
Designing data cubes in OLAP systems: a decision makers’
requirements-based approach

Rahma Djiroun1 • Kamel Boukhalfa1 • Zaia Alimazighi1

Received: 30 October 2017 / Revised: 28 September 2018 / Accepted: 3 December 2018 / Published online: 13 December 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Business Intelligence systems rely on an integrated, consistent, and certified information repository called the Data

Warehouse (DW) that is periodically fed with operational data. In the decision-making process, the analyzed data are

usually stored in the DW in the form of multidimensional cubes. These cubes are queried interactively by the decision

makers, according to the online analytical processing paradigm. In larger companies with multiple subsidiaries, the

frequent expression of new business needs requires the creation of new data cubes which generate a large number of cubes

to be manipulated. The inevitable complexity and heterogeneity of data cubes make it difficult to design data cubes. The

decision maker can precisely express his needs through a query in natural language which consists of a set of analysis

indicators (measures, dimensions) separated by the AND operator. However, the decision maker’s need may be incomplete.

Indeed, he usually has a cube that represents part of his needs and he may want to complete it or enrich it with other cubes

that are unknown to him. To deal with these situations, we propose in this paper an approach that addresses the problem of

designing and constructing data cubes where the expressed need is scattered over more than one cube. Our goal is to enable

decision makers to analyze all of their needs using just one cube. Our approach consists of two variants: a variant that is

based on analysis indicators, and another based on the known cube. We present the validation of our approach by means of

a tool, called ‘‘Design-Cubes-Query’’ that implements our approach and we show its use through a case study.

Keywords Business Intelligence � Cube design � OLAP � Multidimensional data cubes � Fusion � Drill-Across

1 Introduction

Business Intelligence (BI) is an area which is concerned

with the development of methodologies, applications, and

tools to collect data from internal systems and external

sources, store them for analysis, and provide access to

information so as to enable more effective strategic, tacti-

cal, and operational insights and decision-making.

With the fast development of business and social envi-

ronments, decisions have to be made quickly, and the

selection of an action plan must be based on reliable data,

accurate predictions, and evaluations of the potential con-

sequences [2]. In addition, these decisions must be taken in

real time to be most effective. BI tools provide an effective

solution for multidimensional online computing and anal-

ysis of large volumes of data. These data are stored in the

Data Warehouse (DW) and materialised on multidimen-

sional data cubes that are interactively queried by decision

makers according to the online analytical processing

(OLAP) paradigm [13].

OLAP systems allow decision makers to visualise and

explore multidimensional data cubes by applying OLAP

operators: Slice selects a subset of warehoused data, Roll-

Up provides aggregate measures by moving up through the

cubes hierarchy, Drill-Down is the opposite of Roll-Up;

Drill-Across executes queries involving (i.e., across) more

than one same-dimension cubes; etc.

In big companies with several subsidiaries, on the one

hand separate data cubes are independently developed to

& Kamel Boukhalfa

kboukhalfa@usthb.dz

Rahma Djiroun

rdjiroun@usthb.dz

Zaia Alimazighi

zalimazighi@usthb.dz

1 Laboratory LSI, USTHB, BP 32, El Alia, Algiers 16111,

Algeria

123

Cluster Computing (2019) 22:783–803
https://doi.org/10.1007/s10586-018-2883-7(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-9746-579X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2883-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2883-7&amp;domain=pdf
https://doi.org/10.1007/s10586-018-2883-7


answer complex analysis needs. On the other hand, initia-

tives like Open Data1 and Open Government2 are pushing

organizations to publish and share multidimensional data in

data cube format [9]. However, the decision makers needs

may be scattered over several cubes. They may compare

different business process measures which are stored in

different data cubes. Indeed, the decision maker will have

to combine data from heterogeneous data cubes. Searching

for the cubes that contain part of the users need in a large

collection and merging some of them to construct relevant

cubes is a very difficult task.

Generally, the decision maker (user) expresses his need

through a set of terms (decision indicators) separated by

operators like AND, OR, etc. In [8], an approach was

proposed to find the relevant Top-K cubes, that answer a

user’s query expressed in natural language. However, the

user’s need can be complex and involve several cubes of

several subsidiaries; i.e. the information related to the need

is in this case scattered over several cubes. The approach

cannot return any cube that entirely answers the user’s

need, but the search process detects cubes each of which

contains part of the expressed need. The exploration of

these cubes to analyse a phenomenon is a very tedious task

and it is time and effort consuming. Indeed, the decision

maker must navigate in the same time between multiple

isolated cubes, which makes the global analysis prone to

the risk of non-relevant or impossible decisions. The user

actually looks for one cube that satisfies all the require-

ments instead of a set of cubes each of which would only

partially satisfy them. Therefore, it is necessary to define a

new approach to design a new cube from existing ones.

In BI applications, multidimensional modelling requires

specialized design techniques. A lot of works have focused

on the design of DWs, but there is no consensus on a design

methodology yet [27].

Several approaches have agreed on a phase of concep-

tual design and one of logical design [12, 16, 18]. Others

(e.g.,[12, 28]) also support a physical design phase which

addresses all the issues that are specifically related to the

set of tools used for implementation. Yet in other approa-

ches, a phase of requirement analysis (e.g. [10]) was sep-

arately considered. Other approaches such as [2, 29] have

focused on fusion in order to obtain a new DW.

Fusion of data cubes has already been investigated by

considering the integration of dimensions and facts using

the Drill-Across operator [19]. This operator aims to join

data cubes which have common dimensions members.

According to [20], a key requirement for crossing several

multidimensional data cubes is that they must share

dimensions. Shared dimensions must be the same (logical

schema and instances). For this, users are often faced with

the non-conformity problem when they want to combine

heterogeneous cubes using non-shared dimensions. Many

works have addressed the problem of non-conformity of

dimensions to merge predefined cubes. In all these works,

the user’s need is accurate, i.e. the user knows exactly

which cubes to merge and what he wants by the merge. On

the other hand, the decision maker is not necessarily an

OLAP expert and may not be familiar with OLAP tools.

Therefore, it is not easy to exploit cubes via various

operators such as Drill-Across.

The decision maker may have a clear need, in which

case he expresses his requirements by expressing a set of

decision indicators (measures, dimensions) that are sepa-

rated by AND logical operator. In this context, we proposed

in [25] an approach that designs and constructs new cubes

that contain all the needs. The approach returns a cube

constructed using user-defined measures and dimensions.

The user sometimes has part of his need answered through

data contained in a cube but may want to complete it or

enrich it with other existing cubes so as to meet the entire

need. In this paper, we propose an extension of [25] to

consider this case. The present approach recommends,

from the cube which is given as input, newly designed

cubes that answer the users need. The approach seeks all

the cubes that can be merged to construct a new cube by

checking the merge conditions (common dimensions and

conformities between dimensions). Our approach suggests

to the decision maker a set of cubes that can be merged to

the input one; by defining the measures and dimensions of

each selected cube, the decision maker then selects from

this set the cubes whose needs are satisfied. This returns

only cubes that can be merged to the input one in such a

way as to save time and gain in relevance. This paper is

organised as follows. Section 2 presents a motivating

example. Section 3 summarises some relevant works. In

Sect. 4, we present some preliminary definitions. Section 5

describes our approach and Sect. 6 is dedicated to the

implementation and tests. Finally, Sect. 7 concludes the

paper and addresses some future works.

2 Motivating example

In this section, we present a case study that will be used in

the rest of the paper to illustrate our approach. We present

in Table 1 a subset of seven cubes: Food Production (C1),

Agro-industrial Production (C2), Irrigation (C3), Agricul-

tural Production (C4), Pesticide Cube (C5), Dairy Pro-

duction Cube (C6) and Weather Cube (C7). For each cube,

we present the following multidimensional concepts: Fact,

Measures with their Aggregation functions and Dimensions

with their Levels. These cubes have different dimensions

1 http://okfn.org/opendata/.
2 http://opengovdata.org/.

