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Abstract
Integration of renewable resources and increased growth in energy consumption has created new challenges for the

traditional electrical network. To adhere to these challenges, Internet of Everything (IoE) has transformed the existing

power grid into a modernized electrical network called Smart Grid. An integral part of this transformation is the Advanced

Metering Infrastructure (AMI), which enables two-way communication for flow of information consisting of energy

consumption, outages, and electricity rates between smart meters and the utilities. These enhanced AMI features and

privileges have resulted in a larger surface for cyber-attack, enabling remote exploitation of these smart devices without

any physical access. Therefore, consumer privacy and security has become a critical issue due to the interconnection of

different smart devices in various communication networks and the information they carry. In this paper, we present a

comprehensive survey of privacy related research in the IoE enabled smart grid environment. The survey presents a

detailed analysis of privacy problems and their corresponding solutions in AMI. Our goal is to provide an in-depth

understanding of the smart grid and shed light on future research directions.

Keywords Internet of Everything (IoE) � Smart grid � Advanced Metering Infrastructure (AMI) � Security �
Privacy preserving � Cryptography

1 Introduction

The recent technological trends such as communication,

big data, smart infrastructure and business economics have

transformed our social environment. The increased con-

nectedness between the people, processes, data, and things,

which defines Internet of Everything (IoE), is revolution-

izing the way utility companies monitor, control and

distribute energy over the electrical grid [20]. A recent

study by Cisco predicts that IoE is projected to create $14

trillion net profit value, a combination of increased rev-

enues and lowered costs, to private sector from 2013 to

2022. Ciscos analysis shows that most of the potential

value at stake (66%, or $9.5 trillion) comes from trans-

formation based on industry-specific use cases such as the

smart grid and smart buildings [27].

Smart Grid integrates an electrical grid with information

technologies for efficient power distribution and transmis-

sion between consumers and suppliers. With the help of

information and communication infrastructure, smart grid

enables collection and processing of various types of

energy usage data through the Advanced Metering Infras-

tructure (AMI) consisting of different entities such as smart

meters, grid sensors, phasor measurement units (PMU),

fault detectors, etc. [122].

The AMI enables high speed two-way communication

between the smart meters and the utility back office which

allows periodic or on-demand energy consumption read-

ings as well as fine-grained energy related data. The fine-
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grained energy related data allow efficient and reliable

control of the electrical grid, but also enables demand

forecasting, fault detection, load balancing, dynamic pric-

ing, demand-response, etc. However, the two-way com-

munication has given rise to potential vulnerabilities

related to consumer privacy.

1.1 Motivation

Smart Grid relies on its broad range of grid-side and con-

sumer-side applications that enable numerous advantages

in terms of energy consumption data, pricing levels and

different information messages. These applications benefit

by inducing a consumer behaviour in a bid to reduce load

during peak time and conserve energy. However, this has

resulted in breach of consumer privacy i.e. consumer

profiling.

In 2009, the Federal Bureau of Investigation’s Cyber

intelligence investigated a widespread incident of power

theft related to the smart meters. It was found that the

miscreants hacked into the smart meters and reprogrammed

the power consumption settings, resulting in a loss of

$US400 million annually for the Puerto Rico utility [78].

Furthermore, in 2007, the Austin Energy/Austin Police

conducted a warrant less surveillance program where

consumer usage information was provided to find mari-

juana growing operations. Besides this, law enforcement

agencies might use the data as real-time surveillance [62].

For instance, by remotely accessing the meter or capturing

the metering data between the smart meter and the utility

back office, a malicious user may acquire access to energy

consumption data of a customer. This granular, fine-

grained, high frequency energy usage data can be easily

analyzed to derive a consumers way of living such as

working hours, meal hours, vacations, house occupancy,

and even living habits such as time when TV is watched.

Recent research in the Non-Intrusive Load Monitoring

(NILM) field has highlighted the use of energy usage data

to derive privacy-sensitive information about the customers

way of living [22, 32, 51, 63, 65, 87, 120]. Such privacy

issues and concerns have raised obstacles in the develop-

ment and adoption of the smart grid initiative in many

places in North America and Europe [33, 34, 140]. Hence,

addressing these privacy issues has become a key

requirement in the deployment of smart meters.

These aforementioned privacy concerns and issues have

resulted in many scholars proposing various privacy pre-

serving solutions for AMI recently. Therefore, we are

motivated to analyze and highlight the potential privacy

concerns, categorize and review the existing solutions and

summarize future research challenges in preserving user

privacy for AMI.

While various survey articles have been published in

smart grid security [9, 16, 44, 48, 60, 80, 106,

115, 130, 134, 138] only a few of them address the privacy

issues and concerns in depth. In this survey, we present and

review in detail more than 50 privacy preserving schemes

published between 2011 and 2017. Furthermore, we can

summarize the main contribution of this survey paper as

follows:

• We define privacy in-detail and its interweaving aspects

with consumer data.

• We present a data interaction diagram simplifying the

complex energy structure in terms of various intercon-

nected stakeholders, applications, infrastructure and its

highly sensitive consumer data.

