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Abstract
The k-nearest neighbors outlier detection is a simple yet effective widely renowned method in data mining. The actual

application of this model in the big data domain is not feasible due to time and memory restrictions. Several distributed

alternatives based on MapReduce have been proposed to enable this method to handle large-scale data. However, their

performance can be further improved with new designs that fit with newly arising technologies. Furthermore, it gives to

each attribute the same importance to outlier. There are several approaches to enhance its precision, with the entropy-based

outlier detection being among the most successful ones. Entropy-based outlier detection computes attribute entropy of the

data set to weighted distance formula for the outlier detection. Apart from the existing the k-nearest neighbors outlier

detection to handle big datasets, there is not an entropy-based outlier detection to manage that volume of data. In this paper,

we propose an entropy-based outlier detection based on Spark. It presents three separately stages. The first stage computes

attribute entropy. The second stage finds the k nearest neighbors and calculates the degrees of outliers using the attribute

entropy computed previously. The third stage ranks each point on the degrees of outliers and declares the top n points in

this ranking to be outliers. Extensive experimental results show the advantages of the proposed method. This algorithm can

improve the outlier detection precision, reduce the runtime and realize the effective large scale dataset outlier detection.
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1 Introduction

Outlier detection is recognized as an important data mining

method [1]. It concerns the discovery of abnormal phe-

nomena that may exist in the data, namely data values that

deviate significantly from the common trends in the data

[2]. Outlier detection is critical in many applications

ranging from credit fraud prevention, network intrusion

detection, stock investment tactical planning, to disastrous

weather forecasting. For such mission-critical applications,

the anomalies (outliers) must be detected efficiently and in

a timely manner. Even a short time delay may lead to

losses of huge funds, investment opportunities, or even

human lives.

K-nearest neighbors outlier detection was proposed by

Ramaswamy in [3]. It is based on the distance of a point

from its k-th nearest neighbor. They rank each point on the

basis of its distance to its k-th nearest neighbor and declare

the top n points in this ranking to be outliers. The k-nearest

neighbors outlier detection is a simple yet effective widely

renowned method in data mining. As a lazy learning

model, the k-nearest neighbors outlier detection requires
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that all the data instances are stored. Then, for each unseen

case and every data instance, it performs a pair-wise

computation of a certain distance or similarity measure,

selecting the k closest neighbor to them. This operation has

to be repeated for all the points against the whole dataset.

Thus, the application of this technique may become

impractical in the big data context.

Recent cloud-based technologies offer us an ideal

environment to handle this issue. The MapReduce [4]

framework offers a simple and robust paradigm to handle

large-scale datasets in a cluster of nodes. This framework is

suitable for processing big data because of its fault-tolerant

mechanism, which is highly recommendable for long time

executions. One of the first implementations of MapReduce

was Hadoop [5], yet one of its critical disadvantages is that

it processes the data from the distributed file system, which

introduces a high latency. MapReduce is inefficient for

applications that share data across multiple steps, including

iterative algorithms or interactive queries. Multiple plat-

forms for large-scale processing have recently emerged to

overcome the issues presented by Hadoop MapReduce

[6, 7]. Among them, Spark [8] provides in-memory com-

putation which results in a big performance improvement

in iterative jobs, and makes it more suitable for data min-

ing. Spark has been shown to outperform Hadoop by

10 9 on machine learning jobs [9].

Moreover, the k-nearest neighbors outlier detection

gives the same importance to every attribute, assuming that

every attribute’s outlier contribution is perfectly equal,

which is not always true. There is an effective improve-

ment of outlier detection that alleviates this issue by using

entropy, named entropy-based outlier detection [10]. To do

so, the entropy-based outlier detection has two different

phases. First, it computes attribute entropy of the data set.

After that, it calculates the k nearest neighbors with the

attribute entropy, achieving higher accuracy rates for most

outlier detection problems. Apart from the existing the

k-nearest neighbors outlier detection to handle big datasets,

there is not an entropy-based outlier detection to manage

that volume of data.

