
TOPSIS–PSO inspired non-preemptive tasks scheduling algorithm
in cloud environment

Neelam Panwar1 • Sarita Negi2 • Man Mohan Singh Rauthan1 • Kunwar Singh Vaisla3

Received: 25 August 2018 / Revised: 23 January 2019 / Accepted: 31 January 2019 / Published online: 12 February 2019
� Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Cloud computing is an emerging paradigm that offers various services for both users and enterprisers. Scheduling of user

tasks among data centers, host and virtual machines (VMs) becomes challenging issues in cloud due to involvement of vast

number of users. To address such issues, a new multi-criteria approach i.e., technique of order precedence by similarity to

ideal solution (TOPSIS) algorithm is introduced to perform task scheduling in cloud systems. The task scheduling is

performed in two phases. In first phase, TOPSIS algorithm is applied to obtain the relative closeness of tasks with respect to

selected scheduling criteria (i.e., execution time, transmission time and cost). In second phase the particle swarm opti-

mization (PSO) begins with computing relative closeness of the given three criteria for all tasks in all VMs. A weighted

sum of execution time, transmission time and cost used as an objective function by TOPSIS to solve the problem of multi-

objective task scheduling in cloud environment. The simulation work has been done in CloudSim. The performance of

proposed work has been compared with PSO, dynamic PSO (DPSO), ABC, IABC and FUGE algorithms on the basis of

MakeSpan, transmission time, cost and resource utilization. Experimental results show approximate 75% improvement on

average utilization of resources than PSO. Processing cost of TOPSIS–PSO reduced at approximate 23.93% and 55.49%

than IABC and ABC respectively. The analysis also shows that TOPSIS–PSO algorithm reduces 3.1, 29.1 and 14.4%

MakeSpan than FUGE, ant colony optimization (ACO) and multiple ACO respectively. Plotted graphs and calculated

values show that the proposed work is very innovative and effective for task scheduling. This TOPSIS method to calculate

relative closeness for PSO has been remarkable.
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1 Introduction

Cloud computing is a promising technology, where

numerous services are delivered to users over the web with

instant response and scalability features. In cloud com-

puting, virtualization works as key enabler which is defined

as the process of segregating the resources of a physical

machine (PM) to enable more than one execution envi-

ronment. In virtualization, various concepts such as time-

sharing, machine simulation and emulation are used to

virtualize computing, storage, network and memory. It

enables multi-tenancy concept in cloud computing where

virtualized resources are pooled to serve multiple users by

same PM as shown in Fig. 1. The virtualization consists of

a hypervisor or a VM monitor which presents a virtual

operating platform to a guest operating system. VMW are

ESX/ESXi, Oracle VM Server, Citrix XenServer, Xen
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hypervisor and KVM are some popular hypervisors. Vir-

tualization, load balancing, fault tolerance, security and

scheduling are the major concerns to solve. There are two

main functions of scheduling, i.e., allocation of CPUs to

virtual machine (VM scheduler) and submission of task to

VM (task scheduler). Scheduling of tasks is one of the

major challenges in cloud technology to achieve highly

efficient computations among the machines [1–3].

The procedure of searching the needed resources is same

as the procedure of searching the various VMs, as the

needed resources together form VMs. Users send requests

to datacenter to execute their tasks. A task may involve

entering and processing data, accessing software or some

storage functions. Each task on cloud get executed by VMs

of the cloud. The execution of these tasks depends on the

mapping of task to VMs. The mapping of task to VMs is

important to achieve best Quality of Service (QoS) of cloud

[3].

Many researchers are interested in task scheduling

practice to achieve load balancing, energy efficiency,

resource utilization, migration of tasks and QoS [4]. Tasks

can either be independent, dependent or the combination of

both [5]. The nature of task scheduling is a NP-hard

problem that comprises of various tasks and machines.

These tasks must be processed with the machines (VMs) to

achieve better utilization. Tasks are submitted to the task

scheduler. It is the responsibility of task scheduler to sub-

mit task to appropriate VM. The problem of scheduling of

tasks need to be properly handle by assigning suit-

able VMs. The mapping between task and required

resources is performed successfully if cloud has achieved

minimum MakeSpan, minimum execution time of tasks

and VMs, full utilization of resources, etc. further, the task

must be executed and a reply is sent to the user. The role of

task scheduling is still in research to obtain the minimum

execution time of VMs.

To solve the nature of NP-hard problem, an optimization

technique such as, particle swarm optimization (PSO) is

more suitable than the use of deterministic algorithms [6].

The parallel nature working of PSO resolves the opti-

mization problems. Recently, intelligent meta-heuristic i.e.,

artificial neural network, fuzzy logic, genetic algorithms

(GAs) and mathematical approaches such as distribution

functions has been increased in use to achieve drastic

solutions for scheduling. Researchers have built new con-

cept of hybridization of these intelligent and mathematical

approaches. One of the examples of this hybridization is

FUGE which is a meta-heuristic method to enhance job

scheduling [7]. Another hybridized scheduling PSO–GELs

algorithm is introduced to solve the scheduling problems.

Recently, much attention has been received from

researchers in evaluating the multi-objective based envi-

ronment to solve the generic optimization problems [8–10].

A combination of multi-objective PSO (MOPSO) and

technique of order preference by similarity to ideal solution

(TOPSIS) is introduced to solve multi-objective inventory

planning [8]. The idea of the work was so popular and

reported better outcome for the inventory planning prob-

lems. The multi-objective methods or multi-criteria based

decision making methods are developed to the solutions of

real-world problems [9]. The nature of real based decision

criteria removes all the barriers of linear problems. Nelson

Jayakumar and Venkatesh [10] has proposed a hybrid

method of GSO with TOPSIS (glowworm swarm

Fig. 1 Architecture of cloud

environment
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optimization with technique for order preference similar to

an ideal solution) for economic dispatch problem. A self

adaptive learning PSO (SLPSO) algorithm works on multi

objective task scheduling algorithm to map tasks to VMs in

order to advance throughput of the datacenter [13]. Authors

of [13] have proposed a self-motivated task scheduling.

