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Abstract
As the number of cloud applications is rising exponentially, efficient allocation of these tasks among multiple computing

machines ensuring the quality of service and better profit to the cloud service providers is a challenge. Effective task

allocation approach needs to be developed considering a number of objectives while making allocation decisions, such as

less energy consumption and quick response, in order to make the best resource allocation satisfying the cloud user

requirements and improving the overall performance of the cloud computing environment. Hence, in this paper, Genetic

Algorithm based efficient task allocation approach has been proposed for achieving the reduced task completion time by

making wise allocation decisions. This proposed algorithm has been simulated using cloudsim toolkit and the performance

is evaluated by comparing with greedy and simple allocation methods on a set of parameters like makespan and throughput

for task scheduling. The evaluation results have shown the better throughput with the proposed approach.
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1 Introduction

In cloud computing system, large amount of computation

tasks must be placed in a specified data centre and cannot

be moved. A computation may process the data sets from

different data centres, because of the enormous size of data

and inadequate network bandwidth; task scheduling has

seriously affected the effective use of system resources,

limiting the rapid development of cloud computing tech-

nology [1].Cloud computing is a Distributed computing

and web based utility computing that provides diverse

processing resources and serves as a model for enabling

on-demand access to a common pool of configurable

computing resources [2]. Cloud computing has emerged as

an accepted computing model in order to support the pro-

cessing of large volume of data by using clusters of com-

modity computers [3]. The significant growth of cloud

computing has increased the number of clients and addi-

tionally increasing the demand for the resources. With the

advancements in cloud computing, innovative possibilities

for internet-based applications are emerging [4]. As a

consequence, this leads to heavy workload on the servers,

which causes degradation to the overall performance of

cloud system. In a distributed cloud computing system, the

data-intensive computing may have to deal with huge

amount of information and information must be available

in the data centre and they cannot be moved. The data

scheduling becomes a problem in cloud computing as huge

bulk of data is available in a short network bandwidth.

The load balancing mechanism is the concept of divid-

ing the load over a separate system for achieving the

overall improvement in performance [5]. Without load

balancing, it is very much difficult to manage the data

access in cloud computing. The appropriate load balancing

in cloud system provides the accurate allocation of the

tasks with respect to the capacity of each system. In the

distributed system, the task allocation may be either static

or dynamic. The task allocation algorithm requires
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complete information related to workloads such as service

time and the admission rates of the appropriate documents.

The dynamic work allocation algorithm generates an online

file disk allocation scheme to get adjust to a changing

workload pattern without having a past information of the

document to be allocated in future. The dynamic work

allocation is done when the size of the task is compara-

tively small such as the case in web proxy caching [6].

Also, in cloud computing environment, a logical network

which consists of a set of virtual machines must be

deployed on to the physical network. In cloud computing

system, several virtual machines are allocated with only a

certain amount of data when the huge amount of data enters

cloud [7]. The priority and extended priority-based Round-

Robin service broker algorithms allocate the requests on

the Position of data centres and give improved performance

than the conventional Random selection algorithm [8].

Assigning of tasks among various virtual machines is done

randomly based on the system capacity. The total response

time for a particular request act as a major performance

evaluation parameter in cloud data centre [9]. The Genetic

Algorithm (GA) is computational intelligent algorithm

which provides the most optimal solution for extensive

multi-objective optimization problems. Therefore, in this

research, Genetic Algorithm based Efficient Task Alloca-

tion technique is proposed (ETA-GA) for efficient alloca-

tion of tasks among the virtual machines in accordance

with the data size in the cloud environment. This technique

aids the system in making precise decisions for allocating

the tasks among cloud nodes. This genetic algorithm based

task allocation technique ensures the optimum distribution

of user tasks. By deploying genetic algorithm for task

allocation, the scheduler obtain a shorter makespan for the

jobs allocated compared to the previously available

scheduling policies and simultaneously achieves a better-

balanced load scheduling system across all the connected

nodes in the cloud network.