In this paper, we propose an entropy-based outlier

detection approach using the MapReduce-based infras-

tructure implemented on Spark. We take advantage of the

in-memory primitives of Spark to manage large data set by

splitting the data. Also, it handles enormous datasets by

iterating over the chunks of this set, if necessary. As we

explained briefly, the scheme has three stages. The first

calculates the attribute entropy. The map stage distributes

the dataset and it counts data frequency on each split. The

reduce stage collects all the data frequency and obtains the

final data frequency. Then, it computes the attribute

entropy and broadcast all nodes with this information. The

second stage is divided into map and reduce phases. The

map phase distributes the dataset and it computes the k

nearest neighbors on each split with the knowledge of the

attribute entropy previously computed. Thus, each map

obtains k candidates to be the k closest neighbors. Multiple

reducer tasks collect all the candidates provided by the

maps and it calculates the final k neighbors and then it will

calculate the degrees of outliers. The final stage ranks each

point on the degrees of outliers and declares the top n

points in this ranking to be outliers. Through the text, we

will denote it as an entropy-based outlier detection

implemented on Spark (SEOD).

In summary, the contributions of this work are as

follows:

• Design and develop a model of SEOD. A fully parallel

entropy-based outlier detection makes use of in-mem-

ory Spark operations to accelerate all the stages of the

method.

• Introduce entropy to confirm the significance of

attribute in the cloud. The weight of attribute deter-

mined by the entropy is used to calculate the weighted

distance between objects. SEOD considers the differ-

ence among different attributes and improves the

accuracy of detection.

• A experimental study of the scalability and accuracy of

this model.

The remainder of this paper is organized as follows.

Section 2 provides a thorough literature review of k-near-

est neighbors outlier detection. Section 3 introduces the

necessary background information in this work and the big

data technologies. Section 4 details the proposed SEOD

model. Next Sect. 5 shows the pseudo-code of the whole

method. The experimental study is described in Sect. 6.

Finally, Sect. 7 concludes the paper and outlines the future

work.

2 Related work

K-nearest neighbors outlier detection was proposed by

Ramaswamy in [3]. It is based on the distance of a point

from its k-th nearest neighbor. They rank each point on the

basis of its distance to its k-th nearest neighbor and declare

the top n points in this ranking to be outliers. K-nearest

neighbors outlier detection and also his fuzzy variant has

two main problems to tackle large datasets because of their

lazy behavior: runtime and memory consumption. These

two big data issues can be handled with cloud-based

technologies. Subramanyam et al. [11] designed and real-

ized a parallel outlier mining algorithm based on iterative

Map Reduce framework. However it requires constant

iteration and starts the mapreduce multiple times, which

time is consuming. Gou jie [12] put forward a parallel
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outlier detection based on k-nearest neighborhood. This

algorithm can find k-nearest neighborhood and calculate

the degrees of outliers by using partitioning strategy for

preprocess of datasets, and then it merges the results and

selects outliers. When dataset is partitioning, additional

data is required to preserve the neighbor information of the

data, which destroys the integrity of the data. Lei Cao et al.

[13] presented the first distributed distance-based outlier

detection approach using the MapReduce-based infras-

tructure, called DOD. The multi-tactic strategy of DOD

achieves a truly balanced workload by taking into account

the data characteristics in data partitioning and assigns

most appropriate algorithm for each partition based on their

theoretical cost models established for distinct classes of

detection algorithms. A common limitation in all prior

work [11–13] is that they implemented under Hadoop

MapReduce, they read and write data from HDFS and not

fit well iterative computing.

Furthermore when the outlier degree is calculated, the

algorithm should equally consider all attributes. In fact,

different attributes have different effects. The attributes

with more large effects are known as outlier attributes. Hu

and Qin [14] proposed a density-based local outlier

detecting algorithm, which reduces outlier attributes of

each data object by information entropy. Wang [15] pro-

posed a new density-based local outlier detecting algo-

rithm. By using leave-one partition information gain to

determined the weight of attribute. The weight distance is

used in calculating distances between objects. An outlier

detection algorithm based on density difference was pro-

posed by Xin in [16].The algorithm introduced entropy to

confirm the significance of attribute. The weight of attri-

bute determined by the entropy is used to calculate the

weighted distance between objects. However these algo-

rithms are not implemented in the cloud platform and are

not suitable for processing large-scale data sets.

3 Preliminaries

This section supplies the necessary background informa-

tion on the k-nearest neighbors outlier detection (Sect. 3.1),

information entropy (Sect. 3.2) and the big data technolo-

gies (Sect. 3.3).