Scheduling of independent tasks over the cloud achieved

through dynamic PSO (DAPSO) and Cuckoo search algo-

rithm named MDAPSO [14].With shorten average opera-

tion time of tasks a proper resource allocation to user task

assigned efficiently in the environment with increases uti-

lization ratio of resources [15]. Live migration and non-live

migration approach for scheduling is much efficient to

perform migrated tasks on appropriate VMs [16]. This

leads to achieve load-balancing in heavy cloud servers.

The above discussed works improve task scheduling

however, task scheduling is still major concern in cloud

environment. Thus it challenges to design novel algorithms

for task scheduling in cloud environment. This paper pre-

sents the combination of optimization algorithm PSO with

a mathematical multi-criteria decision based approach

called TOPSIS (TOPSIS–PSO) to solve the task scheduling

problems. PSO is the simplest optimization technique

which works well for global optimization problem.

Because of its less efficiency of finding optimal solutions

for local optimum, TOPSIS is used. Our proposed

approach, TOPSIS–PSO, uses TOPSIS for the calculation

of optimized fitness value (FV). Hence the role of TOPSIS

is a fitness evaluation tool. In this work, three major criteria

of a cloud task are used i.e., execution time, transmission

time and cost. The evaluated FV of each task is input to the

PSO for further optimization of particles. Results of

TOPSIS–PSO are compared with other leading approaches

that are implemented in real application based environ-

ment. The combination of PSO and TOPSIS improves the

PSO’s quality of finding optimum solutions and gives

solutions to nonlinear bi-level programming problems [11].

The proposed idea is novel and innovative in the cloud

computing field. The use of TOPSIS–PSO in cloud can

improve the MakeSpan, resource utilization, processing

cost. It can be applied to a broad variety of optimization

problems.

The key contributions of this paper are summarized as,

• Efficient task scheduling method is presented in order to

schedule tasks to VMs in cloud environment.

• Multi-criteria based method called TOPSIS algorithm is

implemented with PSO to get efficient optimal solutions

to perform task scheduling. These objectives include

the enhancement on cloud metrics i.e., MakeSpan,

execution time, transmission time and processing cost.

The performance of work is compared with pre-existing

algorithms to check its reliability. The ultimate objective of

the work is to enhance the QoS of the cloud performance.

The rest of the paper is organized as follows: Sect. 2

discusses previous related work on cloud based task

scheduling. Problem formulation of the work is discussed

in Sects. 3 and 4 highlights the system model of the pro-

posed work. Section 5 elaborates proposed task scheduling

algorithm with implementation while Sect. 6 deals with

experimental evaluation of proposed work. In Sect. 7, we

conclude our contributions with future scopes to the work.

2 Related work

Numerous researchers worked in task scheduling to get

better, effective and reliable work on cloud computing.

These researches differ from each other in their methods to

schedule tasks among cloud nodes. These methods fall

under different categories: static, dynamic, batch and

online which endeavor to assign tasks to cloud nodes in

optimal way. The work of [8, 10, 11] motivates to perform

in cloud computing technology because combination of

some optimization technique and multi-objective methods

give relevant solutions for decision making of criteria in

cloud environment. Through this section various related

historic work are discussed in detail.

In Pooranian et al. [6], meta-heuristic algorithm intro-

duced in grid computing area. The PSO with gravitational

emulation local search (PSO–GELs) is a hybrid task

scheduling algorithm that focused the problem of inde-

pendent task scheduling problems. The hybrid algorithm

reduces MakeSpan and decreases deadline miss rate of

tasks.

Shojafar et al. [7] attempts a hybrid approach FUGE

which is the combination of meta-heuristic method called

fuzzy theory and GA to cloud job scheduling. They have

mathematically proven optimization problem which is

convex with Karush–Kuhn–Tucker condition. Length of

job, Processing speed of VM, bandwidth of VM and

memory of VM have been considered for assigning the

jobs to the resources. This approach obtains a proper effi-

ciency over degree of imbalance, execution time and exe-

cution cost.

Tsou [8], gives the idea of hybridization of MOPSO and

TOPSIS for solving multi-objective optimization problems

in inventory planning. MOPSO was used to generate the

non-dominated solutions of a reorder point where as

TOPSIS performed a compromise solution for different

decision makers.

The method in Nelson Jayakumar and Venkatesh [10]

uses GSO algorithm to find the optimal solution for mul-

tiple objective environmental economic dispatches
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problem. Although the work is not related to the technol-

ogy field but it gives the motivational idea to use the

concept of TOPSIS for solving multi-criteria based prob-

lems. Here TOPSIS is used as an overall fitness ranking

tool to evaluate multiple objectives.

In Jia et al. [11], a solution of non-linear bi-level pro-

gramming problems has presented with the combination of

TOPSIS and PSO. The literature has thoroughly explained

the non-linear bi-level programming problems which

occurs in various optimization techniques. This work has

motivated and inspired to understand the optimization

problem techniques and to opt such solutions in cloud task

scheduling approach.

Wang et al. [12], presented a framework which allows

IaaS provider to outsource its tasks to outside cloud when it

does not have sufficient resources to fulfill task require-

ments. The task scheduling is carried out by SLPSO. In

SLPSO four update approaches are used to flexibly update

the velocity of particles (tasks). At each iteration in PSO,

update approach should be found based on execution

probability. To obtain the best sequence of execution, a

particle is updated by four approaches and best approach is

preferred for other particles. From PSO algorithm the best

particle is assigned with its best VM. In this algorithm,

frequent selection of update strategy leads to computational

complexity and also increases the scheduling time.

Zhang and Zhou [13], proposed a self-motivated task

scheduling with two-stage strategy to maximize scheduling

performance. Initially the user tasks are kept in task queue.

In the first stage of the algorithm, Bayes classifier classifies

the jobs on the basis of historical data stored in historical

database. In second stage, dynamic scheduling algorithm is

used to map tasks to suitable VMs. After selecting suit-

able VM the tasks are sent to ready queue, if the suit-

able VM is not idle then the task is moved to waiting

queue. When the suitable VM becomes idle the task needs

to move into ready queue and the task is scheduled to

suitable VM. Multiple queues and databases used in this

method increase the space complexity.