• We provide a hierarchical diagram for classifications of

privacy preserving approaches and identify shortcom-

ings of existing state-of-art schemes in privacy pre-

serving approaches in a tabular form.

• We present a discussion of technological challenges

and open directions for future research.

The remainder of this paper is organized as follows. In

Sect. 2, we introduce the fundamental smart grid network

architecture. In Sect. 3, we present the AMI network

architecture. In Sects. 4 and 5, we categorize and evaluate

privacy threats and issues with the AMI data flow and use

cases. In Sect. 6, we present and analyze the existing pri-

vacy related work. In Sect. 7, we evaluate the AMI privacy

related work.

2 Smart Grid overview

Smart Grid also known as smart power grid or intelligent

grid is an enhanced electrical grid that collaborates with

information technologies for efficient power distribution

and transmission between the consumers and the suppliers.

With respect to traditional power systems, the smart grids

are a high-speed two-way communication of information

and electrical flow. The smart grid enables numerous smart

assets to interact in a network infrastructure with energy

management capabilities such as the AMI for the suppliers

and the consumers. More specifically, the smart grid can be

regarded as an electric system that uses information, two-

way, cyber-secure communication technologies, and com-

putational intelligence in an integrated fashion across

electricity generation, transmission, substations, distribu-

tion, and consumption to achieve a system that is clean,

safe, secure, reliable, resilient, efficient, and sustainable.

Some of the benefits and requirements of the smart grid

include [42, 54, 58, 96, 108]:

• Improved power reliability and quality.
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• Enhancing capacity and efficiency of existing electric

power networks.

• Improving resilience to disruption.

• Enabling predictive maintenance and self-healing

responses to system disturbances.

• Facilitating expanded deployment of renewable energy

sources.

• Accommodating distributed power sources.

• Automating maintenance and operation.

• Reducing greenhouse gas emissions by enabling elec-

tric vehicles and new power sources.

• Reducing oil consumption by reducing the need for

inefficient generation during peak usage periods.

• Enabling transition to plug-in electric vehicles and new

energy storage options.

• Increasing consumer choice.

To standardize the smart grid architecture and high-level

conceptual reference models, a collaborative efforts have

been introduced toward smart grid standardization involv-

ing noteworthy groups including: The Institute of Electrical

and Electronic Engineers (IEEE) P2030, The European

Commissions Mandate 490 (EU-M490) for Smart Grid

with the European Telecommunications Standards Institute

(ETSI), European Committee for Standardization (Comit

Europen Normalisation - CEN), the European Committee

for Electrotechnical Standardization (CENELEC) and the

Smart Grid Interoperability Panel (SGIP) [58]. In the fol-

lowing section, we will present the fundamental architec-

ture of smart grid, which is followed by in detail review for

the AMI and the data flow for AMI in smart grid.

According to NISTs conceptual model, and as shown in

Fig. 1, the smart grid consists of seven logical domains:

Bulk Generation, Transmission, Distribution, Customer,

Markets, Service Provider and Operations [108]. The

Generation, Transmission, Distribution and Customer

domain perform two-way information and electricity flow

while the Markets, Service Provider and Operations

domain focus on information gathering.

2.1 Customer domain

The Customer domain is where the generated electricity is

consumed and is considered as the main stakeholder in the

smart grid. The Customer domain is electrically connected

to the Distribution domain. It communicates with the

Distribution, Operations, Market, and the Service Provider

domains. Also, this domain enables the customers to use

privileges such as: managing their electricity accounts and

monitor the energy usage. In addition, the Customer

domain consists of two main components which are used as

a domain interface to connect with other domains using the

AMI or by internet as illustrated in Fig. 1. These two

components are: the utility meters and the Energy Service

Interface (ESI). Also, a number of customer applications

such as remote load control, monitoring the energy usage

and reading of non-energy meters are available in the

customer premise display unit to assist the customer in

managing the electricity account and to provide a secure

auditing/logging communication for the cyber security

purpose.
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2.2 Distribution domain

The second domain the smart grid is the Distribution

domain. The structure of the Distribution domain may vary

in different smart grid systems depending on the entire

smart grid infrastructure layout. As shown in Fig. 1, the

Distribution domain is connected electrically with Cus-

tomer domain and with the Transmission domain. The

actors, the structure and the communication level between

theses domains, contributes to the reliability of the Distri-

bution domain. With the help of the Operation domain, the

main role of the Distribution domain is to manage the real-

time power flow associated with the Market domain. Also,

the Market domain communicates with the Distribution

domain which affects the local consumption and the gen-

eration of the power.

2.3 Transmission domain

The Transmission domain is responsible for the transmis-

sion of the energy from the Generation domain to the

Distribution domain via multiple substations as appeared in

Fig. 1. The primary goal of Transmission domain is to

maintain the grid stability by balancing supply and demand

over the network. The Transmission domain may consist of

Distributed Energy Resources (DER) like power storage or

generation units. Furthermore, the Supervisory and Data

Acquisition System (SCADA) is used to monitor and

control the transmission network.