784 Cluster Computing (2019) 22:783–803

123

http://okfn.org/opendata/
http://opengovdata.org/


and measures, but also some common dimensions such as

production, parcel, etc. Different decision makers can use

these cubes (Agricultural Production Managers, Protection

and environmental monitoring Experts, Hydraulic Man-

agers and Farm Managers, etc.).

Let us suppose that the Environmental Monitoring

Experts and Agricultural Production Managers want to

have the crops, which require the less concentration of

pesticide and produce the more quantity of product. The

decision makers are interested in reducing the concentra-

tion of pesticide for agricultural products to reduce envi-

ronmental risks.

A nave way to answer this query is to retrieve all cubes

that analyse Agricultural production and all cubes that

analyse pesticide concentration, then choose the crops

cubes that have the highest quantity of output and the cubes

having crops that require lower pesticide concentration.

The decision makers must then manually analyse the two

sets of cubes and compare the crops that have the greatest

output quantity and require the least pesticide concentra-

tion. This manual process becomes increasingly laborious

if the number of cubes is large.

The solution to this problem is to return, to the user, the

cube that brings both the quantity of output (crop yield) and

pesticide concentration. The idea is to combine these cubes

in order to meet both needs simultaneously. This combi-

nation is possible by fusing these cubes with the common

dimension crops. On the other hand, if the decision maker

wants to increase or decrease the amount of water used for

irrigation per parcel based on the weather, he would need

to analyse the amount of water used for irrigation, rainfall

and temperature for each parcel in the same time. How-

ever, this need is scattered over two cubes: Irrigation (C3)

and Weather (C7). It would be interesting to merge these

two cubes in a single one covering the user’s need. The

merge operation is based on the concept of dimensions’

conformity. In this example, the fusion operation is not

possible because cubes C3 and C7 have no shared dimen-

sions. If we analyse the cubes C3 (Irrigation (Quantity of

water, location [parcel, department, region])) and C7

(Weather (Pluviometry [total, avg] Temperature [total,

avg] localization [parcel, city, department, zone]), we find

that they have a common hidden dimension (location and

localization). Both dimensions represent the same thing,

but they have neither the same name nor the same levels of

hierarchy. We show in our approach that it is possible to

merge these two cubes after a conformity study of these

two dimensions.

3 Related works

Due to the large number of internal and external cubes that

are manipulated in a company, the data needed by decision

makers may be scattered over several cubes. For example,

the decision maker may need to compare different business

process indicators that are stored in different data cubes.

He should analyse each cube apart and then find a way to

compare them. Comparing cubes is a tedious and compli-

cated task. For this, existing solutions such as the Drill-

Table 1 Pilot farm case study

Cubes Facts Measures [aggregates] Dimensions [levels]

Food

production

cube (C1)

Agricultural

production

for food

Cultivated area, input quantity [total, avg], output

quantity [total, avg]

Technical operation, time [year season], product,

location [parcel], production, crops

Agro-industrial

production

cube (C2)

Agricultural

production

for industrial

Cultivated, area, input quantity [total, avg],

output quantity [total, avg]

Technical operation, time [year, season], product,

location [parcel, region], production, crops,

transformation factory

Irrigation cube

(C3)

Irrigation Quantity of water [total], water flux [rate],

irrigated area [avg, total]

Time [hour, day, week month, season, year], crops,

location [parcel, department, region], equipment

Agro-cultural

production

cube (C4)

Crop

production

Input quantity [total, avg], output quantity [total,

avg], pesticide concentration [percentage, rate],

pesticide flow [rate]

Technical operation, crops, pesticide, production, time

[day, month, season, year], location [parcel,

department, region], product, equipment

Pesticide cube

(C5)

Concentration

of pesticide

Flux discharge, pesticide concentration

[percentage, rate], pesticide flow [rate]

Crops, time [hour, day, month, year], parcel, equipment,

pesticide, crops

Dairy

production

cube (C6)

Milk

production

Milk quantity produced [total, avg], input

quantity [total], output quantity [total, avg]

Time [day, month, year], animal husbandry, product,

production, operators

Weather cube

(C7)

Climatology Pluviometry [total, avg], temperature [total, avg],

humidity rate [total, avg], wind speed [total,

avg]

Time [hour, day, week, month, season, year], station,

localization [parcel, city, department, zone]

Cluster Computing (2019) 22:783–803 785

123



Across operator allow to merge cubes into one, helping the

decision maker to visualise all needed data in a single cube.

However, using this operator to merge cubes requires that

these cubes have shared dimensions. In this work, we focus

on the problem of designing and constructing cubes from a

set of existing cubes on the basis of an expressed need, and

seeking common dimensions that are not necessarily

shared between these cubes.

In the literature, works that have addressed the cube

construction problem may be classified in three categories:

(1) cube design optimization [15], (2) cube design solutions

[4, 5, 11] and (3) cube (attributes and instances) merging

solutions (cube enrichment [2] and combining existing

cubes [6, 16, 18]).

In order to derive a set of data cubes that answer the

users frequent queries, there are two practical problems: the

maintenance cost of the data cubes, and the cost of

answering those queries. In [15] an approach is proposed to

help the user decide which queries would be skipped and

not taken into consideration. The authors focused on the

optimization problem in data cube system design. Given

the maintenance-cost bound, the query-cost bound and the

set of frequently asked queries, the proposed system allows

the determination of a set of data cubes that can answer the

largest subset of the queries without violating the two

bounds.

In some domains, such us social networks, bioinfor-

matics, and chemistry, the graphs provide a powerful

abstraction for modelling networked data. Ghrab et al. [11]

propose a framework for building OLAP cubes from graph

data and analysing the graph topological properties. The

authors presented techniques for OLAP aggregation of the

graph and discussed the case of dimension hierarchies in

graphs.

The authors of [15] addressed the problem of integrating

independent and possibly heterogeneous DWs. The authors

provided a set of properties to solve the problem of

matching heterogeneous dimensions. They proposed two

approaches to deal with the integration problem. The first

refers to different scenarios of a loosely coupled integration

to identify the common information between data sources

and perform join operations over the original sources. The

second approach, which is based on the derivation of a

materialized view built by merging the sources, refers to a

scenario of tightly coupled integration. Thus, the authors

developed a tool called DaWaII used to merge data marts

developed autonomously by different designers of a

telecommunications company.

In [1], the Drill-Across operator allows users to leap

from one cube to another. The authors studied different

kinds of object-oriented conceptual relationships between

facts (namely Derivation, Generalisation, Association, and

Flow) in order to Drill-Across them. They defined the

Drill-Across operator, using UML relationships between

dimensions and/or facts, to navigate between cubes even

when no dimensions are shared. In the cube design com-

munity, Niemi et al. [23] presented a method to construct

OLAP cubes based on the users example queries. From

information stored into the DW, the user can pose a

sequence of queries in order to construct a cube that con-

tains all the information that is relevant to him. The pro-

posed method makes it possible to improve the structure of

existing cubes based on information about the posed

queries. In their approach, the authors combined the cube

design and query construction by considering a natural

connection between OLAP cubes and queries.

In [2] a framework was presented to support cubes

fusion in self-service BI so as to enrich the decision process

with data that has a narrow focus on a specific business

problem and a short lifespan. The fusion addresses the

multidimensional cubes that can be dynamically extended

in both their schema and their instances. Situational data

and metadata are associated with quality and provenance

annotations.