Awad et al. [17], proposed load balancing mutation, a

PSO method for task scheduling using reliability, make

span, execution time, transmission time and round trip

time. Three mathematical models which have individual

objective functions are proposed for task scheduling. In

first model expected execution time (EET) for each task on

each VM is calculated. In second model expected trans-

mission time (ETT) for each task is computed and in third

model expected round trip time (ERRT) is computed using

EET and ETT. The process of scheduling tasks to VMs is

carried out by PSO algorithm. In PSO algorithm, the

velocity of particle is updated for each iteration using

ERRT. This method considers MakeSpan but ignores other

important parameters such as processing cost and resource

utilization.

Lakraa and Yadav [18], proposed multi objective task

scheduling algorithm for mapping tasks to VM in order to

improve throughput of the datacenter. In this method QoS

requirement for all tasks are found and the high QoS value

is given to the task which requires low QoS by cloud

broker. Hence the task with lower QoS value gets high

priority for scheduling. Cloud broker also collects the list

of VMs with their MIPS values and the VMs are sorted

according to MIPS value. Then the first VM in VMs list is

assigned to first task in task list. Once the allocation

reached at last VM the next task will be submitted to the

first VM and the process of allocation is repeated for all

tasks. In this method the VMs are ranked based on MIPS

value only and other parameters such as memory and

bandwidth are not considered.

Cho et al. [19], combined ACO and PSO algorithms to

build ant colony optimization with PSO (ACOPS) for task

scheduling. The newworkload is predicted by ACOPS using

historical information. To reduce scheduling time pre-reject

module is proposed in the work. When task arrives initially

the algorithm checks for remaining memory of each server

and find maximum remaining memory. If the memory

requirement of task is larger than remainingmemory then the

task is rejected. The suitable tasks enter into ACOPS

scheduling algorithm and the initial process is executed

using ACO algorithm. In ACO, the search module gives the

solution for all ants (tasks) and the pheromone function of

tasks is computed using memory, CPU utilization and disk

utilization. PSO operator is applied after search module in

ACO to improve the search results. The pheromone is

updated by an ant selected based on PSO operator i.e., global

best value is selected. This algorithm considers memory,

CPU utilization and disk utilization but does not consider

MakeSpan, bandwidth, execution time, etc.

Jena [20], introduced task scheduling algorithm using a

multi-objective nested PSO (MOPSO) to minimize energy

consumption and MakeSpan. Some concepts of the evo-

lutionary algorithms (EAs) and the multi-objective EAs

have been collaborated to introduce the MOPSO. Ghanbari

and Othman [21], proposed a new priority based job

scheduling algorithm which was based on multiple criteria

decision making (MCDM) model using analytical hierar-

chy process. MCDM is a practical model which is func-

tionally correlated with problems of discrete alternatives.

Lawrance and Silas [22], introduced potentially all pair-

wise rankings of all possible alternatives (PAPRIKA)

based scheduling algorithm which is also a MCDM model.

Shih et al. [23] introduced MCDM based approach for

solving real world decision making problems. The role of

decision matrix (DM) is to provide different course of

action to finite numbers such as select, prioritize, and rank.
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These actions make convenient to DM attributes for mak-

ing decisions owing to an explicitly represented procedure.

TOPSIS performed the concept of distance measures of the

alternatives from the positive ideal solution (PIS) and the

negative ideal solution (NIS).It is the most straight-forward

technique in MCDM. TOPSIS has been an important

branch of DM.

Table 1 shows the comparative review of

[13, 13, 17, 18, 20, 24–26] which shows that most of the

previous researches have focused on single objective only.

Therefore, to deal with these gaps, a MOPSO algorithm

using TOPSIS (TOPSIS–PSO) is introduced to optimize

MakeSpan, execution time, transmission time and to

reduce cost.

3 Problem formulation

The main objective of task scheduling algorithms is to bind

set of user tasks to set of distributed resources in order to

achieve several goals including minimizing MakeSpan,

execution time, transmission time, cost and maximizing

resource utilization. Single objective scheduling algorithms

face some problems that include increased execution time

and decreased throughput in priority based algorithms.

Similarly, shortest job first and first come first serve algo-

rithms perform very well in best case scenario but perfor-

mance is degraded in worst case. So an efficient scheduling

algorithm is required which focuses on multi objectives.

Using a proper scheduling algorithm implementation in

Table 1 Comparison of task scheduling algorithms

References Work highlights Methodology Environment Benefits Tribulations

[13] Multi-objective

tasks

scheduling

algorithm

Uses non-dominated sorting to

solve multi-objective problem

Dynamic Less execution time and

high throughput

Starvation may occur for the

tasks having low priority.

Bandwidth not considered

[13] Two-stage

strategy for

dynamic cloud

task

scheduling

A two-stage strategy is proposed

for dynamic cloud scheduling to

maximize scheduling

performance

Dynamic Failure rate is reduced.

work guarantees high

priority ratios of

ordinary tasks than its

peers do

Multiple queues and databases

used in this method which

increase the space

complexity

[17] Enhanced

particle swarm

optimization

for task

scheduling

A mathematical model is

introduced using load balancing

mutation (balancing) a particle

swarm optimization (LBMPSO).

Balances task and VM

Dynamic The work enhances

reliability, execution

time, transmission

time and cost,

MakeSpan, round trip

time

Algorithm is unsuitable for

dependent and

heterogeneous tasks.

MakeSpan increases due to

large number of iteration in

PSO

[18] Enhanced load-

balancing

min–min for

static meta-

task

scheduling

ELBMM is based on min–min

technique and use task

rescheduling to achieve resource

utilization. Task with minimum

completion time assigns to

suitable resource

Static Improves resource

utilization

Two scheduling processes

lead to increase MakeSpan

time

[20] Multi objective

tasks

scheduling

algorithm

(TSPSO)

Uses multi-objective optimization

model called multi objective PSO

based framework

Dynamic Less energy

consumption and

MakeSpan. Reduces

failed tasks

Resource utilization need to

be increase. Not suitable for

independent task

[24] Improved cost-

based

algorithm

A job grouping algorithm that takes

the priority levels (high, medium

and low) of tasks

Static Less processing cost Not suitable for dynamic

cloud environment and

dependent tasks

[25] Bandwidth

aware

divisible task

scheduling

(BATS)

Divisible task scheduling problem

using non-linear programming

model

Dynamic Reduces MakeSpan,

improves utilization

ratio

Increases cost and time to

solve programming model

[26] Parallel task

scheduling

based on fuzzy

clustering

Dynamic scheduling of tasks

conducts the clustering solution of

concurrent jobs

Dynamic Performs dependent

tasks and obtains

higher efficiency

Dependency of tasks may

require the fault tolerance

schemes
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broker improves the datacenter’s performance [13]. In this

paper following objective problems are considered for

developing efficient scheduling algorithm.

