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Abstract
Non-volatile random access memory (NVRAM) is a promising approach to persistent data storage with outstanding

advantages over traditional storage devices, such as hard disk drives (HDDs) and solid state drives (SSDs). Some of its

biggest advantages are its DRAM-like read latency and microsecond-level write latency, which are several hundred times

faster than those in the original block device. However, one of the issues with using NVRAM as a storage device is designing

an indexing system for its data stores to fully utilize NVRAM characteristics. The state-of-the-art indexing systems of non-

volatile key-value stores are usually based on B?-trees or their variants, which were originally designed for block-based

storage devices with better sequential performance than random performance. The semantics of B?-tree require data being

sorted into leaf nodes and inner nodes and frequent splitting and merging to keep balanced. However, all the sorting, splitting,

and merging operations cause extra write to NVRAM, which decreases its performance. In this article, we propose NV-

Skiplist, a skiplist-based indexing system for key-value stores on NVRAM that fully uses the features of both NVRAM and

DRAM. NV-Skiplist constructs its bottom layer in non-volatile memory to maintain data persistence and support range scans.

It builds its upper layers in DRAM to retain rapid index searching and prevent consistently large overhead. We also propose a

multiranged variant of NV-Skiplist to increase its search performance and scalability. We evaluate the performance of NV-

Skiplist and wB?-tree which is a state-of-art scheme on an NVRAM emulator on a server with an Intel Xeon E5-2620 v2

processor. The results show that our design outperforms the original tree-based, non-volatile key-value stores up to 48%.
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1 Introduction

The rise of next-generation non-volatile random access

memory (NVRAM), including phase-change memory [2],

memristors [3], and spin-transfer torque magnetic random

access memory [4], has drawn great attention from storage

system researchers [5–8]. NVRAM provides different

characteristics such as low read and write latencies, the

non-volatility properties, and byte-addressable access,

demonstrating their potential to replace both DRAM and

block storage devices. As a result of these features, key-

value stores have recently been re-designed for NVRAM,

benefiting from its fast access and persistent features.
A preliminary version [1] of this article was presented at the

3rd IEEE International Workshops on Foundations and

Applications of Self* Systems, Trento, Italy, Sep. 2018.
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However, the majority of the latest NVRAM key-value

stores derive from the conventional persistent key-value

stores that generally store data in block storage devices.

Due to the performance gap between random access and

sequential access on block storage devices, B?-tree-based

indexing systems were introduced [9]. Since the semantics

of a B?-tree aggregate adjacent data into the same group

with a fixed order, random performance could be improved

by pre-fetching adjacent data. In spite of these advantages,

B?-tree-based indexing systems are not naturally suited to

key-value stores that run on NVRAM. Since there is almost

no observable random or sequential performance gap,

merged sequential access cannot be benefit; additionally,

the cost of keeping data organized would introduce extra

data write that decreases overall performance.

Previous several studies have optimized key-value

stores on NVRAM by re-designing the existing B? tree-

based systems, such as CDDS B?-tree [7], wB?-tree [5],

and NV-tree [8] to reduce persistent costs. However, these

systems inherited the nature of B?-trees, meaning that

maintaining data orders and merging/splitting operations

are still necessary, which may cause additional write

amplification or extra cost to maintain the semantics when

running on NVRAM. Our study is in line with these

studies [5, 7, 8] in terms of optimizing key-value store on

NVRAM. In contrast, we focus on investigating the

effectiveness of skiplist on NVRAM instead of tree

structures.

In this article, we propose a skiplist-based key-value

store design called NV-Skiplist instead of a traditional B?-

tree. NV-Skiplist runs on both NVRAM and DRAM and

aims to exploit the simplicity of skiplist insertion while

maintaining a high search performance due to its O(logN)

search time complexity. NV-Skiplist stores keys in the leaf

node out of order to reduce the overhead of extra write to

NVRAM. To satisfy the semantics of a skiplist, corre-

sponding index nodes are stored and sorted by their ranges

in DRAM. For further reducing writes to NVRAM, we use

the minimum and maximum keys to represent the keys

stored in corresponding leaf node. The original skiplist is

balanced by consulting random number generators [10]

and leads to simpler algorithms. On this basis, NV-Skiplist

chooses a deterministic algorithm [11] to keep itself bal-

anced while achieving a better search performance. In

addition, NV-Skiplist also applies multi-range algorithm,

which distributes the whole key space into several ranges,

on itself for getting a better scalability. The simplicity of

the skiplist algorithm makes it easier to implement and

provides significant constant factor speed improvements

over balanced trees.