The task allocation algorithm is a complex process since

it must schedule the huge number of tasks to fit in the

available resources. While designing an effective task

allocation algorithm, many parameters with respect to user

and also the provider need to be considered. From the user

perspective task completion time, cost, and response time

and from the provider perspective resource utilization, fault

tolerance, and power consumption need to be taken into

account. The genetic algorithm based task allocation

technique proposed in this paper makes the precise deci-

sions considering all these parameters in assigning tasks to

appropriate resources. A simulation results have shown the

reduced makespan, execution time and also balanced load

over the VMs. The proposed approach is evaluated in terms

of these parameters to prove the improved performance in

comparison with other decision strategies. The remainder

of this paper is organized as follows: Second Section de-

scribes the detailed related work done. The third Sec-

tion describes the proposed methodology. The fourth

Section presents the system model, Fifth Section describes

the evaluation methods and results obtained with the pro-

posed system. The sixth section summarizes the

conclusions.

2 Related work

In this section, different heuristic, meta-heuristic, and

hybrid algorithms for task scheduling in cloud computing

system are reviewed.

Xu et al. investigated the resource scheduling algorithms

for virtual machine load balancing in cloud computing

environment. Presented classifications based on a com-

prehensive study on existing Virtual Machine load bal-

ancing algorithms. The existing load balancing algorithms

were analysed and classified for the purpose of providing

an overview of a characteristic of the related algorithms.

Detailed discussions of various algorithms were provided

and also aimed to offer a complete understanding of the

existing algorithms as well as added awareness into the

field’s future scope [10]. Radhakrishnan et al. proposed the

methodologies in IaaS model to reduce the migration of the

virtual machines namely VMMDA and RDFA. Based on

resource demand from user timely decision of migration of

virtual machine is monitored in VMMDA, in turn, the

RDFA supported to the VMMDA for finding the appro-

priate destination of migrated Virtual Machines. Based on

the resource demand further, the new destination is selec-

ted. Both the methodologies utilized genetically weight

optimized Artificial Neural Network in order to perform

their task effectively. The Artificial Neural Network is used

to guess the upcoming workload of the computing hosts in

cloud data centre based on previous workloads. The Cloud

Analyst simulator has been used to evaluate the perfor-

mance of the proposed methodology against the existing

methodologies. The proposed methodology showed that

Virtual Machine management minimizes the data centre

processing time and response time of customer applications

when compared with the existing methodologies [11].

Balagoni et al. proposed a Locality Load Prediction Aware

Multi objective Task Scheduling algorithm for the dynamic

cloud environment. It is an optimal task scheduling algo-

rithm which provides minimum task transfer time, task

waiting time, task execution time, and task completion time

than the existing algorithms. The experimental results

showed that the proposed Locality-Load-Prediction Aware

Multi-Objective Task Scheduling algorithm outperformed

the existing deadline aware scheduling, load-aware

scheduling, and energy-aware scheduling algorithms in
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terms of total completion of the task [12]. Yang et al.

studied the joint optimization of service placement and

load dispatching in mobile cloud systems. An efficient

heuristic algorithm is designed to Basic Service Placement

Problem and a set of competitive benchmark algorithms.

From the results, the heuristic algorithm outperformed the

benchmark algorithms in terms of access latency and

algorithm run time. Based on the study of the BSPP the

problem was extended to a more practical model known as

Cost-aware Service Placement Problem. Authors also

developed an outline algorithm to the problem that can be

deployed in practical systems. The results showed that the

superior performance in access latency and cost of the

service providers can be achieved with outline algorithm

[13]. Zhan et al. presented taxonomy for managing and

scheduling cloud resource in the application layer, virtu-

alization layer and in the deployment layer. The landscape

of the cloud resource scheduling problem and its state of art

solutions has been briefly reviewed. A comprehensive

survey has been offered analytically according to the two-

levelled taxonomy. The existing challenges and the future

research directions have been discussed that included real-

time scheduling, adaptive dynamic scheduling, large-scale

scheduling, multi-objective scheduling and distributed and

parallel scheduling [14]. Piraghaj et al. proposed Policies

namely RRA, URA, FqRA, AvgRA, MeRA and ThqRA

policies for estimating task populations residing in each

VM type. In RRA policy the tasks were assigned to VMs

based on their average requested resource. This policy was

the baseline for the future comparison of the result since it

was solely based on the requested resources submitted to

the data center. Resource allocation in URA policy was

based on an average resource utilization of task clusters

obtained from historical data. In other four policies, the

assignment was based on the four estimates extracted from

the virtual machines usage logs from the URA policy. The

extracted estimates were average, median, first and third

quantile of the number of tasks that could be accommo-

dated in a virtual machine without causing any rejections.