Notations Description

VM Virtual machine

PM Physical machine

DC Data center

Ti ith number of task

CTj Completion time of jth VM

PCT The cost of using processing in current resource

Sizei Size of Ti

BWj Bandwidth of jth VM

CTj Completion time of jth VM

AVGU Average utilization of CPU

Li Length of Ti

MIPS Million instructions per second (processing

speed)

RC Relative closeness

FV Fitness value

Wj, Weight value for criteria

EXT, TransT,

AVGU

Execution time, transmission time, CPU

utilization

3.1 Execution time (EXT)

The time required to execute a task on particular VM is

called execution time. The execution time of task Ti on VM

Vj formulated as follows [26]:

EXT ¼ Li

MIPSj
: ð1Þ

EXT is computed by considering Li in terms of number

of million instructions and computing capacity of jth VM

as MIPS. Task i is assigned to VM which minimizes EXT.

3.2 Transmission time (delay) (TransT)

The time taken to transfer the task on a particular VM is

called transmission time and is computed as [16]:

TransT ¼ Sizei

BWj

: ð2Þ

TransT for a task on particular VM is determined by task

Sizei and BWj.

3.3 Processing cost (PCT)

The cost of processing a task on a resource is calculated by:

PCT ¼ Cost of processing per unit time � EXT: ð3Þ

3.4 MakeSpan

MakeSpan can be defined as overall time taken to perform

scheduling process. As MakeSpan reduces, it improves the

efficiency of the algorithm. The MakeSpan of task

scheduling is calculated as [16]:

MakeSpan ¼ max CTj

� �
; ð4Þ

whereCTj = start(VMj) ? sj, sj denotes the timewhenall the

tasks assigned to jthVMfinish their execution and start (VMj)

denotes the time instance when jth VM starts its execution.

The maximum completion time is taken as MakeSpan.

3.5 Average resource utilization (AVGU)

The major challenge in cloud computing is the proper

utilization of resources. The AVGU of proposed work is

calculated as [16]:

AVGU ¼
X

j2VM

CTj

MakeSpan � number of VMs
: ð5Þ

AVGU can be defined as the ratio between completion

time of VM and the time duration for which CPU performs

useful work.

3.6 Formulation of fitness value for PSO

In the proposed work, the combination of minimization

objective criteria given in Eqs. (1)–(3) can be optimized. The

RC of each task is computed by TOPSIS algorithm.

Involvement of TOPSIS algorithm supports multiple

objectives in order to maximize efficiency of task schedul-

ing. The obtained RC value is used as FV of tasks for PSO.

FVT1 = RCT1

FVT2 = RCT2

– –

– –

FVTi = RCTi

where RC of task computed by TOPSIS is RCT = (RCT1,

RCT2,…,RCTi) that are corresponding to the FV of task

FVT = (FVT1, FVT2,…,FVTi) respectively. The detailed

explanation of TOPSIS formulation for RC is discussed in

next section.

4 System model and proposed work

CloudSim (Cloud Simulator) is an extensible modeling and

simulation tool of cloud computing systems and applica-

tion environment. It provides excellent framework to both

1384 Cluster Computing (2019) 22:1379–1396
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system and behavior modeling of cloud. CloudSim first

introduced by GRIDS Laboratory Melbourne, Australia

[25]. It is the most popular open source tool that encom-

passes various java based packages. Most of the cloud

computing terminologies are designed in CloudSim to

enable better research environment. The various cloud

components have their specific role to perform cloud

operations. CloudSim toolkit comprises of various com-

ponents including Cloud Information Service (CIS), data-

center, host, VMs and tasks as shown in Fig. 2. Each

individual VM processes on its own resources in parallel or

independently [27]. The simulation work has been per-

formed under CloudSim toolkit.

• CIS CIS is the uppermost entity which is created

automatically when CloudSim is initialized. It provides

services to register, index and discover resources. Differ-

ent entities interact with each other through this entity.

• SimEntity different entities which handle and send

events to other entities created by SimEntity.

• DC DC can be defined as pool of homogeneous or

heterogeneous resources which are virtualized and

provided to VMs when required. It handles queries

which are related to VM instead of task.

• Datacenter Broker (DCb) DCb represents a broker

which acts on behalf of user. It handles VM manage-

ment, as creation and destruction of VMs and controls

the order in which tasks are submitted to VMs.

• PM it executes actions related to management of VMs

(e.g., creation and destruction) and defines policies for

provision of memory, bandwidth and allocation of

processors to VMs.

• VM it acts as an emulation of a PM running inside a

host and provides all the functionalities of an actual

system. Tasks are assigned to VMs through cloudlet

scheduler for their execution.

• VM scheduler it represents the policy used by the VM

monitor (VMM) to share processing capacity among

VMs running in a host. It defines the way in which

processors will be used by VMs i.e., processors will be

shared by VMs or not.

• Processing element (PE) PE represents processor unit

defined in terms of MIPS rating, i.e., the number of

million instructions a processor can execute per second.

• Utilization model this parameter allows the tasks to

make control over resource utilization. If utilization

model is set to full, then a task utilizes all the available

MIPS of the processor and if set to stochastic, then the

task generates random utilization of processor every

time span.