3.1 K nearest neighbors outlier detection

Definition 2.1 (Euclidean Distance) According to the

Euclidean distance formula, the distance between two

object p ¼ fp1; p2; . . .; pmg and q ¼ q1; q2; . . .; qmf g is

distðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xm

i¼1
ðpi � qiÞ2

q

ð1Þ

Definition 2.2 (K Nearest Neighbors) Given an object p

a dataset D and an integer k, the k nearest neighbors of p

from D, denoted as KNNðp;DÞ, is a set of k objects from D

that 8o 2 KNNðp;DÞ, 8d 2 D� KNNðp;DÞ, jdistðo; pÞj\
jdistðd; pÞj.

Definition 2.3 (Outlier Degree) Given an object p 2 D,

the degree wkðp;DÞ of p in D is the sum of the distances

from p to its k nearest neighbors in D.

Definition 2.4 (Top n Outliers) Let T be a subset of D

having size n. If there not exist objects x 2 T and y in

ðDnTÞ such that wkðy;DÞ[wkðx;DÞ, then T is said to be

the set of the top n outliers in D.In other words, if we rank

points according to their outlier degree, the top points in

this ranking are considered to be outliers.

3.2 Information entropy

The entropy is a powerful mechanism for measurement of

information content or uncertainty of a variable [17]. It is

also referred as a measure of randomness of a system.

Concept of entropy is very intuitive for outlier detection

because presence of outliers increases the entropy (ran-

domness) of dataset [18–20] and this increment can be used

to measure the outliersness of an object.

It is the measure of information and uncertainty or

randomness of a variable [17]. Let x is a random variable

and SðxÞ is the set of values that variable x can take and

pðxÞ represents the probability function of random variable

x, and then entropy EðxÞ is defined as given by Eq. (2).

EðXÞ ¼ �
X

x2SðxÞ
pðxÞ log pðxÞ ð2Þ

Definition 2.5 (Entropy Distance) Data set D having m

attributes, p; q 2 D, vAi is the i-th value, the entropy dis-

tance between p and q is:

dðp; q;wiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼1

wiðvAiðpÞ � vAiðqÞÞ2
s

ð3Þ

wi is the i-th attribute weight.

3.3 MapReduce programming model: apache
spark

The MapReduce programming paradigm is a scale-out data

processing tool for Big Data, designed by Google in 2003.

This was thought to be the most powerful search-engine on

the Internet, but it rapidly became one of the most effective

techniques for general- purpose data parallelization.

The MapReduce model defines three stages to manage

distributed data: Map, Shuffle and Reduce. The first one

reads the raw data in form of\ key-value[ pairs, and it

distributes through several nodes for parallel processing.
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The Shuffle is responsible for merging all the values

associated with the same intermediate key. Finally, reduce

phase combines those coincident pairs and it aggregates it

into smaller key-value pairs. Figure 1 shows a scheme of

this process.

Apache Hadoop, is the most popular open-source

implementation of MapReduce paradigm, but it cannot

reuse data through in-memory primitives. Apache Spark is

a novel implementation of MapReduce that solves some of

the Hadoop drawbacks. The most important feature is the

type of data structure that parallelizes the computations in a

transparent way, it is called Resilient Distributed Datasets

(RDDs). In addition, RDD allows us to persist and reuse

data, cached in memory. Moreover, it was developed to

cooperate with Hadoop, specifically with its distributed file

system.

Spark includes a scalable machine learning library on

top of it known as MLlib3. It has a multitude of statistics

tools and machine learning algorithms along different areas

of KDD like classification, regression, or data

preprocessing.

4 SEOD design

In this section, we propose an entropy-based outlier

detection implementation based on the MapReduce pro-

gramming model, implemented on Apache Spark. We

focus on the reduction of the runtime of the entropy-based

outlier detection, when the datasets are big. The main

workflow of the SEOD algorithm is composed of three

phases, namely attribute entropy, k nearest neighbors and

outlier detection.

4.1 Attribute entropy stage

This subsection explains the MapReduce process that

computes the attribute entropy of the data set. Figure 2

shows the flowchart of the attribute entropy computation,

dividing the computation into two phases: map and reduce

operations. The map phase divides the Data and counts the

data frequency for each split. The reduce stage joins all the

data frequency and obtains the final data frequency. With

them, it calculates attribute entropy.