RRA, URA, FqRA, AvgRA, MeRA and ThqRA policies

are compared and showed improvement in the total energy

consumption of the data centre [15]. Xu et al. proposed a

mathematical model of scheduling data among the data

centres in cloud computing. Authors implemented roulette-

wheel selection to select the suitable individuals with high

fitness value and low fitness value individuals are removed.

Location of datasets is changed with the crossover and

mutation operations. Datasets were increased, exhaustive

search algorithm became infeasible because of the com-

putation complexity. Then the data scheduling between

data centres of approximate optimal solutions searched by

the genetic algorithm with the results searched by Monte

Carlo algorithm when the number of datasets was large, the

optimization time of each algorithm was also compared

[16]. Lin et al. proposed a task prioritizing algorithm based

on priority to rank the order of tasks also proposed a

Scalable-Heterogeneous-Earliest-Finish-Time algorithm to

schedule workflows for the elastically varying compute

resources. The experiments proved in optimizing workflow

execution time, scale resources elastically during workflow

execution for a Cloud computing environment [17]. Kumar

et al. developed a method for generating initial population

using the Min–Min and Max Genetic algorithm to get

better initial population and further enhanced standard

Genetic Algorithm. The initial population is produced

randomly, resulting in different schedules with less fit, and

fewer chances of producing the better child. The makespan

of the Improved Genetic Algorithm was less compared to

Standard Genetic Algorithm which proved in reducing the

overall execution time of the tasks and in proper utilization

of resources [18].

Authors presented task scheduler model using Genetic

algorithm scheduling function for each task scheduling

cycle. Based on availability of VMs and user demand, the

function is created to set of task schedules and the quality

of each task schedule is evaluated. This function iterates

genetic operations to get an optimum task schedule. The

developed model proved the effectiveness and efficiency in

comparison with present task scheduling models, namely

the round-robin task scheduling model, the load index-

based task scheduling model, and the ABC based task

scheduling model. Performance parameter comparisons

were based on throughput, response time, virtual machine

utilization, processing cost, and user satisfaction [19].

Kaleeswaran et al. presented Dynamic scheduling of data

using genetic algorithm in cloud computing using Ubuntu

Enterprise Cloud. The tasks were scheduled based on the

computation and memory requirement. The scheduling of

tasks was done by first sorting all the tasks and then the first

task was chosen from the queue to allocate the resource

that will best fit using the Genetic Algorithm. Once

scheduling is done finally the data is stored in the cloud

[20]. Mamat et al. proposed a genetic algorithm by using

condition to speed up the mapping process and guarantee

the task deadlines with real datasets collected as a cloud

benchmark. Batch mapping with throughput as a fitness

function is used to map jobs to cloud resources Mapping

time and makespan are the performance metrics used to

evaluate the proposed system. Results proved to be better

compared to MCT algorithm [21].

Initially, VM resources are not chosen, based on the

computed probability, the algorithm arbitrarily chooses the

physical machine which is free and then starts scheduling.

Thereafter when VM resources increase, the algorithm

computes load and variance of every physical machine

based on historical information and the current state. The

Cluster Computing (2019) 22:1241–1251 1243

123



genetic algorithm provides the best solution to meet pre-

defined constraints and chooses one with least cost [22].

Kaur et al. developed new approach by combining Shortest

Cloudlet to Fastest Processor, Longest Cloudlet to Fastest

Processor. Selected meta-heuristic Genetic algorithm

optimization method for task scheduling. The initial pop-

ulation was modified by using the stochastic operators of

genetic algorithm which lead to achieving better efficiency.

Single user jobs were considered to achieve the time

minimization. They claim that this algorithm could be

implemented on both task and resource scheduling [23].

Dakshayini et al. proposed scheduling policy based on

priority and admission control to satisfy the user requests

by providing QoS. User requests were scheduled based on

the deadline of the service-request by allowing the cloud to

accept the service-requests only if the cloud can offer the

service to meet desired QoS [24].

Ge et al. proposed Genetic Algorithm to optimize the

tasks scheduling in the job queue using a centralized

scheduler to allocate the waiting tasks to the different

available resources based on the resources status messages.