2.4 Operations domain

The Operation domain consists of Energy Management

Systems (EMS) and Distribution Management System

(DMS) which analyze and control the transmission and

distribution of energy supply respectively. The Operation

domain is responsible for some of the critical functions of

smart grid systems such as network control and monitoring,

fault management and system efficiency and reliability

analysis.

3 Advanced Metering Infrastructure (AMI)

With the evolution of the traditional electrical grid into the

Smart Grid, Automated Meter Reading (AMR) which

automatically collected the consumer data such as energy

consumption was replaced by AMI. This replacement

occurred due to the growing understanding of the benefits

of using the two-way interactions between the utility back

office and the consumers. The AMI is an integration of

many technologies that provides an intelligent connection

between consumers and utility back office [97]. Being an

integral part of the smart grid network, the role of AMI

network is to facilitate communication between the con-

sumer’s home devices such as meters and the utility center.

The AMI has been assigned with various responsibilities

such as periodic and on-demand energy usage readings,

real-time pricing, outage alerts, firmware updates and

configuration updates. In addition, AMI have security and

privacy requirements due to the periodic transfer of sen-

sitive information and command execution between the

customer devices and the utility center. Integrity and con-

fidentiality are the security objectives of high priority as

compared to availability and reliability. Therefore, the

AMI network design system should focus mainly on pro-

viding integrity and confidentiality.

3.1 AMI network infrastructure

To accommodate the AMI security requirements, the AMI

network infrastructure has been designed in a hierarchical

network architecture which includes Wide Area Network

(WAN) connects utility center to the headend, Neighbor-

hood Area Network(NAN) connects the headend to the

smart meters and Home Area Network (HAN) to connect

the home appliances with customer’s smart meter as shown

in Fig. 2.

3.1.1 Home Area Network (HAN)

The HAN comprises of all the smart appliances connected

through a dedicated network to the smart metering system.

HAN allows devices to be controlled and monitored using

various communication protocols such as ZigBee, Ether-

net, Wi-Fi, RFID, GPRS, PLC and Bluetooth. It empowers

consumers by managing peak electric demand, real-time

access to energy usage and monitoring device performance.

In addition, HAN consist of home automation and building

automation applications, which enables transfer of electri-

cal measurement data within the home premises. There-

fore, the communication requirements consist of low power

consumption and cost and secure communications.

3.1.2 Neighborhood Area Network (NAN)

The NAN connects the HAN with the Wide Area Network

(WAN). It offers monitoring, controlling and distribution

of electricity. The NAN aggregates vast amount of

metering data from thousands of meters located in different

HANs. The data is gathered at a data concentrator, which

acts as a gateway of the NAN. The NAN applications such

as smart metering, demand response requires communica-

tion technologies which can provide a data rate of 100

kbps–10 Mbps with large coverage distance (10 km).
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Different communication technologies are used in NAN

such as: ZigBee mesh networks, Wi-Fi mesh networks,

Power Line Communication (PLC), WiMAX, Cellular,

Digital Subscriber Line (DSL) and Coaxial Cable.

3.1.3 Wide Area Network (WAN)

The WAN communicates between the NAN and the utility

network. The WAN applications prioritize, control, moni-

toring and security of a large area of the system to assure

reliability and efficiency. Due to the large volume of data

transferred at a higher time frequency, a data rate of about

10 Mbps to 1 GB is required with a long coverage area of

upto 100 km. Commonly used communication methods are

optical communication, cellular, WiMAX and satellite

communications.

3.2 AMI metering infrastructure

To facilitate the communication between the customers

home devices and the utility center, AMI employ a number

of different metering devices to ensure the communication

flow of the energy related data. There are different AMI

metering devices as described in the following section.

3.2.1 Smart Meters (SM)

One of the key component in AMI is the smart meter.

Smart meters are solid state programmable devices that

communicate with the utility center in a bidirectional way

to transmit periodic or on-demand energy consumption

readings. The smart meters are located on a consumers

premise such as a home or a building, making it vulnerable

to physical tampering. The smart meter acts as a gateway

between the utility center and the HAN devices. In addition

to the periodic or on-demand usage readings, the smart

meter is performing a number of tasks such as: time-based

pricing, power quality monitoring, meter tampering, energy

theft detection, and communications with other intelligent

home devices [97].

3.2.2 Other metering infrastructure

Other non-metering infrastructure include [129]:

• The HAN gateway It is an interface which communi-

cates with the infrastructure between the Customer

domain and the Distribution domain of the Smart Grid.

• Customer premise display An interactive interface

which presents a customer with the energy usage and

pricing data of the premises.

• Energy management system The energy management

system is an interface to the utility billing and real time

pricing programs. It allows easy management of the

intelligent appliances enrolled in the pricing programs.

• Data collector A data collector aggregate data from

multiple sources, i.e. smart meters and forwards it to

the utility back office.

• Metering/billing/utility center The utility center resides

in the Operation domain and is responsible for the

metering and billing functionalities.
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• AMI headend The AMI Headend communicates with

other entities in the smart grid such as Meter Data

Management System (MDMS) and the AMI network.

The AMI Headend communicates bi-directionally with

the smart meters to retrieve data and remotely execute

commands, firmware updates, configuration updates,

control and diagnostics and meter reading retrials in

case of failure.