(1) Map phase: Let us start with the data set Data read

from HDFS as a RDD object. The Data has already

been split into p parts, as a parameter defined by the

user. Thus, there is one map task for each Dataj
split (Map1, Map2, Mapp—where 1� j� p).There-

fore, each map contains approximately the same

number of data samples.

Algorithm 1 encloses the pseudo-code of this

function. In our implementation in Spark we use the

mapPartitions() transformation, which runs the

function defined on each split of the RDD in a

distributed way.

Every map j will build a vector value &

frequency of pairs\ value, frequency[ for each

data sample t in Data. Instruction 3 counts the data

frequency. To accelerate the latest actualization of

the data frequency in the reducers, every vector

value & frequency is sorted in ascending order.

Every map tasks reports a matrix of value &

frequency that represents the frequency of the data,

which are identified by dimension ID as shown

Instruction 4.

Fig. 1 Data flow overview of MapReduce

Fig. 2 Flowchart of the attribute entropy stage
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(2) Reduce phase: Multiple reducers collect from the

maps the tentative data frequency and they aim to

obtain the final data frequency. The reduce tasks

will update the data frequency by merging the

output of the map. Since the vectors coming from

the maps are ordered according to the data value,

the update process becomes faster. Algorithm 2

shows the details of the reduce operation.

At this point, we have the data frequency of each attri-

bute among the data set. After that, another map stage will

calculate the attribute entropy as show Algorithm 3. To do

so, it applies the Eq. (2).

Finally, Algorithm 3 returns each attribute’s entropy.

Thus, it broadcasts attributes entropy to all nodes, which is

the input of the K nearest neighbors stage described in

Sect. 4.2.

4.2 K nearest neighbors stage

Figure 3 presents the flowchart of the k nearest neighbors

stage divided into the two basic operations of MapReduce.

The map phase divides the data and calculates for each

split the entropy distance and takes the k nearest neighbors

for every data sample. The reduce stage collects all k

nearest neighbors of each split and computes the definitives

k closest samples.

This stage relies on the attribute entropy, previously

computed in the attribute entropy stage. Firstly, it broad-

casts this attribute entropy into the main memory of all the

computing nodes involved. The broadcast function of

Spark allows us to keep a read-only variable cached on

each machine rather than copying it with the tasks.

To obtain an exact approach of the k nearest neighbors

for every data, it is necessary all the data samples in each

map in order to compare every data sample against the

whole data set. It supposes that Dataj and DataA fit together

in memory. Otherwise, the DataA will be split into v

chunks and it is iterated in a sequential way to allow for

being stored in memory and properly executed.

(1) Map phase: Let us assume that Data and DataA can

be stored in main memory. Data is split into p parts,

which contain approximately the same number of

samples. DataA has to remain unpartitioned in order

to compute all the candidate to be the k nearest

neighbors in each partition of the Data, calculated by

distributed map operations.

Algorithm 4 contains the pseudo-code of the map

function. In our implementation in Spark we make

use of the mapPartitions() transformation, which runs

the function defined in Algorithm 4 on each block of

the RDD separately.

Every map j will constitute a id-distance vector

neighborst, j of pairs\ id,distance[ of dimension k

for each data sample t in DataA. To do so,

Instruction 2 computes for each data sample the

entropy distance to its k nearest neighbors. To

accelerate the posterior actualization of the nearest

neighbors in the reducers, every vector neighborst, j
is sorted in ascending order regarding the distance to

the data sample, so that, Dist(neigh1)\
Dist(neigh2)\….\Dist(neighk).

(2) Reduce phase: The reduce phase consists of collect-

ing, from the tentative k nearest neighbors provided

by the maps, the closest ones for the examples

contained in the whole Data. After the map phase, all

the elements with the same key have been grouped.

A reducer is run over a list (neighborst, 0,

Fig. 3 Flowchart of the k nearest neighbors stage
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neighborst, 1,.., neighborst, p) and determines the k

nearest neighbors of this data example t.

This function will process every element of such list one

after another. Instructions 2 to 6 update a resulting list

result with the k neighbors. Since the vectors coming from

the maps are ordered according to the distance, the update

process becomes faster. This consists of merging two sor-

ted lists up to get k values, so that, the complexity in the

worst case is O(k).Therefore, this function compares every

distance value of each of the neighbors one by one, starting

with the closest neighbor. If the distance is lesser than the

current value, the class and the distance of this position is

updated with the corresponding values, otherwise we pro-

ceed with the following value. Algorithm 5 provides the

details of the reduce operation.