In [29] a new OLAP-Overlay operator was proposed so

as to merge spatial data cubes (conforming spatial dimen-

sions were not required). This operator is based on a

Geographic Information System overlay operator that

merges different layers using the topological intersection

operator. The authors defined an algorithm that finds

common instances (called members) between two dimen-

sions by creating a new dimension that merges levels with

the same members.

Various works have addressed the problem of con-

formed dimensions. In [24] a set of operators that coalesce

data marts and perform Drill-Across operations on non-

conforming dimensions were proposed. The authors sug-

gested creating a new dimension by exploiting the is–a

relationship. Intuitively, if two dimensions exhibit an is–a

relationship with a common dimension, then they can be

viewed as members of the parent dimension and can thus

be combined in a meaningful way. In [26] a distinction was

made between conformed dimension tables and conformed

dimension attributes and the positive impact of relaxing the

conformity requirement was discuss. The authors defined a

method to measure the loss resulting from the join opera-

tion between conformed dimension attributes with dis-

similar values. They extended the definition of the Drill-

Across navigation operation to include in the analysis

(selective) non-conformed dimension attributes.

In [28] the limits of the Drill-Across operator in

improving the ability to connect two cubes that represent

different aspects of the same reality were shown. The

authors thus proposed a new operator called Drill-Across-

link that introduces the explicit links that connect two

cubes, and improves some of the Drill-Across operations.

786 Cluster Computing (2019) 22:783–803

123



A model of DW design using Data Mining (DM) algo-

rithms (grouping, learning association rules) was proposed

in [3]. The techniques used allowed the definition of

dimension hierarchies according to the decision makers

knowledge. The authors proposed a UML Profile to define

a DW schema that integrates DM algorithms and a map-

ping process that transforms multidimensional schemata

according to the results of the DM algorithms.

It was stated in related works that existing solutions are

based either on attributes (logical schema) or instances.

Unfortunately, the same attribute in two different cubes

may not represent the same thing. For example, the attri-

bute ‘‘category’’ may represent category of products, cat-

egory of population, category of employees, etc. In the

same way, instances may not represent the same reality.

For example, Jaguar would be the animal or the Car Brand.

We propose to combine schema and instances to check,

using the conformity principle, if the common data repre-

sent the same concept. All the studied works consider that

the user knows the cubes to merge. However, when the

number of cubes is huge and the stored data is heteroge-

neous, it is hard to query these cubes. We compare related

works according to some criteria: Conformity (the used

levels), Drill-Across operator (the performed updates),

Input data (how the query is defined and what data is

needed by the approach), Output (what is the result of the

approach), and Goal (what is the goal of the proposal) (see

Table 2).

The existing works consider the conformity between

three elements (dimensions, attributes and instances) to

assess the conformity of dimensions when merging cubes.

Nevertheless, these works do not provide details on the

way to find similarity be it syntactic or semantic, etc. Also,

none of the existing works considers all of these elements

simultaneously. In [25], an approach was proposed which

allows a user to express his need through a set of analysis

indicators (measures, dimensions) which allow the study of

the conformity based on syntactic and semantic similarity

between all of the aforementioned elements.

4 Preliminaries

In this section, we present some preliminary definitions that

lay the foundations for understanding our approach.

Definition 1 (Collection) A collection is a set of deployed

cubes. We define C as a Collection of n cubes

C1;C2; . . .;Cn:

Definition 2 (Structural Component (SC)) The structural

components represent the terms that describe the concep-

tual elements of a cube. A structural component refers to a

Fact (F), a Measure [aggregate] (M[A]), Dimension (D) or

a Level (L).

Definition 3 (Cube) A cube is a set of data constructed

from a subset of a DW, organised and summarised into a

multidimensional structure defined by a set of the structural

components.

A cube Cj is represented by a set of Structural

Components: a subject of analysis (Fact F), a set of

Measures with or without aggregate functions (M[A]),

analytical axes (Dimensions D) with a particular perspec-

tive, namely a Level of hierarchy (L), such as:

Cj ¼ hFj;Mj½Aþ
� ;Dj½Lj�þi:

Example 1 The cube C4 of Table 1 is composed of the Fact:

Crop production; Measures: Input quantity, Output quantity,

Pesticide concentration and Pesticide flow; Dimensions:

Technical operations, Product, Equipment, Pesticide, Time,

Crops, Parcel and Production, etc. (see Table 1).

Let Cj be a cube. We define SCDðCjÞ; SCFðCjÞ; SCLðCjÞ;
SCMðCjÞ; SCAðCjÞ the set of all instances of SC: Dimen-

sion, Fact, Level, Measure and Aggregate in Cj respec-

tively. The set of all SC of a cube Cj [named SCðCjÞ] is
defined as: SCðCjÞ ¼ SCDðCjÞ [ SCFðCjÞ [ SCLðCjÞ
[SCMðCjÞ [ SCAðCjÞ:

Example 2 SCDðC4Þ = Technical operations, Product,

Equipment, Pesticide, Time, Crops, Parcel, Production.

Definition 4 (Catalogue) We define a Catalogue as the set

of instances of all SC in the collection. Let C ¼
fC1; . . .;Cng be the set of collection cubes; the Catalogue

SC(C) is defined as: SCðCÞ ¼ fSCðC1Þ [ � � � [ SCðCnÞg:

Definition 5 (Users Query (Q)) A users query is expressed

using n terms ðt1; . . .; tnÞ in natural language and separated

by the AND logic operators such as: Qðt1ANDt2ANDt3AND
ANDtnÞ where ti 2 fðM½A�Þ; ðDÞ; ðLÞg; such as: Q ¼
hMj½A�þ; Dj½Lj�þi:

Example 3 Q1 (quantity of input product AND Pesticide

concentration AND plot) is an example of query.

Definition 6 (Similarity) The similarity is a function that

quantifies the similarity between two terms. Two kinds of

similarity are defined: syntactical similarity and semantic

similarity [14].

Two terms are considered syntactically similar if they

have a similar character sequence. Syntactical similarity is

defined as String-Based similarity [14]. Syntactical simi-

larity algorithms are based on the distance between terms

(for example, SimMetrics package3 proposes several

3 https://github.com/Simmetrics/simmetrics.

Cluster Computing (2019) 22:783–803 787

123

https://github.com/Simmetrics/simmetrics


distances: Damerau–Levenshtein, Jaro, Jaro–Winkler,

Needleman–Wunsch, Jaccard similarity, etc.).

In Semantic Similarity, the terms are similar semanti-

cally if they reference the same thing, are opposite of each

other, used in the same way, used in the same context or

one is a type of another. Two kinds of algorithms are

introduced for measuring the semantic similarity Corpus-

Based and Knowledge-Based algorithms [14]. WordNet is

the semantic network which is used in the area of

measuring the Knowledge-Based similarity between terms,

it is considered as a large semantic database of English

[21].

Example 4 If we consider the previous query Q1 (quantity

of input product AND Pesticide concentration AND plot),

the similar terms are defined as follow:

For the term ‘‘quantity of input product’’, the syntacti-

cally similar instances of structural components that are

selected from the catalogue are (‘‘output quantity’’, ‘‘input

quantity’’, ‘‘consumed fuel quantity’’, ‘‘quantity of water’’,

etc.).

For the term ‘‘plot’’, the semantic similar instance of

structural component selected from the catalogue using

WordNet is: (‘‘parcel’’).

Definition 7 (Reformulated query Q0Þ A reformulated

query is a query, where each term ti is replaced by a similar

terms t0i: The terms t0i are instance of structural component

of the catalogue. The reformulated query is defined by Q0

(t01 AND t02 AND AND t0n).

Example 5 The reformulated query Q0
1 for the query Q1 is

Q0
1 (input quantity AND Pesticide concentration [rate]

AND parcel).

