness. Lastly, unlike the majority of the existing works

which have been published a few years prior to this study,

the present work covers the state-of-the-art research works

conducted within the domain. In the following, a few most

recent and closely related survey articles are briefly com-

pared to our present work.

Usmani and Singh [13] presented a study of VM

placement techniques used in a green cloud. The survey’s

main focus is merely improving energy efficiency. The

survey does not cover a range of VM placement objectives

such as network traffic, resource wastage, and response

time which are discussed in our work. Also, unlike the

wide range of optimization methods presented in the pre-

sent paper, only a limited number of mostly deterministic

algorithms were discussed.

In another related survey, Masdari et al. [14] provided a

review of VM placement schemes for cloud computing. In

contrast to our work, the authors did not address VM

placement from the optimization point of view along with

its theoretical foundation and specification in a single and

multi-objective variation. Moreover, the survey does not

present the advantage and disadvantage of each existing

method as presented in our work. On the contrary, our

work provides an inclusive and well-structured taxonomy

of different properties of VM placement along with in

detail and organized summarization of single objective,

multi-objective methods.

A systematic review of VM placement was conducted

by [15]. Our work significantly differs from this work in

the sense that the work, in fact, is a systematic and concise

review of the relevant literature in the domain. It is mainly

focused on collecting, organizing, and quantitatively sum-

marizing the literature in a systematic way rather than a

detailed analysis, discussion and conclusion of various VM

placement schemes.

Pietri and Sakellariou [16] also surveyed the body of

literature related to mapping VMs onto PMs. The survey is

mainly structured on the basis of four different factors as

VM configuration, VM placement, optimization objectives,

and application metrics and tools. The optimization
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objectives are classified into three categories of resource

utilization, monetary units, and energy consumption.

However, the survey’s concentration on the optimization

aspect of the problem (including theoretical representation,

different approaches to deal with the problem and detailed

methodology) is minimal.

The rest of this paper is organized as follows: in the next

section, a background of the problem presented, including

a summary of the cloud computing paradigm, virtualization

technology and significance of energy consumption con-

cern in modern large scale data centers. Section 3 defines

the VM placement problem along with its characteristics.

Section 4 reviews the state-of-the-art VM placement

strategies classified into a single objective and multi-ob-

jective VM placement. Section 5 discusses the VM

placement problem from different perspectives on the basis

of the taxonomy presented in Fig. 19. A number of open

issues for future research are listed in Sect. 6. Lastly,

Sect. 7 concludes this paper.

2 Background

This section commences with an introduction to the con-

cept of cloud computing as the modern paradigm of com-

puting and particularly Infrastructure as a Service (IaaS) as

underlying service. Then, an introductory to the virtual-

ization as the fundamental technology of cloud computing

is provided. Thereafter, the importance of escalating

energy consumption in today’s modern data centers is

highlighted. Finally, in the last section, a general archi-

tecture for VM Placement in a data center is illustrated.

2.1 Cloud computing paradigm

In the cloud computing paradigm, rather than owning a

local computing asset, users rely on a service they receive

from distant high-performance provider [17]. A cloud

facility is administrated by Cloud Service Provider (CSP)

and consists of a large number of servers spread over dif-

ferent geographical points around the world. The cloud

services are delivered via three different typical models.

These models are Software as Service (SaaS), Platform as a

Service (PaaS) and Infrastructure as a Service (IaaS).

Figure 1 shows different cloud service delivery models

with examples for each mode. In the SaaS model, an

application is hosted on the cloud server and users are

given on-demand access to a ready application [18].

Examples of the SaaS are Google Apps, Dropbox, and

Salesforce.com Applications. In PaaS, developers make

use of an online programming framework to develop their

application without the cost of the underlying software and

hardware [18]. Heroku and Google Apps Engine are two

instances for PaaS. In IaaS, computer equipment such as

processor, memory, network, and storage are abstracted

and delivered to the users as a service. Examples of IaaS

are Amazon EC2 and Google Compute Engine. As IaaS

environment serves as a platform for VM placement, in this

paper we mainly focused on the IaaS cloud system.

IaaS emerges as one of the popular and powerful ser-

vices in cloud computing [19]. An IaaS cloud provides the

on-demand and scalable service to the users through a large

shared pool of computing resources in the form of VMs

while the users are charged based on a pay-as-you-go

pricing model similar to water and electricity [20].

Due to the elasticity of IaaS services, the resources can

be instantly and flexibly scaled up/down and therefore

users are not required to anticipate their future hardware

demands. This feature gives users the illusion of infinite

computing resources without having to establish their own

infrastructure [21]. The user specifies the hardware con-

figuration of requested VM including processor speed,

memory size, disk space amount and network bandwidth

and the VMs are created accordingly, instantly and are run

on the cloud provider’s infrastructure [22]. From the cus-

tomer’s standpoint, these approach results in substantial

cost effectiveness since the capital expenditure is elimi-

nated. Moreover, improved reliability is yielded because

the service is provided by the vigorous provider’s infras-

tructure. With recent rapid development in IaaS market,

this model has become a remarkable alternative to the local

ownership of computing infrastructure and therefore a

number of prestigious companies such as Netflix shifted to

IaaS cloud instead of owning dedicated servers [23].

Fig. 1 Different service delivery models in cloud computing
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Examples of real-world IaaS providers are Amazon EC2

and GoGrid, Rackspace cloud. IaaS cloud system leverages

the virtualization technology to manage the underlying

computing resources and deliver flexible and dynamic

service to the customers [24]. A schematic of an IaaS cloud

is shown in Fig. 2.

2.2 Virtualization technology

The virtualization was first introduced in the late 1960s by

IBM to make efficient use of expensive hardware in that

time and mostly applied to the desktop sector [6, 25, 26]. A

large underutilized mainframe’s hardware was logically

partitioned into slots which enabled users to use the

resource in a time-sharing fashion [27]. Even though

today’s computer hardware is not as expensive as before,

the virtualization technique is still being applied as a

technique to divide the hardware resource of a single

computer to multiple segregated computing environments

[28]. Also, modern data centers make use of virtualization

for other advantages [29]. These advantages are: reducing

management complexity [29]. portability, encapsulation,

isolation and efficient utilization through server consoli-

dation [30]. Virtualization facilitates the way an adminis-

trator manages a data center. The isolation property

prevents malicious applications, security flaws, and soft-

ware failures to affect other co-located machines [29, 31].

Encapsulation ensures that the whole state of a machine as

an image file can be cloned or migrated to another host

with the purpose of load balancing, scheduling and fault

tolerance in case of hardware failure [28, 31]. Virtualiza-

tion also makes applications and services easily

portable across heterogeneous hosts with different geo-

graphical locations. Again, virtualization provides finer-

grained resource allocation [26]. However, the main

application of virtualization in a data center is preventing

server sprawl and efficient utilization of hardware through

server consolidation [25]. Consolidation of many

underutilized servers in a small number of host results in a

significant saving of energy cost [28].

In virtualization concept, on top of underlying hardware

layer, a control program called Hypervisor or Virtual

Machine Monitor (VMM) (such as VMware, KVM, Hyper-

V, and Xen) creates, executes and manages virtualized

instances of a machine. This virtual instance which is

called a virtual machine (VM) contains its own operating

system and applications and acts as the logical equivalent

of a physical machine [32]. The applications that are

installed on top of the virtualized machine are expected to

perform identically as if they were installed on a real

physical machine. The hypervisor tends to provide a

transparent underlying hardware layer to the virtualized

software and make application independent to a specific

type of hardware and therefore resilient to the future

hardware changes [6]. Multiple virtual machines can co-

reside on a single physical machine and each virtual

machine encapsulates a complete operating system bundled

with the necessary applications.

2.3 Significance of energy consumption
in modern data centers

The energy consumed in large scale data centers has dra-

matically risen during recent years. This alarming growth

of energy consumption has caused deep concerns in

industry and research communities. Kaplan et al. [33]

denote each data center consumes electricity equal to

25,000 households on average. During 2008–2010 data

centers in the United States consumed the energy provided

by ten nuclear power stations [34]. It is reported that

Google data centers consume power equal to the total

consumption of a small city like San Francisco [35]. Again,

Gartner estimates that energy cost for the IT industry will

grow from 10 to 50% in the next few years [36]. Apart

from directly associated electricity cost, over-consumption

of electricity also requires larger expenditure for air con-

ditioning computer systems since cooling cost is propor-

tional to the energy spent for the computation purpose.

Moreover, emission of carbon dioxide (CO2) is the nega-

tive environmental effect of overly energy consumption

and it is one of the causes of global warming and climate

change. According to Gartner [37], 2% of CO2 global

emissions are from the IT industry. All these facts motivate

researchers to move toward green data centers by mini-

mizing the level of energy consumed in data centers.

By far, two approaches suggested for controlling the

increasing level of electricity consumed in data centers.Fig. 2 IaaS cloud system model
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The first approach mainly focuses on the design and

manufacture of energy-efficient computer hardware such as

processor, memory, and disk while the second approach

relies on the efficient management of existing hardware

systems. Indeed, the latter approach tends to make efficient

use of the available hardware resources. One of the leading

reasons for energy over-consumption in data centers is the

underutilization of hardware resource. A study [6] shows

that the utilization degree in a data center is between 10 to

50%. Underutilization often occurs as a result of over-

provisioning which is an allocation of more than enough

computing resources to the input workloads. Due to the

uncertainty of future demands for an application, the

resources are allocated based on the peak resource

requirement of applications at the beginning. Energy con-

sumption and low utilization are two correlated issues.

Resources having low utilization still consume a non-trivial

amount of power [38]. A larger number of underutilized

servers in a data center results in higher energy consump-

tion, more expense for cooling systems and extra required

footprint. Therefore, reducing the number of poorly uti-

lized machines to a minimum number of fully utilized ones

contributes to cutting down the amount of electricity usage

in a data center.

2.4 System architecture

The context for VM placement is a large scale data center

with numerous physical servers inter-connected using high-

speed telecommunication links. Each server is character-

ized by a certain amount of different resource types it has

such as CPU, memory, disk storage, and bandwidth. Fig-

ure 3 shows the architecture of the system. The main roles

in these systems are cloud provider, end-user and client

[39].

• The cloud provider is the owner of the infrastructure,

manages the data center, its resources and lease them to

the client.

• The client leases an infrastructure in the form of VMs

for a certain period of time from a cloud provider.

• End-user uses the application ran on the cloud

infrastructure.

It is to be mentioned that in case of multiple independent

public cloud providers, an additional entity which is often

called Cloud Broker provides intermediation service and

allow users to deploy their VM across multiple providers

[40]. However, the common interaction between the above

roles is as follows [39]:

• A client plans to run his application on the cloud

infrastructure and then submits his request for

provisioning of a set of VMs with pre-determined

hardware specification.

• Cloud provider, creates the requested collection of VMs

accordingly.

• Having a determined set of VMs, the cloud provider

decides how to assign each VM on a most suitable PM.

• Once the VMs are deployed on the different PMs on the

data center they are available to serve requests from end

users.

A software called Virtual Machine Manager (VMM) (or

hypervisor) continuously monitors the available resources

in each PM and based on its placement algorithm places a

requested set of VMs on a certain subset of available PMs

in a data center. The virtual machine manager is comprised

of two different modules: the local manager and global

manager [41]. The local manager operates on each indi-

vidual PM. The role of a local manager is to monitor the

current residual resource capacity in the PM together with

resource utilization and reports the statistics to the global

manager. The global manager module resides on the master

PM and receives and compiles information coming from

each local manager. Global manager process those reports

to make a global picture of current resource usage in the

whole data center. In addition, the global manager is

responsible for optimizing VM placement.
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3 Problem definition

The virtual machine placement is defined as follows: given

a set V ¼ v1; v2; . . .; vmf g of virtual machines and a set

P ¼ p1; p2; . . .; pnf g of physical machines, the goal is to

find a specific mapping of VMs in V into PMs in P that

most minimizes/maximizes a certain predefined objec-

tive(s). The most common objective is minimizing the

number of running PMs. However, the other objectives

such as network traffic also can be defined. Each VM

demands a different amount from each resources type (i.e.

CPU, memory, and disk space and network bandwidth). On

the other hand, each PM has a certain capacity from each

resource type. It is assumed that VMs do not demand more

resource than a single PM can offer [42].

For a large data center with thousands of PMs, assigning

VMs to PMs is an intricate decision-making task for a

human administrator. This is due to the presence of enor-

mous potential mappings while only one or few of these

mapping results in an optimal value of the predetermined

objective. Theoretically, VM Placement is known to be an

NP-Hard combinatorial optimization problem [12, 43–45]

since there is no provable efficient algorithm to solve it

[46]. A search for a solution should be conducted within a

large space of possible mappings. The exact algorithms

which provide optimal solution often take a long time to

produce the optimal solution and therefore, in practice, an

approximate algorithm is employed to deliver a near

optimal solution in reasonable computation time.

3.1 Objectives

Although VM Placement has addressed in literature with

subject to a variety of objectives from different perspec-

tives, the most common objective is minimizing the num-

ber of active PMs. This is based on the underlying

assumption that consumed energy is proportional to the

number of powered-on PMs in a data center. Reducing the

number of active PMs also contributes to the reduction of

server footprint and capital investment in a data center

[25]. However, VM placement can have other objectives

such as power consumption or inter-communication among

a set of VMs. A list of different objectives for VM

Placement based on the literature is presented in Tables 1

and 2. In general, VM Placement is defined with a single

objective or multiple objectives as shown in Fig. 4. As the

name suggests, the single objective VM Placement is

optimization (maximization or minimization) problem of

one objective. In the multi-objective form of VM place-

ment, two or more objectives are to be optimized simul-

taneously. For instance, minimizing the resource wastage

in physical machines along with minimizing the power

consumption is a multi-objective virtual machine place-

ment problem with two objectives.

3.2 Constraints

Besides objectives, the search space for VM Placement can

be restricted when constraints are introduced (as shown in

Fig. 4). These constraints can be in two types: the basic

constraints which actually serve as an intrinsic assumption

to the problem and additional technical constraints which

are added in accordance with a practical application or

specific requirement.

In the following, the basic constraint and additional

constraints are listed.

3.2.1 Basic constraints

• I: Each VM can be hosted by exactly one PM:

Xn

j¼1

xij ¼ 1; 8i : 1� i�m ð1Þ

where xij 2 0; 1f g; 1� i�m; 1� j� n is 1 if VM i is

assigned to PM j and 0 otherwise.

• II: For each type of resource (e.g. CPU, memory) and

for each active PM, the sum of the resource demands

for all the VMs sharing that PM should not exceed the

capacity of the PM:

Xm

i¼1

drixij � crjyj; 8j : 1� j� n ð2Þ

where dri is the resource demand of type r by VM i, crj
is the capacity of resource type r offered by PM j and yj
is 1 if PM j is active/powered-on and 0 otherwise.

3.2.2 Additional constraints

In addition to the above basic constraints, additional con-

straints may also apply. These constraints are as follows

[45]:

• III: the number of VMs assigned to a particular PM j is

limited to a certain number:

Xm

i¼1

xij � tj; 8j : 1� j� n ð3Þ

where tj is the maximum number of VMs, PM j can

host.