4.1 The proposed TOPSIS–PSO based task
scheduling algorithm

Here PSO algorithm is combined with TOPSIS algorithm

in order to find optimal solution by considering multiple

criteria. In PSO algorithm, the fitness function is formu-

lated by TOPSIS algorithm based on multiple criteria. PSO

algorithm is better in optimal solution determination with

Fig. 2 CloudSim component

overview
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minimum time consumption. In order to include multiple

objectives in PSO, we have used TOPSIS algorithm in

PSO. TOPSIS algorithm is also relatively faster than other

multi criteria decision making algorithms. Thus proposed

hybrid PSO–TOPSIS algorithm helps to achieve optimal

solution based on multiple criteria without increasing time

consumption. The system model comprises of set of

physical machines PM = (PM1, PM2,…,PMM) where each

PM holds some VMs = (VM1, VM2,…,VMj). Number of

tasks is assigned to each VM respectively to perform the

execution of tasks. Each VM runs on its own resources in

parallel and independently. Figure 3 depicts the system

architectural model of the proposed work. For efficient task

scheduling without loss of resource utilization TOPSIS–

PSO method performs optimized task scheduling. The task

scheduling is carried out by two phases. In first phase,

TOPSIS algorithm is applied to obtain RC of the selected

cloud criteria (i.e., execution time, transmission time and

cost) of a task. In second phase the PSO begins with

computed RC of the given three criteria for all tasks in all

VM. The working of TOPSIS and PSO is explained in the

following section.

4.2 TOPSIS approach

PSO and various heuristic techniques have been used to

optimize single criteria based solutions. These heuristic

solutions are not up to the mark for multiple criteria based

problems. In cloud technology to obtain better optimized

solution for multiple criteria, a decision making method

can result better ideal solution. This work has grabbed

attention on a multi-criteria decision analysis based method

called TOPSIS. It was first developed by Hwang and Yoon

in 1981. TOPSIS method effects generously on real world

decision making problems and work positively for many

applications. Task scheduling process is carried out by

TOPSIS–PSO algorithm which maps user tasks to VM by

considering multiple substantial factors. FV for PSO is

computed by TOPSIS algorithm. Involvement of TOPSIS

algorithm supports multiple objective functions in order to

maximize efficiency of task scheduling. The overall pro-

cedure of TOPSIS algorithm is depicted in Algorithm 1 and

steps are as follows:

Step 1 evaluate the DM of size m 9 n, where m rep-

resents number of alternatives and n denotes number of

criteria. Alternatives are represented by VMs and criteria

are denoted by objective functions as shown in Table 2.

Step 2 this step transforms the dimensional attributes

into non-dimensional attributes by comparing against each

criterion. The obtained matrix from Step 1 is standardized

using Eq. (6),

Dij ¼
XijffiffiffiffiffiffiffiffiffiffiffiffiP

X2
ij

q ; ð6Þ

where j = {1, 2,…,m}, j = {1, 2,…,n} and Xij represents

an element in DM corresponding to ith alternative and jth

criteria.

Step 3 weight values to each criterion are provided by a

function called decision-maker and these weights are pro-

vided according to the relevance of the criteria in

scheduling process. Each element in normalized DM is

multiplied by weight values corresponding to each criterion

to generate weighted normalized DM ½WE; Wtrans; WPC�
as,

EXT ¼ EXTQ �WE; ð7Þ
TransT ¼ TransTQ �Wtrans; ð8Þ
PCT ¼ ETQ �WPC: ð9Þ

Subject to:

0\WE; Wtrans; WPC � 1 WE þWtrans þWPC:

Step 4 determination of PIS and NIS. PIS (S?) associ-

ated with that value of criteria which has positive impact

and NIS (S-) associated with that value of criteria which

has negative impact on the solution are given by,

Sþ ¼ Vþ
1 ; V

þ
2 ; . . .;V

þ
i

� �
; ð10Þ

S� ¼ V�
1 ; V

�
2 ; . . .;V

�
i

� �
: ð11Þ

Here, EXT, PCT and TransT are considered as criteria

which have positive impact and need to be minimized.

Step 5 calculation of separation measures. In this step,

separation of each alternative from PIS and NIS are mea-

sured as,

S� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

j¼1

Vij � Vþ
j

� �2

vuut ; ð12Þ

S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

j¼1

Vij � V�
j

� �2

vuut : ð13Þ
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Above two equations are used to measure separation

from PIS and NIS respectively, where j denotes the number

of criteria.

Step 6 calculation of RC. The RC of Qth task with

respect to S? is defined as,

FVQ ¼ RCQ ¼ S0

S0 þ S�
: ð14Þ

RC is taken as FV and updated in PSO algorithm. At

each iteration particle move towards best solution in pop-

ulation and update their velocity based on FV computed

from TOPSIS algorithm.
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4.3 PSO approach

Kennedy and Eberhart proposed a newest heuristic

approach to perform optimization of solutions known as

PSO. In this approach, a simulation is performed to get

desired destination of either group of fish or flock of birds

which is also known as swarm. Further, the concept of PSO

came into the mathematical or computing concept to

achieve best optimal solution on the basis of self-adaptive

global search. The major part of PSO is initialization of

particles. Each particle adjusts its velocity and position

according to its best position and the position of best par-

ticle i.e., global best of the entire population in each gen-

eration. According to the PSO algorithm, each particle is

represented using velocity and location which can be

obtain using Eqs. (15) and (16).

VP½kþ 1� ¼ w � VP½k� þ C1 � rand1 � pbest� XP½k�ð Þ
þ C2 � rand2 � gbest� XP½k�ð Þ;

ð15Þ
XP½kþ 1� ¼ XP½k� þ VP½kþ 1�; ð16Þ

where VP[k ? 1]and VP[k] represent current velocity and

previous velocity of particle p. XP[k ? 1] and XP[k ] are

the current and previous position of particle p. Two

acceleration coefficients C1, C2 and random numbers

(between 0 and 1) rand1, rand2 are used in velocity com-

putation. Best position of particle p and position of best

particle in the population are denoted by pbest and gbest

and w represents inertia weight [25].

PSO is a swarm-based intelligence algorithm [26]

inspired by the social behavior of animals such as flocking

of birds searching for food. In PSO a particle is similar to a

bird moving through a search (problem) space. The

velocity is used to synchronize particle movement, which

has both magnitude and direction. At any point of time

position of each particle is influenced by its best position

and the position of the pbest in the search space. FV is

problem specific and used to measure the performance of a

particle. The population represents the number of particles

in the search space. Particles are initialized randomly. Each

particle will have a FV which is obtained using TOPSIS.