In summary, for every instance in the data set, the

reduce function will aggregate the values according to

function described before. To ease the implementation of

this idea, we use the transformation ReduceByKey() from

Spark. Algorithm 5 corresponds to the function required in

Spark.

4.3 Outlier detection stage

Outlier detection stage can be described as follows: Given

a set of N data points or objects and n the expected number

of outliers, find the top n objects that are considerably

dissimilar from the remaining set of data. Figure 4 presents

the flowchart of the outlier detection stage.

Once it receives all the outputs of the k nearest Neigh-

bors Stage. It is applied one last map function to calculate

the outlier degree. Outlier degree is calculated by the sum

of k-nearest neighbors. And then considers as outliers are

the top n point’s p whose outlier degree is the greatest.

5 General scheme of SEOD

When the size of the dataset is very large, we may exceed

the memory allowance of the map tasks. In this case, we

also have to split the dataset and carry out the MapReduce

process defined above. Algorithm 6 shows the pseudo-code

of the whole method with precise details of the functions

utilized in Spark. In the following, we describe the most

significant instructions, enumerated from 1 to 11

.

As input, we receive the path in the HDFS for dataset as

well as the number of maps m and reducers r. We also

dispose of the number of neighbors k and the number of

outliers n.

Firstly, it creates an RDD object with the dataset formed

by m blocks (Line 1). Secondly it performs a parallel

operation to normalize the data into the user-defined data

structure. Datasets are cached for future reuse (Line

2).Then the map phase divides the DataRDD and counts

the data frequency for each split (Line 3). The reduce stage

joins all the data frequency and obtains the final data fre-

quency (Line 4). With the data frequency of each attribute

among the data set, it calculates attribute entropy (Line 5).

Next, we make use of the mapPartitions() transforma-

tion, which runs the KNN function defined in Algorithm 6

on each block of the RDD separately. Instruction 6

broadcasts this attribute entropy into the main memory of

all the computing nodes involved. Instruction 7 computes

for each data sample the entropy distance to its k nearest

neighbors. Instruction 8 consists of collecting, from the

tentative k nearest neighbors provided by the maps, the

closest ones for the examples contained in the whole Data.

In summary, for every instance in the data set, the reduce

function will aggregate the values according to function

described before. To ease the implementation of this idea,

we use the transformation ReduceByKey() from Spark.

After that, it calculates the outlier degree for every data

instance, with the resulting neighbors (Line 9).Then itFig. 4 Flowchart of the outlier detection stage
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executes a top algorithm to detect outliers (Line 10).

Finally, it outputs the outliers (Line 11).

6 Experimental evaluation

6.1 Experimental setup and methodologies

6.1.1 Experimental infrastructure

All experiments are conducted on a Hadoop cluster with

one master node and five slave nodes. All the nodes have

the following features has 2 Intel Xeon CPU E5-2630

processor, 2 cores per processor, 2.6 GHz and 4 GB of

RAM. Nodes are interconnected with 1Gbps Ethernet.

Every node runs with ubuntu 14.04 as an operating system

and was configured with Hadoop 2.6.5 and Spark 2.0.0.

Each node is configured with up to 4 map and 4 reduce

tasks running concurrently, sort buffer size set to 1 GB, and

replication factor 3.

6.1.2 Datasets

In this experimental study we will use three big data sets.

Banana, Penbased and Pokerhand are extracted from the

UCI machine learning repository [21].Table 1 summarizes

the characteristics of these datasets. We show the number

of examples (#Examples), and the number of features

(#Features).

6.1.3 Metrics

First, performance evaluation is carried out by the fol-

lowing metrics: precision, recall, F1-measure (Eqs. 4, 5

and 6), where the positive class represents the anomalies

and the negative class represents the nominal samples.

precision ¼ true positives

true positivesþ false positives
ð4Þ

recall ¼ true positives

true positivesþ false negatives
ð5Þ

F1 ¼ precision � recall � 2
precision þ recall

ð6Þ

Second, we measure the total runtime between launch-

ing the program and receiving the results-a common metric

for the evaluation of distributed algorithms [13, 22]. The

total runtime for the parallel approach includes prepro-

cessing, attribute calculation, calculating k nearest neigh-

bors and top n outlier detection. Third, we measure the

speedup. The speedup proves the efficiency of a parallel

algorithm comparing against the sequential version of the

algorithm. Thus, it measures the relation between the

runtime of sequential and parallel versions. In a fully

parallel is environment, the maximum theoretical speed up

would be the same as the number of used cores [23].

speedup ¼ base line

parallel line
ð7Þ

where base_line is the runtime spent with the sequential

version and parallel_time is the total runtime achieved with

its improved version.