Results showed that the proposed schedule was improved

than the First-In-First-Out and the delay scheduling method

[25]. Lin et al. proposed a scheduling algorithm for big data

workflows in the multi-cloud environment. Algorithm

aimed at minimizing the cost of workloads by considering

partial critical paths. Parameters such as the charge per

time interval, instance types from various cloud providers,

homogeneous and heterogeneous inter bandwidth were

compared for different workflows and proved better [26].

Task scheduling is a significant part in deciding the per-

formance of data centre which affect the Quality of Service

of cloud [27]. Most of the above-discussed approaches

have mainly focused on different techniques for efficient

application execution in cloud environment, namely

resource allocation methods, application partition, tasks

migration and replacement approaches. But none of these

proposed solutions have considered the better decision-

making strategy for improving the task allocation effi-

ciency and attaining the minimized task completion time in

cloud environment. Therefore, a Genetic algorithm based

decision making technique for efficient task allocation

approach is presented here to solve the resource opti-

mization problem by making precise decisions in assigning

tasks among the processing nodes in the Cloud.

3 Genetic algorithm based efficient task
allocation approach

3.1 Design of decision making model

In the cloud computing environment, user applications get

executed in a distributed manner. In such environment, ser-

vice providers would have to guarantee the quality of service

to the users, as users expect their task to be processed with

minimum time and cost. Each user application is divided into

multiple tasks and resources need to be allocated for smooth

processing of each of these tasks which are distributed among

the virtual machines in the data centre. Each virtual machine

(VM) may take different time to complete the processing of

the task based on the number and type of tasks it is processing.

Hence before execution, tasks need to be allocated and real-

located to required-resource-rich computing nodes in the

cloud environment. So, a precise decision must be made in

allocating resources for effective processing of tasks based on

the availability of resources to satisfy the user requirements.

Therefore, the optimum and right decision making technique

for efficient allocation of tasks among the virtual machines is

essential for accomplishing execution efficiency and better

quality of service.

3.2 Task scheduling approach

User requests arrive in a Poisson distribution pattern and are

placed into a Queue of Tasks and these tasks are considered

as cloudlets (CLs). The task scheduler allocates resources to

these cloudlets using the scheduler module to meet the

requirements of the users. The spot-on decision is made to

achieve the best allocation VM with maximum processing

efficiency using genetic process so that the task is compar-

atively finished with the minimum time consumption in the

cloud computing system. Let (VM1, VM2, VM3, VM4,

VM5…. VMn) be the set of virtual machines available at the

data centre to process the set of tasks or cloudlets (CL1, CL2,

CL3, CL4, CL5, CL6,… CLm) as shown in Fig. 1. Assume

that all these VMs are running in parallel and are connected

to each other. These VMs run with their own resources that

are pre-allocated and shared with other VMs on hosts in the

data centre. During execution, if any task experiences the

insufficiency of resources, it brings the same to the notice of

the scheduler which dynamically reallocates the resources

among the VMs and aids in completing the task execution.

The quantitative analysis is made with the following

assumptions:

(1) Quantitative analysis is within the range of code

instruction length.

(2) The arrival of tasks is the Poisson distribution.

(3) Each node executes one task at a time.
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Two scheduling targets are designed to:

(1) Reduce the task finishing time

(2) Improve the Resource Utilization.

3.2.1 Calculation of finish time

In ubiquitous cloud environment, all the computing nodes

run in parallel that is in Cloudsim environment all the VMs

start at same time. If more than one cloudlet is assigned to

one VM, then all the cloudlets will be executed one after

the other. A Two dimensional (2D) time array is built by

calculating the fitness value (FV) or FT of each CL on

every VM using fitness function based on the computing

capability of virtual machines. Then for each VM, the

finish time(FT) is calculated by considering the sum of

completion time of all CLs allocated to that VM. In other

words, it is the finish time of the last CL allocated for that

VM. The total time T consumed by cloudlet j (CLj) at ith

VM (Ti
CLj) is computed by considering the sum of its

execution time ETCLj
i , resource reallocation time that is

based on the input size CLisz
j and output size CLosz

j of

cloudlet j and the network Bandwidth Bwij.