The pbest of a particle is the best result (i.e., FV) reached

so far by the particle, whereas gbest is FV of best particle

in the search space.

Fig. 3 Framework architecture

of proposed method

Table 2 Decision matrix
EXT TransT PC

T1 EXT11 TransT11 PC11

T2 EXT21 TransT2i PC2i

– – – –

– – – –

TQ EXTQ1 TransTQ1 PCQi
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This process is performed for each user task which is

scheduled to VM. By assigning each task to VM, MT and

EXT are reduced significantly. TOPSIS–PSO based task

scheduling process minimizes MakeSpan of user tasks

without loss of efficient resource utilization. The working

nature of PSO is depicted in Algorithm 2 and TOPSIS–PSO

algorithm based task scheduling is shown in Fig. 4.

5 Implementation

The proposed TOPSIS–PSO algorithms have been imple-

mented with three criterions for enhancing cloud QoS. The

algorithm have been simulated in CloudSim tool and exe-

cuted on 2.20 GHz Intel core Xeon processor with 16 GB

RAM memory. For the purpose of comparison, 10 separate

runs are made to obtained statistical results. The simulation
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work has been performed under CloudSim tool which

includes various cloud environment configurations shown

in Table 3.

In Table 4, the results obtained for various priority

ranges for tasks on VM1 are discussed. Here T3 has highest

priority on VM1 since it has minimum transmission time,

execution time, and processing cost. Thus TOPSIS–PSO

algorithm assigns T3 to VM1 for execution. After assigning

T3 to VM1 same process is repeated for remaining tasks

and VMs.

TOPSIS algorithm is used for FV calculation and ini-

tialized by estimating relative weight value for each cri-

teria. The weight for all three criteria is represented by

[EXT, TransT, PC] = [WE, Wtrans, WU]. To explain the

abstract working of the TOPSIS we took only 10 tasks

assigned to 5 VMs. The working procedure will be the

same for higher number of tasks and VMs. Stepwise pro-

cedure of TOPSIS for finding RC for each criterion is

shown below:

Step 1 evaluation of DM of alternatives (VMs) and

criteria (execution time, transmission time and cost) using

attributes of tasks under five VMs are shown in Table 5.

Step 2 standardization of obtained DM using Eq. (6)

shown in Table 6.

Step 3 each element in standardized DM is multiplied by

weight value of each criterion to generate weighted stan-

dardized DM ½WE ¼ 0:2; Wtrans ¼ 0:3; WPC ¼ 0:5� using
Eqs. (7), (8) and (9) respectively. The weight values are

provided by decision maker shown in Table 7.

Step 4 determination of PIS and NIS solution using

Eqs. (10) and (11) shown in Table 8.

Step 5 calculation of positive and negative separation

measures using Eqs. (12) and (13) respectively is shown in

Tables 9 and 10.

Step 6 the positive RC is calculated using Eq. (14). The

final RC of each tasks are obtained shown in Table 11.

Step 7 Initialization of particles using Eqs. (15) and

(16). Parameters that are used for PSO are shown in

Table 12. The steps in the PSO algorithm are listed in

Algorithm 2. The algorithm starts from initializing the

particle dimensions from task list. Velocity and position of

particles are initialized randomly using Eqs. (15) and (16).

The values allocated to the dimensions of each particle

indicate the computing resources that assigned to VM.

Thus a particle represents mapping between user tasks and

available resources of VMs. In the above given case, each

particle has 10 dimensions for 10 numbers of tasks. The

criteria are the tasks that are further assigned to available

Table 3 Type 1 experiment using cloud setup configuration details

Parameters Values

Tool configuration No. of VM

System architecture X86

Operating system Linux

VMM Xen

Host description

RAM 40 GB

Storage 11 TB

Bandwidth 500–2024

No. of PE 5

Utilization model Full utilization

VM description

RAM 512

Size (amount of storage) 10,000 (MB)

MIPS 2400

No. of processing unit 4

Task scheduler Time-shared

Task description

Number of task 10–80

Length 100–2500

MIPS 300–4000

START

Initialize particles randomly

Is current fitness
value > pbest

Current fitness =pbest

       Yes       No

Compare all pbest

Assign task to VM

END

Calculate Fitness Values of each particles using TOPSIS
algorithm & update Xi

gbest=Highest pbest

Is current
gbest < FV?

gbest =Xi

Assign VM to particle with high gbest

       Yes       No

Is target or
maximum epochs

reached?

      No        Yes

Fig. 4 Flow diagram of TOPSIS–PSO algorithm
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VMs. Table 13 represents the assignment of tasks to the

VMs such as, task T2, T8 and T9 are assigned to VM1, task

T5 and T7 are assigned to VM2 and so on. As the number of

tasks and VMs are increased the assignment matrix will

show the mapping accordingly.

In our proposed TOPSIS–PSO algorithm, PSO has with

complexity of O(ntlogn) in which n is number of popula-

tions and t is number of epochs [28]. In addition, TOPSIS

algorithm has complexity of O(n2 ? n ? 1) for FV com-

putation. O(n2) is complexity of attribute normalization and

weighting, O(n) is required for finding PIS–NIS and O(1) is

required for ranking the attributes [29].

6 Results and discussion

In the result section, paper illustrates the outcome to study

the performance of proposed TOPSIS–PSO algorithm by

comparing with various existing algorithms with respect to

MakeSpan, transmission time, cost and average resource

Table 6 Standardize decision matrix

Alternative Criteria

EXT TransT Cost

T1 0.1343 0.1288 0.1359

T2 0.1678 0.1717 0.1699

T3 0.2014 0.2147 0.2039

T4 0.235 0.2576 0.2378

T5 0.2685 0.3005 0.2718

T6 0.3021 0.3435 0.3058

T7 0.3468 0.3649 0.3511

T8 0.3916 0.3864 0.3964

T9 0.4363 0.4079 0.4417

T10 0.4811 0.4293 0.487

Table 8 Determining positive and negative ideal solution

Alternative Criteria

EXT TransT Cost

T1 0.0403 0.0515 0.0408

T2 0.0503 0.0687 0.051

T3 0.0604 0.0859 0.0612

T4 0.0705 0.103 0.0713

T5 0.0806 0.1202 0.0815

T6 0.0906 0.1374 0.0917

T7 0.104 0.146 0.1053

T8 0.1175 0.1546 0.1189

T9 0.1309 0.1632 0.1325

T10 0.1443 0.1717 0.1461

Positive S? 0.0403 0.0515 0.0408

Negative S- 0.1443 0.1717 0.1461

Table 4 Priority ranges for tasks

Task Metrics Priority

EXT (s) TransT (s) PCT (₹)

