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Abstract
Nowadays, video cameras are increasingly used for surveillance, monitoring, and activity recording. These cameras

generate high resolution image and video data at large scale. Processing such large scale video streams to extract useful

information with time constraints is challenging. Traditional methods do not offer scalability to process large scale data. In

this paper, we propose and evaluate cloud services for high resolution video streams in order to perform line detection

using Canny edge detection followed by Hough transform. These algorithms are often used as preprocessing steps for

various high level tasks including object, anomaly, and activity recognition. We implement and evaluate both Canny edge

detector and Hough transform algorithms in Hadoop and Spark. Our experimental evaluation using Spark shows an

excellent scalability and performance compared to Hadoop and standalone implementations for both Canny edge detection

and Hough transform. We obtained a speedup of 10.8� and 9.3� for Canny edge detection and Hough transform

respectively using Spark. These results demonstrate the effectiveness of parallel implementation of computer vision

algorithms to achieve good scalability for real-world applications.
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1 Introduction

Recent advancements in image and video capturing tech-

nologies is significantly contributing to the enormous

growth of visual digital data. Most of this data is generated

through social media networks, personal and public video

cameras, smart-phones, surveillance systems, and various

types of smart sensors. This visual data can be used in

various automated processes by employing computer

vision and image processing algorithms. However, these

algorithms pose very serious scalability challenges while

processing large amount of visual data. It is mainly because

these algorithms are tested on small scale datasets and

become complex and require unfeasible execution times as

the scale of data increases. To obtain good scalability, often

approximate methods are employed which may result in

accuracy degradation.

Computer vision deals with automatically identifying

high-level understanding from visual data attempting to

replicate biological visual systems. It helps to automate

various tasks including surveillance, anomaly detection,

human activity recognition, and traffic automation. How-

ever, processing large scale and massively parallel video

streams using traditional computer vision methods is

extremely challenging. Moreover, for complex, high

dimensional, and large datasets the performance of tradi-

tional computer vision methods decline noticeably.
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Human visual perception depends upon the detection of

lines and edges. Not surprisingly, computer vision also

exploits edges and lines as fundamental building blocks

towards a high-level understanding of visual data. The

most notable algorithm for finding edges is the Canny edge

detector while the Hough transform is mostly used for line

or shape detection. To study the effect on processing time

for Canny edge detection and Hough transform algorithms

using a typical implementation on a large number of

images, we performed experiments on varying number of

high resolution images. Figure 1 shows the execution time

on increasing number of images for both algorithms. We

observe an exponential increase in processing time as we

increase the number of images to process the standalone

implementations of Canny edge detection and Hough

transform.

MapReduce [7] is a well-known programming paradigm

for running batch processing based applications in parallel

and distributed fashion. A typical MapReduce job divides

the input into multiple chunks and then processes them in

concurrent map functions and the output of all map func-

tions is sorted and then passed to reducer functions which

also run concurrently. Finally, the output of the job is

stored in a distributed file system. Apache Hadoop is one of

the more widely used implementations of MapReduce.

However, Apache Spark [22] is gaining traction mainly

because it offers both batch processing and stream pro-

cessing with better performance. The real-time and in-

memory processing capabilities are attractive with many

applications which require to process large-scale data in

real-time.

Figure 2 shows our proposed system to process large-

scale video streams to generate alert and notifications. The

edge servers hosted near the video cameras detect the key-

frames and store them on the hadoop distributed file system

(HDFS), a fault tolerant and scalable file system, where

each image contains camera id and time-stamp embedded

as a metadata. Then our proposed MapReduce-based

implementation of canny edge detection using Spark runs

after a specific time interval to process the images and

produce edge pixels for each image. Similarly, our Hough

transform service independently runs periodically and

obtains edge pixel files to perform Hough transform for

line detection. Then this information is again stored in

HDFS for future processing. A final component performs

the application specific high-level computer vision task

(object detection, activity identification, etc.) to generate

alerts and notifications automatically. In this paper, we

implemented Canny edge detection and Hough transform

services on cloud and we profiled the performance of these

services using a wide range of images.

The contributions of this paper include:

– A pipeline to process massively parallel video streams

is proposed.

– MapReduce/Hadoop and Spark implementations and

evaluations of Canny edge detection are performed.

– MapReduce/Hadoop and Spark implementation and

evaluations of Hough transform based line detection are

performed.

– We evaluated and compared the scalability of Canny

edge detection using Hadoop and Spark with a

standalone baseline implementation.

– We evaluated the scalability of Hough transform using

Hadoop and Spark with a standalone implementation.