Table 2 Related work

Research works Cubes design Cubes merging Our approach

[4] [5] [23] [11] [2] [1] [29] [26] [30] [24] [6] [3]

Conformity

Dimension x x x x x x x x

Level x x x x

Instances and attributes x x x x

Drill-Across operator

New operator(s) x x x x x x

New dimension(s) x x x

New approach(s) x x x

Input

Query type

Cube name x

Query answers x x x

Set of terms in NL x

External sources x

Collection of cubes x x

Data warehouses x x x x x x x x

Two cubes x x

Graphs x

Output

New cube x x x x x x x x x

New data warehouse x

Enriched cube x x

Integrated data mart x

New data mart x

Goal

Performance x x x x x

Relevance x x x x x x x x

Cost x x

788 Cluster Computing (2019) 22:783–803

123



5 Our approach

The decision maker wants to analyse a given phenomenon

in a single cube. He may have a clear need which he

expresses by a set of decision indicators as measures and

dimensions written in natural language. In this case, the

query is composed of a set of terms separated by the AND

operator.

Since the cubes collection can be large and subject to

continuous updates, the user does not have a clear and

complete view of the contents of the collection. Therefore,

the terms used in its query may be ambiguous and some-

times obsolete.

To avoid the ambiguity associated with natural language

problems, we propose to create a data structure called

catalogue using OLAP cubes. The catalogue is used to

perform an analysis of the query in order to form a clear

unambiguous query. For this, we propose a preliminary

step to prepare the data. This step consists of constructing

the catalogue and refreshing it every time the OLAP

schemas are updated.

On the other hand, the user may have part of his need in

a known cube while he may want to complete or enrich it

with data in other unknown cubes.

In this paper, we propose two variants to design and

construct cubes according to the decision makers expressed

need: an expressed need which is Based on Measures and

Dimensions (MDBV) and an expressed need Based on

Known Cube (KCBV). For the two variants, our approach

returns a set of constructed cubes according to the decision

makers need.

In this section, we present the main steps of our

approach: (1) Preparation and definition of functional

requirements, (2) Query Analysis, (3) Design and con-

struction of cubes and (4) Ranking of constructed cubes.

The architecture of our approach is shown in Fig. 1.

5.1 Preparation and definition of functional
requirements

The preparation step consists firstly in generating the data

cubes from the files in several formats (xl, csv). We parse

these files to retrieve the structural components of a cube

(fact, measures, dimensions, etc.) using the JDOM2 API to

create the OLAP schema of a data cube. Secondly, we

build a data structure, called catalogue, that is necessary for

the querying, design and construction of cubes. In this step,

our approach analyses the cubes OLAP schemas, extracts

the different structural components of a cube and stores

them in the catalogue. The latter represents all the instances

of the multidimensional schema structural elements of the

cubes.

Decision makers can express their analysis needs using

terms. A term represents one or several elements of the

catalogue. Indeed, our approach allows the user to select

from a set of terms in the catalogue those that correspond to

multidimensional concepts of deployed cubes. This avoids

the problems of ambiguity that are related to natural lan-

guage [10] and the difficulty to use complex computer

languages (such as SQL, MDX) by decision makers [11].

The catalogue is necessary and will be used in the query

analysis process. In order to make the OLAP platform

(such as Pentaho, Oracle, etc.) independent, we propose, in

Fig. 2, a meta-model to define all OLAP concepts that are

used in this work.

In the proposed meta-model, a cube schema contains a

fact that is described by several measures, where each

measure is associated with several aggregate functions. In

particular, we consider that a cube is composed of several

dimensions with several levels. For example, the Dairy

Production cube has the dimensions: product, operator,

etc. The catalogue contains, among others, the element

product. Using this catalogue, the decision maker can

define a term product looking for all cubes about the

agricultural production.

5.2 Query analysis process

The decision maker (user) expresses his need through a set

of terms written in a natural language. These terms may not

be accurate, making the expressed need ambiguous. We

propose to perform an analysis of the query in order to

guarantee that is clear and well-formed and to avoid the

problems of ambiguity that are inherent to natural language

[22]. The query analysis process provides the user, for each

query term, with a set of multidimensional concepts (in-

stances of structural components). These concepts are

extracted from the catalogue [the set SC(C)] (see Sect. 4).

For each term in the user’s query, a mapping operation

with multidimensional concepts is performed; it returns a

set of concepts that are similar with the input term. This

feature is especially important when the user has limited

knowledge about the exact representation of the entities he

is looking for.

The main idea for the query analysis process is to let

the decision maker use natural language, then provide him

with a set of similar instances of structural components

that are proposed from the catalogue (3). We use string

similarity with several distance functions such as Cosine

similarity, Jaro–Winkler Distance, Levenshtein Distance,

etc. In our approach, we performed a comparison between

the results of these distances and we opted for the

Levenshtein distance (as it gave the best results relative to

the provided terms). The query analysis process is illus-

trated in Fig. 3.

Cluster Computing (2019) 22:783–803 789

123



However, since it considers only the syntactic aspect,

the Levenshtein distance is not effective when the entered

term is not similar to any term in the catalogue (set of

cubes). Indeed, a term may have semantically similar terms

in the catalogue but the analyser would not detect them. To

deal with this problem, we propose to use external

resources in order to conduct an analysis of semantic

similarity and replace a term by its synonyms. As part of

this work, we propose a simple solution that makes use of

an ontology of synonyms such as WordNet. This resource

Fig. 1 General architecture of our approach

Fig. 2 Cube schema meta-

model

790 Cluster Computing (2019) 22:783–803

123



contains, for each term, a set of terms that have the same

meaning. We note that this resource is used only in the case

where no term in the catalogue is similar to a term entered

by the user or when the proposed terms are not suitable for

the user in terms of the query analysis process.

The query analysis process combines two resources, the

internal (catalogue) and the external (WordNet) resource.

The process consists firstly in selecting the similar terms

from the internal resource (catalogue). If no term is

appropriate for the user, the system provides a set of sim-

ilar terms from the external resource (WordNet). The term

selected from this resource will be compared with similar

terms in the internal resource. This process allows the

expansion of the search space so as to find more candidate

cubes which never be returned using the original query .

Clearly, these features can further improve the users search

[19].

Example 6 Figure 4 shows the analysis of the initial user

query Q: amount of fuel consumption AND Plot AND

Acreage.

For the first term amount of fuel consumption, the

analysis process provides the user with the following

similar instances of structural components (Rate of con-

sumption, Consumption fuel quantity, Fuel). Thereafter, the

user selects the instance of structural component consump-

tion fuel quantity. Since the first term is a measures

instance, then the analysis process provides the terms

(aggregate) total and avg. The user chooses total. The

selected term (total consumption fuel quantity) is a

compound term (Measure ? Aggregate). For the term plot,

the analysis process provides the user with a set of similar

instances of structural components but no term is suits him.

Then the analysis process provides from the external

WordNet resource the following similar terms (Parcel,

Patch, Piece, Land). Thereafter, the user selects the term

Parcel. Then again, the analysis process provides the user

with the following similar instances of structural compo-

nents (Parcel, Product, Production, Operator, and Pesti-

cide). The same process is repeated for each term. For the

term Acreage, the analysis process finds no similar term in

the catalogue, and then it automatically offers the user a set

of similar terms from WordNet, and the above process is

then repeated.

Example 7 The resulting reformulated query for Q of

Example 2 is Q0 where: Q0 (Total Consumption fuel

quantity AND Parcel AND Treated Area).

We consider also, in this paper, the case where the user

has a cube containing part of his need. He can select this

cube in which case we get all multidimensional concepts of

this cube from the schema described in the XML file. The

query analysis module is not activated in this case.