Considering n number of VMs and m number of

Cloudlets

Fig. 1 GA based efficient task allocation model

Algorithm for finding Minimum Finishing Time

// Building 2D time array of FV or FT of each CL on every VM

For j = 0 to m // number of cloudlets to be scheduled

For i= 0 to n //number of virtual machines 

Construct the 2D time array with FT

End for

End for 

// calculating the finish time of the last CL allocated on every VM

For i = 0 to n // number of virtual machines

For j= 0 to m // number of cloudlets to be scheduled

FTi = ∑ CLj ∗ E(i, j)
m
j=0 //finish time of the last CL allocated in the VMi

T = ET +

End for

End for 

//Allocation of CL to the VM that finishes its processing at the earliest

While (all cloudlets are assigned to suitable VM)

For each unscheduled cloudlet

For j = 0 to m // number of cloudlets to be scheduled

For i= 0 to n //number of virtual machines 

Find the VMi
MinFT (CLj)                            // VM that offers min FT for CLj

( , ) = 1                                    // when CLj is assigned to VM

End for

End for 
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4 Efficient task allocation genetic algorithm

Genetic algorithm is used to obtain optimized solution from

many candidate solutions. Solution is decided based on the

fitness value which is calculated using fitness function called

an individual or a chromosome. A chromosome relates to a

unique solution in the solution space. Further GAs operates

with a collection of chromosomes, called a population, and

uses two operators namely crossover and mutation to gen-

erate new solutions from existing ones.

Then simulations are carried out to gather tasks finishing

time run on all VMs. With this time information GAs gives

optimized solutions for task allocation. The entire task

allocation design process, and the working flow of GAs-

based decision making is depicted in Fig. 2.

4.1 Fitness function

The fitness function is the function that assesses the dom-

inance of individual chromosome and then the evolution of

the next generations are decided. Each individual chro-

mosome is denoted by fitness and individual with high

fitness has a better chance to survive. For each generation,

the fitness value of each individual in the population is

estimated, higher fitness value individuals are nominated

from the current population, then crossover and mutation

operator are used to form a new generation. The new

generation of solutions is then used in the succeeding

iteration of the algorithm.

The overall Fitness value of the chromosome is com-

puted using Eq. (1) considering the total time taken to

complete the schedule (a) and the failure probability(b).

Fitness chromosomei ¼ a Total timeið Þ þ bðFPiÞ ð1Þ

where Total time ¼
P

i¼i�n

T Len
VM MIPSi

, a ? b = 1, VM_MIPSi

is defined as millions of instructions per second for each

processor of VMj, FPi is the network delay between nodes

4.2 Encoding method

In the encoding method, vectors of VMs are considered as

chromosomes that is V = [V1, V2,…Vi…, Vn] (where n is

the number of decision variables) to represent a solution. i

is a natural number, acts as a pointer to the ith VM VMi to

which the jth cloudlet is assigned in the sequence of VMs.

Each VM in the chromosome denotes the gene with which

the CL is running. Total number of possible allocation

schemes available are depending on the number of VMs

and CLs being used. If there are 25 CLs and 12 VMs then

there are 1225 allocation schemes are available. The pro-

posed approach ETA-GA selects the best allocation

scheme based on the finishing time of the CL to achieve the

maximize efficiency.

For the hypothetical scenario considered with 12 VMs

and 25 CLs, initially the 2D time array is constructed by

calculating the fitness value (FV) or FT of each candidate

(CL) on each VM using fitness function based on the

computing capability of virtual machines. ETA-GA forms

the chromosome by selecting the fittest VM from each row

using roulette wheel selection method. Each row of this

array represents the length of available allocation schemes

for each candidate (CL) shown in Table 1. From which, the

Fig. 2 Flow diagram for GA based decision making

Table 1 Two dimensional time

array
VM

CL

0 1 2 3 4 5 6 7 8 9 10 11

0 FV FV FV FV FV FV FV FV FV FV FV FV

1 FV FV FV FV FV FV FV FV FV FV FV FV

2 FV FV FV FV FV FV FV FV FV FV FV FV

3 FV FV FV FV FV FV FV FV FV FV FV FV

4 FV FV FV FV FV FV FV FV FV FV FV FV

5 FV FV FV FV FV FV FV FV FV FV FV FV

6 FV FV FV FV FV FV FV FV FV FV FV FV

7 FV FV FV FV FV FV FV FV FV FV FV FV

8 FV FV FV FV FV FV FV FV FV FV FV FV
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following vector of 12 VMs is selected by ETA-GA as an

optimal chromosome for efficient task allocation shown in

Table 2.