– We compared the concurrent versus sequential job

executions on Spark cluster for Canny edge detection

and Hough transform.

The rest of the paper is organized as follows. Section 2

provides an introduction to MapReduce, Hadoop, and

Spark. We discuss related work in Sect. 3. Implementation

details for Hadoop and Spark for Canny edge detection and

Hough transform are presented in Sect. 4. Experimental

evaluation details are given in Sect. 5. Experimental results

are presented in Sect. 6. Finally, conclusion and future

work are discussed in Section 7.

2 Introduction to MapReduce and Spark

2.1 MapReduce and Hadoop

MapReduce is a programming paradigm introduced by

Google for parallel batch processing of large datasets. A

typical MapReduce program runs on a cluster of multiple

computing nodes with a distributed file system which can

store large datasets for processing. A MapReduce program

consists of three main phases, Map, Shuffle and

Reduce [7].

Map phase consists of a function named map. Each

worker node of the MapReduce cluster applies the map

function to the part of distributed data stored locally on the
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Fig. 1 Canny edge detection and Hough transform processing time

increases exponentially as the number of images to be processed

increases
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node. A map function accepts input as a single key-value

pair and outputs a list containing key-value pairs. For a

given input key-value pair (k, v), map function will return a

set of key-value pairs fðk0; v0Þ; ðk1; v1Þ; . . .; ðkn; vnÞg. The
map function runs in parallel using user specific logic to

produce the output. The output of the map function is

passed to shuffle phase.

Shuffle phase receives the output of map functions,

sorts them based on keys, and then redistributes data over

worker nodes based on the output keys produced by the

map functions to ensure that all data belonging to one key

is assigned to one worker node for further processing. This

is an intermediate phase used to transfer output of map

functions to reduce functions.

Reduce phase uses the output of map functions sorted

by shuffle phase and usually performs aggregation and

group by functions on the input value to generate final

output. For a given input of a key and associated list of

values ðki; vi1; vi2; . . .vimÞ, a typical reduce function produces

a key-value pair in the form ðki; viÞ. All MapReduce cluster

nodes run the reduce function in parallel on distinct keys

with associated list of values and store the output in the

distributed file system.

Hadoop is an open-source implementation of MapRe-

duce programming model written in Java. It is the most

commonly used implementation of MapReduce to store

and process large datasets in distributed computing envi-

ronments. Many enterprises including Yahoo, Facebook,

and Google use Hadoop for various tasks [11].

Hadoop uses a distributed file system named Hadoop

Distributed File System (HDFS) which is a fault tolerant

and scalable storage used by Map and Reduce functions to

read and write data to achieve the tasks.

A typical Hadoop cluster consists of a master node and

multiple worker nodes. The master node is primarily

responsible for scheduling and managing jobs. However,

worker nodes are used to run map and reduce functions.

The HDFS is also installed on the cluster nodes.

2.2 Spark

Spark is a distributed in-memory data processing engine

commonly used for batch and stream processing of large

datasets to achieve high performance. Spark holds inter-

mediate results in memory rather than writing them to disk

which provides near real-time processing of the data and its

performance is several times faster than other big data

technologies including Hadoop. Spark provides APIs to

write applications in Java, Scala, Python, and R with more

than 80 high-level operations that help to build distributed

and parallel processing systems. Spark provides various

modules for machine learning, stream processing, and

interacting with SQL-based databases.

Resilient distributed datasets (RDD) is a fundamental

data structure used in Spark. It is capable of storing dis-

tributed objects of any type. A typical RDD is logically

partitioned which which facilitates easy parallel processing

on multiple computing nodes offering fault tolerance and

ease of use. While RDDs continue to evolve, two opera-

tions, namely, transformation and action can be performed

on any RDD.

A transformation operation is used to apply a specific

function on the RDD to create a new RDD. A typical

example can be a filter method on RDD that returns a new

RDD satisfying the filter conditions. Some of the Trans-

formation functions are map, filter, flatMap, group-

ByKey, reduceByKey, aggregateByKey, pipe,

 Distributed File System

Canny Edge
Detection

Hough
Transformation

Video
Edge Servers

High-level Computer
Vision Tasks

Alerts

Fig. 2 The proposed scalable pipeline to process large-scale video

streams and to generate alerts and notifications. The edge servers

hosted closed to the video cameras detect the key-frames and store

them to the hadoop distributed file system (HDFS) and then Canny

edge detection, Hough transform, and high-level computer vision

tasks are executed on the images
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and coalesce. The output of transformation method is

always an RDD.