5.3 Cubes design and construction process

Our approach proposes two variants to design and construct

cube according to the need expressed by decision maker:

(a) constructing cubes based on measures and dimensions:

the input of this variant is a query composed of a set

analysis indicators (measures and dimensions) separated by

the AND operator and (b) constructing cubes based on a

known cube: in this variant, our approach takes as input a

cube (name) from a set of deployed cubes of the collection.

Fig. 3 Query analysis process

Cluster Computing (2019) 22:783–803 791

123



The cubes design and construction process passes

through four main steps: (1) candidate cubes search, (2)

conformity check, (3) design of cubes (grouping), and (4)

fusion (Fig. 5). For each step, we explain in detail the

process for the two variants.

5.3.1 Candidate cubes search

In this step, we seek all candidate cubes that can be merged

to satisfy the user’s need.

5.3.1.1 Searching cubes based on analysis indicators In

this case, we seek all cubes that partially satisfy the user

query. The search process is to make a mapping between

the query terms and the OLAP schemas of existing cubes.

A cube Cj ðCj 2 CÞ in the collection is a candidate for

fusion if the following conditions are verified:

– Cj must contain at least one measure referenced in the

query: SCMðQ0Þ \ SCMðCjÞ 6¼ ;:
– Cj must contain all dimensions referenced in the query

(if any): SCDðQ0Þ � SCDðCjÞ:
– The measures referenced by the query are scattered

across multiple cubes: :9Cj 2 C ^ SCMðQ0Þ �
SCMðCjÞ:

Fig. 4 Running example of

query analysis step

Fig. 5 Cubes construction

process

792 Cluster Computing (2019) 22:783–803

123



Example 8 Let us suppose that a decision maker wants to

analyse ‘‘the production quantity with the irrigation water

quantity per parcel’’, the reformulated query is ‘‘output

quantity and quantity of water and parcel’’. The set of

candidate cubes of this query is CC0
Q ¼ fC1;C2; C3;C4g:

5.3.1.2 Searching cubes based on a known cube In this

case, we seek all cubes of the collection that can be merged

with the input cube to satisfy the user’s need. These cubes

must have at least one common dimension with the input

cube.

The search process performs a mapping between all

dimensions of the initial user’s cube ðCiÞ and the OLAP

schemas of existing cubes.

A cube CjðCj 2 CÞ in the collection (C) is a candidate

for fusion if Cj must contains at least one common

dimension with input cube ðCiÞ:

Example 9 Let us suppose that a decision maker wants to

analyse irrigation operation. He wants to have in a single

cube all information that are related and influence this

operation. The initial user’s cube is ‘‘irrigation’’.

The set of candi dates cubes that can be merged with

this cube is CðCiÞ ¼ fC1;C2;C4;C5;C7g with common

dimensions crops, time, location, equipment.

To merge two or more cubes, they must have at least one

common dimension. The potential for crossing several data

cubes using the Drill-Across operator is closely related to

the notion of common conformed dimensions [18]. We

present in the next section, how we check the conformity of

dimensions.

5.3.2 Conformity check

Our approach aims to construct a new cube from several

cubes of the collection. These cubes may be heterogeneous

and may have no shared dimension. After a deep study, we

have concluded that unshared dimensions may become

conform dimensions. Two dimensions are considered

conformed if they represent the same thing (reality) [20].

We address the problem of conformity between dimensions

by a (one-to-one) mapping between their hierarchy levels

[30].

We propose a conformity check between dimensions,

levels of hierarchy and instances. In this work, we deter-

mine the conformed dimensions using the similarity of two

texts based on the semantic and syntactic information that

they contain. We consider two similarity functions in order

to have more generalised similarity. First, we consider

string similarity using the Jaro–Winkler distance and

semantic word similarity using the WordNet Ontology.

5.3.2.1 Syntactic similarity We use the Jaro–Winkler

distance to define the syntactic similarity between dimen-

sions. The Jaro distance metric was introduced in 1989 by

Matthew A. Jaro as a comparator that accounts for inser-

tions, deletions, and transpositions [7].

The basic Jaro algorithm has three components which

respectively aim to: (1) compute the string lengths, (2) find

the number of common characters in the two strings, and

(3) find the number of transpositions. The definition of

common characters is that the matching characters must be

within half the length of the shorter string.

The Jaro distance dj between two strings is defined by

the Formula (1):

dj ¼
1

3

m

jS1j
þ m

jS2j
þ m� t

jmj

� �
; ð1Þ

where jS1j and jS2j are the lengths of the two strings. m is

the number of matching symbols and t is the number of

transpositions.

Two characters are called matching if the one from the

string S1 coincides with the one from the string S2 that is

located not farther than [the distance defined by Formula

(2)].

MaxðjS1j; jS2jÞ
2

� 1: ð2Þ

For each pair of matching characters with different

sequence order the number of transpositions t is increased

by Formula (1).

To say that two dimensions/levels are syntactically

similar, we consider a threshold T. If the distance Dj � T;

then the dimensions/levels are deemed syntactically

similar.

Example

Let us consider the two dimensions ‘‘location’’ and

‘‘localization’’, apply the Jaro–Winkler distance. We get:

m ¼ 5; jS1j ¼ 7; jS2j ¼ 15; t ¼ 1; dj ¼ 1=3ð5=8þ 5=12þ
1� 1=5Þ ¼ 0:613:

5.3.2.2 Semantic similarity In the previous step, we cal-

culated the syntactic similarity between two dimensions/

levels using the Jaro–Winkler distance. However, two

dimensions/levels may be not syntactically similar while

they are synonyms. In this case, we propose to calculate the

semantic similarity between dimensions/levels. There is a

relatively large number of semantic similarity metrics in

the literature, ranging from distance-oriented measures

computed on semantic networks or knowledge-based

(dictionary/thesaurus) measures, to metrics based on

models of information theory (or corpus-based measures)

learned from large text collections. In this work, we focus

on knowledge-based measures to determine the semantic

similarity between dimensions and levels. To do this, we

Cluster Computing (2019) 22:783–803 793

123



propose to use WordNet. WordNet is a lexical database

that contains English nouns, verbs, adjectives and adverbs,

organised in sets of synonym senses (synsets). The terms

senses, synsets and concepts are used interchangeably.

Synsets are connected with various links that represent

semantic relations between them such as hyperonymy,

hyponymy, synonymy, antonymy,...,etc. [17]. In our

approach, we use the synonymy relation between two

dimensions/levels.

Example

For the previous example between location and local-

ization, if the threshold is fixed to 0.8, the system detects

that the two dimensions are not syntactically similar

whereas, they are synonyms using WordNet.

We check the conformity of the dimensions and the

levels through the syntactic and semantic similarity by

studying all the possible cases. From two dimensions, we

define the cases where they are conformed and the cases

where they are not. For the last case, we present the

solution to make these dimensions conform. In this paper,

we consider the cases listed below.

Case 1 The dimensions are syntactically similar

(matching string) when they have the same hierarchy levels

and when these levels are syntactically similar.

Example

D1: Time [Year, Month, Day]; D2: Time [Year,

Month, Day] In this case, the two dimensions are con-

formed, so we use the Drill-Across merging operator which

is widely cited in the literature.

Case 2 The dimensions are syntactically similar and

they do not have the same hierarchy levels. In this case, we

consider two sub-cases:

Case 2.1 The levels are syntactically similar but one

level is more detailed than the other.

Example

D1: Time [Day, Month, Year]; D2: Time [Month,

Year] In this case, we calculate the intersection between

the two levels, and then we apply an aggregation operation

(Roll-Up) to bring the two hierarchies at the same level of

detail. The merge operation is made at this level. For this

example, an aggregation is feasible by applying the Roll-up

operator on the dimension D1: Time [Month, Year] then

dimension D1 and D2 are conformed.