We implement NV-Skiplist and the state-of-the-art key-

value store, wB?-tree. We evaluate these two key-value

stores through the micro-benchmark and YCSB. NV-

Skiplist can improve the performance up to 48%, compared

with that of wB?-tree. In our previous work [1], we

focused on the study of a single-threaded system, mean-

while, this article extends and applies our design to a multi-

thread system.

The contributions of this article are as follows:

1. We propose a skiplist-based index system for key-

value stores on NVRAM. To fully exploit the perfor-

mance of the hybrid memory system, its last level is

located in NVRAM and other parts are stored in

DRAM.

2. We design the consistent protocol effectively to

maintain the consistency under any circumstances.

3. We choose a deterministic mechanism to improve its

search performance. We also introduced a multi-header

architecture to reduce node traversals during search

operations and increase the scalability.

4. We extend our previous work [1] to enable our

scheme in a multi-thread system and evaluated it via

YCSB.

The rest of this article is organized as follows: Sect. 2

discusses background and motivation. Section 3 presents

design and implementation of NV-Skiplist. Section 4

shows the experimental results. Section 5 reviews related

work. Finally, Sect. 6 concludes the article.

2 Background and motivation

2.1 NVRAM

NVRAM provides persistence and a lower latency com-

pared with original block-based devices, such as hard disk

drives (HDDs) and solid state drives (SSDs). Table 1

shows the read and write latencies, the endurance times,

and the random access of each type of NVRAM technol-

ogy. The read latency of NVRAM is similar to that of

DRAM, and the write latency of NVRAM is also in the

same order of magnitude with that of DRAM. However, its

write endurance is not as high as that of DRAM (especially

for the PCM), thus reducing its write count, which must be

considered when designing the system software. Finally,

NVRAM offers a high random access performance like that

of DRAM, which is different with the NAND Flash.

2.2 Index efficiency

With the emergence of NVRAM, its advantages—such as

low latency in persistent access and byte addressability—

have attracted the attention of storage researchers.

Attempts have been made to store key-value data in

NVRAM. However, the characteristics of its relatively long
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write latency and indispensable corresponding atomic

costs, such as those of memory barriers and CLFUSH [16],

must be taken into account when designing an index sys-

tem for key-value store on NVRAM. Most current resear-

ches have focused on reducing write amplification. In

Venkataraman et al. [7], a version-based mechanism for

maintaining data consistency during modification was

introduced. Yang et al. [8] proposed NV-Tree, a variant of

B?-tree, in which only the leaf nodes are stored in

NVRAM and the size of its internal nodes are fixed to

improve the cache performance. Chen et al. [5] proposed

wB?-tree in which data stored in the leaf nodes are out of

order to prevent additional write caused by sorting.

Though related work achieved remarkable results

through putting key-value storage into NVRAM, most of

these projects focused on single-thread performances.

Further, all the current research is based on B?-trees or

their variants, which do not naturally fit NVRAM because

they were originally designed for eliminating the perfor-

mance gap between random and sequential accesses on

traditional storage devices, which no longer exist in

NVRAM. With motivation by above reasons, we proposed

a skiplist-based index system for NVRAM.

3 Design and implementation

In this section, we introduce the design and implementation

of NV-Skiplist. We first present an overview of our design,

and then we describe the issues that we considered

throughout the designing process, such as how to update

the index, guarantee system consistency, and make

searching more efficient. Last, we outline how the system

recovers from normal shutdown and system failure. The

goals of our design are as follows:

1. Persistency NV-Skiplist should recover to a consistent

state after both a regular shutdown and a system

failure.

2. High write performance NV-Skiplist should compro-

mise the higher NVRAM write latency than DRAM

write latency.

3. DRAM-like search performance NV-Skiplist should

provide a search performance as efficient as its

counterpart in DRAM.

Next, we will describe the design details that allow NV-

Skiplist to achieve its goals.