V = [11, 8, 4, 5, 4, 0, 2, 1, 7, 11, 5, 2, 3, 5, 4, 4, 6, 11,

10, 3, 2, 4, 4, 5, 6]

That is, ETA-GA selects the twelfth VM whose

sequence number is 11 to execute Cloudlet 0 and selects

the ninth VM with sequence number 8 to execute Cloudlet

1 and so on, the seventh VM is selected as processing node

of the last CL.

5 Simulation and evaluation

This section illustrates the simulation setup and the results

obtained with the proposed ETA-GA approach. The Pro-

posed ETA-GA is evaluated in Java Cloudsim. The main

file is executed in default package which takes the input as

the number of tasks, network delay and bandwidth. The

number of tasks refers to the number of cloudlets that can

be changed by changing the value in create cloudlet ()

function. The algorithm is tested by setting the parameters

as shown in Table 3 and considering two hosts of different

capacities of resources as given in Table 4.

Simulation has been carried out with two different cases,

considering varied sets of CLs and VMs for each case. For

all this, initially a 2D time array is constructed by calcu-

lating the fitness value of each candidate (CL) on each VM

of every combination using fitness function shown in

Table 5. The decision has to be made to identify which

cloudlet can be executed in the VM and how long it takes

to finish. Time consumption may vary for different

cloudlets running on the same VM and also same tasks may

take different time to finish its execution in different VMs.

Faster the VM lesser the task execution time. Bigger the

Input: Population, Fitness function Generations, Crossover percent, Mutation percent, Gene length  

Output: Tasks allocation, Minimum Finishing time, Maximum resource utilization 

1. [Start] Initialize random population of n chromosomes, Set POP = pop size, the algorithm begins task allocation by 
choosing the most suitable, free, appropriate VM    

2.[Fitness]calculate the fitness chromosome value of every chromosome in the given population 

3. [New population] produce the new population by repeating the subsequent steps till the creation of new population 
is done.  

3.1. [Selection] select two parent individuals from the population, calculate chromosome with lowest fitness and 
eliminate the chromosome with highest fitness.  

3.2. [Crossover] A new fittest chromosome is generated using multi-point crossover by interchanging the set of 
schedules between two chromosomes by using the crossover probability, the new offspring by 
reforming the parents is generated. The two fittest chromosomes are selected  

3.3. [Mutation] bits are changed from 0 to 1 or 1 to 0 with a mutation probability Pm. Mutate a tour using swap 
mutation. With the probability of mutation, mutate the new child at some positions. 

3.4. [Accept] Place new off spring as new population and use this population for next round of iteration 

4. [Exchange] use the new generation as the existing generation.

5. [Test] if the exit condition is satisfied then end the algorithm and return the individual to the chromosome with least 
fitness value is selected for schedule

6. [Loop] go to step 2.

The Efficient Task Allocation Genetic Algorithm [ETA-GA] procedure is described below:  

Table 2 Allocation of the task in the form of chromosome

CL0 CL1 CL2 CL3 CL4 CL5 … CL24

VM11 VM8 VM4 VM5 VM4 VM0 … VM6

Table 3 Parameters for GA

Population size 50

Max evaluations 500

Cross-over operator Single point

Crossover probability Pc

Mutation operator Bitflip

Mutation rate 0.15
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tasks more the time it consumes and with good network

bandwidth.

Simple allocation method is a sequential allocation

policy, where all tasks are assigned to group of virtual

machines in sequential order say the first task to first VM,

second task to second VM and so on, when all VMs has

been assigned with one task, next round will assign next

task to first VM and so on. In greedy policy, matrix time

[i][j] gives execution time of taski to VMj. Tasks are sorted

in descending order with respect to length and VMs are

sorted in ascending order with respect to processing

capacity. After sorting, the first task is assigned to last VM,

task execution is completed with minimum time. The

results are compared with simple allocation and greedy

method shown in Tables 6, 7, and 8.

From the above three tables the ETA-GA approach takes

1262.96-time units to finish all of 12 tasks while the other

two methods take 1670.74 and 1280.96-time units. Hence,

the proposed ETA-GA approach can do the best decision

and, user tasks can be finished as fast as possible.

Apart from the above-mentioned scenario discussed,

implementation is further carried out for two different

cases by varying CLs and VMs and are described below.