Case 2.2. The levels are not syntactically similar but

semantically similar.

Example

D1: Time [Year, Month, Day]; D2: Time [YY, MM,

DD]. In this case, we use external resources. In this work,

Fig. 6 The conditions to

construct cubes

794 Cluster Computing (2019) 22:783–803

123



we use the WordNet ontology and a glossary containing the

most handled similar concepts. The glossary can be

updated by adding new concepts. The procedure for

checking the conformity is based on the calculation of

similarity between the hierarchy levels.

Beyond a certain threshold of similarity, the dimensions

are considered conformed (this threshold will be set

empirically). In this case, the degree of similarity between

the levels of these two dimensions, calculated using the

glossary, is 100% (Year = YY, Month = MM,

Day = DD). Therefore, the levels are conformed.

Case 3 The dimensions are not syntactically similar but

have the same hierarchy levels.

Example

D1: Period [Year, Month, Day]; D2: Time [Year,

Month, Day]

In this case, we use the same solution proposed in Case

2.2.

Case 4 The dimensions are not syntactically similar and

do not have the same detail levels (at least one shared

level).

Example

D1: Period [Year, Month, Day]; D2: Time [Year,

Month] We combine in this case the solutions for cases 2.1

and 2.2. Figure 6 summarizes the conformity checking

process between dimensions. In this paper, we check the

conformity between instances using the intersection oper-

ator. If the intersection is empty, then we consider that the

dimensions are not conformed.

We propose a set of algorithms to verify the conformity:

between two dimensions (Algorithm 1) and between hierar-

chical levels (Algorithm 2). We calculate Jaro–Winkler dis-

tance between terms to test syntactic similarity using a

threshold (Algorithm 3), and we used theWordNet ontology

to check the semantic similarity (Algorithm 4). Finally, we

study the opportunity of apply an aggregation (Algorithm 5).

Cluster Computing (2019) 22:783–803 795

123



5.3.3 Cubes design (grouping)

After the conformity checking, the design of new cubes is

performed by forming a set of groups. The cubes of the

same group are merged to construct new cubes that contain

the entire user’s need.

5.3.3.1 Grouping by measures and dimensions This step

takes as input a set of candidate cubes identified by the

previous step and returns a set of groups (Fig. 7).

The cubes placed in the same group Gr must satisfy the

following conditions:

– The measures of the query should be scattered over the

cubes of the group ð:9Cj 2 Gr ^ SCMðQ0Þ � SCMðCjÞÞ

– All measures of the query must exist in the cubes of the

group GrðSCMðQ0Þ � [Cj2GrSCMðCjÞÞ:
– The cubes of the group must share at least one

conformed dimensions ð\Cj2GrSCDðCjÞ 6¼ ;Þ:
– If the query references dimensions, then all the cubes of

the group must share all these dimensions

ðSCDðQ0Þ � ð\Cj2GrSCDðCjÞÞÞ:

Example 10: For the query in Example 8, CC0
Q ¼

fC1;C2; C3;C4g: The groups are shown in Table 3

5.3.3.2 Grouping by dimensions After the conformity

verification, we obtain a set of candidate cubes for fusion.

From this set of candidate cubes, we form the groups of

cubes that have common dimensions. A cube can belong to

several groups (Fig. 8). The cubes placed in the same

group Gr must share at least one conformed dimension

such as: GrðSCMðQ0Þ � [cj2GrSCMðCjÞÞ:

Example 10 For the known irrigation cube (C3) in

Example 8, CðCiÞ ¼ fC1;C2;C4;C5;C7g: The groups are

shown in Table 4.

5.3.4 Fusion of cubes

5.3.4.1 Fusion by measures and dimensions Once the

groups generated, we construct one cube per group.

The measures and dimensions of the new cube NCm

ðNCm ¼ C1 ffl C2 ffl � � � ffl CnÞ are defined as follows ( ffl
is the fusion symbol):

Fig. 7 Grouping by Measures

and Dimension (Variant 1)

796 Cluster Computing (2019) 22:783–803

123



– The measures of NCm are the union of the measures of

the merged cubes that are referenced in the query

Q0ðSCMðNCmÞ ¼ ½[n
i¼1SCMðCiÞ� \ SCMðQ0ÞÞ

– The dimensions of NCm are the intersection of the

dimensions of the merged cubes

ðSCDðNCÞ ¼ ½\n
i¼1SCDðCiÞ� \ SCDðQ0ÞÞ:

Example 11 For the query in Example 8, the result of the

construction is shown in Table 5.

5.3.4.2 Fusion by dimensions In this variant, we propose

an interactive system with the decision maker. Once the

groups are generated, the decision maker selects a group of

Table 3 Groups formed for the query in Example 8

Groups Cubes Measures Common dimensions

Gr1 C1 Output quantity Location [parcel], time [season, year], crops [crops]

C3 Quantity of

water

Location [parcel], time [season, year], crops [crops]

Gr2 C2 Output quantity Location [parcel, region], time [season, year], crops [crops]

C3 Quantity of

water

Location [parcel, region], time [season, year], crops [crops]

Gr3 C4 Output quantity Location [parcel, department, region], time [day, month, season, year], crops [crops], equipment

[equipment]

C3 Quantity of

water

Location [parcel, department, region], time [day, month, season, year], crops [crops], equipment

[equipment]

Fig. 8 Grouping by dimensions

(Variant 2)

Table 4 Groups formed for the query in Example 8

Groups Cubes Common dimensions

GR1 C3 Location [parcel], time [day, month, season, year], crops [crops], equipment [equipment]

C4 Location [parcel], time [day, month, season, year], crops [crops], equipment [equipment]

C5 Parcel [parcel], time [day, month, season, year], crops [crops]

GR2 C3 Location [parcel], time [season, year], crops [crops]

C1 Location [parcel], time [season, year], crops [crops]

C2 Location [parcel], time [season, year], crops [crops]

GR3 C3 Localization [parcel, department, region], time [hour, day, week, month, season, year]

C7 Location [parcel, department, zone], time [hour, day, week, month, season, year]

GR4 C3 Time [day, month, year]

C6 Time [day, month, year]

Cluster Computing (2019) 22:783–803 797

123



cubes from the cubes returned by our approach. In addition,

he chooses the measures and dimensions that correspond to

his need.

We construct one cube per group; the measures and

dimensions of the new cube NCdðNCd ¼ C1 ffl C2 ffl
� � � ffl CnÞ are defined as follow:

– The measures of NCd are the union of the measures of

merged cubes ðdmÞ chosen by the decision maker:

ðSCMðNCdÞ ¼ ½[n
i¼1SCMðCiÞ� \ SCMðdmÞÞ

– The dimensions of NCd are the intersection of the

dimensions of merged cubes ðdmÞ chosen by the

decision maker:

ðSCDðNCÞ ¼ ½\n
i¼1SCDðCiÞ� \ SCDðdmÞ:

5.4 Ranking of constructed cubes

The fusion step returns a set of constructed cubes in no

specific order. To sort the resulting constructed cubes, we

propose to order the cubes according to the number of

cubes in the groups and the number of dimensions of the

constructed cube. The sorting process is as follows: sort the

groups according to the number of cubes in descending

order. In the case where the groups have the same number

of cubes, the process proceeds to sort them according to the

number of dimensions of the cubes in ascending order. The

process starts with the newly constructed cube from the

group that contains the least number of cubes. In other

words, it is the cube that requires less cubes for the merge

operation. Then, for the groups which have the same

number of cubes, we select the cube that contains more

detailed information. The idea is based on the following

assumption: the cube that contains more information is the

most relevant to the user. On the one hand, the presence of

several dimensions allows the user to make analyses that

are more detailed in the returned cubes. The decision

maker can perform aggregations to particular dimensions

in order to keep only the dimensions that are referenced in

the query.