An action operation evaluates the RDD data and returns

a new value. A typical example to use an action on RDD

can be finding the number of records in the RDD. Some of

the action operations are reduce, collect, count,

first, take, countByKey, and foreach.

3 Related work

Image processing involves complex and time consuming

tasks including edge detection [18] and Hough trans-

form [14]. There have been several efforts to improve the

speed and performance of these algorithms. For example,

Christos et al. [8] proposed and evaluated FPGA imple-

mentation of Canny edge detection to improve perfor-

mance of the algorithm. The proposed solution shows high

throughput to process large number of images without on-

chip memory issues. Qian et al. [19] presented a distributed

Canny edge detection method which computes the edges

within an image based on local distribution of the gradi-

ents. The proposed algorithms runs on FPGA and yields

better performance compared to the original Canny edge

detection algorithm. Some recent work [4] also addresses

to improve the Canny edge algorithm to extract text from

images.

Some methods have been proposed to improve the per-

formance of Hough transform by exploiting the power of

graphics processing units (GPUs) and multi-core processors.

For example, Halyo et al. [9] implemented Hough transform

on multi-core processors and GPUs and report a speedup gain

of three times. Braak et al. [17] achieved a speedup of seven

times. Yam-Uicab et al. [20] achieved 20 times speedup gain

by implementing Hough transform on GPUs using CUDA

programming model, optimization is implemented in parallel

using GPU programming, allowing a reduction of total run

time and achieving four times better performance than the

sequential method. Chen et al. [5] evaluated the Hough

algorithm on multi-core processors by distributing the images

across processors to achieve high throughput.

Image and video processing is a well-established research

area. However, limited contributions are done to develop

cloud-services to offer scalable video stream analysis. For

example, Ashiq et al. [1] proposed an architecture to per-

form video stream analysis in cloud computing environ-

ment. They integrated MapReduce with OpenCV to process

images and showed that the performance of processing

images is better than GPUs. Yaseen et al. [21] demonstrated

video processing using Hadoop. Swapnil et al. [2] proposed

a system to use Hadoop image processing interface

(HIPI) [16] for processing images to detect Organic Light

Emitting Diode (OLE) centers. The solution runs on Hadoop

in parallel and provides high throughput and performance to

process a large number of images. Jatmiko et al. [12] use

MapReduce framework to detect breast and brain cancer,

and tumor from Bio-medical images including magnetic

resonance imaging (MRI), diffusion tensor imaging (DTI),

and single proton emission computed tomography (SPECT).

Wei et al. [10] implement Parallel Processing for Massive

remotely sensed data using Hadoop.

Apache Spark [23] is widely used to process large data

mainly due to better performance and scalability over

Hadoop. Spark is used in various image processing and

video analysis tasks. For example, Arthanari et al. [3]

proposed a system to identify traffic anomalies using video

streams. Jinna et al. [13] used Spark to detect redundant,

duplicate, and near-duplicate videos from a large video

dataset. They designed a new video similarity measure

based on Hough transform and sliding window concepts.

The proposed system achieved 5.8 times speedup over

existing methods. Rathore et al. [15] design a MapReduce

algorithm to detect, monitor, and track vehicles on streets

using a network of video cameras. A recent work by Chen

et al. [6] proposed a parallel random forest algorithm over

Skype for large datasets with high speed and accuracy.

To the best of our knowledge, our proposed work is

novel and has not been done before. All of the above-

mentioned techniques used Hadoop and Spark for specific

applications. However, we propose and evaluate services to

preprocess images for edge detection and Hough transform

that can be used within any application as preprocessing

steps. We propose a completely scalable pipeline for image

processing tasks. We evaluate our proposed methods on

Hadoop and Spark extensively using a wide variation of

images as well as cluster nodes.

4 Canny edge detection and hough
transform implementations

We have designed and implemented Canny edge detection

and Hough transform algorithms in Hadoop and Spark. We

use standalone implementation of these algorithms as a

baseline method to compare the performance of Hadoop

and Spark implementations. Both of these algorithms are

not inherently parallelizable. We have transformed these

algorithms into Map and Reduce functions with appropri-

ate key-value pairs as input and output to run on Hadoop to

process large datasets in parallel. For Spark implementa-

tion, we have transformed Canny edge detector and Hough

transform into the Spark echosystem and used RDDs effi-

ciently for parallel processing of large datasets. In this

section, we explain the implementation details of stan-

dalone, Hadoop, and Spark for Canny edge detection and

Hough transform algorithms.
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4.1 Canny edge detection