T1 2 5 0.4 Medium

T2 5 6 1.0 Low

T3 1 3 0.2 High

Table 5 Decision matrix

Alternative Criteria

EXT TransT Cost

T1 0.06 0.3 0.012

T2 0.075 0.4 0.015

T3 0.09 0.5 0.018

T4 0.105 0.6 0.021

T5 0.12 0.7 0.024

T6 0.135 0.8 0.027

T7 0.155 0.85 0.031

T8 0.175 0.9 0.035

T9 0.195 0.95 0.039

T10 0.215 1.00 0.043

Dij 1.325 7.00 0.265

Table 7 Weighted decision matrix

Alternative Criteria

EXT TransT Cost

T1 0.0403 0.0515 0.0408

T2 0.0503 0.0687 0.051

T3 0.0604 0.0859 0.0612

T4 0.0705 0.103 0.0713

T5 0.0806 0.1202 0.0815

T6 0.0906 0.1374 0.0917

T7 0.104 0.146 0.1053

T8 0.1175 0.1546 0.1189

T9 0.1309 0.1632 0.1325

T10 0.1443 0.1717 0.1461
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utilization. The limitation of [24] is, these are single

objective based task scheduling algorithms where TOP-

SIS–PSO overcomes the limitations by choosing MCDM.

The following section describes the analysis of the

achieved result with cloud metrics.

6.1 Type 1: (TOPSIS–PSO- vs. -PSO- vs. -DAPSO
and TOPSIS–PSO- vs. -ABC- vs. -IABC)

For the first Type 1 experiment, we compared our approach

with PSO, dynamic PSO (DAPSO) [14] in terms of

MakeSpan, transmission time and resource utilization. The

same experiment is performed with ABC and IABC [24] in

terms of processing cost. The parameter setting is given in

Table 3.

6.1.1 Analysis of MakeSpan

The MakeSpan metric gives the CT of tasks in VMs. The

main objective of the work is to minimize MakeSpan for

fast execution of tasks. The MakeSpan of TOPSIS–PSO is

compared to DAPSO and PSO algorithm. MakeSpan is

individually observed with respect to number of tasks (10

to 40) that are having 5 and 10 number of VMs respec-

tively. The MakeSpan is calculated using Eq. (4).

Tables 14 and 15 depict the calculated values of MakeSpan

for 5 and 10 VMs. Figures 5 and 6 depict the total

MakeSpan for PSO, DAPSO and TOPSIS–PSO. The

Table 9 Separation from positive ideal solution

Alternative Criteria

EXT TransT Cost S*

T1 0.0000 0.0000 0.0000 0.0000

T2 0.0001 0.0003 0.0001 0.0224

T3 0.0004 0.0012 0.0004 0.0448

T4 0.0009 0.0027 0.0009 0.0670

T5 0.0016 0.0047 0.0017 0.0894

T6 0.0025 0.0074 0.0026 0.1118

T7 0.0041 0.0089 0.0042 0.1310

T8 0.0060 0.0106 0.0061 0.1506

T9 0.0082 0.0125 0.0084 0.1706

T10 0.0108 0.0144 0.0111 0.1907

Table 10 Separation from negative ideal solution

Alternative Criteria

EXT TransT Cost S0

T1 0.0108 0.0144 0.0111 0.1907

T2 0.0088 0.0106 0.0090 0.1688

T3 0.0070 0.0074 0.0072 0.1470

T4 0.0054 0.0047 0.0056 0.1255

T5 0.0041 0.0027 0.0042 0.1043

T6 0.0029 0.0012 0.0030 0.0838

T7 0.0016 0.0007 0.0017 0.0628

T8 0.0007 0.0003 0.0007 0.0418

T9 0.0002 0.0001 0.0002 0.0209

T10 0.0000 0.0000 0.0000 0.0000

Table 11 Relative closeness (FV)

Alternative S* S0 S* ? S0 FV = S0/(S* ? S0)

T1 0.000 0.1905 0.1905 1.0000

T2 0.0224 0.1685 0.1909 0.8827

T3 0.0447 0.147 0.1917 0.7668

T4 0.0671 0.1253 0.1924 0.6512

T5 0.0894 0.1049 0.1943 0.5399

T6 0.1118 0.0843 0.1961 0.4299

T7 0.1311 0.0632 0.1943 0.3253

T8 0.1507 0.0412 0.1919 0.2147

T9 0.1706 0.0224 0.193 0.1161

T10 0.1905 0.0000 0.1905 0.0000

Table 12 PSO parameters

Parameters Values

Swarm-size 10

No. of iterations 150

Self-consciousness study factor C1 1.49445

Swarm consciousness study factor C2 1.49445

Vmin 0

Vmax 1

Table 13 Task assignment matrix to VMs

Criteria T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

VM1 0 1 0 0 0 0 0 1 1 0

VM2 0 0 0 0 1 0 1 0 0 0

VM3 0 0 1 1 0 0 0 0 0 0

VM4 1 0 0 0 0 1 0 0 0 0

VM5 0 0 0 0 0 0 0 0 0 1
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analysis shows that proposed TOPSIS–PSO algorithm

provides 16.97% and 7.57% less MakeSpan than PSO and

DAPSO for five VMs. Similarly, it shows 16.85% and

32.40% less MakeSpan for 10 VMs respectively.

6.1.2 Analysis of transmission time

The TransT metric gives the time taken by task to reach in

VMs. The TransT of TOPSIS–PSO and PSO algorithms are

compared. TransT is calculated using Eq. (2) and calcu-

lated outcomes are shown in Table 16 with respect to

number of task (10 to 40). Figure 7 shows the graph rep-

resentation of TransT for PSO and TOPSIS–PSO algorithm.