Example 12 For the query in Example 8, the constructed

cubes are ðC4 ffl C3Þ (seven common dimensions); ðC1 ffl
C3Þ (six common dimensions) and ðC2 ffl C3Þ (four com-

mon dimensions). However, the decision maker can choose

the first cube to make its analysis as he can exploit another

cube.

6 Implementation and results

We present in this section, the tool that we have developed

to implement our approach and some tests done to validate

it.

We have developed a tool called ‘‘Design-Cubes-

Query’’ implementing our approach. Our tool is based on a

multi-tier architecture (Fig. 9). The Data tier aims to store

multidimensional data, and it is implemented using Rela-

tional DBMS Postgres. The OLAP tier is implemented

using the OLAP server Mondrian, where the cubes are

defined. The Explorer tier is composed of a Cube

exploratory tool, which allows the decision makers to

explore the constructed cubes and visualise their instances.

To show the features of our tool, we consider a set of 50

cubes downloaded from the statistical agro-environmental

open-data cubes developed by FAO and pilot farm cubes.

The tool provides two easy interfaces, one for decision

makers to allow them to define their need in natural lan-

guage, view the constructed cubes, explore and visualise

the data. The second interface is for IT-designer; it allows

them, in addition to the functionality of the first interface,

to load, update the collection of cubes and the catalogue

and visualise the conceptual schema of the constructed

cubes.

In addition, we have developed two variants: (1) the

Cube-Based Construction Variant (KCBV) and (2) the

Measure-Based Construction Variant (MDBV).

The Cube-Based Construction Variant (KCBV)

(Fig. 10) is used if the user has a part of the need in a

known cube. He starts by selecting the cube, then the

system searches and displays all candidate cubes that can

be merged with the first one. The candidate cubes are

identified by automatically checking the dimension con-

formity. The system then displays the common dimensions

between the cubes. The user selects among the common

dimensions those that he wants to have in the constructed

cube. For example, in Fig. 10, if the user selected the Ir-

rigation Cube, then the system displays the cubes: Food

Production, Agricultural Production, Agro-Industrial

Table 5 Constructed cubes for query in Example 8

Constructed cubes Measures Dimensions

C1 ffl C3 Output quantity quantity of water Location [parcel], time [season, year], crops [crops]

C2 ffl C3 Output quantity quantity of water Location [parcel, region], time [season, year], crops [crops]

C4 ffl C3 Output quantity quantity of water Location [parcel, department, region], time [day, month, season,

year], crops [crops], equipment [equipment]

798 Cluster Computing (2019) 22:783–803

123



Production, Pesticide and Weather. In the Measure-Based

Construction Variant (MDBV) (Fig. 11), the user expres-

ses his need through a set of measures and dimensions. The

query analyser provides the user, for each measure, with a

similar set of measures from the catalogue and a set of

dimensions in order to select those that suit him.

Example 13 Let the query be (quantity of input product

AND pesticide concentration AND parcel). For the first

measure quantity of input product, the query analyser

provides the following similar instances of measures: input

quantity, output quantity, consumed fuel quantity, etc. The

same process is repeated to all measures and dimensions.

Fig. 9 Architecture of the

Design-cube-query tool

Fig. 10 Cube-based

construction variant

Cluster Computing (2019) 22:783–803 799

123



The system in this variant uses a search process to find

the set of cubes that partially meet the need and that are

candidates for merging. After the fusion, the system dis-

plays all the constructed cubes ordered according to the

degree of relevance which was described in Sect. 5.4. The

user can view and explore the cube that suits him (Fig. 11).

The tool offers the opportunity to see the conceptual

model of the constructed cubes, in order to see the struc-

tural components of the new data cube (Fig. 12).

To validate our approach, we performed some experi-

ments. For the needs of our tests, we consider a dataset

composed of 50 cubes [8].

Fig. 11 Measure-based

construction variant (instances)

Fig. 12 Measure based

construction variant (conceptuel

model)

800 Cluster Computing (2019) 22:783–803

123



We want to analyse the construction cost of a cube with

the number of cubes that are necessary to construct it. The

construction process seeks partial cubes (i.e. that partially

responding to the need), checks the conformity of dimen-

sions, designs cubes, instantiates and displays their content

for the decision makers.

We calculated the construction response time as a

function of the number of partial returned cubes. The

results show that when the number of cubes is reduced, the

construction cost is negligible compared with the search

time. From six partial cubes on, the construction becomes

more expensive (see Fig. 13). This is due to the elapsed

time for testing the conformity of the dimensions between

the partial cubes and exploring the catalogue.

It should be noted that when the number of partial cubes

that are required for the cubes construction increases, the

cost of this construction increases. This confirms our

hypothesis that was presented in the ranking process (Sect.

5.4) which sorts the resulting group cubes starting with the

cube of a the group that requires the least number of partial

cubes for the construction. This is due to the necessary

construction cost which is not negligible when the number

of cubes is important.

Let us now compare our approach cube construction

cost with that of a naive approach. The naive approach

seeks partial cubes (partially responding to the need) and

displays them without fusion [13]. Our approach looks for

partial cubes, checks the conformity of their dimensions,

designs cubes, ranks them and instantiates and displays

their content for the attention of the decision makers.

We compare the two approaches on real applications.

We calculate the response time of each approach based on

the number of returned partial cubes and we add the time

needed for a decision maker to analyse the resulting cubes.

To this end, we estimate that the analysis of a cube requires

1 min. Figure 14 shows the response time of both

approaches by incorporating the analysis time of the

resulting cubes. The results show that our approach is

clearly better than the naive approach especially when the

number of partial cubes increases. Indeed, our approach

returns a single cube, which requires 1 min to analyse it,

while the naive approach returns several partial cubes,

which requires 1 min for the analysis of each cube.

7 Conclusion and future work

In this paper, we presented an approach for the construction

of cubes from a set of existing cubes. This approach con-

structs new cubes according to a decision makers need,

which is scattered over several data cubes. The approach

aims to merge the cubes that containing only part of the

decision makers need into one cube that integrates all the

users need. The fusion of cubes is based on the conformity

constraint between dimensions. For this, we used WordNet

as an external resource to determine the similarity between

dimensions. We have developed a tool called ‘‘Design-

Cubes-Query’’ for the construction of relevant cubes in two

variants, one per cube if the user wants to complete or

enrich his need and another by measure if the need is

accurate. As future work, we intend to use the notion of

antonym to determine other semantic relationships between

concepts. We propose to use domain ontologies instead of

WordNet to determine the rate of similarity. We also plan

to use DM techniques in the grouping step of our approach

and integrate the users profile to better target the con-

struction of cubes taking into account the decision makers

preferences. Currently, many companies are opting for the

Cloud BI solution. They deploy their data cubes in order to

expand the use and exploitation of these cubes by several

users. Our approach can be integrated as a service in the

Fig. 13 Construction cost versus number of cubes Fig. 14 Construction and analyse cost versus number of cubes

Cluster Computing (2019) 22:783–803 801

123



Cloud BI technology to return a single cube containing the

entirety of a users need.

References

1. Abelló, A., Samos, J., Saltor, F.: On relationships offering new

drill-across possibilities. In: Proceedings of the 5th ACM Inter-

national Workshop on Data Warehousing and OLAP, pp. 7–13.