4.1.1 Standalone implementation

Algorithm 1 Standalone Canny Edge Detection
Input: Image I, thresholds τl, τh
Output: Canny edge image E, gradient information M, φ

1: procedure Canny-Standalone
2: Convolve image with Gaussian filter G
3: I ← I � G
4: Compute gradients
5: for each pixel (x, y) do
6: gx(x, y) = 1

2 I(x − 1, y) − I(x, y) + 1
2 I(x + 1, y)

7: gy(x, y) = 1
2 I(x, y − 1) − I(x, y) + 1

2 I(x, y + 1)
8: M(x, y) =

√
gx(x, y)2 + gy(x, y)2 � magnitude

9: φ(x, y) = tan−1(gy(x, y)/gx(x, y)) � orientation
10: end for
11: Non-maxima suppression
12: for each pixel (x, y) do
13: Find 2 neighbours in direction of gradient φ(x, y)
14: if M(x, y) ≤ M(any neighbour) then
15: M(x, y) ← 0
16: end if
17: end for
18: Hysteresis thresholding
19: for each pixel (x, y) do
20: if M(x, y) ≥ τh then
21: E(x, y) ← 1 � edge pixel
22: else
23: E(x, y) ← 0 � non-edge pixel
24: end if
25: end for
26: Recursively find non-edge pixels with M ≥ τl and

with an edge pixel as a neighbour. Mark them as edge
pixels as well.

27: end procedure

A standalone implementation of Canny edge detection

algorithm is explained inAlgorithm 1 for a given image.After

noise removal via Gaussian filtering, the gradient vector and

itsmagnitude and orientation are computed at each pixel. This

is followed by a non-maxima suppression step that ensures

single pixel thick edges. Finally, hysteresis thresholding is

applied using user-defined low and high threshold values.

Pixel locations with gradientmagnitudes greater than the high

threshold are marked as edges. Then all other pixels adjacent

to edge pixels and with gradient magnitudes greater than low

threshold are recursively marked as edge pixels as well.

4.1.2 MapReduce implementation

Our MapReduce implementation which executes on Apache

Hadoop is explained inAlgorithms 2. TheMap function reads

images from HDFS and gets the edges using the same logic

presented at the standalone implementation of Canny edge

detection and finally update the image file with Canny Edges.

Themap function runs in parallel to process a large number of

images. The output of the Map function is provided input to

the Reduce functionwhich reads the edge images sequentially

from the HDFS and produces the corresponding edge pixel

files.

Algorithm 2 Hadoop/MapReduce implementation for
Canny edge detection

Input: lowThreshold, highThreshold, set of input images
Output: Canny Edge pixel files for the input files

1: procedure Canny-Map(key, value)
2: � Key: Name of directory, value: image data
3: cannyImage ← using Algorithm 1
4: if cannyImage! = null then
5: context.write(key, cannyImage)
6: end if
7: end procedure
8:
9: procedure Canny-Reduce(key, value)

10: � key: HDFS directory path to read edge pixel files,
value: list of canny images

11: for img in cannyImages do
12: pixelFile = hdfs.createNewFile(img.getName()+”.pixels”)
13: for i=0 to i<img.getWidth() do
14: for j=0 to j<img.getHeight() do
15: pixelValue ← cannyImage.getPixel(i,j)
16: if pixelValue is ON then
17: pixelFile.write(i+”,”+j)
18: end if
19: end for
20: end for
21: end for
22: end procedure

4.1.3 Spark implementation

Algorithm 3 shows the Spark implementation to perform

Canny edge detection on the given image. The algorithm,

first reads an image in RRD, second it performs canny-edge

detection algorithm over it. Third, it scan over all image to

identify white pixels and then write them to a file in HDFS

corresponding to the given input image.

Algorithm 3 Spark Canny Implementation
Input: lowThreshold, highThreshold, set of input images
Output: Canny edge pixel files for the input files

1: procedure Canny-Spark(inputFileName)
2: inPath ← Path(hdfs://PATH/images/)
3: outPath ← Path(hdfs://PATH/CannyEdges/)
4: BufferedImage colorImage
5: JavaRDD<BufferedImage> cannyImage
6: JavaRDD<Integer, Integer> edgePoints
7: colorImage ← readFile(inPath+inputFileName)
8: cannyImage ← using Algorithm 1 (colorImage)
9: k ← 0