3.1 NV-Skiplist overview

NV-Skiplist supports most of basic key-value operations,

including put, get, delete, and scan. All operations but scan

require a single key to locate the key-value pair. The get

operation returns the corresponding value after locating the

key-value pair, while put, update, and delete must modify

the key-value pair, update the index, and make both per-

sistent. As a result, the efficiency of locating a key-value

pair and the persistent procedure can have a significant

influence on these operations.

The skiplist inherently supports O(logN) searching,

however, maintaining its persistence and structure while

running on NVRAM will introduce various write opera-

tions that decrease the performance. In contrast, the scan

operation takes a key and a count as an input; thus, keeping

the index sorted can improve its performance. The last

level of a skiplist is fully linked as a linked-list and sorted

by keys. Since it is sorted, using a skiplist as index system

can potentially provide acceptable scan performance.

Updating a skiplist index involves many writes due to its

sorted nature, which can significantly reduce the perfor-

mance due to the expensive NVRAM write (if the whole

system is placed in NVRAM). Accordingly, we only place

the last level of the skiplist in NVRAM and kept its other

parts in DRAM, applying a selective persistence policy on

it.

3.2 Selective persistence

Selective persistence, which was first proposed in [8] and

[17], refers to keeping the primary dataset in NVRAM and

only focusing on its consistency during operations. The

non-primary dataset is placed in DRAM and can be rebuilt

at any time; its temporary state of inconsistency does not

affect the eventual consistency of the entire index system.

Due to the cost of the NVRAM write, only placing the last

level of the skiplist where the key-value pairs are stored in

NVRAM and putting its other parts in DRAM appears to be

an effective solution to maximize the performance.

Figure 1 illustrates how selective persistence can be

applied to NV-Skiplist. As shown in the figure, the internal

Table 1 Characteristics

comparison of different memory

technologies [12, 13, 14, 15, 8]

Category Read latency Write latency Write endurance Random access

DRAM 60 ns 60 ns 1016 High

PCM 50–70 ns 150–1000 ns 109 High

ReRAM 25 ns 500 ns 1012 High

NAND Flash 35 us 350 us 105 Low
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levels of NV-Skiplist are stored in DRAM, meanwhile, the

last level is stored in NVRAM by forming a persistent

linked-list. Thus, NV-Skiplist can be rebuilt as long as the

persistence of last level is guaranteed. That is, NV-Skiplist

only guarantees the persistency of key-value items; its

internal levels are used for improving searching

performance.

3.3 Index updating

Figure 2 demonstrates the layout of both the internal levels

and last level of NV-Skiplist. As shown in the figure,

unlike an original skiplist, we place multiple key-value

pairs into a single node to improve search performance by

reducing the number of index nodes. However, traveling

among index nodes by referencing pointers will certainly

cause a significant amount of cache misses because each

index node is allocated at a different memory address that

may not be physically adjacent. To handle this issue, we

group key-value pairs into cache line-sized alignment

nodes, and the number of cache misses during search

operations should decrease. Meanwhile, the size of last

level is aligned with the cache line, which should prevent

unnecessary cache line pollution.

To provide a higher write performance, keys are left

unsorted in the last level, and a bitmap is used to track valid

entries for decreasing NVRAM write during modification.

Since the modern CPU only supports 8-byte atomic write,

the bitmap size is fixed to 8 bytes, leading to the storage of

no more than 64 key-value pairs in a single node. The next

pointer is used to form a linked-list with its siblings for

supporting range queries and rebuilding the index system

by traveling through the list during failure recovery.

Additionally, the next pointer in the leaf node should

also be persisted because the correct sibling node cannot be

found after a system failure. The internal levels of the

index nodes are placed in DRAM to locate key-value pairs.

To reduce the comparison count, we chose the minimum

and maximum keys of each corresponding last-level node

to represent the range of keys stored in its last-level node;

this strategy was first proposed by Lehman et al. [18].