ACM (2002)

2. Alberto, D.: Fusion cubes: towards self-service business intelli-

gence. Int. J. Data Warehous. Min. 9(2), 66–88 (2013)

3. Bimonte, S., Sautot, L., Journaux, L., Faivre, B.: Multidimen-

sional model design using data mining: a rapid prototyping

methodology. Int. J. Data Warehous. Min. 13(1), 1–35 (2017)

4. Boukraâ, D., Boussaı̈d, O., Bentayeb, F.: OLAP operators for

complex object data cubes. In: ADBIS, pp. 103–116. Springer

(2010)

5. Cheung, D.W., Zhou, B., Kao, B., Lu, H., Lam, T.W., Ting, H.F.:

Requirement-based data cube schema design. In: Proceedings of

the Eighth International Conference on Information and Knowl-

edge Management, pp. 162–169. ACM (1999)

6. Chhabra, R., Pahwa, P.: Data mart designing and integration

approaches. Int. J. Comput. Sci. Mob. Comput. 3(4), 74–79

(2014)

7. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string

metrics for matching names and records. In: KDD Workshop on

Data Cleaning and Object Consolidation, vol. 3, pp. 73–78 (2003)

8. Djiroun, R., Bimonte, S., Boukhalfa, K.: A first framework for

top-k cubes queries. In: International Conference on Conceptual

Modeling, pp. 187–197. Springer (2015)

9. Etcheverry, L., Vaisman, A., Zimányi, E.: Modeling and querying

data warehouses on the semantic web using QB4OLAP. In:

International Conference on Data Warehousing and Knowledge

Discovery, pp. 45–56. Springer (2014)

10. Gardner, S.R.: Building the data warehouse: the tough questions

project managers have to ask their companies’ executives–and

themselves–and the guidelines needed to sort out the answers.

Commun. ACM 41(9), 52–61 (1998)

11. Ghrab, A., Romero, O., Skhiri, S., Vaisman, A., Zimányi, E.: A

framework for building OLAP cubes on graphs. In: East Euro-

pean Conference on Advances in Databases and Information

Systems, pp. 92–105. Springer (2015)

12. Golfarelli, M., Rizzi, S.: A methodological framework for data

warehouse design. In: Proceedings of the 1st ACM International

Workshop on Data Warehousing and OLAP, pp. 3–9. ACM

(1998)

13. Golfarelli, M., Rizzi, S., Biondi, P.: myOLAP: an approach to

express and evaluate OLAP preferences. IEEE Trans. Knowl.

Data Eng. 23(7), 1050–1064 (2011)

14. Gomaa, W.H., Fahmy, A.A.: A survey of text similarity

approaches. Int. J. Comput. Appl. (2013). https://doi.org/10.5120/

11638-7118

15. Hung, E., Cheung, D.W., Kao, B.: Optimization in data cube

system design. J. Intell. Inf. Syst. 23(1), 17–45 (2004)

16. Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Data

Warehouse Design. Universität Münster, Angewandte Mathe-

matik und Informatik (2000)

17. Islam, A., Inkpen, D.: Semantic text similarity using corpus-

based word similarity and string similarity. ACM Trans. Knowl.

Discov. Data 2(2), 10 (2008)

18. Jindal, R., Taneja, S.: Comparative study of data warehouse

design approaches: a survey. Int. J. Database Manag. Syst. 4(1),
33 (2012)

19. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Com-

plete Guide to Dimensional Modeling. Wiley, New York (2011)

20. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The

Definitive Guide to Dimensional Modeling. Wiley, New York

(2013)

21. Masuma, M.R., Losarwar, V.: Text classification and clustering

through similarity measures. IJLTEMAS 5(3), 91–94 (2016)

22. Nedelcu, B.: Business intelligence systems. Database Syst. J.

4(4), 12–20 (2013)

23. Niemi, T., Nummenmaa, J., Thanisch, P.: Constructing OLAP

cubes based on queries. In: Proceedings of the 4th ACM Inter-

national Workshop on Data Warehousing and OLAP, pp. 9–15.

ACM (2001)

24. Parimala, N., Pahwa, P.: Coalescing data marts. In: Proceedings

of XVI International Conference on Computer and Information

Science and Engineering, pp. 280–285 (2006)

25. Djiroun, R., Boukhalfa, K., Alimazighi, Z., et al.: A data cube

design and construction methodology based on OLAP queries. In:

13th IEEE/ACS International Conference of Computer Systems

and Applications, AICCSA 2016, Agadir, Morocco, pp. 1–8

(2016)

26. Riazati, D., Thom, J.A., Zhang, X.: Drill across & visualization of

cubes with non-conformed dimensions. In: Proceedings of the

Nineteenth Conference on Australasian Database, vol. 75,

pp. 97–105. Australian Computer Society, Inc. (2008)

27. Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in

data warehouse modeling and design: dead or alive? In: Pro-

ceedings of the 9th ACM International Workshop on Data

Warehousing and OLAP, pp. 3–10. ACM (2006)

28. Sabaini, A., Zimányi, E., Combi, C.: Extending the multidi-

mensional model for linking cubes. In: EDA, pp. 17–32 (2015)

29. Bimonte, S., Schneider, M.: Merging spatial data cubes using the

GIS overlay operator. J. Decis. Syst. 19(3), 261–290 (2010)

30. Torlone, R.: Two approaches to the integration of heterogeneous

data warehouses. Distrib. Parallel Databases 23(1), 69–97 (2008)

Rahma Djiroun is a Ph.D. Stu-

dent at the University of Science

and Technology Houari

Boumediene (USTHB), Univer-

sity of Algiers, Algeria. He

received his Engineer and

Magister Degree in Computer

Science from the USTHB

University of Algiers, Algeria,

in 2002 and 2005, respectively.

In 2005, he joined the Faculty of

Electronics and Computing,

USTHB University, as an

Assistant Teacher. His current

research interests include Data

Warehouse, OLAP, Data Mining, Business Intelligence, Natural

language, Cloud Computing. Recommendation Systems.

802 Cluster Computing (2019) 22:783–803

123

https://doi.org/10.5120/11638-7118
https://doi.org/10.5120/11638-7118


Kamel Boukhalfa is currently a

Professor and Researcher at

University of Sciences and

Technology Houari Boumedi-

ene, Algiers (USTHB). He is a

Member of the ISI Research

Team at LSI Laboratory. He

received the Engineer Diploma

in Computer Science from

USTHB in 1997, the Master

Degree in Computer Science

from the same university

February 2002. He joined, in

2002, the Advanced Technology

Development Research Center

for the development of Tele-health Projects. He received the Ph.D.

Diploma from Poitiers (France) and USTHB (Algeria) Universities in

2009. He received the accreditation to supervise research (HDR) from

USTHB February 2011. His main research interests are data bases,

data warehousing, Cloud Computing, data mining and optimization.

Zaia Alimazighi graduated from

ENSEEIHT High School of

Engineering in Toulouse in

1976, received her Ph.D. in

Computer Systems from the

University of Paris 6 in 1986,

and her Doctorate in Computer

Science from the University of

Sciences and Technology

(USTHB) in Algiers in 1999.

She is a Full Professor in

Computer Science at USTHB,

Team Leader at the LSI Labo-

ratory and Dean of the Electrical

and Computer Science Faculty.

Her current research concentrates on cooperative Information Sys-

tems modeling, inter-organizational Information Systems process

modeling.

Cluster Computing (2019) 22:783–803 803

123


	Designing data cubes in OLAP systems: a decision makers’ requirements-based approach
	Abstract
	Introduction
	Motivating example
	Related works
	Preliminaries
	Our approach
	Preparation and definition of functional requirements
	Query analysis process
	Cubes design and construction process
	Candidate cubes search
	Searching cubes based on analysis indicators
	Searching cubes based on a known cube

	Conformity check
	Syntactic similarity
	Semantic similarity

	Cubes design (grouping)
	Grouping by measures and dimensions
	Grouping by dimensions

	Fusion of cubes
	Fusion by measures and dimensions
	Fusion by dimensions


	Ranking of constructed cubes

	Implementation and results
	Conclusion and future work
	References