• IV: A subset of all VMs; S may need to be assigned to

the different PMs for security or technical purposes:

842 Cluster Computing (2020) 23:837–878
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X

i2S
xij � 1; 8j : 1� j� n ð4Þ • V: A subset of VMs; S may need to be assigned to the

same PM in order to facilitate inter-application com-

munication or other requirements:

Table 1 Summary of different single objective VM placement schemes

Objective Scheme Assumption/drawback

• Number of PMs [47] • Only memory considered, the other resource types are overlooked

[48] • Resources other than CPU and memory neglected

[51] • For the sake of computational simplicity, other resources than CPU and memory are ignored

• Power consumption for PMs [52] • MBFD cannot always produce an optimal solution

[62] • SLA can be violated because of workload variability

[64] • BFD cannot guarantee the optimal solution

[65] • The average computation time of ELMS-ONC is significantly higher than that of FFD and

OpenNebula scheduler

• Complexity of ELMS-ONC

[87] • Lack of robust power model

[63] • FBFD cannot necessarily provide the optimal solution

[68] • The proposed method runtime performance is poor

[71] • The impact of other resources such as memory on energy consumption was neglected

• Power consumption for network

communication

[73] • Inter-VM traffic should be predicted accurately.

• Scalability issue

[74] • The proposed strategy is limited to a single multi-core server

• The proposed approach does not work with VMs more than number of cores

[78] • Only Fat-tree topology is considered in the simulation

• Satisfaction metric [79] [79] • The random placement used for comparison

• A priori knowledge of communication patterns and flow demand profiles are assumed

• VM inter-traffic is assumed to be negligible

• Traffic [75] • The time complexity of O n4ð Þ for each recursive call

• Balance of residual resource

usage/utilization

[82] • The functionality of the suggested resource balance model is mainly influenced by the different

parameters setting (i.e. b1; b2 c1; c2; c3 )

[83] • The issue of performance interference among different workloads (i.e. CPU-intensive, memory-

intensive I/O-intensive) was not addressed.

• Resource usage [80] • Computational time analysis for the proposed scheme was not provided

• The performance validation mainly focuses on the impact of different types of data center

topology

• Carbon footprint [86] • Does not address the dynamic scenario

• Lacks a rigorous and elaborative model to quantify the carbon footprint rate in a data center

• Since the PUE metric does not consider the resource utilization the high value of PUE cannot

guarantee the global efficiency in a data center

[87] • Lack of carbon footprint model

• Performance [90] • Only addresses the static scenario where the number of VMs is fixed

• Only considers the static pricing schemas

• No clear formulation of VM performance provided

• In modern data centers moving toward fixed performance guarantee as SLA, the performance is

not a crucial metric to be minimized [62]

[40] • The proposed performance model relies on cloud user to provide information in advance

• In modern data centers moving toward fixed performance guarantee as SLA, the performance is

not a crucial metric to be minimized [62]

• Cost of deployment [40] • When a priori knowledge of price is not available, a precise prediction tool is required

Cluster Computing (2020) 23:837–878 843
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Table 2 Summary of multi-objective VM placement schemes

Objectives Scheme Assumption/drawbacks

• Number of PMs

• Resource utilization

[69] • The performance of the algorithm on minimizing resource utilization was not

assessed

• Lacks analysis of computational complexity of ACO-VMP over FFD

• Power consumption

• Resource wastage

[95] • No comparison with state-of-the-art Multi-objective algorithms (e.g. NSGA-II)

presented

• The computational complexity of VMPACS was not evaluated

[42] • No comparison with state-of-the-art multi-objective algorithms (e.g. NSGA-II)

presented

[103] • The computation time of ICA was not analyzed in comparison to Genetic algorithm,

ant colony and FFD placement approaches

• Power consumption

• Performance (response time) of VMs

[65] • No comparison with state-of-the-art multi-objective algorithm (e.g. NSGA-II)

presented

[9] • Homogenous PMs

• Only CPU-intensive and Memory-intensive workloads considered (does not include

traffic intensive and disk-intensive workloads)

• There is no comparison for computational time.

• In modern data centers moving toward fixed performance guarantee as SLA, the

performance is not a crucial metric to be minimized [62]

• Power consumption for PMs

• Power consumption for network elements

[107] • Only applicable to the multi-tier tree topology

• Traffic amount VMs

• Number of PMs

[39] • Prior knowledge about inter-connection structure is required

• Assumes only layered structure for application

• Resource wastage

• Power consumption

• Thermal dissipation

[81] • The large computation time of GA

• Power consumption

• Interference among VMs

[105] • High runtime cost of SA technique

• Resource usage

• Server usage

• Bandwidth usage

[44] • Weighted sum approach’s drawback

• High time complexity O N2M2ð Þ
N = Number of PMs, M = Number of VMs

• Power consumption

• Network traffic

• Migration cost

[106] • Weighted sum approach drawback

• A priori knowledge of the traffic matrix is required

• Aggregated network traffic in the same link incurs congestion

• Poor stability of VM-Mig for dynamic placement

• VM-Mig is prone to get stuck in local optimum

• Number of PMS

• Resource wastage

[7] • Determining parameters Satisfaction factor and balance factor is difficult for the

normal user without expertise

• Maximum bandwidth occupancy on the

uplink of all the ToR switches

• Maximum number of VM partitions of all

the requests

[121] • Only tree-like topology is considered.

• The locality studied in ToR switch level only

• Power consumption

• Performance degradation

[59] • The impact of other parameters than CPU in estimating performance degradation

neglected

[113] • Comparison of PPVMP is made with other methods that do not consider performance

degradation as objective

• Response time

• Failure rate

• Resource utilization

[108] • The ability of the proposed algorithm to provide the optimal or sub-optimal solution

to the problem was not validated.

• A relative high computational complexity (O(a 9 v9n))
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X

i2S� ef g
xij ¼ Sj j � 1ð Þ � xej; e 2 S; 8j : 1� j� n ð5Þ

• VI: A particular VM v may need to be assigned to a

subset; R of PMs. This is because v requires a certain

hardware specification such as storage or network

bandwidth that only provided by PMs in R:
X

j2R
xij ¼ 1; 8i : 1� i�m ð6Þ

• Also, any problems objective can also act as a

constraint if it does not appear as an objective. For

example, minimizing the number of PMs while satis-

fying the inter-traffic among VMs.

3.3 Solution

A potential solution to the VM placement problem with m

VMs and n PMs can be represented by the matrix shown in

Fig. 5. However, among potential solutions, only solutions

that satisfy the basic constraint are feasible solutions. As it

can be inferred from the matrix in Fig. 5, the number of the

different combination is 2m�n as each cell takes either 0 or

1. In fact, 2m�n is the size of search apace for a typical VM

placement problem and it is also binomial time complexity

of a brute-force algorithm that enumerates all the possible

solutions in the search space to find the optimal one. This

can be an indication of the intractable nature of the VM

placement problem.

4 State-of-the-art VM placement strategies

In this section, the state-of-the-art VM placement approa-

ches are classified into two categories, namely: single-ob-

jective and multi-objective approaches. Specifically, for

each category, a number of salient methods in the literature

are described according to the particular objective used.

4.1 Single objective VM placement

In the following, a number of eminent works that attempted

to address a single objective VM are reviewed according to

their specific objectives. Finally, at the end of this section,

a summary of discussed schemes together with their cor-

responding objectives and their assumption/drawback is

presented in Table 1.

4.1.1 Number of PMs

One of the common and intuitive approaches for reducing

power consumption is through minimizing the number of

PMs in a data center. In such approaches, power con-

sumption is deemed to be proportional to the number of

PMs [7]. This objective can be represented by the follow-

ing formula:

minimize
Xn

j¼1

yj 8i : 1� i�m ð7Þ

where yj is 1 if PM j is active/powered-on and 0 otherwise.

Figure 6 shows an example of minimizing the number of

PMs in a data center. The upper part is a data center with

five underutilized PMs whereas the bottom part is the same

data center with a minimum of two highly utilized active

PMs and three turned off servers. The load on three swit-

ched off PMs has been transferred to the active PMs.

Tang et al. [47] proposed a dynamic forecast scheduling

algorithm called VM-DFS for VM placement. The problem

is formalized as bin packing problems and FFD algorithm

is employed to solve the problem with the objective of

minimizing the number of active PMs. VM-DFS uses a

prediction model to forecast the future memory consump-

tion of VMs with dynamic memory demand and place VMs

on the most suitable PMs based on their predicted future

consumption. The result of the simulative experiment in

CloudSim shows that VM-DFS reduces the number of

active PMs as compared to the default static algorithm in

CloudSim. However, the proposed algorithm merely con-

siders the memory usage and the impact of other important

resources like CPU and bandwidth are overlooked.

Liu et al. [48] developed an Ant Colony System (ACS)

based algorithm named OEMACS coupled with a local

search technique to minimize the number of active PMs in

Single objective form
Minimize

Subject to Constraint 1, Constraint 2, …, Constraint k
Multi-objective form

Minimize Objective 1, Objective 2, …, Objective n

Subject to Constraint 1, Constraint 2, …, Constraint k

Fig. 4 A general formulation of the VM placement problem

List of PMs
PM1 PM2 … PMn

List of
V

M
s

VM1 …

VM2 …

… … … … …

VMm …

Fig. 5 Matrix representation of potential solutions to the VM

placement problem
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a cloud data center. The problem formulation merely

considers two types of resources as CPU and memory. The

performance of OEMACS assessed by comparing the

results to that of FFD [49], RGGA [50], ACO and MACO

obtained from a series of experimental tests with both

homogeneous and heterogeneous servers. The results

indicate that OEMACS can find an optimal or quasi-opti-

mal solution in both homogeneous and heterogeneous data

center environments in terms of a number of active servers

and average memory and CPU utilization.

Yan et al. [51] presented SOWO, a discrete particle

swarm optimization (PSO) based VM placement algorithm

to minimize the number of active PMs in the cloud center.

To reduce the computational complexity of the problem,

SOWO only focuses on CPU and memory as the two most

critical system resources. For each PM, total workload for

placing k VMs on a that PM defined as below formula:

1

1� cpup þ
Pk

i¼1 cpui

� �� 1

1� memp þ
Pk

i¼1 memi

� �

ð8Þ

where cpup and memp are the current CPU and memory

load of the PM respectively. Also, cpui and memi are CPU

utilization and memory utilization of VM Vi. The authors

used the presented workload formulation as a fitness

function for their PSO-based algorithm.

SOWO was implemented as a scheduler in OpenStack

and the experiment was conducted to compare the usability

and superiority of SOWO compared to the native OpenS-

tack scheduler known as Filter Scheduler. In the experi-

ment, ten homogenous PMs with identical specifications

were used along with four types of VM templates. The

result of experiments shows that SOWO is capable of using

fewer PMs compared to native OpenStack native sched-

uler. Also, in terms of computational time, the result

indicates two methods behave almost similar when the

number of input VMs increases. However, when it comes

to resource utilization, OpenStack native scheduler per-

forms more stable and balanced than SOWO.

4.1.2 Power consumption

Power consumption of a server in a data center is often

determined by the sum of power consumption of all the

main hardware components in that server. The components

are CPU, memory, disk storage, and network adapter.

However, CPU consumes the largest fraction of the energy

as compared to other hardware parts [52]. Recent studies

[42, 52–55] report that there is a linear relationship

between the power consumption of a server and its CPU

utilization level. Furthermore, a server in its idle state still

consumes 70% of the power when it operates with maxi-

mum capacity. Hence, power consumption is usually

defined as a function of CPU utilization as shown in the

following formula [30, 41, 52, 56–59]:

P Uð Þ ¼ Pidle þ Pbusy � Pidle

� �
� U ð9Þ

where Pidle is the power consumption in idle state, Pbusy

denotes the maximum power consumption when the CPU

is fully utilized, U is the CPU utilization of server and P(U)

is the power consumption of the server based on its uti-

lization level. The CPU utilization is variable over time due

to change in CPU load and therefore the total energy

consumption (E) for a period of time; ½ta; tb� is calculated as
follows [52, 60]:

E ¼ r
tb

ta

P U tð Þð Þdt ð10Þ

It is noteworthy that Dynamic Voltage and Frequency

Scaling (DVFS) is an effective technology in managing the

energy consumption of the processor. This technology

allows the processor to operate in variable frequencies with

different voltages. However, although DVFS has been
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widely applied in embedded, multicore and multiprocessor

systems, it is less adopted in virtualized data centers [58].

As a result, the servers in today data centers are not energy

proportional [61].

Verma et al. [62] presented design, implementation, and

evaluation of placement controller called PMapper to

address application placement and VM placement for a

heterogeneous data center. The VM placement is per-

formed in the second phase and it is intended to minimize

the power consumption under a fixed performance con-

straint in the form of SLA. PMapper uses an extension of

FFD heuristic (called Min Power Parity or mPP) in which

more power-efficient servers are utilized first.

Beloglazov et al. [52] presented a modified version of

Best-Fit Decreasing heuristic called MBFD to solve the

static form of VM placement. In MBFD, all VMs are sorted

in descending order of their CPU demands and each VM is

mapped to the PM with sufficient capacity and with least

increase of power consumption after this mapping. The

time complexity of the algorithm is O(n.m) where n is the

number of VMs and m is the number of PMs. Abdullah

et al. [63] enhanced MBFD by proposing fast best-fit

decreasing (FBFD). The main idea of FBFD is to sort the

list of PMs in increasing order of CPU utilization of PMs

using a binary search tree before the placement takes place.

After each placement, the list of PMs is sorted again. As a

result, the VMs are assigned to a PM with most power-

efficient PMs first. As FBFD uses a binary search tree to

find the most suitable PM with time complexity of O logn2
� �

instead of searching the whole list in MBFD, its overall

time complexity is O m � logn2
� �

as compared to O m � nð Þ of
MBFD. In the dynamic scenario and to determine when to

migrate VMs, a double-threshold policy introduced. The

CPU utilization level of PM should be always between a

lower threshold (Tl) and an upper threshold (Tu). If the total

CPU utilization level of a PM exceeds Tu, some VMs have

to migrate to other PMs. In the event that the CPU uti-

lization of PM falls below the Tl, all the VMs on that

particular PM have to migrate to other PM in order to

reduce the utilization level and prevent performance

degradation. The authors also proposed three different

policies to determine what VMs should be migrated. These

policies are Minimization of Migration (MM) policy, The

Highest Potential Growth (HPG) policy, and Random

Choice (RC) policy. MM policy identifies the minimum

number of VMs to be migrated according to the current

utilization level of PM along with the two thresholds. RC

policy randomly selects a number of VMs to be migrated.

HPG migrates a set of VMs with the lowest usage of CPU

relatively to the CPU capacity as defined by set S in the

following formula:

SjS 2 P Vj

� �
; uj �

X

v2S
ua vð Þ\Tu;

X

v2S

ua vð Þ
ur vð Þ ! min ð11Þ

where Vj is the set of VMs already placed on PM j. P(Vj) is

the power set of Vj, uj is the current CPU utilization of PM

j, ua(v) is the CPU utilization allocated to VM v and ur(v) is

the CPU initially requested by VM v. The simulation result

shows that, overall, using MM policy provides the best

results among other policies in terms of SLA violation,

energy saving and the number of VM migration.

Gao et al. [64] presented a dynamic resource manage-

ment scheme to minimize the power consumed by the

physical infrastructure while SLA requirement is also met.