10: for i=0 to i<cannyImage.getWidth() do
11: for j=0 to j<cannyImage.getHeight() do
12: pixelValue ← cannyImage.getPixel(i,j)
13: if pixelValue is ON then
14: Tuple <Integer, Integer> tup
15: tup.1() ← i; tup.2 ← j
16: edgePoints[k] ← tup
17: k← k+1
18: end if
19: end for
20: end for
21: edgePoints.saveAsTextFile(outPath+inputFileName)
22: end procedure

Cluster Computing (2020) 23:397–408 401

123



4.2 Hough transform implementation

4.2.1 Standalone implementation of hough transform

A typical implementation of Hough transform accepts the

edge pixel file consists of edge pixels and identify the

geometry objects. We implemented a line detection using

Hough transform. Algorithm 4 explains the standalone

implementation of the Hough transform. The basic idea is

for each edge point xi; yi to caste a vote for every possible

line with polar parameters ðr; hÞ that could have passed

through it. Our implementation reads a text file containing

edge points and for each edge point (x, y), it varies the

range of h to compute the corresponding value of r using

the equation: r ¼ x cos hþ y sin h. A vote is cast for the

computed (r; h) pair by incrementing the current votes in

an accumulator array. Locally maximum votes within a

3� 3 neighbourhood are retained to avoid duplicated line

detections. Finally, the accumulator array is thresholded to

obtain lines with significant votes. The (r; h) pairs for these
lines are stored in an output file.

Algorithm 4 Standalone Implementation of Hough
Transform.

Input: Canny edge pixel file, threshold τ
Output: Detected lines

1: procedure Hough-Standalone
2: Initialize 2D accumulator array Arr with zero votes
3: for each edge pixel (x, y) do
4: for θ = 0 . . . π do
5: r ← x cos θ + y sin θ
6: Arr[r, θ] ← Arr[r, θ]+1
7: end for
8: end for
9: Retain local maxima in 3 × 3 neighbourhoods of Arr.

10: Arr cells with more than τ votes correspond to pa-
rameters of detected lines

11: end procedure

4.2.2 MapReduce implementation of hough transform

Algorithm 5 explains the MapReduce implementation for

Hough transform. In Map function, we compute ðr; hÞ pairs
for the given edge pixel files. Each mapper performs a map

function independently over a given edge pixel file and

stores the resulting ðr; hÞ pairs in the HDFS. Each Reduce

function receives a list of ðr; hÞ pairs and simply counts the

votes for the pairs and if the votes are higher than the user-

defined threshold then the pairs are stored in the corre-

sponding file for the given edge pixel files.

Algorithm 5 Hadoop/MapReduce implementation of
Hough transform

Input: threshold, edge pixel file
Output: rThetaFile

1: procedure hough-map(key,values)
2: � key: Name of file; value: file containing pixel point
3: for each edge pixel (x, y) in value do
4: for θ = 0 . . . π do
5: r ← x cos θ + y sin θ
6: rThetaPair← r + θ � concatenate r and θ
7: return Emit(rThetaPair,1)
8: end for
9: end for

10: end procedure
11:
12: procedure hough-reduce(key,values)
13: � key: Name of file ; value: list of all rThetaPairs.
14: votes ← 0
15: for each i in rThetaPairs do
16: � compute count for each unique rThetaPair.
17: CM [i] ← CM [i] + 1
18: � CM is a dictionary datastructure
19: end for
20: for each index key in CM do
21: � index keys are unique rThetaPairs
22: votes ← CM [index key]
23: if votes > threshold then
24: rThetaFile.write(index key)
25: end if
26: end for
27: end procedure

4.2.3 Spark implementation of hough

Algorithm 6 explains the Spark implementation for Hough

transform. First, it loads a given edge point file into an

RDD, and map each pixel (x, y) into parameter ðr; hÞ using
equation r ¼ x cos hþ y sin h and emits ðr; hÞ and 1. Then

reduce the emitted data by counting each unique ðr; hÞ in
data, then sort it on the basis of their values, and identify

the ðr; hÞ pairs where votes are higher than the user-defined

threshold and finally it is written into HDFS.
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Algorithm 6 Spark Hough Implementation
Input: threshold, edge pixel file
Output: rThetaPair file containing geometry objects

1: procedure Hough-Spark(inputFileName)
2: Input: Canny Edge pixel file
3: Output: rTheta pairs file
4: JavaRDD<integer,Integer> edgePoints ← null
5: JavaRDD<String,Integer> rThetaPair ← null
6: k← 0; rTheta← null
7: edgePoints ← readFile(inPath+inputFileName) �
8: for each edge pixel (x, y) in RDD do
9: for θ = 0 . . . π do