Since the DRAM resident parts of an index node using the

minimum and maximum values to represent the range of

keys, locating a target node requires fewer compare oper-

ations. Our design is intended to outperform the transient

skiplist and be similar to a traditional B?-tree. As stated in

Sect. 3.1, when serving key-value update operations like

Put, Update, and Delete, both the target key-value pairs and

the index entries should be persistently updated. We

applied selective persistence on NV-Skiplist, where only

the last level of the skiplist would be stored in NVRAM;

thus, we need only maintain the consistency of its last

level.

Maintaining data consistency is the most important thing

in an NVRAM key-value store. Since NVRAM write has a

relatively higher latency, it is critical to maintain consis-

tency while reducing the NVRAM write latency as much as

possible. Ordinary solutions include logging, shadowing,

and copy-on-writing, which cause double-write issues

while guaranteeing data consistency. Inspired by a log-

structured file system, we update the key-value pair out-of-

place. Next, the bitmap is updated in-place using the CPU-

supported atomic write.

Algorithm 1 describes how to insert a new entry into the

last layer of the index node. Since we use the bitmap to

track the usage of each slot, the algorithm begins by finding

an unused entry in the bitmap (line 1). Then, it writes a new

entry into the free entry (line 2). It stabilizes the new entry

in NVRAM with CLFLUSH and MFENCE (lines 3 and 4)

before updating the corresponding bit in the bitmap to

indicate that the slot is occupied (line 5). Finally, the

Fig. 1 Selective persistence applied on NV-Skiplist
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bitmap is made permanent in NVRAM by calling

CLFLUSH and MFENCE (lines 6 and 7).

Data consistency can be guaranteed by following the

reasons:

1. If the operation for writing new entry into a free slot

fails, the original data in the node is kept intact because

we select an unused slot for this insertion.

2. If the operation for updating the bitmap fails, newly

inserted entries cannot be detected since the corre-

sponding bit in the bitmap indicates that the slot is still

free.

Owing to the fixed size of the last-layer node, splitting is

necessary when this node overflows. Most of the B?-tree-

based indexing system relies on redo-logging to maintain

its consistency during node-splitting.

Figure 3 illustrates how leaf nodes split in wB?-trees.

When a leaf node overflows, it copies half of its key-value

pairs to the newly created right sibling node (note that all

updates should be performed atomically at the same time).

In order to solve this problem, a redo-logging is performed;

this requires extra cache line flush operations.

Unlike a wB?-tree, inspired by [19], our design creates

two new last-level nodes and copies half of the content of

the original node to each of them. Then we use an atomic

operation, such as CompareAndSwap, to switch the pre-

vious node’s next pointer to the newly created node.

Figure 4 shows how splitting works in NV-Skiplist in

detail. Suppose that the last-level node is larger than a

cache line size and flushing this node requires k cache line

flushes. Our design requires 2k ? 1 cache line flushes (2k

for the newly created node and 1 for the previous node’s

next pointer). In a wB?-tree, a leaf node split requires 2k

? 2 cache line flushes (2 for the in-place update on original

leaf node, k for the right sibling leaf node, and another k

for the redo-logging).

In addition, we choose the average value among all the

keys, excluding the maximum and minimum keys in each

node as the split pivot. Within the pivot key, a scan is first

executed over the entire node where keys smaller than the

pivot are moved to one node and keys larger than the pivot

are moved to another. Then, the maximum and minimum

keys in both index nodes are updated.

3.4 Index searching

The original skiplist supports average O(logN) search time

complexity. Based on the original skiplist, we proposed

several optimizations to improve the search performance.

The first optimization uses a deterministic design

inspired by [11] to replace the general, non-deterministic

design of ordinary skiplists. The design of existing skiplist

uses random numbers as the height of each index node. As

many index nodes are inserted, their height distribution

tends to be similar with that of a balanced binary tree,

which leads to an O(logN) search time complexity.

However, we evaluated the non-deterministic design and

discovered that it is not search-friendly in this context

because we have previously grouped keys, and the total

number of index nodes is decreased. As a result, we

replaced the non-deterministic design with a deterministic

one. The main concept behind a deterministic skiplist is to

build a balanced binary tree, like a skiplist, following each

insertion.