The proposed scheme leverages both DVFS and server

consolidation to reduce power consumption and provides

desired performance guarantee. In particular, a greedy

heuristic on the basis of BFD was presented to assign a set

of VMs to PMs with regards to the above-mentioned

objective. The result of experimental validation shows that

the proposed scheme yields 50.3% power saving as com-

pared to the four other policies.

Kessaci et al. [65] proposed a new placement technique

to be embedded in OpenNebula [66]; a cloud management

software. The proposed algorithm called EMLS-NOC is

based on multi-start local search metaheuristic and aims to

minimize the energy consumption of the entire infrastruc-

ture. The multi-start feature is used to give more explo-

ration power within the search space to the algorithm while

local search adds more accuracy to the algorithm. EMLS-

ONC was compared to OpenNebula’s default scheduler and

FFD. The result shows EMLS-ONC improves the

OpenNebula’s default scheduler 26% on average and it

also improves energy-aware FFD-based approach up to

25%.

The dynamic form of VM placement also was addressed

by Ferreto et al. [67]. In particular, the authors investigated

mapping VMs with variable resource demands into the

smallest number of PMs. As opposed to the static form

where the VM resource demands remain unchanged during

VM lifetime and VM resource capacities are assigned

according to a peak demand of VM, VMs with dynamic

demands, changes their resource demands based on their

current and actual need. However, the dynamic approach

might result in migrating VM between different PMs in

order to remove VMs from an overloaded PM or to switch

off a PM when all its VMs already moved to other PM. The

authors presented a Linear Programming (LP) formulation

to deal with the problem. The whole lifetime of VM is

divided into a number of consolidation steps. In each

consolidation step, the placement process is repeated using

VM demands at that particular moment which may require

migration of VMs to different PMs and also can affect the

number of required PMs. The key idea behind the proposed
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approach (called dynamic consolidation with migration

control) is to avoid migrating VMs with steady demands.

Performance degradation due to migration or QoS deteri-

oration was stated as justification for prioritizing the VMs

with fixed demands. The authors also used the same idea to

some common heuristics as FFD, BFD, WFD, and AWFD

and made following modifications in order to ensure VMs

with steady demands are not migrated: (a) in each con-

solidation step, map VMs with steady demands to the

previously mapped PMs. (b) sort physical servers accord-

ing to the lexicographic order of their resource (CPU,

memory, and network) capacity. The proposed approach

was evaluated based on TU-Berlin and Google workloads

and the main finding is: avoiding migration of VMs with

steady demands reduces the total migration while it has a

minimal adverse effect on the number of PMs.

In another study, Alharbi et al. [68] took advantage of

ant colony system optimization technique to solve the

dynamic VM placement problem with the objective of

minimizing the total energy consumption of all active PMs

in a data center. The energy consumption is modeled

similar to what we presented earlier in Eq. (9). The pro-

posed method utilizes the VM and PM profile information

extracted from the historical data logs. This information

includes CPU and memory capacity, their residual capacity

and their minimum and maximum energy consumption.

The dynamic scenario is implemented considering a

change in VM request in each time interval. At the

beginning of each interval, the list of VMs is updated and

the released resource by expired VMs are made available to

the new VMs. According to the conducted simulation on

small, medium, and large-scale data centers, the proposed

method offers improved energy efficiency in comparison

with FFD, ACO-VMP [69] and PVM [70]. However, such

an improvement gained at the cost of more execution time.

In terms of scalability, the runtime of the proposed method

shows a linear increase with varying the number of PMs.

To minimize the overall energy consumption in a data

center, Xiao, Ming [71] proposed a partitioned optimiza-

tion framework. The proposed framework classifies the set

of PMs into three different pools, namely: running pool,

sleeping pool and off the pool. The running PMs are cur-

rently loaded with VMs while off PMs are switched off for

energy efficiency. The sleeping PMs are put into the low

energy state and they can be awakened when they are

needed. The PM in different pool consumes a different

amount of energy. The overall energy model which is

denoted by Eall is defined as a summation of three parts as

it is shown by the below equations:

Eall ¼
Xm

i¼1

Esta i; tð Þ þ Eswi ið Þð Þ þ
Xn

j¼1

Emig jð Þ ð12Þ

where Esta i; tð Þ is the energy consumption of ith PM in its

state (running, sleep or off). Eswi ið Þ is the amount of energy

consumed for state switching of ith PM. Emig jð Þ is the

energy consumption for migrating jth VM. The main idea

of the proposed optimization method is to reduce the search

space by avoiding states/solutions that cannot make the

current energy consumption any lower. The authors pro-

posed a memetic algorithm to solve the dynamic placement

of VMs. To demonstrate the priority of the proposed

algorithm, the experiment was conducted to compare the

proposed algorithm to the heuristics: FF(First Fit), BFI

(Best Fit Increasing), BFD (Best Fit Decreasing), Greedy

and LB (Load Balance). Based on the results, the authors

conclude that the proposed algorithm outperforms those

heuristics algorithms in terms of the percentage of energy

consumption improvement. One drawback of the proposed

method can be ignoring the impact of other hardware

resources such as memory and even GPU on the energy

consumption in data centers. In fact, the inclusion of such

resources in the energy model can help more precise pre-

diction of energy consumption and therefore the more

realistic solution for the VM placement.

4.1.3 Power consumption for network communication

Most studies on efficient power management in the data

center primarily focus on the effects of computer hardware

with high power demands such as computer servers and

cooling systems. However, network equipment also con-

sumes 10–20% of total power in a data center [72] which

introduces a new challenge to reduce the networking power

consumption without imposing an adverse impact on

overall network performance. This issue motivated Fang

et al. [73] to propose a novel approach called VMPlanner

to conserve network power in a data center. The main idea

behind VMPlanner is to optimize the VM placement and

traffic flow among VMs such that dispensable networking

elements can be switched off for the sake of maximum

possible energy conservation. The problem is formulated as

a combinatorial optimization problem and solved in three

different steps. First, all the VMs are partitioned into a set

of groups with a minimum amount of inter-communication.

Second, using a Tabu search technique, VM groups are

assigned to the corresponding PMs’ racks such that total

inter-rack communication is minimized. Third, the network

traffic among VMs is managed such that dispensable net-

working equipment can be switched off for energy con-

servation. The evaluation result shows VMPlanner

achieves 60% more power saving as compared to the sit-

uation in which all the network equipment are fully

operating.
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In multi-core servers, the inter-communication among

the cores can substantially impact the overall system per-

formance. Network-on-chip (NOC) technology leverages

the computer networking and packet switching concept to

provide efficient communication among multiple cores

compared to the conventional communication architecture

which uses wires and buses to connect cores. The advan-

tage of NOC over traditional architecture is low latency,

high performance, and lower power consumption. Liu et al.

[74] designed an energy-aware on-chip VM placement

scheme with the aim of efficiently allocating a number of

VMs on a multi-core server with high efficiency and per-

formance. An ant colony heuristic is used to place the VMs

running the same application on the closer cores based on

traffic rates, energy consumption, and communication

delay. The problem is formulated as binary integer pro-

gramming with the objective of minimizing the power

consumption for inter-communication between VMs. The

simulation results show that the proposed scheme attains

better energy efficiency compared to FFD placement and

random placement.

4.1.4 Traffic

A typical topology for a data center is a tree structure

which includes switches. In such a topology, the commu-

nication delay between two different VMs is proportional

to the distance between them. The distance is a number of

hops from sender VM to the receiver VM. When a col-

lection of VMs forms a single application, an inter-com-

munication among collaborating VMs is likely needed.

Therefore, placing the most communicative VMs on PMs

with minimum network distance is a way to alleviate the

communication overhead [39]. Besides VM placement

policies to minimize the number of active PMs, power

consumption or other criteria, network-aware techniques

[39, 75] intend to improve the performance of the appli-

cation by minimizing the communication latency among

VMs. However, in such techniques, clients are required to

at least provide the application interconnection network

and its communication requirement in order to facilitate the

decision-making process in effective resource manage-

ment. As a simple example shown in Fig. 7, the placement

strategy can accelerate data transfer by moving the com-

municative VMs (e.g. VM1–VM3, VM2–VM4) from dis-

tant physical servers to a local physical server.

Meng et al. [75] addressed the scalability concern for

modern traffic-intensive data centers. The proposed traffic-

aware placement policy (called Cluster-and-Cut) intends to

minimize the average traffic latency for the data center

network by placing most communicative VMs in close

proximity. Cluster-and-Cut is a two-tier heuristic algorithm

which receives the traffic matrix between the VMs and first

partitions VMs and hosts into different clusters and then

matches VMs to the hosts at cluster level and thereafter at

the individual level. The experimental analysis indicates

that the proposed placement algorithm significantly redu-

ces the aggregate traffic and computational time as com-

pared to the existing generic methods presented in [76] and

[77]. In the other effort to minimize the energy consump-

tion of network equipment, da Silva, da Fonseca [78]

presented a topology-aware strategy to place communi-

cating groups of VMs closer together in a small area of the

data center. As a result, VMs require a shorter path and

fewer network switches to communicate with each other

thus less energy consumed. The proposed algorithm, called

TAVMP, receives a group of VMs as input and then splits

the whole data center topology into smaller sub-graphs.

The same strategy is recursively applied to each sub-graph

and when the lowest level is reached the placement deci-

sion is made by other algorithm named Placement in

Current Area (PCA). The performance of TAVMP was

assessed in a simulation experiment based on blocking

ratio (percentage of VMs were not placed) and energy

efficiency. The result indicates that TAVMP accepts more

virtual machines without degrading the energy efficiency

compared to other algorithms: Power Aware Best Fit

Decreasing algorithm (PABFD) and Round Robin algo-

rithm (ROUND).

Rahimzadeh Ilkhechi et al. [79] studied VM placement

with the objective of maximizing a certain metric named

Satisfaction in a particular scenario of interest where some

VMs are highly inclined to exchange traffic to certain

nodes called sinks. The sinks can be a supercomputer,
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Fig. 7 Network traffic optimization
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connection point or any physical resource that other nodes

are highly dependent on it. The satisfaction of a VM is

measured based on appropriateness of a PM that hosts that

VM. Moreover, the metric takes into account the cost

(proximity) of VMs to sinks together with demand flow of

VMs in order to determine the suitability of each PM. The

authors presented greedy and heuristic-based algorithms to

assign VMs to PMs and found these algorithms more

effective compared to the random assignment. However,

the presented algorithm assumes that the knowledge of

communication patterns and flow demand profiles are

provided beforehand.

Song et al. [80] formulated the VM placement problem

as a convex optimization problem and proposed a

scheme called optimization-based scheme for solving the

problem in a large scale data centers which take into

account both network dependencies between different VMs

and server constraints. The problem objective is to mini-

mize the communication traffic among VMs. To validate

the performance of the proposed approach, it was com-

pared to the random placement and traditional bin packing

algorithm in four different scenarios and with subject to

four popular data center architecture topology such as Tree,

VL2, Fat-Tree, and BCube. The achieved results indicate

that employing the optimization-based schemes in such

topologies (Especially BCube) reduces the communication

cost between VMs and thus results in a higher degree of

performance as compared to other methods. In addition, the

proposed scheme requires the least number of PMs as

compared to the random placement and First Fit placement.

4.1.5 Balance of the residual resource/resource utilization

The residual resource along different dimensions on each

server should be always balanced in anticipation of future

request. This is to prevent any resource wastage due to

fragmentation [81]. Figure 8 shows an example of resource

allocation along two dimensions; namely CPU and mem-

ory for a typical PM.

Figure 8a shows an unbalanced placement strategy

which results in resource wastage while in Fig. 8b the

balanced placement helps to provide sufficient capacity to

the future requests. The resource wastage in Fig. 8a is

caused because the remaining resource along CPU

dimension is too small and thus unlikely to accommodate

future requests. By placing each VM on a PM, a certain

amount of resource in different dimensions on that partic-

ular PM is consumed. Each inner rectangle represents the

resource usage of each VM while the outer rectangle is the

total resource capacity of the PM. Some extant works

[7, 82] addressed VM placement with load balancing as an

objective. Specifically, Cho et al. [82] proposed a hybrid

meta-heuristic called ACOPS (as a hybrid of ant colony

optimization and particle swarm optimization) to maximize

the balance of resource utilization across different resource

dimensions. The proposed approach uses the workload of

historical requests to predict the workload of future

requests. Each request is for a VM along with its resource

demands. To quantify the load balancing, a degree of

balance (DB) is defined for three types of resources i.e.

memory, CPU and disk as follows:

DB ¼ b1 � V þ b2 � 1� Dð Þ ð13Þ

where V is the feature of utilization, D is the feature of

maximum difference. b1, b2 are coefficients. In addition, to

speed up the ACO process, the unsatisfied solutions are

rejected before scheduling. The results of the simulative

experiment indicate that ACOPS is faster than conventional

ant colony optimization algorithm, has shorter makespan

and also outperforms other approaches in terms of the

balance of resource utilization. The authors also reported

the time complexity of the proposed algorithm as O(n2-

MAI) (n number of VMs, M number of PMs, A number of

ants, I maximum number of algorithm iterations).
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He et al. [83] developed a Genetic Algorithm (GA) to

consolidate moldable VMs for a cloud system. In converse

to rigid VMs that the resource capacities remain unchan-

ged, the resource capacity for moldable VMs is adjustable.

Their approach particularly deals with a set of virtual

clusters each of which provides a specific type of service to

the users. Since a steady level of Quality of Service (QoS)

is expected from the whole cluster as a single entity, it is

not necessary to keep individual VMs capacities constant

in the cluster. The authors employed a genetic algorithm to

search for a mapping solution that most minimizes the

standard variation of spare capacity across different

resource types. The outcome of the genetic algorithm is an

optimized system state that represents the optimal mapping

of VMs in a virtual cluster to the PMs. If the resource

capacities of VMs undergo a change, a new system state is

calculated and the old state is transited to the new one.

Transiting to the new state may involve different VM

operations as VM creation, VM deletion, and VM migra-

tion. As each of VM operations has different cost, a

heuristic approach was developed to obtain a reconfigura-

tion plan with lowest possible cost in a reasonable time. In

addition to the initial placement of VMs, a reconfiguration

algorithm is leveraged to dynamically transform the current

state of allocation to the new one. Through a simulation

experiment, the developed GA technique was compared to

the Entropy consolidation scheme presented in [84] and the

result demonstrates that GA performs better than Entropy

in packing VM in a fewer number of physical nodes.

4.1.6 Carbon footprint

The amount of carbon dioxide gas (CO2) emitted from an

energy source of a data center is referred to as ICT carbon

footprint and considered as an acute environmental effect.

Today’s, large scale data centers are confronted with a

substantial increase in carbon emission and therefore

minimizing the carbon footprint has become one of the

significant industry priorities [85]. Proper handling of the

issue will contribute towards a sustainable and green ICT

technology. Khosravi et al. [86] proposed an Energy and

Carbon-Efficient VM placement algorithm called ECE

based on a best-fit heuristic. ECE places VMs on a dis-

tributed data center with the objective of minimizing the

carbon footprint. A broker decides to place the VMs on

most suitable sites and servers according to the different

parameters such as data center power usage effectiveness

(PUE), energy source carbon footprint rate and propor-

tional power. PUE is a metric to measure data center

efficiency. A data center PUE is calculated as:

PUE ¼ Total date center power consumption

Data center IT power consumption
ð14Þ

where total data center power consumption refers to the

sum of power drawn by the data center for all the purposes

including IT equipment, lightning, cooling ant, etc. Data

center IT power consumption reflects the power consumed

by the data center for IT equipment only (as illustrated in

Fig. 9).