• Meter data management system (MDMS) The MDMS

store the meter data and makes it readily available for

other smart grid entities. The MDMS aggregates,

validates, estimates and permits editing of meter data,

such as energy usage, generation, and meter logs. An

MDMS stores this data for a limited amount of time

before it goes to a data warehouse and makes this data

available to authorized systems [129].

4 AMI security requirements

For decades, availability of power for a consumer has been

a priority requirement in the power grid system. With the

integration of information technologies and increased

customer participation in efficient energy usage, integrity

and confidentiality have become a critical requirement. The

NIST recognized six functional and priority areas for smart

grid, namely; Electric Transportation, Electric Storage,

Wide Area Situational Awareness, Demand-Response,

AMI, and Distribution Grid Management. Therefore, the

communication requirements and needs were vital to the

power grid system depending on their functionalities,

infrastructures, and architecture. Unlike traditional IT

networks, the AMI has unique security requirements

defined by the NISTs Smart Grid Interoperability Panel

(SGIP) and has released a detailed guideline for cyber

security in smart grid with three high-level security

objectives, widely known as the CIA triad [49].

The CIA triad consist of Confidentiality, Integrity and

Availability. Confidentiality ensures restricting unautho-

rized information access and disclosure in a bid to protect

personal privacy and proprietary information. For instance,

data confidentiality must prevent analysis of consumer’s

power usage patterns using Non-Intrusive Appliance Load

Monitoring algorithms which can reveal personal activities

and customer profiling [102, 141].

Integrity ensures protection against inappropriate infor-

mation tampering and destruction to achieve information

non-repetition and authenticity. Data integrity is a pillar of

information security for smart grid systems [101]. For

instance, modification of data transferred in the AMI from

utility to meter and vice versa, such as pricing information

and commands are limited to financial losses and improper

power utilization.

Availability of information is an important aspect in

smart grid [79]. The goal of availability is to ensure reliable

and timely access to and use of information by an appro-

priate actor. Based on the type of data communicated

between the smart grid systems, availability concerns can

vary. While dynamic pricing information and meter com-

mands are critical with respect to financial and operational

requirements and needs to be transferred in short intervals.

On the other hand, availability of meter data may not be as

critical as the latter can be collected at bigger intervals.

5 Privacy in AMI

The term privacy conveys numerous ideas such as privacy

of belongings, activities, decisional privacy, etc. The form

of privacy referred to in this section is the information

privacy. More precisely, information privacy concerns an

entitys control over the acquisition, disclosure and use of

personal information [73, 132]. The ability of an individual

to personally control their own information is considered a

key ethical and human rights challenge of the information

age [92, 116, 118]. Figure 3 shows the four major types of

privacy and are described in the following section [59]:

• Personal information A formal definition of personal

information is as follows Any information relating to an

individual, who can be identified, directly or indirectly,

by that information and in particular by reference to an

identification number or one or more factors specific to

his or her physical, physiological, mental, economic,

cultural, locational or social identity. Privacy of per-

sonal information involves the right to control when,

where, how, to whom, and to what extent an individual

share their personal information, as well as the right to

access personal information given to others, to correct

it, and to ensure it is safeguarded and disposed of

appropriately.

• Personal privacy The right to control the integrity of

ones own body. It covers such things as physical

requirements, health problems, and required medical

devices.

• Behavioural privacy The right of individuals to make

their own choices about what they do and to keep

Privacy

Personal 
Information

Behavioural 
Privacy

Personal
Privacy

Personal
Communication

Privacy

Fig. 3 Privacy in AMI
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certain personal behaviors from being shared with

others.

• Personal communications privacy The right to com-

municate without undue surveillance, monitoring, or

censorship.

5.1 AMI data environment

There are various types of data in an AMI environment

such as energy consumption data, command and control

information about the smart grid, and dynamic energy

pricing data. The huge amount of data in transit reflects the

adoption of AMI in our daily life and its global expansion.

Figure 4 shows four phases of key importance to the type

of data generated and collected by AMI in Smart Grids.

• Infrastructure As mentioned earlier in Sects. 3.1 and

3.2, the infrastructure actors are typically the data

generators and collectors in an AMI. Smart Meters are

accountable for measuring the real-time energy con-

sumption and communicating energy usage data from

the customer premises to utility companies using AMI

entities such as data collectors. The fine-grained sen-

sitive data may include customer account number,

consent or preferences, device IP address, location

information, meter IP address, third party and service

provider information, address, billing history, current

bill, and presence of distributed energy resources such

as on-site generation and storage [88]. Recent research

has shown that sensitive information such as types of

electrical home appliances used and their usage patterns

can be revealed by analyzing the data collected using

smart meters [65]. Recent trends in Plug-in Electric

Vehicles (PEV) have also increased the potential for

privacy concerns of consumer data.