Algorithm 2 illustrates the deterministic search design

in detail. To create it, we defined a SPAN threshold which

controls the maximum count of index nodes that passed by

on one level before each insertion during the search pro-

cess. The search begins at the header of the skiplist (line 1)

and travels from the uppermost to the bottommost levels to

Fig. 2 NV-Skiplist inner level

& last level layout
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confirm whether the target key belongs to a certain index

node (lines 2 to 21). If the target key is larger than the

maximum key, the algorithm will move to the next node

(lines 11 and 12) and increase the span value (line 13). If

the span becomes larger than the prefixed threshold, then

the height of the search index nodes increases by 1 (line 8).

As a second optimization, we propose a multi-header

design that enhances scalability. In ordinary skiplists, every

search procedure starts from its unique header, then travels

along the index nodes by following pointers from left to

right and top to bottom. To augment potential parallelism

and decrease the number of nodes on search paths, we

statically divide all key-value pairs and their index nodes

into several groups in a process that is initiated by a general

skiplist header.

Figure 5 presents the design of the multi-header skiplist.

As shown the figure, key-value pairs are distributed among

two ranges, and the header information is persistently

stored elsewhere. The search procedure is similar to that of

general skiplists, but here it indicates the range in which a

target key belongs. It is easily implemented according to

the global header information. When the range in which the

target key belongs is determined, the subsequent steps are

as same as those in a general skiplist. Our proposed design

is intended to achieve a better multi-thread performance

because it distributes contentions into different ranges.

3.5 Index deleting

Algorithm 3 describes how key-value pairs are deleted in

NV-Skiplist. First, the algorithm searches the node where

the target key-value pair is located (line 1) through the

semantics of the skiplist. Next, it scans all entries in the

last-level node to locate the key (line 2). When the key is

located, the algorithm checks whether the entry is still valid

(line 3). If the entry is valid, it is invalidated by an atomic

write to set the corresponding bit to 0 (line 6), then using

CLFLUSH and MFENCE to persist the bitmap. Since the

bitmap is now atomically updated, a system crash will not

destroy its consistency. In addition, we do not reset the

key-value pair during delete operations to prevent extra

NVRAM write; this is because both the pure search and

insert operations begin by checking the validity through the

bitmap.

Fig. 3 leaf split in wB?-tree

Fig. 4 leaf split in NV-Skiplist
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3.6 Recovery

In this section, we describe how recovery is performed in

NV-Skiplist in cases of normal shutdown and system

failure.

Recovery after a normal shutdown NV-Skiplist persists

the DRAM resident part of the skiplist into a reserved

address and automatically indicates that it is a normal

shutdown by updating a flag. During recovery, NV-Skiplist

checks whether the flag is set; if so, it reads the skiplist

index and restores it to DRAM.

Recovery after a system failure In the case of system

failure, NV-Skiplist recovers from the consistent linked-list

(the last level of NV-Skiplist) by scanning all valid entries.

Upon scanning each node, it selects the maximum and

minimum keys and inserts them into the skiplist index.

4 Evaluation

4.1 Experiment environment

We run experiments on a server that has following hard-

ware: 4 Intel Xeon E5-2620 CPUs with 6 cores, 12 threads

on each, 15 MB L3 cache and a clock speed of 2 GHz. The

evaluation system runs Linux and has 64 GB RAM. Both

our implementation and the competitor are compiled with

GCC 4.8.4 using optimization—O3. We used DRAM-

based NVRAM emulator libpmem libraries [20] to simu-

late NVRAM. By providing low-level persistent memory

support for applications using direct access storage, libp-

mem offers storage that supports load and store access

without paging caches from a block storage device.

We compared our design with that of a wB?-tree [5],

which is a B?-tree variant that stores all tree nodes in

NVRAM. In a wB?-tree, key-value pairs are inserted into

the leaf node in an append-only style. Additionally, a

wB?-tree employs a small metadata called slot to track the

order of keys in the leaf node without sorting them itself.

There is also a bitmap used to track valid entries in the leaf

node. Due to the metadata, several CLFLUSH and

MFENCE procedures are required to maintain consistency.

In addition, a wB?-tree relies on redo-logging to maintain

its consistency during node splitting. To make our exper-

iment feasible, we slightly modified a wB?-tree so that

only the leaf nodes were stored in NVRAM. In doing so,

the interference of a large amount of expensive NVRAM

writes was avoided.