PUE is a value greater than 1. In an ideal condition,

PUE = 1 implies that 100% of electricity provided to a data

center goes to the IT equipment which is practically

impossible. The smaller the PUE is the more efficient data

center is. The higher values of PUE mean a larger portion

of input electricity is spent on cooling, lighting and etc. To

evaluate ECE, it was compared with four First-Fit based

heuristics in four data centers with heterogeneous infras-

tructure. The results demonstrate that, with the increasing

number of VMs, ECE reduces the carbon footprint by at

least 45%. Moreover, In terms of power consumption, ECE

achieves a minimum of 8% of power saving.

Moghaddam et al. [87] proposed two new algorithms for

placement of VMs in multiple clouds. The algorithms are

an extension of the GGA algorithm presented in [81] and

these algorithms were studied with different objectives

such as minimizing energy consumption (MLGGA-EA) and

carbon emission reduction (MLGGA-CA). The proposed

algorithms are compared to GGA, FFD and Swarm [88].

The result demonstrates that, overall, MLGGA-EA achieves

better solutions for multi-cloud scenario whileMLGGA-CA

is a promising choice for energy efficiency case. However,

the MLGGA-EA is not recommended when carbon foot-

print is the main concern. The proposed approach is devoid

of any concrete formulated model for energy consumption

and carbon footprint.

4.1.7 Total VM performance

Service Level Agreement (SLA) is an agreement between

user and provider and specifies a minimum level of quality
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of service to be offered to the user [89]. In the IaaS cloud

model, one of the important factors to comply with the

endorsed SLA is to ensure tenants always receive the

promised quality and specification for the hardware

equipment they lease. In particular, in the presence of

virtualization technology and with interference caused due

to co-existence of several VMs on a single PM, an

important requirement to be taken into account is to

improve VM performance which can be represented as VM

response time (delay) [65] or VM throughputs.Tordsson

et al. [90] presented a cloud brokering approach that

involves optimal placement of VMs across multiple

heterogeneous clouds. The cloud broker has two roles,

First: providing a scheduling mechanism for determining

optimal VM placement. Second: providing a uniform and

transparent management interface for dealing with differ-

ent VMs without depending on a specific type of cloud

architecture or technology. A schematic of architecture for

proposed cloud brokering approaches is shown in Fig. 10.

The placement algorithm is in a static form and designed

based on binary Integer Programming formulation and

meant to maximize the total performance of running VMs

across multiple clouds while satisfying various constraints

such as performance, budget, service configuration and

load balancing. The objective function is represented as:

TIC ¼
Xl

j¼1

Cj

Xn

i¼1

Xm

k¼1

xijk

 !
ð15Þ

where Cj is the performance of a VM type j and xijk ¼ 1 if

VM i of type j is placed on cloud k, and 0 otherwise.

To solve the problem, a mathematical programming

language called AMPL [91] used along with a CPLEX [92]

as a backend solver. The cloud brokering approach is

evaluated with high throughput computing cluster over

multiple cloud providers and the most significant finding is:

the deployment of VMs over multi-cloud results in better

performance and lower cost as compared to single cloud

scenario.

4.1.8 Cost of deployment

In today cloud market, service providers offer a diverse

range of service plans. These plans are sometimes subject

to revision by the provider from time to time. However, it

is not always straightforward for cloud end users to choose

the best economically possible service with subject to their

budget and limitations. This is particularly true in the case

of the federated cloud that a service has to be provisioned

through a set of stand-alone clouds with different pricing

schemas. In this scenario, an intuitive goal is to minimize

the total cost of deployment of VMs by choosing the lowest

price plan/cloud. The cost is defined as a sum of the cost

for each VM to be deployed [40]. Analogous to Tordsson

et al. [90], Lucas-Simarro et al. [40] proposed a modular

cloud brokering architecture including a scheduling mod-

ule for the multi-cloud scenario. The VM placement

strategy was implemented in the scheduling component

and was aimed to optimally deploy VMs across different

cloud environments where each vendor offers different and

dynamic price schemes. The problem is formulated to

minimize the so-called Total Infrastructure Cost (TIC).

TIC is defined as a total cost for placing each VMs for a

particular period of time as represented as:

TIC tð Þ ¼
Xn

i

Xl

j

Xm

k

Xi;j;k tð Þ � Pj;k tð Þ ð16Þ

where t is the 1-h period of time and Xi;j;k tð Þ ¼ 1 if VM i of

type j is placed on cloud k during period t, and 0 otherwise.

Pj;k tð Þ is the price of placing VM j on cloud k for a period t.

The placement is repeated before the beginning of each 1-h

period and the prices of similar VM instances are subject to

change over periods of time. Additionally, the second

objective is to maximize Total Infrastructure performance

(TIP) as a total performance for each VM in a certain

period of time.

TIP tð Þ ¼
Xn

i

Xl

j

Xm

k

Xi;j;k tð Þ � Perfj;k tð Þ ð17Þ

where Perfj;k tð Þ is the performance of VM of type j on

cloud k for a period t. The performance of a virtual

machine depends on a number of factors as a requirement

of the application, type of VM and the PM that hosts the

VM. LINPACK benchmark [93] was used to analyze the

performance of each instance of VM.
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In addition, few constraints with respect to the budget,

minimum expected performance and budget were added.

Thereafter, AMPL [94], a mathematical programming

language, with MINOS solvers is used to optimize the

mathematical model. The performance of the architecture

and placement strategy was evaluated against HPC cluster

and Web Server cases and the results demonstrate that

multiple VM placement outperforms single VM and multi-

cloud deployment using the broker is superior to the single

one regardless of interference of cloud broker. Also,

making use of cloud broker, users are benefited with 4–6%

improvement in performance or budget.

4.2 Multi-objective VM placement

This section is meant to review a number of prominent VM

placement approaches that address the multi-objective

form of the problem. Besides, at last, a summary of dis-

cussed schemes as well as their objectives and assump-

tion/drawback is presented in Table 2. Although the

majority of proposed VM placement techniques formulate

the problem based on a single objective there exist some

other strategies [12, 41, 65, 95] that mainly address the

multi-objective variation of the problem. Despite the pri-

mary objective which is often minimizing total power

consumption, other criterions like Traffic, Load balancing,

and Thermal dissipation can be considered to establish the

multi-objective form of the problem. In multi-objective

optimization, the aim is to minimize/maximize the number

of objectives simultaneously. Generally, in tackling multi-

objective problems there are two main approaches: The

first approach relies on Pareto concept [96] to find a range

of tradeoff solutions which are equally optimal and called

non-dominated solutions as shown in grey in Fig. 11. The

figure illustrates a sample solution space for a problem of

minimizing two objectives of power consumption and

network traffic. The circles in white represent solutions that

have greater (worse) values of both objectives and there-

fore dominated by better solution represented in grey. The

second approach of multi-objective optimization trans-

forms an originally multi-objective problem into a weigh-

ted sum of individual objectives as a single objective as

shown in the following equation for two objectives of

power consumption and traffic:

Minimize w1 � power þ w2 � traffic ð18Þ

where w1 and w2 are weighting coefficients for power con-

sumption and traffic respectively and they indicate the rel-

ative importance of their corresponding objectives.

Although the weighted sum approach is regarded as the

simplest way to deal with a multi-objective problem,

choosing the proper weight vector is not always a straight-

forward task [97]. Moreover, prior determination of the

weight vector excludes some other potentially good solu-

tions from the search space [98]. In practice, the weighting

coefficients are chosen based on the relative importance of

individual objectives for the specific problemof interest [96].

For example, if in a situation, minimizing power usage has

more priority than minimizing traffic overhead then in above

w1 ¼ 0:7;w2 ¼ 0:3 can be a reasonable choice or in case of

the equal importance of two objectives, both coefficients can

be set to 1 (i.e.w1 ¼ 1;w2 ¼ 1). Table 3 lists VM placement

schemes that utilize a weighted sum approach to deal with

multiple objectives along with their rationale behind

choosing weighting coefficients.

4.2.1 Number of PMs and resource utilization

Liu et al. [69] proposed an ant colony based algorithm

called ACO-VMP. The objective is to minimize the sum of

total resource utilization and the number of used servers as

shown by below formula:

w1 �
XM

i�1

1

PCi � UCi

þ 1

PMi � UMi

� �
þ w2 �M ð19Þ

where w1 and w2 are weight coefficients, PCi and PMi

represent the CPU and memory capacities respectively

while UCi and UMi are CPU and memory utilization level

respectively. M is the number of PMs. The performance of

ACO-VMP was compared to FFD algorithm in [49] and the

experimental results show the solution returned by ACO-

VMP always requires fewer PMs when VMs are varied

between 100 to 600. However, no comparison between the

two algorithms was performed in terms of computational

time. Also, the performance of ACO-VMP in minimizing

resource utilization was not assessed.
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Table 3 List of VM placement schemes with weighted sum approach

Scheme Choice of weighting coefficient for multiple objectives

[69] The authors used w1 and w2 to scalarize the number of PMs and resource utilization as shown by the below formula. However, they did

not indicate how they determined specific values for w1 and w2 during their experiment

w1 �
XMS

t

i¼1

1

PCi � UCi þ e
þ 1

PMi � UMi þ e

� �
þ w2 �MS

t

[103] The authors used 1 as a weighting coefficient for power consumption and k as a weighting coefficient for resource wastage

1�
Pm

j¼1

Pj � K �
Pm

j¼1

UsageEFFj.

[9] The authors used 1 as a weighting coefficient for execution time and 1 as a weighting coefficient for power consumption as shown

below

1 � h ECð Þ þ 1 � d ETð Þ
[59] The authors used w1 and w2 as a weighting coefficient for power consumption and performance degradation as shown below

w1 � pows vssum
� �

þ w2 � P sð Þ
However, they did not make clear what specific value of w1 and w2 they have chosen in their experiment

[105] The authors used vector values of [1, 1, 1, 1] for weighting vector w ¼ w1;w2;w3;w4½ � as they did not consider any relative importance

between different objective functions expressed by below formula

w1 �
F1 � F�

1

F�
1

þ w2 �
F2 � F�

2

F�
2

þ w3 �
F3 � F�

3

F�
3

þ w4 �
F4 � F�

4

F�
4

where F1 is total energy consumption, F2 is Consolidation Fitness (for PMs executing two disk-intensive VMs), F3 is Consolidation

Fitness (for PMs executing a disk-intensive VM and processor intensive VM) and F4 is a limit for processor utilization of a PM.

F�
1 ;F

�
2 ;F

�
3andF

�
4 are optimum values for F1;F2;F3andF4

[106] For the static scenario, authors used weighting coefficient 1 for power consumption and a for network traffic as expressed by the below

formula:

1: Costser þ a:Costnet

For the dynamic case, they used 1 as a weighting coefficient for power consumption. For network traffic and VM migration objectives

they used a and b respectively as shown below:

1: Costser þ a:Costnet þ b:Costmig

However, the authors did not make clear what specific values of a and b they have chosen for their experiments.

[107] The authors used 1 for both objectives of power consumption by PMs and power consumption of communication among VMs as

expressed by the below formula:

1:
P
pj2P

E Pj

� �
þ 1:

P
c2C

E cð Þ

[44] The authors used a, b, and c as weighting coefficients for objectives Resource Usage (RU), Server Usage (SU) and Bandwidth Usage

(BU) respectively as shown below:

a � RU þ b � SU þ c � BU
The authors chose a � b � c so that the highest importance is given to minimizing network traffic, the second highest importance is

for minimizing server usage and lastly minimizing resource usage has the least relative importance.

[108] The authors used q1, q2 and q3 as weighting coefficient for objectives ratio of response time, failure rate and resource utilization as

denoted by below formula:

o1 � trj
trmax

þ o2 � fj
fmax

þ o3 � sj

The value of q1, q2 and q3 was adjusted according to the cloud user’s attention to the three factors
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4.2.2 Energy consumption and VM performance

In addition to the single objective algorithm by Kessaci

et al. [65] which was previously discussed in Sect. 4.1.2,

the authors proposed a bi-objective version of EMLS-NOC

called EMLS-NOC-MO which intends to addresses both

energy consumption and performance of VMs. Moreover,

among a set of best-found solutions, the priority is given to

the solution that packs the highest number of VMs. The

VM performance model is defined based on the response

time of VMs. The response time is calculated according to

a linear relationship with memory increase as shown in

Fig. 12 Where memoryj is the memory requirement of VM j

and mem_usagei is the current memory usage of PM i. To

evaluate the EMLS-NOC-MO, it was compared to FFD and

OpenNebula’s default Scheduler when it is applied to

individual objectives (e.g. energy consumption and per-

formance of VMs). The achieved results from EMLS-ONC-

MO, are 24% and 9% better than that of OpenNebula’s

default scheduler when respectively energy and VM per-

formance are objectives. Comparing EMLS-ONC-MO to

other approaches, the authors also report the superiority of

the EMLS-ONC-MO. However, no comparison with

prominent Pareto-based multi-objective approaches (such

as NSGA-II [99]) presented.

4.2.3 Resource wastage and power consumption

Gao et al. [95] studied VM Placement as a multi-objective

combinatorial optimization problem with two objectives as

resource wastage and power consumption. The authors

modeled the resource wastage for jth PM (Wj) as below:

Wj ¼
L
p
j � Lmj

���
���þ e

U
p
j þ Um

j

ð20Þ

where U
p
j and Um

j denote the ratio of used amount of CPU

and memory respectively to the total available corre-

sponding resource while L
p
j and Lmj represent the normal-

ized remaining amount of CPU and memory respectively. e
is a very small positive value.

The presented power consumption model as already

discussed in Sect. 4.1.2. is an ant colony optimization

algorithm called VMPACS which was proposed to simul-

taneously minimize both problem objectives. The goal is to

find a set of non-dominated solutions that provide the best

possible trade-off between two objectives with reference to

the concept already discussed in Sect. 4.2. The perfor-

mance of the proposed approach is compared with single

objective ant colony (SACO) optimization algorithm in

[100], a multi-objective genetic algorithm (MGGA) that

proposed in [81] and a single objective FFD heuristic in

[49]. Two special performance metrics for the multi-ob-

jective algorithms called ONVG [101] and Spacing [102]

were employed to evaluate the effectiveness of the pro-

posed algorithm. The conducted experiment demonstrates

the superiority of the VMPACS to the other algorithms.

Furthermore, the experiment result verifies the scalability

of the approach in large data centers with many VMs and

also shows that VMPAS takes less than 3 min to solve a

placement problem with up to 2000 VMs. However, the

authors did not assess the performance of VMPACS in

terms of computational complexity when it is compared to

MGGA, SACO, and FFD.

In another attempt to minimize the power consumption

and resource wastage of cloud data center, Jamali et al.

[103] applied an imperialist competitive-based algorithm

(ICA); a novel optimization technique which was first

introduced by Atashpaz-Gargari and Lucas [104] for

tackling real-world solve optimization problem. To reduce

the complexity, the bi-objective problem was converted to

a single objective one using the weight-based approach.