• Usage The Usage defines the entities with an interest or

concern related to the data generated and collected in

the AMI. For instance, utilities can use the fine-grained

energy related data to predict load forecasting, dynamic

pricing, demand response etc. to efficiently use power

consumption. On the other hand, certain regulations

may require the utilities be transparent about energy

pricing i.e., disclosing information used to set up

energy pricing. This may lead to privacy concerns
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regarding consumer energy usage data which can

derive a consumers lifestyle pattern. Similarly, entities

such as law enforcement agencies, government and

malicious users may misuse the fine-grained data to

profile a customer and jeopardize his personal privacy.

• Analysis Utilities and service providers use modern

data analytics techniques to execute a wide range of

decision-making activities such as long-term load

forecasting, project financing, and efficient consumer

engagement. For example, analysis of the fine-grained

data collected by the AMI enable utilities to make

important decisions regarding grid optimization, exe-

cute demand response programs and provide time-of-

use billing with incentives to improve load balancing

during peak times. Some of the components of such

analysis include [95]:

– Meter Data Management System (MDMS)

– Consumer Information System (CIS), Billing sys-

tems and the Utility Website

– Outage Management System (OMS)

– Enterprise Resource Planning (ERP) Power Quality

Management

– Mobile Workforce Management (MWM)

– Geographic Information System (GIS)

– Transformer Load Management (TLM)

The analyzed data may be used by utilities and service

providers to benefit by building effective business

strategies and profiling consumer preferences.

• Applications One of the key application of AMI is its

facilitation of demand-response and dynamic energy

pricing. For instance, demand response enables utilities

to offer time based pricing such as real-time pricing,

time-of-use (TOU) pricing, critical peak pricing, and

variable peak pricing to reduce energy consumption

without sacrificing consumer satisfaction. Moreover,

prepaying of electricity through in-home device may

allow access to a customer’s financial information.

Other applications include DER, on-demand and peri-

odic energy usage readings, prepaid electricity.

Hence, with the amount of fine-grained data collected,

processed, and analyzed, the need for addressing the pri-

vacy requirements and concerns have become a foremost

priority.

5.2 AMI privacy use cases

The NIST report has highlighted over forty scenarios

relating to the privacy concerns in smart grid [59]. In this

literature survey, we have identified three key scenarios for

AMI with potential privacy and security threats that require

a high level of data privacy and integrity.

• Meter information The meter communicates periodic

meter readings, on-demand meter readings, meter

configurations and meter logs with the utility in a bi-

directional way. The AMI provides an infrastructure for

the customers domain devices and utility to communi-

cate this sensitive information. A meter sends an

automated power usage information through data

collectors or access points to the AMI headend system

periodically varying from minutes to hours. The AMI

headend forwards the sensitive information to the

MDMS which validates and processes the meter data.

The information communicated between the meter and

the utility has raised concerns regarding the integrity

and confidentiality of the customer data. By eavesdrop-

ping, relay and man-in-the-middle (MITM) attacks, a

malicious user may acquire access to sensitive infor-

mation such as energy usage pattern for knowledge

about peoples presence in their homes or may inject

falsified data respectively. Moreover, accumulation of

fine-granular metering data at the utility center can be

used to obtain useful statistics for business strategies

which would be a breach of customers privacy

[30, 40, 59, 70].

• Utility information The utility back office resides in the

Operation domain and is responsible for the various

operations such as sending operational commands to

meter, non-operational instructions, and batch instruc-

tions. The utility center sends the operational com-

mands to Meter Reading and Control (MRC). The

Meter Reading and Control (MRC) looks up for the

specific meter and forwards the commands to the AMI

headend system. The command is further sent to the

designated meter and executed. Operational commands

include configuration request, calibration request and

remote disconnect request. Similarly, the non-opera-

tional instructions such as meter calibration, geoloca-

tion of meter, meter battery management and

connectivity validation and multicasting batch instruc-

tions such as firmware updates and key management

updates are executed at the meter. The integrity of the

metering commands is important depending upon

whether the information is sensitive or personally

identifiable to the customer. For example, an attacker

may use a negative connectivity ping command to

trigger an OMS/Workforce Management System

request for onsite repairs which requires a customer

name and location to schedule a repair. Integrity of

meter commands is important to prevent malicious

intrusions and breach in privacy of sensitive customer

information [29, 30, 59].

• Real time pricing The integration of AMI into smart

grid has offered advanced capabilities such as demand

response to in-home devices. The primary goal is to
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provide customers with pricing information for current

and future periods depending upon different scenarios

such as TOU pricing and critical peak pricing. This has

enabled customer to understand and reduce their energy

consumption with real-time and historical energy data

available on the in-home displays. Moreover, other

advanced capabilities such as access to energy usage,

DER storage status, prepaying of electricity, and

changing energy plans have granted access to different

types of customer and energy related information

[28, 29, 59, 128].

Although availability is important to provide uninterrupted

access, integrity and confidentiality of metering data have a

larger impact on the smart grid objective and requirements.

Confidentiality and integrity of the sensitive information

communicated within the AMI, MDMS and the HAN are

critical to avoid potential privacy and legal consequences.

5.3 AMI privacy issues

The Privacy Impact Assessment (PIA) was a compre-

hensive process of determining the privacy, confidentiality

and the risk involved with data collection in the smart grid.