4.2 Micro-benchmark

In this section, we focus on the single-thread ‘‘insert’’ and

‘‘get’’ performances of NV-Skiplist. For our micro-bench-

mark, we use uniformly distributed keys; each key has a

value of 8-byte integers. In our following experiments,

D-skiplist stands for the deterministic skiplist and

M-Skiplist stands for multi-range skiplist.

4.2.1 Insert performance

Figure 6 shows the total latency occurring from inserting

25,600,000 key-value pairs into NV-Skiplist with a deter-

ministic mechanism, a multi-range mechanism, and wB?-

tree. Both our optimizations were proven to work. The

deterministic design of the skiplist with a threshold of 3

outperforms wB?-tree by 15%, and the multi-range design

of 64 headers performed almost 27% better than wB?-tree.

Since each insert in a skiplist occurs after the target node is

located, insert performance can also benefit from optimized

searching processes.

4.2.2 Get performance

Figure 7 shows the performance of get operations while

searching for 25,600,000 key-value pairs. As shown in the

figure, the purely deterministic design performs 45%

slower than does wB?-tree. The reason that cache invali-

dation storm occurs is due to the pointer chasing. In wB?-

tree, keys are stored in adjacent physical addresses in both

internal and leaf nodes, and loading the first key of the

node will pre-fetch all other keys. However, because each

index node is linked through pointers in NV-Skiplist,

pointer chasing will introduce a significant number of

cache misses. The opposite result is expected from the get

and insert performances due to the lesser degree of write

amplification in the insert operation for the consistent cost

Fig. 5 Multiple header design

of NV-skiplist
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of our design. Despite this, with the multi-range mecha-

nism, the get performance of this operation can be as

effective as in wB?-tree.

4.2.3 Analysis of insert & get performance

In this section, we analyze the reasons that NV-Skiplist

behaves as it does in these experiments. The target we

chose is the multi-range NV-Skiplist, since it has the best

insert and get performance above all.

Figure 8 demonstrates the data reference counts mea-

sured by perf tool after inserting 25,600,000 key-value

pairs. From the figure, the data reference count of NV-

Skiplist is much lower than that of wB?-tree. We believe

that this is one of the reasons that our design outperforms

wB?-tree in insertion. Since we group key-value pairs into

one node and use ranges to represent each index node, the

number of keys that are accessed during a search are sig-

nificantly reduced. In addition, the multi-ranged structure

distributes the search procedure to different ranges, thus

decreasing the total count of accessed index nodes.

Figure 9 presents the number of L1 cache misses while

the system was getting 25,600,000 key-value pairs. This

result shows that cache misses seem to be inevitable due to

the structure of linked pointers. We believe that cache

misses are the core reason that the get performance in

deterministic skiplist is inferior to the insert performance

compared with wB?-tree despite our optimizations to

reduce write amplifications.

4.3 Macro-benchmark

4.3.1 YCSB

The Yahoo! Cloud Serving Benchmark (YCSB) is an open-

source specification and program suite used for evaluating

the retrieval and maintenance capabilities of computer

programs. It is often used to compare the relative perfor-

mance of NoSQL database management systems.

In our experiment, we updated 2 million records with 2

million operations through various numbers of threads. The

key distribution conforms to the uniform distribution.

Figure 10 illustrates the performance of our system. It is

evident that our proposed NV-Skiplist scales better than

does wB?-tree; this is because our multi-ranged design

disperses the contentions among different ranges. In addi-

tion, we implemented the insert operation of NV-Skiplist

with CompareAndSwap operations in the last level and

avoided using any atomic operations in upper levels. This

was practical because the data consistency of the last level

is maintained; even missing keys could finally be found in

the last level. This mechanism may increase latency when

certain keys cannot immediately be found (in the upper

levels), but due to its lock-free structure, our design was

able to scale well.

As mentioned above, the entire key range was statically

divided into several ranges during NV-Skiplist initializa-

tion. The static separation works fairly well when keys are

uniformly distributed; however, if some hot zones exist,

keys may aggregate in certain ranges and maximize the

height of each index node in those ranges, causing the

search time complexity to degrade to O(n).