The performance of ICA was compared to the well-known

approaches such as Ant Colony, Genetic Algorithm and

FFD on a CloudSim simulation environment in terms of

power consumption and resource wastage criteria. The

simulation results indicate that ICA performs better in

reducing the power consumption and resource wastage of

PMs as compared to other placement algorithms. However,

no comparative analysis of computation time provided.

Zheng et al. [42] proposed a novel solution called

VMPMBBO. The proposed evolutionary algorithm is a

biogeography-based optimization technique and it is

intended to find a solution that simultaneously minimizes

the resource wastage and power consumption. The authors

extended the model in [81, 95] to quantify the cost of the

resource wastage along three dimensions of CPU, memory,

and bandwidth. The power consumption model is based on
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CPU utilization level similar to the model presented in

Sect. 4.1.2. Through simulative experiments and using

both synthetic and real data, the proposed method was

compared with two other multi-objective optimization

algorithms: MGGA [81] and VMPACS [95] and the results

show that in most cases VMPMBBO has better conver-

gence and also it is computationally more efficient. How-

ever, the conducted experimental analysis does not include

any performance comparison to other the state-of-the-art

evolutionary approaches (such as NSGA-II [99]) which has

been successfully applied in a variety of optimization

problems in different domains. In addition, employing

dedicated multi-objective performance metrics seems

necessary to evaluate the efficiency of the proposed algo-

rithm precisely.

The problem of VM placement with two objectives of

power consumption and resource wastage was also

addressed by Gupta, Amgoth [109]. A power consumption

model similar to what we presented in Sect. 4.1.2 and a

more involved resource wastage model based on CPU

demand, memory demand of VMs, maximum memory

utilization and maximum CPU utilization of PMs were

presented. The main idea behind the proposed methods

named as RVMP is the utilization of a new two-dimen-

sional resource usage model (as shown in Fig. 13). The

model partitions the CPU and memory utilization space

into three different domains according to the degree of

balance in resource utilization. Based on this model, the

VM migration is limited and this balances the resource

utilization. Three different domains in the proposed model

are Acceptance Domain (AD): where the residual resource

amounts are nearly balanced. That is, there is little resource

wastage and it is an ideal case for all PMs. This domain has

the highest priority. Balance Domain (BD): where there is

no apparent disequilibrium in resource utilization and it is

fairly balanced. This domain has the second highest pri-

ority. Domain (UD): where there is an obvious disequi-

librium in resource utilization. This domain has the least

priority. RVMP is divided into two phases as VM place-

ment and VM migration. The decision of placing the VMs

are made based on the so-called Resource Usage Factor

(RUF) which merits the suitability of a PM to host a VM.

RUF is calculated based on the resource utilization of VMs

and the remaining resources of PMs. VM Migration phase

is performed based on RUF and the posterior usage state of

PM in the aforementioned resource utilization model. The

posterior usage state of a PM with respect to a VM is

defined as new usage state of the PM when the VM

migrates to that PM and implies the suitability of that PM

with subject to the domain in the two-dimensional model

which the posterior usage falls into. To evaluate its per-

formance, RVMP was compared with existing algorithms:

First Fit, VMPACS [95], MBFD [52] and OBFD [110] in

terms of power consumption, resource wastage, overall

CPU/memory utilization and the number of active PMs.

The simulation results using user-customized VMs and

using Amazon EC2 instances demonstrate the superior

performance of the proposed algorithm.

4.2.4 Power consumption and VM execution time

Kansal and Chana [9] proposed the ERU (Energy-Aware

Resource Utilization) model to efficiently manage the

resources in the cloud computing environment. The goal of

ERU is to reduce the energy consumption of cloud

infrastructure without degrading the performance of the

user’s application which is translated into VM execution

time. This model is meant to achieve the maximum pos-

sible resource utilization which results in the enhanced

energy efficiency of the data center. A weighted sum of

two objectives (execution time and power consumption) is

minimized. The model for calculating VM execution time

(ET) is defined as:

ET ¼
XM

i¼1

ETi ð21Þ

where ETi is the execution time of VMs running on ith PM

and M is the number of PMs. ETi is defined as:

ETi ¼
Xn

j¼1

Xl

k¼1

ETijk ð22Þ

where ETijk is the execution of k jobs running on jth VM on

ith PM.

Likewise, the total power consumption (EC) is calcu-

lated as the sum of power consumption for every single PM

(ECi) as:
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EC ¼
XM

j¼1

ECi ð23Þ

and consequently, the power consumption for every single

PM; ECi; is its power consumption; PCi; during t units of

time as shown below:

ECi ¼ PCi � t ð24Þ

The key features of the proposed model are: monitoring

cloud resources to determine the current level of energy

consumption, providing users with requested resources and

enhancing resource utilization. As an element of the pro-

posed model, the scheduler module is responsible for

finding the best physical nodes for user’s jobs. To avoid

conflict among different nature of workloads and to prevent

potential resource contention, workloads are segregated

into CPU-intensive workloads and memory-intensive

workloads. The scheduler uses an artificial bee colony

(ABC) optimization technique to place the dynamic user’s

workload to an optimal set of physical nodes. Through a

simulation-based experiment on CloudSim toolkit [111]

the performance of ABC-based technique (called ERU) is

evaluated against Ant Colony Optimization (ACO) [100]

and First-Fit Decreasing Heuristic (FFD) [112]. The

experimental results show ERU takes higher time than

FFD and less time than ACO to obtain the final output. In

addition, employing the ERU approach results in less

energy consumption as compared to FFD and ACO tech-

niques. Specifically, 11% of PMs and 10.7% of power have

been saved using ERU over FFD. The PMs and power

conserved using ERU over ACO are 6.35% and 6.63%

respectively.

4.2.5 Resource fragmentation and number of PMs

Since the resource wastage/fragmentation results from

imbalance use of the resource over multiple dimensions

(such as CPU, memory and disk space), Li et al. [7] pro-

posed a novel multi-dimensional space partition model to

describe the resource usage status of PMs. Figure 14 shows

the multi-dimensional space partition model for two dif-

ferent resources. All the resource dimensions are normal-

ized to have capacities in the same range of [0, 1]. The

point O indicates that all the resource dimensions are

unused and thus the PM is idle. On the other hand, point E

refers to the state that all the resource dimensions are

exhausted. The model has partitioned into three different

domains as (1) acceptance domain (AD): where all the D-

dimensional resources are almost finished. A PM with

usage state falls in this domain is an ideal candidate for

placing a new VM, (2) forbidden domain (FD): this domain

implies imbalance in D-dimensional resource utilization

and therefore should be avoided. (3) Safety domain (SD):

indicates there is no obvious imbalance of resource uti-

lization and considered a balanced case. On top of this

underlying model, a dynamic energy efficient VM Place-

ment algorithm called EAGLE is proposed to reduce the

number of active PMs and therefore decrease the amount of

energy that consumed in a data center. EAGLE attempts to

place the VMs in a more balanced way rather than arbitrary

manner. The central idea of EAGLE is to achieve a com-

promise between multi-dimensional resource utilization

and minimizing the number of active PMs. EAGLE decides

to place the VM v on PM p based on a so-called posterior

usage state of p which refers to the new available resources

of p after presumptive placement of v. If posterior usage

state of p lies in the acceptance domain, p has the priority

to be selected while if its posterior usage state lies in the

safety domain it has second priority to be selected. p will

not be selected if its posterior usage state lies in the for-

bidden domain. PMs with identical posterior usage state

will be compared according to two other defined metrics <
and D. The dynamic feature of EAGLE is established on

the basis of dividing time into time-slots with equal length

Dt. There are k sð Þ VMs to be placed at the sth time-slot

while N sð Þ and M sð Þ represent the total number of PMs

and VMs at the sth time-slot. EAGLE starts by initial time-

slots (e.g. s ¼ 0) and records the number of running

PMs;N sð Þ at the end of each iteration and repeats the same

procedure for the next time slot (sþ 1). To evaluate the

performance of EAGLE, it was compared to FFD [49] as a

well-known heuristic for the bin packing problem. The

experiment results for single VM request per time-slot

shows that: using EAGLE results in 10% less power con-

sumption as compared to FFD which is a substantial

amount of energy saving for a large data center. Moreover,
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for multiple VM requests per time-slot, FFD uses 1.15

times of PMs as compared to EAGLE which implies that

EAGLE placement saves 15% of energy cost.

4.2.6 Power consumption and VM performance
degradation

Lovász et al. [59] addressed performance degradation

incurred when multiple VMs share a single PM in

heterogeneous server infrastructure. Running multiple VMs

on single hardware is susceptible to resource contention.

This is because different VMs send several requests to

obtain access to the shared hardware resources such as

CPU and this leads to frequent context switching and

consequently degrades the performance of VMs. The pro-

posed approach is an energy-aware and performance-aware

approach which is meant to make a tradeoff between

energy consumption and performance degradation.

Besides, authors provided a model to predict the perfor-

mance degradation overhead (in terms of response time) of

a service encapsulated in a VM when it is co-placed with

other VMs as compared to the performance of the same

service in a non-virtualized environment. The model con-

siders three different parameters which have an influence

on the performance degradation of VM v. These parameters

are (1) v#: the number of VMs competing for a specific

CPU core. (2) sCPU : the total load on CPU core of server s

and (3) vCPU : the CPU demand of VM v itself. The

mathematical equation below were retrieved to represent

the relationship between these parameters and performance

degradation of VM v (pvirt v; sð ÞÞ in the virtualized envi-

ronment when v is placed on server s:

pvirt v; sð Þ ¼ pno virt v; sð Þ þ v# � k1 þ k2v
CPU

� �
ð25Þ

where pno virt v; sð Þ is the performance of virtual service v

on server s in non-virtualized environment and k1 and k2
are two constants which are experimentally determined.

On the basis of this model, two heuristic algorithms

termed greedy heuristic and ModifiedFirstFit were pro-

posed to approximate the optimal solution for the problem.

The average overall performance of the two algorithms is

evaluated against four other competitors which are Load

Balancing, Maximum density consolidation, exhaustive

optimal allocation, and best from random allocation. The

experimental result demonstrates that the proposed algo-

rithms significantly perform better than other competitors

in terms of energy saving. The greedy heuristic provides an

additional energy saving of 30%. However, this energy

saving is achieved at the price of a higher degree of per-

formance degradation. With regards to computational

complexity, both proposed heuristics have the complexity

of O n:mð Þ while the complexity of best from the random

allocation, the exhaustive optimal allocation is O n:mð Þ and
O mnð Þ respectively (m number of PMs and n number of

VMs).

In another work by Zhao et al. [113], the authors pro-

posed an ant colony-based method named as PPVMP to

solve the bi-objective VM placement with objectives of

power consumption and performance degradation. In

dealing with the multiple objectives, authors took advan-

tage of the Pareto concept to find optimal solutions with

respect to both objectives simultaneously. PPVMP was

constructed on the basis of two fundamental power con-

sumption and performance degradation models. The power

consumption model denoted by PWj Uj

� �
is formulated as:

PWj Uj

� �
¼ PWidle

j þ PW
dync
j Uj

� �
ð26Þ

where PWidle
j is the power consumed by physical machine j

when it is in idle state and PW
dync
j is the power consumed

by physical machine j when it is busy. Uj is CPU utilization

level. To characterize the resource contention in PM, three

individual performance models for CPU, memory, and

network is used. The CPU relative performance of VM

running on PM Mj is denoted as mpic and defined as

follows:

mpic /
1

P
i

vic �M j
c �M j

c;r

M j
c �M j

c;r

cc
P

i v
i
c

Otherwise

8
><

>:
ð27Þ

where M j
c;r is reserved CPUs for running Mj. cc is the CPU

performance degradation parameter. M j
c is the total CPU

for Mj and vic is CPU requirement for VM Vi. Memory

relative performance is denoted as mpim and defined as

follows:

mpim /
M j

m �M j
m;r

cm
P

i v
i
m

ð28Þ

where M j
m;r is reserved memory for running Mj, cm is

memory performance degradation parameter, M j
m is total

memory for Mj and vim is memory requirement for VM Vi.

Likewise, the network relative performance is denoted as

mpin and defined as follows:

mpin /
M j

n

cn
P

i v
i
n

ð29Þ

where cn is network performance degradation parameter,

M j
n is total network bandwidth for Mj and vin is network

bandwidth requirement for VM Vi.

To evaluate the efficiency PPVMP was compared to

CMBFD [114], VMPBBO [42] and VMPACS [95] in

CloudSim and real OpenStack cloud platform. In terms of

both objectives, the authors found PPMP to perform best as
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compared to two other methods. According to the authors,

the superiority of the proposed approach is mainly attrib-

uted to their choice of both power consumption model and

performance degradation model. However, as the authors

mention, the performance degradation is not considered a

target/objective in three compared works and therefore

comparison to other VM placement methods that have both

objectives in common does make more sense here.

4.2.7 Energy consumption and interference among VMs

Sharifi et al. [105] applied a simulated annealing (SA)

technique to schedule a number of VMs on a set of PMs in

a data center. The goal is to minimize total power con-

sumption in the whole data center while the performance

interference among different types of workloads is mini-

mized. The workloads are either processor-intensive

workloads or disk- intensive workloads. The scheduler uses

a criterion called consolidation fitness (CF) to merit the

consolidation of a set of VMs on a number of PMs before

scheduling actually take place. CF is calculated by dividing

the performance degradation of a set of VMs by the amount

of energy saving gained through consolidation as shown by

the below equation:

CF ¼ PD=SE ð30Þ

where PD denotes the performance degradation when VMs

are consolidated and SE is saved energy obtained by the

consolidation. Smaller CF is, more reasonable is the VM

placement. Figure 15 illustrates the way CF is calculated.

In Fig. 15a the energy consumption (e1Þ and the execution

time (t1) are measured for two VMs running on two sep-

arate PMs. In Fig. 15b, the same parameters are again

measured (denoted by e2 and t2) when both VMs are placed

on a single PM and the spare PM is switched off. Then PD

and SE are computed by the following formulas:

PD ¼ t2 � t1

t1
� 100 ð31Þ

SE ¼ e1 � e2

e1
� 100 ð32Þ

The proposed power model calculates the total power

consumption as the sum of power consumed by processor

and disk. Firstly, each individual objective is minimized

separately using a simulated annealing method to find an

optimal point for each objective. Thereafter, a weighted

sum technique is employed to transform the original multi-

objective problem into a single objective equivalent. Upon

optimizing the problem objectives, the proposed method

generates a system state as output which includes a binary

matrix of mapping VMs to PMs (Xij) along with a binary

vector (Zi) that determines which PM is off or on. This

system state can be used by the same proposed method as

input to move to the next system state (including X0
ij and

Z 0
i ). The difference between the two system states deter-

mines which PM should be switched off or on and which

VM should be migrated to which PM. However, the

authors did not address how frequent the algorithm is

executed and under what condition. To evaluate the per-

formance, through a simulative experiment, the presented

algorithm was compared to the static algorithms presented

in [115, 116] and dynamic load balancing scheduling

methods presented in [117]. The comparison was carried

out based on the power consumption and computation time

of the different algorithms. The results of the experiment

indicate that the proposed approach saves 24.9% more

energy than two other methods. However, the total exe-

cution time of all the VMs for the proposed approach is

1.2% higher than the static method since static algorithms

naturally require less time to complete as they have full

knowledge of all jobs. The authors also reported the time

complexity of the proposed algorithm as O M � Nð Þ
(M number of PMs, N number of VMs).