The obtained results show that proposed algorithm

achieves 2.37% less TransT than PSO which shows better

result.

6.1.3 Analysis of processing cost

The PC metric gives the overall processing cost spent on

processing tasks on VMs. Analysis of PC is compared with

algorithm ABC and IABC. In cloud computing environ-

ment PC is the most effective metric of concern. Mini-

mization of PC leads to better QoS to the users. Figure 8

shows the comparative analysis for PC with respect to

0

2

4

6

8

10

10 20 30 40

M
ak

eS
pa

n 
 (s

ec
.)

Number of Tasks

VM=10

PSO

DAPSO

TOPSIS-PSO

Fig. 6 Comparative analysis on MakeSpan with 10 VMs

0

0.5

1

1.5

2

2.5

10 20 30 40T
ra

ns
m

is
si

on
 T

im
e 

 (s
ec

.)

Number of Tasks

PSO

TOPSIS-PSO

Fig. 7 Comparative analysis on transmission time

0
200
400
600
800

1000
1200

25 50 75 40

C
os

t  
(R

s.)

Number of Tasks

VM=6

ABC

IABC

TOPSIS-PSO

Fig. 8 Comparative analysis on cost

Table 14 MakeSpan with five VM

Tasks PSO DAPSO TOPSIS–PSO

10 3.200 2.620 1.490

20 5.627 4.520 3.710

30 8.896 8.250 6.680

40 13.311 10.250 10.150

Table 15 MakeSpan with 10 VM

Tasks PSO DAPSO TOPSIS–PSO

10 2.25 1.74 0.77

20 3.89 2.98 1.84

30 7.24 5.72 3.46

40 8.59 5.3 5.13
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Fig. 5 Comparative analysis on MakeSpan with five VMs

Table 16 Transmission time
Tasks PSO TOPSIS–PSO

10 0.711 0.664

20 1.148 1.104

30 1.590 1.524

40 2.100 2.000
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number of executed tasks. The PC is calculated using

Eq. (3) and the obtained values of proposed algorithm are

shown in Table 17. TOPSIS–PSO is compared to ABC and

IABC algorithms that show the TOPSIS–PSO has reduced

the PC 23.93% and 55.49% than IABC and ABC

respectively.

6.1.4 Analysis of resources utilization

Better utilization of resources shows the low wastage of

resources. It also shows the efficiency of the system to the

resources (RAM, CPU). Figure 9 depicts the AVGU by the

proposed algorithm with respect to executed tasks. Here we

compare AVGU performance of proposed algorithm with

PSO that shows the TOPSIS–PSO algorithm achieves

higher AVGU as number of tasks significantly increases.

AVGU is calculated using Eq. (5) and values of PSO and

TOPSIS–PSO shown in Table 18. The analysis shows that

proposed TOPSIS–PSO algorithm achieves approximate

75% of utilization for six numbers of VMs which is better

in results than PSO for greater number of tasks.

6.2 Type 2: (TOPSIS–PSO- vs. -FUGE- vs. -ACO-
vs. -MACO)

For the second experiment, we compared our approach

with the ACO, multiple ACO (MACO) and FUGE algo-

rithms [7] in terms of MakeSpan. The parameter setting for

Type 2 experiment is given in Table 19.

Figure 10 depicts the MakeSpan obtained by the pro-

posed algorithm with respect to executed tasks. Here

MakeSpan performance of the proposed algorithm com-

pared with existing algorithms such as: FUGE, ACO and
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Table 20 Average MakeSpan

Tasks FUGE ACO MACO TOPSIS–PSO

100 40 70 60 37.14

200 90 120 110 85.79

300 155 190 170 150.59

400 190 290 200 181.45

500 250 320 280 247.34

Table 18 Resource utilization
Tasks PSO TOPSIS–PSO

10 0.63 0.56

20 0.59 0.63

30 0.62 0.67

40 0.52 0.74

Table 19 Cloud parameter settings Type 2 experiment

Parameters Values

Length of task 1000–20,000

Total number of tasks 100–500

Total number of VMs 50

VM frequency 500–2000

Population size 10

VM memory (RAM) 256–2048

VM bandwidth 500–1000

Number of PEs requirements 1–4

Number of DCs 10

Number of PMs 2–6

Table 17 Processing cost

Tasks ABC IABC TOPSIS–PSO

25 324.21 72.34 57.35

50 745.02 374.01 124.05

75 881.45 402.61 259.10

40 1034.41 543.32 414.01
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MACO. The results show that the performance of TOPSIS–

PSO algorithm have reduces MakeSpan for the given

configuration. MakeSpan values for FUGE, ACO, MACO

and TOPSIS–PSO are shown in Table 20. The analysis

shows that proposed TOPSIS–PSO algorithm reduces 3.1,

29.1 and 14.4% total MakeSpan than FUGE, ACO and

MACO respectively. The obtained results conclude that

TOPSIS–PSO has the better performance for the given

parameters.

7 Conclusion

This paper, introduced novel TOPSIS based task schedul-

ing algorithm to achieve better outcome of cloud metrics.

The novel idea is to combine TOPSIS and PSO algorithm.

The TOPSIS–PSO algorithm works on two stages. TOPSIS

method calculates the RC of VMs with respect to each task.

The proposed algorithm works on the multi-criteria based

approach where three criteria (execution time, transmission

time and cost) are taken to improve the scheduling process.

PSO algorithm receives the calculated RC of each task

which acts as FV of tasks (particles). Tasks are arranged

according to TOPSIS method and assigned to VMs

depending on their FV over PSO. The work has resulted in

improvement of execution time, MakeSpan, resource uti-

lization, processing cost, and transmission time as com-

pared to the dynamic scheduling algorithms. The TOPSIS

method to calculate RC for PSO has been remarkable for

dynamic environment. TOPSIS–PSO algorithm performs

better than FUGE algorithm for given parameters, but for

more number of tasks the algorithm underperforms as it

lacks load balancing mechanism. In future we intend to

extend our proposed task scheduling work with the con-

sideration of load balancing for large number of tasks and

power consumption in order to improve energy efficiency

in cloud environment.
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