While the scope of the PIA may vary in the entire smart

grid, the Privacy subgroup conducted a PIA for consumer-

to-utility process focusing on the type of information col-

lected and how the information can be exploited. The PIA

identified and addressed the Consumer-to-Utility privacy

impact assessment with the following questions [59]:

• What personal information may be generated, stored,

transmitted, or maintained by components and entities

that are part of the smart grid?

• What are the new and unique types of privacy risks that

may be created by smart grid components and entities?

• What is the potential that existing laws, regulations, and

standards apply to the personal information collected

by, created within, and flowing through the smart grid

components?

• What could privacy practice standards look like for all

entities using the smart grid so that following them

could help to protect privacy and reduce associated

risks?

The privacy sub-group of the Cyber Security Working

Group reporting the following privacy concerns related to

the consumer information [59]:

• There is no clear understanding on the privacy issues of

the smart grid.

• There is a lack of standards, privacy policies, or

procedures by the entities involved in the smart grid

and the collection of information.

• Definitions of personally identifiable information are

inconsistent in the utility industry.

• Smart meters and distributed energy systems may

reveal information about residential consumers and

activities within the house.

• Roaming smart grid devices (e.g., electrical vehicle

recharging at other charging stations such as a friend’s

house) may generate more personal information.

With the integration of new technologies, functionalities,

and entities into the smart grid, it brings in various types of

data collection and data sharing capabilities of the power

usage within the grid network which has raised privacy

concerns. The recent developments in smart grid and

increased functionalities of smart appliances has increased

the granularity of the personal information involved.

Addressing the vulnerabilities that enable exploitation

through the cyber-physical infrastructure has become one

of the priority concerns.

With electricity providers having access to consumers’

energy usage patterns, the electric information can be used

to achieve unfair business strategies ungoverned by

appropriate privacy policies. An intruder may modify the

current power usage, which may result in providing more

energy than its required real-time consumption leading to

power wastage. Smart grid requires to collect imperative

data from different entities such as transformers, substa-

tions and control stations and utility back office for better

efficiency and control of power usage and dynamic pricing.

However, we focus on the issue of consumer information

privacy.

Availability of Smart grid data such as power usage

measurements and consumption reporting by individual

smart devices has proven to be a new way of obtaining

personal information. For example, specific smart appli-

ances and generators can be identified from the energy

patterns they generate in the power usage information

available at the meter when data collections occur at a

higher frequency, unlike traditional monthly smart meter

readings for billing purposes. Such data can help in pre-

dicting a complete profile of user activities in a consumer

premises and provide a basis for forecasting a premise

activity such as when the premise was unattended, work

schedules and other personal activities.

Moreover, several attacks such as eavesdropping, false

data injection, spoofing, etc. have been identified by

researchers that may threaten the smart grid operations

such as demand-response, load forecasting, automated

readings [7, 91, 112].

A typical cyber-physical system attack would involve

four steps [56]:

1. Identifying weaknesses in the cyber-infrastructure.

2. Intruding into the system and gaining privileges.
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3. Understand and gaining control of the control system.

4. Using the control system to launch physical attacks.

As the AMI networks are vulnerable to cyber-attacks,

understanding the potential vulnerabilities of these attacks

in AMI is important. Thus, we provide some of the privacy

concerns related to the AMI consumer data in the following

section and categorize them as shown in Fig. 5 [39, 56]:

• Consumer identity theft The combination of sensitive

data may be misused to impersonate a utility or

consumers, resulting in potentially severe threats.

Sensitive data may include customer identification,

name and address, financial information such as credit

card number and other energy related data such as

billing information.

• Determine personal behavioral patterns and activities

Energy consumption profiles/patterns in the fine-

grained metering data directly or indirectly reveal

types of activities and living habits which can be used

for home invasion etc.

• Determine PEVs data Use of PEVs on-board data

logistics to determine a customers location, driving

pattern and other electricity storage and consumption

data.

• Determine specific appliances used The appliances

used at specific times can be easily inferred by

adversaries if they can access the fine-grained con-

sumption data.

• Perform real-time surveillance The utilities collect the

fine-grained metering data for energy management and

value-added services development. If the time interval

becomes shorter, the data collection can be considered

as the real-time surveillance by potential adversaries.

• Activity censorship Residential activities could be

revealed by the fine-grained metering data. Such

information might be shared with local government,

law enforcement, or public media. Then, the residents

may be under risk of harassment, embarrassment, etc.

• In-home device portal exploitation The consumer uses

in-home device to purchase or prepay for electricity

based on dynamic pricing. The frequent collection of

data between the in-home device and the utility can

reveal sensitive information.

6 AMI privacy related works

The privacy concerns of the fine-grained sensitive energy

related data have motivated several researchers to propose

new privacy preserving approaches for the AMI. These

privacy preserving approaches are classified into two cat-

egories: Non-Cryptography based and Cryptography based

privacy preserving schemes as shown in Fig. 6 [85, 106].

Figure 7 refers to the recent trend in the number of

privacy preserving schemes published by researchers from

2011 to 2017. The graph shows the number of papers

published per year mainly focusing on preserving privacy

of the consumer’s energy consumption data. This renewed

attentiveness is due to recent country-wide roll outs of

smart meters and its privacy concerns [124].