4.2.8 VMs communication latency and number of PMs

Pascual et al. [39] proposed an evolutionary multi-objec-

tive placement policy which attempts to simultaneously

minimize the communication latency and a number of

active servers for an application. The application is formed

by a set of communicating VMs and has to be assigned to

any group of physical servers in the data center. The VMs

intercommunicate based on a specific layer-based organi-

zation similar to what is depicted in Fig. 16. The client is

assumed to be aware of the communication need and the

interconnection network of his application and hands over

VM1 VM2

VM1 VM2

e1

t 1

Physical Machine 1 Physical Machine 2

Physical Machine 1 Physical Machine 2

t 2

e2

(a)

(b)

ON ON

ON OFF

Fig. 15 Calculating CF metric
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this information to the provider to be used in the placement

process. To reduce the intra-VM communication overhead,

the placement policy places the most communicative VMs

as close as possible. The proposed model for calculating

the communication latency is based on the bandwidth and

distance between VMs as shown by the following formula:

Latency ¼
X

vi;vj2V
dðvi; vjÞ � bw vi; vj

� �
ð33Þ

where d vi; vj
� �

is network distance between core of PMs

assigned to VM i and j, bw vi; vj
� �

is bandwidth required by

VM i and j and V is set of all VMs. Distance is measured as

a number of hops from sender PM to the receiver PM. For

example, as shown in Fig. 16, the distance between the VM

assigned to PM 1 and PM 2, or d 1; 2ð Þ is 2. Similarly,

d 5; 7ð Þ ¼ 4 and d 8; 16ð Þ ¼ 6.

Two well-known evolutionary multi-objective algo-

rithms called SPEA-II [118] and NSGA-II [99] were

employed to tackle the placement problem. In addition, the

result obtained from common heuristic-based placement

strategies: FF and RR were used as the starting point for the

evolutionary optimization technique. The VM placement

strategies experimented in a simulation-based environment.

According to the results, SPEA-II performs better than

NSGA-II in the majority of cases. Moreover, the results

indicate that applying placement policy has a positive

impact on both the data center and VMs in terms of VM

execution time and energy consumption. Specifically, the

average execution time per request is reduced up to

11–19%. Also, for highly loaded data center, the energy

saving is between 7.26 and 13.81%. One downside of the

proposed approach is requiring clients to specify the

application architecture and inter-connection network in

advance.

4.2.9 Power consumption, resource wastage, and thermal
dissipation

Thermal performance is one of the key indicators in

managing a data center [81]. Tightly packed workloads on

a small number of servers create hotspot which makes

hardware prone to failure and incurs extra cooling expen-

diture [81]. Designing cooling equipment and ventilation

systems are necessary to avoid overheating and perfor-

mance degradation or even hardware failure [119]. Nev-

ertheless, suitable thermal management policy is still a

crucial need to reduce further cooling cost, alleviate hot-

spots and keep the temperature in a safe range [81]. Xu,

Fortes [81] proposed temperature aware placement policies

to improve the overall performance by minimizing the

temperature of a server alongside other objectives such as

power consumption and resource wastage. The proposed

policy employs an improved genetic algorithm (called

MGGA) with a fuzzy multi-objective evaluation to search

for a solution which most minimizes the above mentioned

conflicting objectives. According to the conducted profiling

study, there is a linear relationship between CPU temper-

ature and power consumption as denoted by the following

formula:

T ¼ PRþ Tamb ð34Þ

where T is a temperature, P is the power consumption, R

denotes thermal resistance and Tamb is ambient tempera-

ture. The presented resource wastage model calculates the

wasted resource (W) as a sum of differences between the

smallest normalized residual resource (Rk) and others (Ri)

as shown in the following formula:

W ¼
X

i 6¼k

Ri � Rkð Þ ð35Þ

where Ri is the ratio of residual resource to the total

resource for resource type i and Rk ¼ min
i

Ri. Therefore,

the larger the difference among different dimensions is, the

more resources are wasted. The result of simulative

experiments shows the proposed approach is superior to

other approaches such as bin packing algorithm and single

objective algorithms (tending to minimize individual

objectives) in terms of performance, scalability, and

robustness. To validate the performance, the authors

showed that, overall, MGGA returns lower values for

Fig. 16 Representation of physical organization of data center
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different objectives. Scalability was evaluated by varying

the number of VMs (100–2000) and PMs (50–1000).

MGGA takes up to 3 min to solve the problem with 1000

PMs and 2000 VMs. In addition, the execution time for

MGGA shows linear growth with a variable number of

S (population size) and G (number of generations). Finally,

to validate robustness, the authors showed that the results

of MGGA are not sensitive to various values of S and G.

In addition to the current work, the other study [12] by

the same authors address the VM placement in the dynamic

scenario and proposes a controller which automatically

maps VMs to PMs in order to satisfy the same objectives as

the previous study and reduce migration cost.

4.2.10 Power consumption, network traffic, and migration
cost

Dong et al. [106] proposed two placement strategies for

static and dynamic scenarios. The first algorithm called

VM-P is a greedy algorithm which was designed for initial

placement of VMs. The static problem is abstracted as

multi-dimensional bin packing problem with the objective

of minimizing a weighted sum of power consumption and

network traffic among VMs. Supplementary, VM-Mig was

developed for the dynamic scenario and it was meant to

minimize the weighted sum of the aforementioned objec-

tives coupled with the third objective of migration cost

which is defined as a number of migrated VMs. However,

the authors did not mention when VM-Mig is triggered.

Basically, VM-Mig uses the same VM-P strategy for finding

a new placement of VMs on PMs but the outcome of VM-

P is accepted if the number of migration (as result of the

difference between the previous and current placement) is

less than a pre-determined threshold. In the event that the

new placement requires a number of migrations more than

the threshold value, only some of the migrations (less than

the threshold) that can improve the performance are

accepted. The drawback of VM-Mig is poor stability and

tendency to get stuck in local optimum.

Through a simulation experiment, the proposed algo-

rithms were compared to FFD and T-opt and Random

algorithm. Overall, the proposed algorithms are found to

attain better results in terms of energy consumption and

communication traffic. In addition, the time complexity of

VM-P and VM-Mig was reported as O m � n2ð Þ and

O nMax � n2ð Þ respectively (m number of PMs, n number of

VMs, nMax number of loop iterations for finding a place-

ment with a lower number of migrations) which means

VM-P is computationally more expensive than FFD (

O nlognð ÞÞ.

4.2.11 Power consumption by PMs and power
consumption for inter VM traffic

As an improvement to their preliminary work [120], Tang

and Pan [107] applied a hybrid genetic algorithm (HGA),

which is a combination of a genetic algorithm and local

search technique; for solving VM placement problem.

Analogous to the previous work, the objective is to mini-

mize the power consumed by PMs together with the power

consumption of a communication network in a data center.

The presumed communication network topology is similar

to the structure used by Pascual et al. [39]. The power

consumption of the communication network is dependent

on the number of network equipment such as switches used

by VMs to communicate with each other. The communi-

cation between pairs of VMs is categorized into four dif-

ferent classes as shown in the example of Fig. 17. These

classes are C1: The communication that does not involve

any network device (for two VMs placed on a single PM).

The communication between VM 1 and VM 2 in the

example of Fig. 17 falls in this class. C2: The communi-

cation that uses only one network device. The communi-

cation between VM 1 and VM 3 in the example of Fig. 17

falls in this class. C3 The communication that involves

three network devices. The communication between VM 3

and VM 4 falls in this class. C4 The communication that

uses five network devices. The communication between

VM 4 and VM 5 in example falls in this class. The authors

approximate the total network power consumption as

follows:

E cð Þ ¼ e cð Þ � l cð Þ ð36Þ

where l cð Þ denotes the amount of data needed to be

transmitted over communication c and e cð Þ; the power

needed to transfer a unit of data within set c. e cð Þ is defined
as follows:

C3

C1

C2 C2

C3
C4

PMNetwork Device

VM1

VM2

VM3 VM4 VM5
VM6

VM7

C1

C2 C2

Fig. 17 Different categories of VM communication
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e cð Þ ¼ ei if c 2 Ci; 2\i\4

e cð Þ ¼ 0 if c 2 Ci

ð37Þ

The result of evaluation demonstrates the superiority of

HGA over the original genetic algorithm presented in [120]

in terms of performance, efficiency, and scalability. In

particular, HGA was found better in discovering a new

solution in the search space, converges faster to the optimal

solutions and produce better solutions with respect to

minimizing the objective function. Mean total energy

consumption of solution found by HGA is 27.36–43.90%

less than that of original GA while the mean computation

time of HGA is 73.30–88.61% less than original GA.

Furthermore, by increasing the number of PMs and

VMs, HGA exhibits nearly linear computation time.

However, since the multi-objective problem is transformed

into a weighted sum form, determining the proper weight

coefficient is not always straightforward and usually needs

a time consuming trial-and-error process.

4.2.12 Resource usage, server usage, and bandwidth usage

Kanagavelu et al. [44] developed a greedy approach called

Greedy VM Placement with Two Routing (GVMTPR) to

reduce the possibility of network congestion and balance

the load in a data center by distributing the traffic in

multiple paths. The maximum load on links is considered

as a measure of congestion. Besides, the proposed method

offers partial traffic protection to enhance link reliability.

This is performed by splitting the current traffic flow

between two adjacent VMs across two disjoint paths.

Therefore, at least one path will be available in the event of

a potential single link failure. Specifically, by dividing b

units of traffic into b1 and b2 units, the minimum of b1 and

b2 as denoted by min (b1, b2) is available in the event of

single link failure. The partial protection is measured by

protection grade which is defined as a fraction of guaran-

teed bandwidth in case of a single link failure. The pro-

tection grade for two paths with b1 and b2 units of

bandwidth is min b1; b2ð Þ=b where b is a guaranteed unit of

bandwidth for a particular flow. In each stage of its greedy

procedure, GVMTPR attempts to minimize the weighted

sum of three costs. These costs are Resource Usage (RU):

as a fraction of resources used in a particular server, Server

Usage (SU) a fraction of active server in the data center and

Bandwidth Usage (BU) as the bandwidth needed for a pair

of physical servers; Sx and Sy to communicate with each

other weighted by the hop distance hx;y. If Bx;y is the total

bandwidth required for all the VMs placed to Sx to com-

municate with the VMs in Sy, the Bandwidth Cost(BU) for

all servers is calculated as:

B Uð Þ ¼
P

hx;y � Bx;y

BT

ð38Þ

where BT is the total bandwidth requirement of the traffic.

The performance of GVMTPR was compared to the first

fit heuristic and random placement and the achieved results

demonstrate the effectiveness of the proposed algorithm in

terms of bandwidth cost and performance. The authors also

report the time complexity of the proposed methods as

O n2m2ð Þ where n is the number of servers and m is the

number of VMs.

4.2.13 Maximum bandwidth occupancy on the uplink of all
the tor switches and maximum number of VM
partitions of all the requests

Chen et al. [121] proposed Least-Load First Based Place-

ment (LLBP) algorithm to simultaneously minimize the

maximum number of VM partition for all the requests and

maximum bandwidth occupancy on the uplink of Top of

Rack (ToR) switches. The VM placement problem was

studied on the basis of the three-layer tree-like architecture

of example in Fig. 18. In this topology, ToR switches are

connected to the aggregation switches and aggregation

switches are connected to the core switches. The accu-

mulated traffic at higher levels links makes them bottleneck

and prone to be oversubscribed. Therefore, distributing the

traffic evenly across all uplink of ToR switches is neces-

sary to hinder the creation of hotspot. The data center

network is assumed to have n ToR switches (as shown in

Fig. 18) which are represented by T ¼ T1; T2; . . .; Tn. Each
ToR switch has the capacity for accepting maximum c

VMs at one PM connected to switch. There are R ¼
R1;R2; . . .;Rmf g requests from different tenants (each

request from one tenant) and each request Ri is for placing

set Si of VMs to more than one ToR switch ( Sij j[ cÞ. Each

T1 T2 Tn-1 Tn

Aggregation
Layer

Core Layer

ToR Layer

C C C C

BLnBL1 BL2 BL(n-1)

VM1 VMc VM1 VMc VM1 VMc VM1 VMc

Fig. 18 Three-layers architecture for minimizing maximum band-

width occupancy of ToR switches
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VM under ToR switch contributes a certain amount of

traffic toward the higher level. The first objective is defined

as:

min max
k2 1::n½ �

BLk ð39Þ

where BLk is the accumulated bandwidth occupancy on the

uplink Lk. To reduce the communication overhead, the

VMs of the same request is placed on a few PMs as pos-

sible. If TRi
is the subset of ToR switches under which the

VMs of request Ri is placed, the second objective is defined

as follows:

min max
i2 1::m½ �

TRi
j j ð40Þ

where TRi
j j denotes the numbers of switches assigned to

VMs of request Ri.

The proposed heuristic algorithm (LLBP) places the

requests based on non-increasing order of number of VMs.

LLBP tries to place each request in a minimum empty ToR

switch that has the capacity for all the VMs of the request.

The performance of LLBP was evaluated against Greedy

Based Placement (GBP) as a baseline algorithm as well as

Longest Processing Time Based Placement (LPTBP) which

can generate near-optimal solution but it does not take VM

communication locality into account. According to the

simulation results and based on the minimum and maxi-

mum recorded values of bandwidth occupancy of the

uplink of all ToR switches, LPTBP performs best while

LLBP is in the middle and GBP is the worst. The authors

also observed that GBP takes full advantage of communi-

cation locality property (as reflected by the second objec-

tive), LPTBP is able to equally spread the traffic across all

the uplinks of ToR switches (as reflected by the first

objective) and LLBP is effective in simultaneously bal-

ancing both objectives.

4.2.14 Response time, failure rate and resource utilization

Chen and Jiang [108] developed a fault-tolerant VM

placement method to guarantee the reliability of cloud

applications. The proposed method considers three factors

as constraints, namely: response time, failure rate and re-

source consumption for a cloud application running on a

VM. In addition, four well-known fault tolerant strategies

as Retry, Recovery Block, N-Version Programming and

Active are employed. The objective function is defined as

minimizing the weighted sum of the ratio of response time,

the ratio of failure rate and the resource utilization for a

cloud application running on a VM. A two-phase VM

placement algorithm proposed. In the first phase, the best

objective function value for each fault-tolerant strategy is

obtained. In the second phase, the VM placement is solved

based on the result from the first phase. The authors

compared the performance of the proposed fault-tolerant

approach to three other fault-tolerant strategies (NOFT-

Place, RandomFTPlace, ResourceFTPlace) with the con-

stant increase of constraint and the result shows the

achieved value of the objective function for the proposed

approach is less than that of other approaches. The authors

also reported the time complexity of the proposed VM

placement algorithm as O(a 9 v 9 n) where v is the

number of VMs, n is the number of PMs and a is the

number of fault-tolerant strategies.