Case 1: In 1st case keeping the number of VMs constant

as 12 and varying the number of CLs as 15, 20 and 40 for

each iteration, total FT or makespan has been calculated for

each combination of VMs and CLs [(12,15), (12,20) and

(12,40)] and compared with the existing

Table 4 Hosts characteristics

Host characteristics

HostId 0 1

Datacenter Hostdc Hostdc

RAM 32,768 2048

PesN 1 2

MIPS 1,000,000 100,000

Storage 100,000 10,000

BW 10,000 1000

Table 5 Cloudlet to VM execution time (12VMs, 14CLs)

Time VMID

1

CLID 0 1 2 3 4 5 6 7 8 9 10 11

0 4.4 4.2 4.1 1.9 1.05 1.2 1.2 0.5 0.5 0.5 0.4 0.4

1 4.6 4.3 4.1 4.1 1.15 1.15 1.4 1.4 0.6 0.7 0.7 0.7

2 4.8 3.8 5.8 4.8 5.8 1.8 3.8 2.8 1.8 1.2 1.7 0.8

3 6.2 6.2 6.2 7.2 3.2 6.2 6.2 6.2 6.2 3.2 6.2 1.2

4 5.5 5.5 5.5 1.5 1.5 5.5 5.5 4.5 3.5 5.5 5.5 2.2

5 6.4 6.4 4.4 5.4 4.4 6.4 6.4 5.4 4.4 6.4 6.4 1.4

6 7.2 7.2 3.2 4.2 6.2 7.2 7.2 7.2 6.2 5.2 7.2 4.2

7 10.5 8.5 6.5 7.5 8.5 10.5 10.5 8.5 7.5 7.5 10.5 5.5

8 12.5 12.5 11.5 9.5 9.5 12.5 12.5 7.5 10.5 11.5 12.5 6.5

9 12.8 20.5 12.23 10.25 10.25 10.25 12.56 8.5 11.25 12.23 13.25 13.25

10 15.5 45.23 12.25 12.25 50.26 55.25 54.20 55.23 54.21 25.23 28.35 24.25

11 20.5 58.25 42.23 20.25 100.25 58.26 55.28 58.63 53.62 58.65 56.23 58.25

12 50.25 100.25 85.25 45.25 100.52 110.25 100.23 102.23 110.25 135.20 132.4 138.25

13 100.5 110.23 110.25 112.25 110.23 102.53 100.25 108.45 110.23 115.23 112.23 112.23

14 110.25 110.23 110.25 100.63 110.25 115.25 114.23 112.23 110.54 110.25 110.25 110.1

Table 6 Simple allocation method

Cloudlet ID VM ID TIME Start time End time

0 0 1.2 1649.14 1650.34

1 1 8 1650.34 1658.34

2 2 1.2 1658.34 1659.54

3 3 1.2 1659.54 1660.74

4 4 1.2 1660.74 1661.94

5 5 1.2 1661.94 1663.14

6 6 1.2 1663.14 1664.34

7 7 0.8 1664.34 1665.14

8 8 0.8 1665.14 1665.94

9 9 0.8 1665.94 1666.74

10 10 0.8 1666.74 1667.54

11 11 0.8 1667.54 1668.34

12 0 0.8 1668.34 1669.14

13 1 0.8 1669.14 1669.94

14 2 0.8 1669.94 1670.74
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approaches(Greedy and Simple allocation). The makespan

obtained for the first combination of 12 VMs and 15 CLs

using ETA-GA and comparison study made are shown in

Table 9.

Case 2: In 2nd case, the number of VMs and the CLs are

both varied, total FT or makespan has been calculated for

each combination of VMs and CLs [(8,24), (12,12) and

(10,15)] and compared with the existing approaches

(Greedy and Simple allocation). The makespan obtained

with all 3 combinations of VMs and CLs using ETA-GA

and the comparison study made with Greedy and Simple

allocation methods are shown in Table 10.

The obtained results for two different cases by varying

VMs and CLs shows that ETA-GA decision can attain

better task allocation scheme. This indicates that choosing

genetic algorithm as decision making algorithm for task

allocation is efficient compared to other methods.