10: r ← x cos θ + y sin θ
11: Tuple ¡String, Integer¿ tup
12: tup. 1() ← r, theta; tup. 2 ← 1
13: rThetaPair[k] ← tup
14: k← k+1
15: end for
16: end for
17: rThetaPair.Reduce(key) � key:rTheta.
18: rThetaPair.filter(Threshold)
19: � votes> Threshold
20: rThetaPair.saveAsTextFile
21: (outPath+inputFileName)
22: end procedure

5 Experimental analysis

5.1 Description of experiments

We have performed an extensive evaluation of the pro-

posed Hadoop and Spark implementations for Canny edge

detection and Hough transform on a cluster consisting of

four computing nodes. Each node had a 16 GB physical

memory, Octa Core i7 CPU, and 2 TB hard disk. The nodes

in the cluster were connected by a Gigabit high-speed

network. Hadoop 2.7.2 and Spark 2.2.0 were installed on

the cluster. To study the effect of the proposed algorithms,

we used HD images (2048� 1153 pixels) crawled from the

Internet to build a dataset for experimental evaluation.

Table 1 summarizes the four experiments that we have

performed. Experiment 1 reveals performance on a single

Canny edge detection job as the number of computing

nodes and the number of images in the job is varied.

Comparison is made between the performances of a stan-

dalone implementation, a Hadoop implementation and a

Spark implementation. Experiment 3 differs from Experi-

ment 1 by allowing multiple jobs and varying the number

of concurrent jobs from 1 to 4 and fixing the number of

images per job to 10K. Experiments 2 and 4 repeat the

same process for the Hough transform. For multiple job

experiments (3 and 4), only Spark implementations were

profiled since Hadoop was shown to be inferior to Spark in

the single job experiments.

5.2 Experiment 1: single canny edge detection
job

Figure 3 compares execution times to process varying

number of images using standalone, Hadoop, and Spark

implementations of Canny edge detection. The Hadoop1,

Hadoop2, Hadoop3, and Hadoop4 represent different

Hadoop clusters consisting of 1, 2, 3, and 4 machines

respectively. Similarly, we also used different cluster sizes

for Spark implementation. The standalone implementation is

used as a baseline method to compare the proposed imple-

mentations. Unsurprisingly, for a small number of images,

the performance of standalone implementation is excellent

comparing to 1 node Hadoop and Spark (Hadoop1 and

Spark1). However, for a large number of images e.g., 10,000,

theHadoop and Spark implementations usingmultiple nodes

significantly outperform the standalone implementation.

We also observed that compared to Hadoop, the Spark

implementation scales gracefully by increasing the number

of cluster nodes. For example, Figure 3a shows the exe-

cution time comparison between Hadoop and standalone

implementations. We observe that after 7000 images the

four nodes Hadoop cluster (Hadoop4) start outperforming

the standalone implementation. However, after 9000 ima-

ges all configurations of Hadoop outperforms the stan-

dalone implementation. Figure 3b shows the execution

time comparison of Spark and standalone implementations.

We observe that 3 and 4 node Spark clusters (Spark3 and

Spark4) always perform better than the standalone imple-

mentations. However, for images more than 7000, even a

single node Spark cluster (Spark1) also starts performing

better than the standalone implementation.

Figure 4 shows the speedup for Canny edge detection on

10,000 images using Hadoop and Spark implementations

over standalone implementation. We observed that Spark

with all different cluster configurations (number of nodes)

gives significantly higher speedup comparing to Hadoop.

Table 1 Description of

experiments
Experiment # Job type # Jobs # Concurrent jobs # Nodes # Images per job Comparison

1 Canny 1 1 1–4 1� 10K H/S/B

2 Hough 1 1 1–4 1� 10K H/S/B

3 Canny Multiple 1–4 1–4 10K S/B

4 Hough Multiple 1–4 1–4 10K S/B

H Hadoop implementation, S Spark implementation, B baseline standalone implementation
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We obtained the highest speedup of 10:8� using 4 Spark

nodes over the standalone implementation. The Hadoop

implementation, however, only gives 2:79� speedup over

the standalone implementation for Canny edge detection.

5.3 Experiment 2: single Hough transform job

The analysis for a single Hough transform job follows the

same patterns as the single Canny edge detection job.