4.3 High-performance computing (HPC)
applications

Cloud computing can be envisioned as a potentially cost-

effective solution for high-performance computing appli-

cations. This can be particularly attractive for users with

small computing capability who are unable to establish

their own cluster infrastructure. The pool of interconnected

commodity computers, as well as virtualization technol-

ogy, makes the cloud a considerable choice for HPC

applications [122]. However, the difference between the

nature of HPC application and current cloud architecture

might hinder effective utilization of cloud infrastructure for

HPC purposes. An HPC-aware VM placement strategy is

expected to improve the performance of HPC applications

because in HPC with loosely coupled architecture, internal

computing nodes frequently interact with each other. Some

works such as [122, 123] studied a VM placement strategy

with taking into account the characteristics of HPC in the

cloud.

Gupta et al. [122] explored the challenges and advan-

tages of HPC oriented VM Placement technique for the

cloud computing environment. Two techniques for opti-

mizing the VM placement with subject to HPC applications

are implemented. These techniques are topology awareness

and hardware awareness. Topology awareness requires

providing the knowledge of network topology to the HPC

application. Typically, in the context of cloud, the cluster

topology is transparent to the users. However, for an HPC

application, the goal is to place VMs into PMs having the

least possible distance from each other in order to reduce

communication overhead. To address this issue, the authors

attempted to place all requested VMs on the same rack

rather than randomly distribute them over the data center.

Hardware awareness requires providing the specification of

the underlying hardware to the HPC application. HPC

applications are composed of a number of iterations. There

are two different phases to be performed in each iteration

as computation and communication/synchronization. The

next iteration cannot be started unless all other processing

nodes have fully completed their previous iteration. Cloud

infrastructures consist of heterogeneous commodity PMs.
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When there is a slow PM that it takes a longer time to

complete iteration, the time in faster PM wasted and this

degrades the overall application performance. In compli-

ance with hardware-aware characteristic, a proper VM

placement strategy is expected to place all VMs to a set of

PMs with equal computing power. Authors address this

issue by attempting to place all the requested VMs on the

identical type of processor. The topology awareness and

hardware awareness are implemented on top of OpenStack

scheduler layer [124]. The OpenStack Scheduler is

responsible for receiving the VM request and determining

the proper PM for hosting the VM. An evaluation was

conducted based on OpenCirrus [125] test-bed. The result

indicates that using a topology-aware mechanism results in

a 5% improvement in performance as compared to the

random scheduling. In addition, after applying the hard-

ware-aware technique, 20% of time * N CPU-Hours (N:

number of processors used) improvement is achieved in

terms of execution time.

Due to the communicative nature of HPC applications,

they are often subject to competitive access to Shared Last

Level Cache (SLLC). This incurs a serious issue called

cache contention. Cache contention overshadows the per-

formance isolation offered by virtualization to HPC

applications running within VMs. Jin et al. [126] addressed

the performance degradation resulted from cache con-

tention of applications in HPC cloud. An enhanced reuse

distance analysis with accelerated cyclic compression

algorithm is employed to classify the HPC applications

based on their cache access behavior. According to this

classification, the HPC cloud applications are divided into

three different categories as Cache Pollution Applications:

which occupy a large amount of cache capacity, Cache

Sensitive Applications: which strongly depends on the

available cache resources, and Cache friendly Applications:

which consumes a small amount of cache capacity. In

addition to the reuse distance analysis, CCAP: Cache

Contention-Aware Virtual Machine Placement method is

designed to cope with the cache contention problem. CCAP

dispatches VMs to the distinct cores based on the appli-

cations’ cache behavior information. Indeed, CCAP tends

to minimize interference of cache sensitive applications

and cache pollution applications and thus mitigates the

negative impact of cache contention. The result of the

evaluation shows that CCAP significantly enhances the

performance of cache sensitive applications when they are

co-scheduled with cache pollution applications.

Similar to [126], Kim et al. [127] addressed the per-

formance degradation of the applications hosted in multiple

VMs. The VMs are to be mapped to PMs with the modern

multi-core processor architecture. In this architecture, each

individual core has its own private cache while last-level

cache (LLC) and memory bus are shared among different

cores. Co-located VMs on a PM with multi-core processor

contend for accessing LLC and memory bus and therefore

performance degradation arises due to interference among

applications. A performance model is proposed based on

two measures: Interference Intensity and Interference

sensitivity. Interference intensity is a measure of how much

an application hurts other co-located applications and

interference sensitivity is a measure of how an application

suffers from other co-located applications. Based on this

performance model, a VM placement algorithm called

swim is presented. Swim aims to minimize the average

performance degradation ratio of all the applications. The

main idea behind swim is to co-locate high interference-

intensive VMs with less interference sensitive VMs. The

experimental results show that applying swim causes sim-

ilar performance degradation as compared to the optimal

allocation.

In another study, based on performance analysis, Mc

Evoy et al. [128] conclude that chosen strategy for map-

ping virtual clusters to the physical resource together with

the inter-communication pattern between the application

processes has a significant impact on the performance of

HPC parallel application.

5 Taxonomy

This section provides a thematic taxonomy on VM place-

ment approaches as depicted in Fig. 19. The presented

taxonomy is organized based on the several parameters and

aspects such as uniformity of PMs/VMS, number of clouds,

operation mode, problem objectives, methodology, number

of objectives and resource demand mode. On the basis of

this taxonomy and after discussion of the aforementioned

aspects in the following sections a detailed comparison of

different methods is also presented in Table 4.

5.1 Uniformity

VM placement is defined in two different contexts, namely:

VM placement in the heterogeneous environment data

center and homogeneous environment. In the heteroge-

neous platform, PMs have different hardware specifications

(such as CPU speed, memory size, and disk storage

amount) [129] while in the homogeneous platform all the

machines have an identical hardware configuration. In a

cloud computing environment where old computing nodes

and new ones operate alongside, the placement is often

carried out on a heterogeneous platform. As a result, an

assumption of homogenous PMs for a placement strategy is

less realistic and can be a limiting factor in practice. In the

design and implementation of a placement policy, the

uniformity mode of underlying hardware should be taken
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into account. Aside from uniformity of PMs, the uniformity

of VMs refers to mapping a set of VMs with identical

hardware specification onto a set of PMs.

5.2 Number of clouds

Although the majority of works studied the VM placement

problem in a single cloud environment, the problem is also

addressed [40, 90, 130, 131] in the multi-cloud scenario.

Figure 20 shows the architecture for multi-cloud scenario.

In a multi-cloud scenario, a cloud client requests for a

collection of VMs to be deployed across multiple cloud

providers. Each cloud provider offers different pricing

plan, diverse VM instance types and has different resource

management interfaces [132], Due to complicated deci-

sion-making task in such a scenario for a typical client,

often, a cloud brokering mechanism is required to serve as

an intermediary between client and providers [40, 132].

The broker middleware gathers information from different

individual clouds and then optimally distributes the VMs to

the most suitable servers across multiple cloud systems

based on the VMs requirements and clouds resources

specifications [132]. In addition, the cloud broker provides

a uniform management interface to the client with a

transparent view of a heterogeneous set of providers

regardless of particular cloud provider technology [40, 90].

The advantage of a multi-cloud service for the client is

reducing cost, fault tolerance and enhancing service relia-

bility. In dynamic placement modes, one of the salient

challenges is communication overhead due to VM migra-

tion between different cloud providers [132]. Again, in

case of tightly coupled VMs with large inter-VM traffic,

the multi-cloud scenario results in high communication

overhead between different clouds [90]. Furthermore, in

long term period, the cloud specification such as prices

schemes, VM instances types is subject to frequent revision

and therefore the placement algorithm is required to be

recurrently running to adapt the resource allocation with

latest changes in cloud provider [40, 90].

5.3 Operation mode

The problem of placing a set of VMs on proper PMs is

defined under two different modes: Static (or Initial or

offline) placement and Dynamic (or online) placement. The

static placement is to place a number of VMs at once on an

unloaded data center with subject to VM requirements and

resources capacities of PMs. The static placement is also

often performed when the system resumes operating after a

period of idleness or reset. The decision on a static

placement plays an important role in the overall data center

performance since the large change in initial VM assign-

ment incurs extra migration and therefore large commu-

nication overhead is imposed. In addition, the static

placement is performed less frequently compared to the

dynamic placement and has long term effect since exten-

sive changes incur large overhead [12]. On the other hand,

in dynamic placement, VMs are re-assigned to PMs due to

the unforeseen changes in VM requirement, VM termina-

tion, halt and launch of new VMs. In a dynamic placement

scenario, an instant decision at run-time should be made to

minimize the migration overhead and improve the overall

system performance [41]. Indeed, for each mode of

placement different strategy is sought.

5.4 Objectives

In general, the objectives for VM Placement can be in two

different types as Cloud Service Provider (CSP) oriented or

user-oriented. The CSP oriented objectives are defined to
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Table 4 Comparison of different virtual machine placement schemes

Methodology Scheme Heterogeneous

PMs

Mode of

operation

Number

of clouds

SLA

aware

Traffic

aware

Resource

dimensions

• First fit decreasing [62] 4 Dynamic Single 4 9 C

[47] 9 Dynamic Single 4 9 M

• Best fit decreasing [86] 4 Static Multiple 9 9 CMDB

[52] 4 Both Single 9 9 C

[67] a 9 Both Single 9 9 CMB

[64] 4 Dynamic Single 4 9 NA

• Other greedy and heusristics [44] 9 Static Single 9 4 CMB

[59] 4 Dynamic Single 9 9 CMDB

[79] NA Static Single 9 9 NA

[106] 9 Dynamic Single 9 4 CMD

[121] NA Static Single 9 4 NA

[63] 4 Dynamic Single 4 9 C

• Linear Programming and

• Integer Programming

[67] 9 Both Single 9 9 CMB

[11] NA Static Single 9 9 NA

[90] 4 Static Multiple 4 9 NA

[40] 4 Dynamic Multiple 4 9 CMD

• Genetic algorithm [87] 9 Dynamic Multiple 9 9 CMBD

[65] 4 Static Multiple 4 9 NA

[83] 9 Dynamic Single 9 9 CM

[107] 9 Static Single 9 9 CM

[39] NA Static Single 9 4 NA

[81] 9 Static Single 9 9 CM

• Ant colony optimization (ACO) [95] 9 Static Single 9 9 CM

[69] 9 Static Single 9 9 CM

[48] Both Static Single 9 9 CM

[74] Multi-core Static Single 9 9 NA

[113] 9 Static Single 9 9 CMB

[68] 4 Dynamic Single 9 9 CM

• ACO ? PSO [82] 9 Dynamic Single 9 9 CMD

• Convex optimization theory [80] NA Static Single 9 4 CMD

• Simulated annealing [105] 9 Dynamic Multiple 9 9 CM

• Artificial bee optimization [9] 9 Static Single 9 9 CM

• Tabu search [73] NA Static Single 9 4 NA

• EAGLE [7] [7] 9 Dynamic Single 9 9 CM**

• Biogeography-based optimization [42] 4 Static Single 9 9 CMB

• Imperialist competitive algorithm [103] 9 Static Single 9 9 CM

• A two-phase algorithm [108] 9 Static Single 9 9 CM

• RVMP [109] 4 Dynamic Single 9 9 CM

• Particle swam optimization (PSO) [51] 9 Static Single 9 9 CM

• Memetic algorithm [71] 9 Dynamic Single 9 9 C

C CPU, M memory, D disk, B bandwidth, NA not available
aThe authors also used FFD, BFD, WFD and AWFD algorithms
bThe authors also did other simulation with three types of resources (D = 3) but did not mention the name of resources

866 Cluster Computing (2020) 23:837–878

123



fulfill the requirement or minimize a cost for the sake of

data center provider’s benefit while the user-oriented

objectives are meant to serve users in a faster and afford-

able way. For example, power consumption as a common

objective is meant to reduce the operational cost for a data

center provider. In contrast, the cost of deployment is a

typical objective of interest for a cloud user.

5.5 Methodology

In this section, a spectrum of the most prominent algo-

rithms proposed in the literature for dealing with VM

placement is briefly described. Finally, a comparison of

these algorithms based on their advantage and limitation is

presented in Table 5. The algorithms proposed for solving

the VM placement problem can be generally classified into

two different categories as exact algorithms and approxi-

mate algorithms. The exact algorithms are guaranteed to

provide an optimal solution to the problem. However, they

are not practical because of their high computational time

unless they are used to solve small-sized problems. If

finding an optimal solution takes a long time, then we

should make a tradeoff between optimality and efficiency.

In practice and for a large-sized problem having a large

number of VMs and PMs as input (in case of VM place-

ment problem), approximate algorithms (either heuristics

or meta-heuristics) are utilized to deliver a sub-optimal

solution within a reasonable amount of time. The heuristic

algorithms are specific problem-dependent methods which

take advantage of the problem specification to solve the

problem. On the other hand, meta-heuristic algorithms are

generic problem-independent methods which can be used

to solve a wide range of complex problems.

5.5.1 Greedy heuristics

A greedy algorithm is a simple optimization algorithm

which goes through a series of stages. In each stage of the

algorithm, the best possible choice should be made for that

particular stage. A greedy algorithm makes a sequence of

local optimal choices which are anticipated to construct a

globally optimal solution at the end [133, 134]. Even

though, the optimal solution is not always guaranteed in

these techniques, a reasonable time; especially for large

problem size; is spent to achieve a sub-optimal solution in

contrast to exact approaches [67].

The VM Placement is often formulated as a variant of

multidimensional bin packing problem. In multi-dimen-

sional bin packing problem, a set of objects with different

dimensions are to be packed into a number of bins with

multiple dimensions. The goal is to pack the objects into a

minimum number of bins. The bin packing problem is also

recognized as an NP-hard problem. That is, there is no

optimal solution with polynomial time complexity. When

VM Placement is reduced as bin packing problem, PMs

represent bins while individual VMs stand for objects. By

far, a number of well-known heuristics have been proposed

to deal with the problem [49, 67, 135]. Most of these

heuristics are greedy-based algorithms. In the following, a

few well-known greedy-based heuristics which are inten-

ded to address VM Placement as a variant of multidi-

mensional bin packing problem are described.

First Fit Decreasing (FFD) FFD is one of the well-

known heuristics for tackling multidimensional bin pack-

ing problem. The basic idea of FFD is to sort the list of

VMs based on the descending order of certain criteria first

and then place VMs sequentially from VM with largest

criteria to smallest one to the first PM with sufficient

residual resource. The criteria can be certain resources such

as (CPU, memory) [67] or a single scalar which is calcu-

lated as a function of individual resources in a VM. FFD is

proven to allocate VMs to not more than 11
19
OPT þ 1 PMs

where OPT is the optimal number of PMs [112].

Best Fit Decreasing (BFD): BFD first makes a list of

VMs which is sorted according to the descending order of

certain criteria similar to FFD. However, in the second

step, VMs are sequentially placed on a PM with least

sufficient residual resource. BFD is also shown to require
11
19
OPT þ 1 PMs in the worst case.