6.1 Non-cryptographic approach

These approaches make clever use of non-cryptographic

techniques to obfuscate the actual energy usage of a con-

sumer. There are mainly two non-cryptographic
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approaches: Battery-based Load Hiding (BLH) and Phys-

ically Unclonable Functions (PUF) based.

As presented in Table 1, we have categorised the non-

cryptography approach into the following categories.

6.1.1 Battery-based load hiding (BLH)

The first category of non-cryptographic approach is Bat-

tery—based Load Hiding (BLH). The BLH is a well-

known approach which uses a rechargeable battery to

partially supply the energy demand to manipulate meter

reading in order to hide the actual energy consumption.

Several BLH methods or algorithms have been recently

proposed which include the Best Effort (BE) scheme [72],

the Non-Intrusive Load Levelling (NILL) scheme [93] and

the Lazy Stepping (LS) scheme [139] as shown in Table 1.

Koo et al. [75] proposed a Reinforcement Learning (RL)

based BLH approach to preserve privacy for high-fre-

quency and low frequency variation data. The RL–BLH

algorithm learns a decision policy for choosing pulse

magnitudes on the fly without prior knowledge of usage

pattern. In the proposed scheme, a Q-Learning method is

used to maximize the cost saving by charging the battery

when the time-of-use pricing is low. Moreover, the pro-

posed scheme uses artificially generated data to reduce the

time taken to converge to an optimal policy. However,

Reinforcement Learning do not estimate the actual input/

output characteristic but only the desired probabilistic

behaviour.

Chin et al. [26] proposed an energy management method

scheme. The scheme uses Model Predictive Controller

(MPC) with local energy storage devices to reduce the
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information leak and energy cost for a consumer. The MPC

is an advanced control technique used to minimize the

energy consumption cost in a dynamic pricing environment

and reduce information leak using mutual information.

This is done by predicting the effects of the controllers

actions on the statistics of the consumer load and that seen

by the grid using counting, and solving a Mixed-Integer

Quadratic Program problems for every new meter readings

available. The MPC also enables the batteries to charge

during a lower pricing period to accommodate the con-

sumer load during a higher pricing period. Although the

scheme reduces the information leakage, the reduction is

achieved at an expense of increased energy cost. Moreover

Table 1 Non-cryptographic privacy preserving schemes

Author Approach Method Pros Cons

Koo et al.

[75]

Reinforcement learning based algorithm Achieves consumer privacy

Energy cost saving

Estimate only the desired

probabilistic behaviour

Giaconi

et al. [55]

Renewable energy source (RES) with

battery

Minimize energy

consumption data leakage

Energy consumption leakage

Wasted energy

Zhao et al.

[143]

Multitasking-BLH-exp3 algorithm Efficient and effective

compared to Yang et al.

(2012)

Successfully assures

differential privacy

Requires smart appliances

connected to the battery

Backes and

Meiser

[10]

Integrated noise cascading method Retains differential privacy Effects battery life-time

Requires additional battery

Noise measured as energy

consumption

Sankar et al.

[105]

Distortion to quantify trade-off and

interference-aware reverse waterfilling to

achieve it

Novel utility privacy trade-

off

No algorithmic approach

provided for

implementation

Complex approach

Yang et al.

[139]

Battery-based

load hiding

(BLH)

Lazy stepping algorithm Prevents load change

recovery attacks

Lack differential privacy

Lack well defined privacy

measuring metrics

Less efficient compared to

Zhao et al. [143]

Only edge detection based

NILM method attacks

considered

McLaughlin

et al. [93]

Non-Intrusive load levelling algorithm Soothes energy usage

transitions sensed by the

smart meters

Load peak leakage

Limit appliance-level load

control

Lack differential privacy

Only edge detection based

NILM method attacks

considered

Kaloghdis

et al. [72]

Best effort and power mixing algorithm Achieves privacy in

individual home load

signature events

Load peak leakage

Lack differential privacy

Lack well defined privacy

measuring metrics

Only edge detection based

NILM method attacks

considered

Alam [6] Physical

unclonable

functions (PUF)

Physical unclonable functions (PUF) and

channel status information (CSI)

technique

Achieves CIA for fine-

grained sensitive data

Extra integration of PUF

component

Dependence on PUF for

integrity and authentication
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the scheme is computationally not scalable due to use of

prediction horizon and discretization levels of load.

Giaconi and Gunduz [55] proposed a scheme to address

the smart meter (SM) privacy concerns using renewable

energy source (RES) and a battery to partially hide the

consumption pattern from the utility provider. The pro-

posed schemes uses information theoretic approach to

minimize leakage of consumers energy consumption data

to the utility provider as well as the energy generated by

the RES. The scheme defines the privacy problem as a

Markov Decision Process (MDP) in order to optimize the

energy management policy using dynamic programming.

The energy management policy is responsible for

requesting the amount of energy required by the utility

provider at a specific time which results in information

leakage. Therefore, the information leakage rate problem is

presented in an additive form and is further solved

numerically to identify an optimal leakage rate for the

scenario where the utility provider knows the realization of

RES. However, renewable energy is wasted when the

battery is maximally charged or the required energy load is

smaller than the generated energy.