Figure 5 shows a comparison of standalone implemen-

tation with Hadoop and Spark implementations for Hough

transform on a different number of images. Figure 5a

shows the execution time comparison of Hadoop and

standalone implementations. We observe that after 5000

images the four nodes Hadoop cluster (Hadoop4) start

outperforming the standalone implementation. However,

after 9000 images all Hadoop all configurations of Hadoop

outperforms the standalone implementation. Figure 5b

shows the execution time comparison of Spark and stan-

dalone implementations. We observe that 2, 3, and 4 nodes

Spark (Spark2, Spark3 and Spark4) always outperform the

standalone implementations. However, for images more

than 5000, even a single node Spark cluster (Spark1) also

outperforms the standalone implementation. Once again,

we observed that Spark implementations had better per-

formance than Hadoop as the number of images and cluster

nodes was increased.

Figure 6 shows the speedup for Hough transform on

10,000 images using Hadoop and Spark implementations

over standalone implementation. We observed that Spark

with all different cluster configurations (number of nodes)

gives significantly higher speedup compared to Hadoop.

We obtained the highest speedup of 9.39 using 4 Spark

nodes over the standalone implementation, however, the

Hadoop implementation only gives 2.89 speedup over the

standalone implementation for Hough transform.

The proposed Canny edge detection and Hough trans-

form using Hadoop and Spark implementations, shown in

Experiment 1 and Experiment 2, yield speedup gain over

standalone implementations due to automatic data distri-

bution, task scheduling, and high scalability features

offered by these frameworks. Moreover, data locality fea-

ture of Hadoop helps to reduce the execution time by

minimizing data transfer time. The data locality feature

ensures to schedule the jobs to the computing nodes host-

ing the data required by the corresponding tasks which also

helps to gain speedup. Whereas, Spark uses resilient dis-

tributed dataset (RDD) data structure which loads data in

memory to reduce I/O latency and logically divides the

data into multiple small chunks. The RDD executes the

task on small data chunks in parallel to gain speedup.

A theoretical limit on the maximum possible speedup

using Spark for 10,000 images in parallel for Canny edge

detection and Hough transform implementations is
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Fig. 3 Experiment 1 (Single

Canny Edge Detection Job)

comparison of Hadoop (a) and
Spark (b) implementations with

the standalone implementation

of Canny edge detection for a

different number of images.

Hadoop1, Hadoop2, Hadoop3,

and Hadoop4 shows the number

of nodes used in the cluster to

profile the execution time.

Similarly Spark1, Spark2,

Spark3, and Spark4 represent

the number of cluster nodes
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imposed by Amdahls law limp!1 ¼ 1
f
, where p is the

number of processors, and f is a fraction of these programs

which executes in serial and cannot be parallelized. This

law shows that a program with a specific f using an infinite

number of processors can only give a maximum speedup

limit to 1
f
. However, it is challenging to identify the value of

f for these programs running in distributed environments

like Spark. Fortunately, we can estimate f using Karp–Flatt

metric [13]:

f ¼ 1

sp
� 1

p

� �
� 1� 1

p

� ��1

; ð1Þ

where sp is the speedup gained using p processors. We used

the speedup gained sp obtained by using 4 nodes over the

sequential implementation. In our test bed, each node

contains 8 processors, therefore, p ¼ 4� 8 ¼ 32. We

estimate that maximum possible speedup is 15.89 and

12.79 respectively for Canny edge detection and Hough

transform using the proposed Spark implementations over a

quite larger test bed.

5.4 Experiment 3: multiple concurrent canny
edge detection jobs

Table 2 shows the execution time (seconds) for multiple

Canny edge detection jobs processed concurrently using a

different number of Spark cluster nodes. We variate the

number of concurrent jobs from 1 to 4 (1J, 2J, 3J, and 4J)

and used different Spark clusters with the number of nodes

increasing from 1 to 4 (Spark1, Spark2, Spark3, and

Spark4) for processing the Canny edge detection jobs and

profile the total execution time. Each job required 10, 000

images to perform Canny edge detection.

We observed that the concurrent number of jobs does

not increase the overall execution time significantly as

compared to the single job execution time. For example,

consider Spark4 for 1J, 2J, 3J, and 4J. The 1J only pro-

cesses 10,000 images in 1650 s while 4J processes 40,000

images in 1996 s which shows that only 21% additional

processing time is required. However, if we process 40,000

images sequentially by processing 1 job of 10,000 images

four times in sequence, then we require 300% more
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Table 2 Experiment 3 (Multiple Concurrent Canny Edge Detection

Jobs) results showing execution time (seconds) for multiple concur-

rent Canny edge detection jobs on the Spark clusters with different

number of nodes

Spark1 Spark2 Spark3 Spark4

1J 4899 3272 2392 1650

2J 5437 3668 2590 1774

3J 5944 3966 2750 1897

4J 7979 4657 2930 1996
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Fig. 5 Experiment 2 (Single

Hough Transform Job)

comparison of Hadoop (a) and
Spark (b) implementations with

the standalone implementation

of Hough transform for a

different number of images.