Fig. 6 Latency of inserting 25,600,000 key-value pairs

Fig. 7 Latency of getting 25,600,000 key-value pairs Fig. 8 Data reference count during insert operation
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Figure 11 shows how the key distribution affects the

overall insertion performance. In this evaluation, we

inserted 2 million key-value pairs into NV-Skiplist, each

case containing 10 ranges and 100 ranges in which the keys

conform to uniform and Zipfian distributions. From

Fig. 11, it is clear that the more ranges the entire key space

is divided into, the better its performance. Meanwhile, the

performance degraded more in the Zipfian distribution than

in the uniform one, and the decreased performance became

more significant when only 10 ranges were used. This

discovery confirmed our theory that hot zones in the key

distribution do influence performance. As a result, we will

continue to dynamically divide the keys according to the

workload in our future projects.

To see how the number of ranges affects NV-Skiplist’s

performance with various key distributions, we inserted 2

million key-value pairs with 8 threads and various numbers

of ranges and keys conforming to the uniform and Zipfian

distributions as shown in Fig. 12. We discovered that the

number of ranges does not affect the performance when

keys conform to uniform distribution, but when the keys

conform to a Zipfian distribution, performance increases as

the number of ranges does. This is because a large number

of ranges decentralizes hot zones and the index nodes in

each range can form similarly to a binary search tree.

5 Related work

The emergence of NVRAM enables novel and intricate

techniques for designing data structures. However, logging

or shadow-paging are still necessary to maintain its con-

sistency. To reduce associated costs, Yang et al. [8] pro-

posed NV-Tree, a persistent B?-tree based on the CSB?-

tree [21]. NV-Tree maintains consistency only in its leaf

nodes, relaxing that of its inner nodes. It also stores all

inner nodes in a consecutive memory space aligned with

the cache line size and locates them through an offset

rather than through pointers; this allows it to achieve a

more efficient use of space and cache-hit rate. If system

failure occurs, its inner nodes can be rebuilt according to

the consistent leaf nodes. Additionally, since the size of the

inner-nodes is pre-defined, when the number of key-value

pairs NV-Tree contains exceeds its capacity, all inner-

nodes should also be rebuilt.

Venkataraman et al. [7] proposed CDDS-tree, a persis-

tent B?-tree built by maintaining a limited number of data

Fig. 9 Cache miss count during get operation

Fig. 10 YCSB evaluation on Insert & Update operations

Fig. 11 YCSB evaluation for insert on different key distribution with

different ranges with fixed number of threads

Fig. 12 YCSB evaluation for insert with different key distribution on

different ranges with variable number of threads
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structure versions with the requirements that updates

should not weaken the structural integrity of an older

version and that updates are atomic. CDDS-Tree guaran-

tees that failures between operations will never leave data

in an inconsistent state. It can recover by reading the latest

version and discarding events occurring prior to that ver-

sion. However, it requires GC to periodically clean its old

versions.

Chen et al. [5] a persistent tree that relies on atomic

write and redo-logging to ensure consistency. It maintains

its keys out of order in the leaf nodes and uses a sorted

indirect slot array in each leaf node to improve its search

performance. However, since the size of its sorted slot

array cannot be larger than 8 bytes—the largest size of

atomic write that is supported by a CPU—the size of its

leaf nodes is limited and causes frequent splitting where

additional NVRAM write occurs. While these projects

perform better than many existing persistent data struc-

tures, the performance gap between them and their fully

transient counterparts is still significant. To address this,

we propose NV-Skiplist.

6 Conclusion

In this article, we proposed a skiplist-based, non-volatile

indexing system called NV-Skiplist. To accommodate the

features of NVRAM, we optimized this system by adding

minimum and maximum keys into the nodes to reduce the

computation overhead; we also grouped the key-value pairs

into a cache line-sized alignment node to reduce its number

of cache misses. We further enhanced our system’s per-

formance by incorporating deterministic and multi-header

designs. The results indicate that both optimizations

improve performance in insertion procedures, and the pure

deterministic design is proven to reduce the performance

gap between a wB?-tree and our design in getting proce-

dures. With the application of the multi-header design, the

get performance could become as efficient as in wB?-tree.

Furthermore, our multi-header design is proven to scale

better than wB?-tree when the key distribution conforms

to the uniform distribution, since the contention can be

distributed into different ranges.
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