6.1.4 Algorithms

We compare the proposed methods experimentally. (1) The

two step baseline method baseline: first compute the outlier

scores of all points utilizing the algorithm in [3] and sort

the points based on their outlier scores; (2) EKNN: the

state-of-the-art entropy-based outlier detection algorithm

EKNN as described in Sect. 1; (3)SEOD: our proposed

entropy-based implemented on Spark.

6.1.5 Experimental methodology

We conduct experiments to evaluate the effectiveness of

our proposed algorithms using various datasets derived

from the Banana, Penbased, and Pokerhand datasets. In all

experiments, the same kNN search algorithm is applied to

eliminate the influence of the various kNN search algo-

rithms and indexing mechanisms.

6.2 Analysis of results

6.2.1 Evaluation of runtime

Figure 5 shows the mean value of 5 experimental results

under different datasets.

The Baseline and EKNN outperform the sequential

version for every dataset. This Baseline has the best results

for the smallest datasets. However, the execution times for

larger dataset are still unacceptably long. On the other

hand, the performance of the distributed approaches for

SEOD is significantly better for larger datasets. Better yet,

the larger the dataset, the more SEOD wins. The distribu-

tion of the data, and hence the computation, comes with a

Table 1 Summary description of used datasets

Dataset #Examples #Features

Banana 5300 2

Penbased 10,922 10

Pokerhand 100,000 10

Cluster Computing (2020) 23:409–419 415
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small network overhead due to serialization, transfer and

synchronization. This overhead has a significant impact

when the data size is small, and therefore it actually takes

more time to distribute the data than directly run the

computation. However, this is compensated when the

datasets are large enough in terms of instances, which is

when the distribution of the data truly makes sense. Now,

the bigger the dataset the better runtime achieved. More-

over, it can be seen from Fig. 5 that the runtime of EKNN

is higher than Baseline. There is extra attribute calculation

of the EKNN.

6.2.2 Evaluation of the effectiveness

In this experiment, we investigate the outlier detection

results of the different implementations on the multiple

datasets. To measure the performance of the outlier

detection algorithms we use the three metrics presented in

Sect. 6.1 which show different perspectives of the same

results.

Table 2 presents the averaged measures obtained for the

different metrics. First, The Entropy-based implementa-

tion, namely EKNN and SEOD, presents more competitive

results than Baseline in terms of average values. These

differences are produced by the K nearest neighbors pro-

cess of the information entropy. The Entropy-based

implementation uses the information of the attributes to

find better nearest neighbors, thus leading to a considerable

improvement of the detection. Second, The Entropy-based

implementations all obtain the same detection results

because they use the same entropy distance.

6.2.3 Evaluation of the influence of parameters

We next evaluate the influence of the number of neighbors

k, the number of outliers n and the number of map task m.

We use the UCI machine dataset (Table 1).

6.2.4 Influence of varying parameter k

Table 3 presents the results of varying the KNN input

parameter k from 10 to 30. The processing time of SEOD

increases when k increases. The parameter k determines the

number of neighbors, which affects the calculation of

outliers. Therefore, too small k cannot completely reflect

the neighbor information, and too large k will increase the

amount of calculation, so we should choose a suitable k to

achieve better detection results.

6.2.5 Influence of varying parameter n

Table 4 shows the total runtime when varying the input

parameter n, that is, the number of outliers. N is varied

from 40 to 120. The processing time of SEOD increases

when n increases. The parameter n is closely related to the

number of outliers. If the n is too small, all the outliers

cannot be selected. If the n is too large, the runtime will

increase. Therefore, it is necessary to select an appropriate

n according to the user’s needs.