5.1 Performance metrics

The performance metrics used for comparative analysis of

ETA-GA are based on makespan and throughput. The

performance metrics are discussed below:

Makespan is used to evaluate the minimum completion

time using Eq. (2), by estimating the finishing time of the

latest task when all tasks are scheduled. The demand will

not be completed on time if the makespan of specific

cloudlet or task is not minimized.

Makespan ¼ MAXtaski FTð Þ ð2Þ

Throughput: Tasks completion in a certain time period

as in Eq. (3), minimum throughput is required for task

scheduling.

T ¼
Xi

task

ðExeTimeÞ ð3Þ

where ExeTime shows the execution time of an ith task.

In Fig. 3 the comparison of makespan of simple allo-

cation, greedy approach, and ETA-GA with x-axis as

number of cloudlets and the y-axis as Makespan. When the

Table 7 Greedy method

Cloudlet ID VM ID TIME Start time End time

14 3 5.71 1265.81 1271.53

13 5 2.86 1261.1 1263.96

12 11 5.71 1269.1 1274.81

11 10 5.71 1269.1 1274.81

10 10 0.43 1274.81 1275.24

9 9 5.71 1270.81 1276.53

8 8 5.71 1261.1 1266.81

7 7 0.43 1276.53 1276.96

6 5 5.71 1271.53 1277.24

5 4 0.43 1266.81 1267.24

4 3 5.71 1263.96 1269.67

3 4 2.86 1276.96 1279.81

2 2 0.43 1279.81 1280.24

1 0 5.71 1274.81 1280.53

0 1 5.71 1275.24 1280.96

Table 8 Enhanced task allocation genetic algorithm method

Cloudlet ID VM ID TIME Start time End time

3 3 0.43 1251.1 1251.53

5 9 0.43 1251.1 1251.53

6 11 0.43 1251.1 1251.53

9 8 0.43 1251.53 1251.96

15 10 5.71 1251.1 1256.81

13 7 5.71 1251.53 1257.24

8 6 5.71 1251.53 1257.24

12 5 5.71 1251.96 1257.67

11 3 0.43 1257.24 1257.67

7 2 0.43 1257.67 1258.1

2 2 0.43 1258.1 1258.53

14 0 2.86 1256.81 1259.67

1 1 2.86 1257.24 1260.1

4 4 2.86 1259.67 1262.53

3 11 0.43 1262.53 1262.96

Table 9 Makespan comparisons for three sets of cloudlets for 12

VMs

Cloudlets Simple allocation method Greedy method ETA-GA

15 1670.74 1280.96 1262.96

20 1870.82 1420.96 1300.86

40 2600.52 2300.85 2100.96

Table 10 Comparisons of makespan with different policies for dif-

ferent sets of cloudlets and vms

Configurations ETA-

GA

Simple allocation

method

Greedy

method

8 VMs, 24 CL 140.5 141.5 200.14

12 VMs, 12

CL

100.11 100.2 1200.14

10VMs,15 CL 65.15 64.15 110.73
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numbers of cloudlets are less, then ETA-GA algorithm give

better Makespan.

Comparisons with different policies for different sets of

cloudlets and VMs are shown in Fig. 4. As the number of

cloudlets increases, proposed ETA-GA produces still

improved Makespan time hence the quality of performance

is enhanced. If the makespan of specific cloudlet or task is

not minimized then the demand will not be completed on

time.

Figure 5 depicts the comparison of throughput achieved

with simple allocation, greedy approach, and ETA-GA.

The x-axis represents the number of cloudlets and Y-axis

represents the throughput. The simulation results evidently

prove that the ETA-GA approach attained the better

throughput when compared with Greedy and simple allo-

cation algorithms.

After assessing the performances of heuristic approa-

ches, ETA-GA is most optimum method in achieving the

makespan and throughput for attaining the optimal task

scheduling in cloud computing.

6 Conclusion

When the huge amount of data enters the cloud, the

workload of the cloud system increases as the huge amount

of data needs to be stored and processed. Decision making

for task allocation is one of the important issue in cloud

computing. In this paper, the problem has been addressed

by implementing ETA-GA approach for obtaining opti-

mized task allocation. The proposed approach has

improved the performance of cloud system comparing with

the existing studies where the task allocation was carried

out using heuristics and random search by cloud server.

The results obtained by the proposed approach is feasible

with acceptable performance compared to other approa-

ches. Further work could be considered with parameter’s

such as energy consumption and resources requirement in

decision making process.
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