Worst Fit Decreasing (WFD): In WFD heuristic, the list

of VMs is first sorted according to certain criteria like two

other aforementioned heuristics. However, in the next step,

VMs are sequentially placed on a PM with largest suffi-

cient residual resource.
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Cloud Service 3
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Cloud Service 1
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Client Users
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5.5.2 Linear programming and integer programming

Linear programming (LP) is a mathematical technique for

optimization in which the objective functions to be opti-

mized (maximized or minimized) is represented in a linear

form. Besides, a number of linear equality and inequality

constraints should be satisfied. In particular, integer pro-

gramming is a special form of linear programming in

which variables can take integer values only [136]. A

variety of real-world problems can be modeled and solved

by LP. Generally, an LP is expressed as follows [137]:

Maximize=Minimize Cx

Subject to : Ax�B

and x	 0

ð41Þ

where C is a vector of constants, x is a matrix of variables

and A and B are matrixes of coefficients. After representing

a problem in LP form, a specific solver such as CPLEX

[92] is used to solve the problem.

5.5.3 Genetic algorithm

Genetic algorithm (GA) which was first introduced by

Holland [138] is a search technique for solving the opti-

mization problems. GA emerged as a popular and powerful

Table 5 Comparison of existing solutions for solving VM placement problem

Algorithm Advantage(s) Limitation(s)

• Greedy heuristic • Efficiency (Quickness)

• Simplicity

• Can provide a good approximation of

the optimal solution

• May not always return the globally optimal solution

• Integer

programming

model

• Versatility

• Simplicity

• Only one objective can be maximized/minimized

• Many real-world problems cannot be expressed in a linear form

• The high computational effort required for large problems

• It is applicable to the static situation only

• Genetic Algorithm • Can be parallelized with little effort due

to inherent parallelism

• Can escape from local optima

• The slow rate of convergence to desirable solutions and high

computational effort

• The performance of algorithms is highly sensitive to the chosen

parameters

• Premature convergence

• Ant colony

optimization

• Can avoid premature convergence

thorough distributed computation

• Rapid solution finding as a result of

positive feedback

• Slow convergence

• Poor performance in solving the problem with large space

• Stagnation

• Simulated

annealing

• Robust and easy to implement • A large number of objective evaluation make it slow especially when the

objective function is computationally expensive

• Artificial bee

colony

optimization

• Simplicity

• High flexibility

• Robustness

• Fewer control parameters

• Slow convergence rate

• Prematurely falling into local optima

• Tabu search • The convergence speed is dependent on

the initial solution

• Is not suitable for continuous search

spaces

• Utilization of memory to guide the search beyond local optimality

• Imperialist

competitive

algorithm

• Inherent parallel mechanism

• Applicable to a wide range of

optimization problems

• Simplicity

• Scalability

• Low convergence speed

• Susceptible to premature convergence

• Requires parameter tuning

• Memetic

algorithms

• Accelerated search

• Higher chance of convergence

• As it inherits GA principle, its performance can be still sensitive to the

choice of initial parameters
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approach in finding near-optimal solutions for the complex

problem with large search space in different domains. The

technique is an inspiration of biological evolution that

takes place in nature as expressed by Darwinian Theory of

natural selection. In the natural environment, the fittest

living organisms are more likely to resist against diseases

and other dangers and eventually are able to survive and

reproduce the next generation which have even fitter

individuals than the previous generation. A simple genetic

algorithm (SGA) simulates the natural evolution through a

series of computer instructions. SGA commences with an

initial population of random individuals. Each individual

represents a candidate solution to the problem at hand. The

fitness of an individual commensurate to the degree it

minimizes/maximizes the problem’s objective function. To

create a new generation of individuals, first, individuals

with the highest fitness value are chosen through a partic-

ular selection mechanism. Then, crossover and mutation

operators are applied to the selected parent in order to

produce new offspring. The iterative evolution from one

generation to the next is continued until a solution with

satisfactory fitness is discovered.

5.5.4 Ant colony optimization

Ant colony optimization (ACO) is population-based meta-

heuristic which is inspired by the foraging behavior of ants

in nature [139]. This behavior enables real ants to find the

shortest path from their nest to the food resources [140].

This is carried out by depositing pheromone trail on the

ground as a medium of intercommunication among ants.

This characteristic is simulated by artificial ants to solve

combinatorial optimization problems [141].

5.5.5 Simulated annealing

Simulated annealing (SA) is a popular search heuristic for

combinatorial optimization inspired by the annealing pro-

cess in metallurgy where a metal is heated to its melting

point and then it slowly cooled again [142]. In each iter-

ation, SA generates all the next moves at the neighborhood

of the current solution. Then a move is randomly picked.

The moves that improve the quality of the solutions are

always accepted while non-improving moves are accepted

with a certain decreasing probability of less than one [143].

In fact, the key feature of SA is to overcome getting stuck

in local optima which is occurred in older techniques like

hill-climbing [144].

5.5.6 Artificial bee colony optimization

Artificial bee colony (ABC) which was first introduced by

D.Karaboga in [145] is a subclass of swarm-intelligence

based algorithms that imitate the collective intelligence of

honeybee swarms to solve various optimization problems.

In ABC algorithm the colony of artificial bees split into

three (3) groups, namely: employed bees that forage for

food, onlooker bees who observe other bees and scout bees

that randomly search for new food sources. The position of

the food resource represents a potential solution to the

problem. For each food source, only one employed bee is

designated and the quality of the solution is proportional to

the available amount of nectar in the source. The employed

bees forage for food sources and when they bring the nectar

to the hive they share the gathered information of food

source, its position and its quality with onlooker bees

through a so-called waggle dance as a medium of com-

munication. The onlooker evaluates the information from

employer bees and chooses the best food source to forage

[146]. While employer bees exploit the search space by

slightly modifying the food source’s position with the hope

of improving the solution, scout bees perform exploration

by randomly discovering new promising sources.

5.5.7 Tabu search

Tabu search (TS) is a local search strategy which is

developed by Glover [147] to cope with trapping into local

optima in SA. The strategy is characterized by its capability

of memorizing a history of previously encountered solu-

tions. TS uses a short term memory called Tabu list to

record the recently explored solutions and therefore avoids

re-visiting the solutions. This is carried out to prevent

recycling problem. A tabu search algorithm begins by

evaluating all the neighbor solutions to the current solution.

Then, a solution with the highest quality is selected and the

tabu list is updated accordingly.

5.5.8 Imperialist competitive algorithm

The imperialist competitive algorithm (ICA) was first

introduced in [104] to solve the real-world optimization

problems. The algorithm mimics the imperialist competi-

tion among empires. Analogous to Genetic Algorithm, ICA

commences with an initial population of random individ-

uals. Each individual is called a country. A country can be

either imperialist or colony. During the imperialist com-

petition process, the powerful imperialist which represent a

better solution to the problem makes the weaker ones

collapse and take control of their colonies. The same

competition will be iterated until a single empire including

an imperialist along with its colonies is left at the end. The

final imperialist represents the best-found solution to the

problem.

Cluster Computing (2020) 23:837–878 869

123



5.5.9 Memetic algorithm

Memetic algorithm (MA) was first introduced by Moscato

[148]. MA is population-based metaheuristics and a hybrid

form of genetic algorithms (GA) and local search tech-

niques [149–151]. Incorporating the local search capability

into the genetic algorithm accelerates its search and

increase the chance of convergence [151]. Similar to GA,

MA begins with a population of random members. Then, a

local search is applied to each member to improve the

quality of the solution it represents. Thereafter, new off-

spring are produced by performing the crossover and

mutation operators. Again the local search is applied to

new offspring forming the new population. Producing new

generations are continued until convergence occurs

[151, 152].

5.6 Resource demand type

Most of the studies on VM Placement assume the VM

resource demands are constant value over time. This type

of demand is called static/deterministic demands [153].

Static demands are simply compared with the residual

capacity of target PM at the time of placement. Unlike

VMs with static demand, VM with dynamic demand

changes their amount of resource requirement during their

lifetime. According to some recent studies [154–156], the

VM’s demands for particular resources such as network

bandwidth can be fluctuating and therefore difficult to

anticipate at initial [157]. In this case, mean or maximum

VM demand is used as an estimated value although the

estimation is not always accurate and may result in over-

provisioning or resource wastage [153, 158]. Some works

like [153, 158] investigated VMs with stochastic demands

and used a probabilistic model based on a random variable

to represent the uncertainty of future demands [157, 158].

In one of the attempts to estimate dynamic demands, Isci

et al. [159] introduced a resource demand estimation

technique which is meant to be lightweight, accurate and

general. Through an experiment on synthetic and real data,

authors found the technique is able to significantly improve

the efficiency of dynamic VM placement.

6 Open issues and future directions

This section is to highlight a number of salient research

directions which are less focused in the past and thus

deserve more attention by researchers. The presented items

suggest a potential platform for future research work in the

domain of VM placement.

6.1 Thermal-aware placement policy

A significant portion of electricity spent on computer

equipment is transformed into the heat. Operating in high

temperature reduces the lifetime of hardware parts and

makes them less reliable and susceptible to failure and

malfunctioning. Therefore, keeping hardware items in a

safe temperature zone is always necessary. Even though,

today’s the cooling systems are widely exploited in modern

data centers, using these systems is subject to additional

expenditure for purchase, maintenance and electricity

consumption. One of the potential ways for minimizing the

heat dissipation is through continuous monitoring of the

thermal state of PMs and re-placement of VMs once a

hotspot is created [160]. As a result, the relieved PM

requires less cooling power. Further research work is

required to address the thermal topology and analysis for a

data center in order to facilitate the efficient placement of

VMs.

6.2 Price aware placement policy in a multi-
cloud scenario

Today, the diverse number of cloud providers established a

competitive market for users. Each cloud provider offers

diverse service plans with different time-varying price

schemes (dynamic or static), specifications and value-

added features. This circumstance offers an opportunity for

the users to select the most affordable service with a

maximum level of the desired quality. To best of our

knowledge, there are few works [90] to address this issue

and further research seems necessary to study, design and

implement schemes for price aware placement techniques

in the multi-cloud scenario.

6.3 Security

Although VM Placement has been studied in several per-

formances oriented aspects, the problem is less explored

from the security and privacy perspective. For instance, the

client might require two specific VMs not to be run on the

same PM and this is to prevent potential leakage of busi-

ness secrets to competitors. In addition, clients are might be

interested to restrict the placement of VMs to some data

centers with certain geographical points (e.g. due to some

legal issues.)

6.4 Scalability

For many current VM placement approaches, there is no

much rigorous analysis and evaluation to demonstrate the

proposed strategy efficiently scales up to the modern
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gigantic data centers with thousands of VMs and PMs.

Thereby, a potential future research direction could be

studying the extension of current multi-cloud placement

techniques to cope with real-world large scale data centers.

6.5 A dynamic placement
scheme from the scratch

Although dynamic VM placement was studied in a number

of research works, majority of these works are designed on

the basis of a recurring static placement across different

time-slots or consolidation states or they have merely

focused on variable resource demands of VMs [7, 67, 83].

In these works, at the beginning of each time-slot, a static

VM placement algorithm is invoked again and the differ-

ence between two outputs/states (for previous and current

time-slot) is calculated. The difference determines the VMs

that should be migrated to other PMs as well as the PMs

that should be powered-on/off. However, to best our

knowledge, none of these works addressed the VM place-

ment as a native dynamic scenario in which every VM has

its own lifespan and during its lifetime it may undergo load

change. A potential future direction in this context is the

investigation of a comprehensive dynamic mechanism for

VM placement that addresses dynamic creation, dynamic

deletion, dynamic resource demand of VMs, failure of PMs

and addition of new PMs.

6.6 Renewable energy resources

Modern data centers have begun moving toward exploiting

renewable green energy resources such as solar, wind and

tidal power as a replacement to the energy that is supplied

from the electrical grid. In a geographically distributed

cloud system having a number of data centers sites spread

over different points of the globe, each data center may be

operated using a particular type of renewable energy.

Availability of these energies is subject to time or weather

condition in their location. The efforts are necessary to

make efficient use of these energies. Achieving this

requires design and implementation of VM placement

strategy which works in accordance with the availability of

energy resources. For instance, during night time, PMs in

some of data centers around the globe lose their source of

solar energy and therefore their running VM should be

migrated to other PMs in data centers currently operating in

the daytime. Initial placement of VMs also must consider

the availability of energy in each data center location

before placing the VM.

6.7 Multi-core processors

To best of our knowledge, so far a little research works

have been carried out to study, design and development of

the VM placement policy that is compliant with modern

multi-core processing architecture. In particular, an elab-

orated analytical power model seems essential to precisely

estimate the degree of energy consumption in these sys-

tems. In addition, an adequate effort should be devoted to

mitigating the potential performance degradation due to the

contention of a shared resource in these systems.

6.8 Resource dimensions

Majority of research works discussed in this paper

addressed the VM placement problem with main focus on

CPU and memory as two prime resource types as reflected

in Table 4. However, in the era of modern applications

such as online gaming, video streaming and augmented

reality, other resource dimensions such as Graphical Pro-

cessing Unit (GPU) as bottleneck can also be important

factors in resource management and significantly con-

tribute to the amount of power consumption in a data

center. Therefore, prospective research in this domain

should devote adequate effort to study the impact of GPU

in the designed power model and resource management

policy.

7 Conclusion

One of the most critical issues for large scale data centers is

the substantial growth of power consumption. Efficient

management of hardware resources can significantly

reduce the amount of power consumption in a data center.

Many of the servers in a data center operate at low uti-

lization level. Minimizing underutilized servers to an

optimal number of fully utilized servers and turning off the

spare servers would significantly help in cutting down the

rampant electricity consumption. In a virtualized data

center, VM placement is a primary and complex decision

which can affect the overall energy consumption in a data

center.

In this paper, we have investigated several proposed

methods in the literature for dealing with VM placement

problem. The problem, as we already saw, is defined under

diverse settings in terms of number of objectives (either

single objective or multi-objective), type of objectives

(energy consumption, resource utilization, number of PMs

and etc.) and presence of constraints. These settings vary

from one scheme to another. Based on our observation

from different research works, it appeared that the choice
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of problem setting is highly dependent on the particular

context and priorities. For example, when energy efficiency

is the most important or critical issue in a data center

administration it is usually selected as the main objective

of interest. The other less important issues can be simply

ignored or added as a constraint to the problem formula-

tion. We found FFD the most common method to deal with

the VM placement in its single objective from and it pro-

vides a sub-optimal solution with a worst-case limit. As we

saw in this paper, many research works compare their

proposed method to the FFD as a baseline.

When there are two or more equally important objec-

tives that are needed to be minimized/maximized, we are

encountering with intrinsic multi-objective VM placement

problem. We observed that many existing schemes try to

tackle multi-objective VM placement problem using

weighted sum approach. Although the approach is simple

and straightforward to use, it has some disadvantages as

discussed earlier in this paper. In general, taking advantage

of Pareto-based approaches is more recommended for

tackling VM placement with multiple objectives since

these approaches find the set of solutions that are optimal

with subject to multiple objectives. As the search space for

VM placement and particularly multi-objective VM

placement problem as an NP-Hard problem is extremely

large, the naı̈ve (or exhaustive) search could be computa-

tionally expensive. Therefore, using meta-heuristics such

as evolutionary techniques or swarm based intelligence

methods are helpful and necessary for medium-sized to

large data centers with a large number of PMs and VMs.

These techniques try to find near-optimal solutions in a

reasonable amount of time. CPU and memory are the two

most common hardware resources considered in the liter-

ature. However, in some applications the other resources

such as GPU and network equipment have a significant

impact on the objective of VM placement and future work

must have more concentration on these resources.
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