Hadoop1, Hadoop2, Hadoop3,

and Hadoop4 shows the number

of nodes used in the cluster to

profile the execution time.

Similarly Spark1, Spark2,

Spark3, and Spark4 represent

the number of cluster nodes
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processing time. The performance gain observed in con-

current job processing is mainly due to multiprocessor

computing nodes which can serve multiple CPU intensive

workload concurrently. Therefore, to exploit and properly

utilize the underlying hardware, jobs should be scheduled

concurrently.

To show the effect of sequential and concurrent jobs

processing on execution time, we consider a case of exe-

cuting 4 concurrent jobs (4J) on Spark1, Spark2, Spark3,

and Spark4 separately and profile the execution time. The

sequential job processing time is computed by simply

multiplying the time required to process 1 job for the

specific Spark configuration with 4. This was compared

with the corresponding concurrent job execution time.

Figure 7 shows the comparison between four jobs pro-

cessing sequentially versus concurrently using a different

number of Spark node clusters for Canny edge detection.

Each job required to process 10,000 images. We observed

that Spark implementation gracefully scales on concurrent

job processing compared to sequential job execution. We

observed 59%; 64%; 69%, and 70% less execution times to

process four concurrent jobs comparing to sequential job

execution using 1, 2, 3, and 4 nodes Spark clusters

respectively.

5.5 Experiment 4: multiple concurrent hough
transform jobs

Table 3 shows the execution time for multiple Hough

transform jobs processed concurrently using a different

number of Spark cluster nodes. We variate the number of

concurrent jobs from 1 to 4 (1J, 2J, 3J, and 4J) and used

Spark clusters with the number of nodes increasing from 1

to 4 (Spark1, Spark2, Spark3, and Spark4) for processing

Hough transform jobs and profile the total execution time.

Each job required 10,000 images to perform the Hough

transform.

We observed that the concurrent number of jobs does

not increase the overall execution time significantly as

compared to the single job execution time. For example,

consider Spark4 for 1J, 2J, 3J, and 4J. The 1J only pro-

cesses 10,000 images in 1900 s while 4J processes 40,000

images in 4115 s which shows that only 116% additional

processing time is required. However, if we process 40,000

images sequentially by processing 1 job of 10,000 images

four times in sequence, then we require 300% more pro-

cessing time.

To show the effect of sequential and concurrent jobs

processing on execution time, we consider a case of exe-

cuting 4 concurrent jobs (4J) on Spark1, Spark2, Spark3,

and Spark4 separately and profile the execution time. The

sequential job processing time is computed by multiplying

the time required to process 1 job for the specific Spark

configuration by 4 and compared it with the corresponding

concurrent job execution time. Figure 8 shows the com-

parison between four jobs processing sequentially versus

concurrently using a different number of Spark node

clusters for Hough transform. Each job required to process

10, 000 images. We observed that Spark implementation

gracefully scales on the concurrent number of job pro-

cessing comparing to the sequential job execution. We

observed 61%; 55%; 50%; and 46% less execution time to

process four concurrent jobs comparing to sequential job

execution time using 1, 2, 3, and 4 nodes Spark clusters

respectively.

6 Conclusion

Cloud-based services for image processing are required for

automating various tasks. In this paper, we have presented

two image processing algorithms, namely Canny edge

detection and Hough transform which are complex image

processing methods and consume substantial execution
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Table 3 Experiment 4 (Multiple Concurrent Hough Transform Jobs)

results showing execution time (seconds) for multiple concurrent

Hough transform jobs on the Spark clusters with different number of

nodes

Spark1 Spark2 Spark3 Spark4

1J 5577 2712 2306 1900

2J 5867 2848 2795 2741

3J 6937 3749 3535 3245

4J 8689 4849 4561 4115
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time to process a large number of images. We have pre-

sented Hadoop and Spark implementations for both of

these algorithms. After extensive experimental evaluation

using a different number of images and cluster sizes, we

identified that the proposed Spark implementation can

provide 10.89 speedup for Canny edge detection and 9.39

speedup for Hough transform to process a large number of

images. We also identified that concurrent jobs for Canny

edge detection and Hough transform can yield significantly

higher performance than processing sequential jobs on the

Spark clusters of different sizes.

This work can be extended towards other image and

video processing tasks such as keyframe detection, object

detection or activity recognition and it can be integrated

within a larger, scalable image processing system.
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