6.2.6 Influence of varying parameter m

Table 5 shows the total runtime when varying the input

parameter m from 4 to 12. Analyzing Table 5 (line 2–3),

For smaller data sets, as m increases, the runtime increases

linearly, because for a smaller amount of data, an increase
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Fig. 5 Mean value of the runtime per dataset and algorithm (5 runs)

Table 2 Average outlier detection performance on multiple datasets

Algorithms Baseline EKNN SEOD

Precision 0.68 0.72 0.72

Recall 0.4146 0.4390 0.4390

F1-measure 0.5152 0.5455 0.5455
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in m leads to a larger communication overhead and a linear

increase in time. Analyzing Table 5 (line 4), for the larger

dataset, as m increases, the runtime of the SEOD decreases

significantly and finally stabilizes. Because the increase of

parallelism is beneficial to distributed processing, as the

degree of parallelism increases, the efficiency growth will

slowly reach a certain saturation point. At this point, the

communication time of each node of the cluster is far

greater than the calculation time, and the performance of

the algorithm tends to gentle or even weak.

6.2.7 Evaluation of the scalability

To evaluate the performance of our proposed methods on

various dataset sizes, we extract from pokerhand data

subsets of different sizes, including Dataset1, Dataset2 and

Dataset3. The number of data points gradually grows from

one hundred thousand to more than two hundred thousand.

Figure 6 presents the speedup of SEOD using the

datasets described above (Table 6) when varying the

number of nodes.

The speedup of SEOD increases linearly with the

number of nodes, and as the data size increases, the

speedup performance of the algorithm becomes better and

better. Hence, they are limited by the number of cores in

the cluster.

Figure 7 presents the runtime of SEOD using the data-

sets described above (Table 6) when varying the number of

nodes.

According to Fig. 7, the runtime of the SEOD decreases

with the increase of the number of working nodes in the

cluster, but the downward trend becomes slower. The

communication overhead caused by the broadcast of the

data in the map phase and the data aggregation in the

reduce phase may be the reason. At the same time, it can be

seen that the larger the data size, the more obvious the

downward trend. The scalability of the proposed model

obtains a linear behavior. However, the runtime on dataset3

is pretty high, and reveals a weakness of the proposed

algorithm. More hardware will be needed when the runtime

matter.
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Table 6 Summary description of datasets

Dataset Records Data size (MB)

Dataset1 100,000 2.24

Dataset2 150,000 3.36

Dataset3 200,000 4.48
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Fig. 7 Runtime of cluster

Table 3 Runtime in seconds of different k

Dataset K = 10 K = 15 K = 20 K = 25 K = 30

Banana 7.753 9.914 10.420 11.422 11.858

Penbased 18.241 20.659 21.648 23.378 25.221

Pokerhand 526.127 689.156 747.177 811.454 1783.828

Table 4 Runtime in seconds of different n

Dataset n = 40 n = 60 n = 80 n = 100 n = 120

Banana 13.070 12.714 13.506 12.926 14.413

Penbased 17.383 18.105 22.934 23.910 25.566

Pokerhand 546.654 550.464 550.899 558.864 578.097

Table 5 Runtime in seconds of different m

Dataset m = 4 m = 6 m = 8 m = 10 m = 12

Banana 11.389 12.060 13.455 14.726 15.743

Penbased 18.781 20.526 22.636 23.838 27.054

Pokerhand 658.666 455.7338 309.223 280.741 254.135
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7 Conclusion and future work

Using outlier detection algorithms to extract abnormal

phenomena from huge volumes of data is an extremely

important yet expensive task. Existing techniques lack

proper scaling to large dataset and consider attribute dif-

ference. In this paper, we propose the first distributed

entropy-based outlier detection approach using the Spark.

It is denominated as SEOD. Its main achievement is to

handle large-scale datasets with the higher accuracy results

than the original k nearest neighbors algorithm. The SEOD

first introduces attribute information entropy to distinguish

the importance of each attribute. Then, use the weighted

Euclidean distance to find the k neighbors of each data

instance, and finally use the outlier degree formula to find

the outliers. Experiments show that the SEOD has good

detection performance, good speedup and scalability, and

the ability to process large-scale data sets.

In the SEOD, we only consider the influence of the

importance of different attributes on outlier detection, and

do not consider the difference of different neighbors, that

is, each neighbor is treated equally. However, the differ-

ence in k neighbors is also important for outlier degree. As

future work, we will study how to treat the information of k

neighbors differently in the outlier algorithm under the

cloud computing platform.
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