Zhao et al. [143] proposed a randomized Battery-based

Load Hiding (BLH) algorithm which ensures differential

privacy. They further proposed a Multitasking-BLH-Exp3

algorithm which uses binomial distribution to add noise.

The proposed algorithm adaptively updates based on the

three defined context which are: energy stored at the bat-

tery, batterys energy consumption and appliances energy

consumption. The algorithm also takes the constraints of

these three context into account while updating the distri-

bution. The scheme is more efficient and effective as

compared to existing BLH methods in [72, 93, 139].

However, such approach can only be applied with the help

of a battery, which are expensive, limited lifetime and

require considerable installation and maintenance costs

[107].

Backes and Meiser [10] proposed a battery based

method which hides sensitive power consumption infor-

mation by adding or subtracting noise, i.e. increasing or

decreasing power consumption. The scheme also proposed

an integrated noise generation via cascading method for

on-the-fly battery recharge to retain differential privacy

[36]. The noise generation via a cascading method uses the

amount of recharged energy as a function. This function is

made differentially private by adding noise. Although the

scheme achieves differential privacy, the noise generation

impacts the battery life, i.e., in practice the battery life gets

reduced. The author also assumes that a secondary battery

is used solely for recharge purpose, not known to the

adversary. Thus the proposed scheme requires installation

of two expensive batteries to achieve the desired privacy.

Moreover, the scheme considers the addition of the energy

consumption as an overall energy consumption, which is

measured by the smart meter.

Sankar et al. [105] presented with a new framework that

abstracts both the privacy and the utility requirements of

smart meter data using tools from information theory and a

hidden Markov model for the measurements. The proposed

scheme addresses the utility privacy tradeoff which results

from hiding of data for privacy purpose and sharing of data

with utility for a legitimate objective. The author uses the

encoding scheme based on rate distortion theory [15] to

determining the minimum rate at which the data can be

compressed for a desired distortion level to achieve mini-

mum information leakage. The method presents a general

approach to time series data perturbation using a battery

i.e., the data perturbation cannot be eliminated by averag-

ing. The scheme exposes high power, but less private

appliance information and filters out components with a

lower power to distortion threshold. However, this proposal

is only limited to a framework proposal and an algorithmic

approach is not detailed enough to implement it [130].

Yang et al. [139] proposed a novel stepping-based

framework which prevents precise load change recovery

attacks. In this scheme, four algorithms were implemented

in a stepping approach to make the value dimension more

coarse-grained via quantization. The authors proposed

mutual-information based measurements to evaluate the

algorithms in comparison with [72] and [93] (see Table 1).

McLaughlin et al. [93] proposed a Non-Intrusive Load

Levelling (NILL) method to combat consumer privacy

invasion using an in-residence battery. The NILL method

ensures privacy by removing most of the energy usage

transitions sensed by the smart meters by masking the

variance in load. These energy usage transitions are load

events that reflect appliance activities caused by often

short-lived heavy power loads. Thus the consumers energy

usage profiles revealed by NILL are futile to the NILM

algorithms. However, these schemes do not work during

peak voltages as explained in [139].

Kalogridis et al. [72] proposed a Best Effort scheme.

The proposed scheme uses a rechargeable battery in a

power management model. The scheme also proposed a

power mixing algorithm and evaluated its protection levels

using different privacy metrics, including relative entropy,

clustering classification and correlation/regression. With

regards to privacy, their technique manages to hide the

home load signature, which comprises of individual con-

sumption events. The rechargeable battery is used to fill the

difference between the consumers real energy consumption

and a constant meter load. Unfortunately, BE scheme may

expose the customers privacy due to the capacity con-

straints and charging-discharging rate of the batteries. In

the process of maintaining a constant load, a battery may

overcharge or cause the batterys state of charge to be low
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or discharge completely. This results in a notable load

change leaking the load-change information. Moreover, the

scheme is vulnerable to attacks that leak appliance events.

These attacks are based on peak load reduction and mod-

eration algorithms which are aimed for load shifting in

peak demands and on an event of a high demand load that

are beyond a batterys discharge rate to maintain a constant

meter load [139].

Thus, BLH approaches limit the ability of the smart grid

to provide appliance-level load control and the focus is

generally limited on preventing NILM attacks which

deduce individual device usage from the energy con-

sumption data with the help of load signature libraries

[35, 81, 86, 136]. The BLH are also expensive and frequent

charging and discharging reduces their lifespan, which

make it less than ideal to both the utility company and the

consumer.

6.1.2 Physically unclonable functions (PUF)

The second category of non-cryptography approach is the

Physically Unclonable Functions (PUF). PUF devices are

low-cost to manufacture and provide hardware based

authentication and integrity mechanism resistant to

impersonation attacks. The PUF is used to achieve con-

sumer privacy by using the one-way functions embodied in

the physical structure. PUFs generate random signatures

based on the complex physical characteristics. The main

properties of PUFs are unclonable and unpredictable.

Alam [6] proposed the use of hardware and physical

layer approach. The proposed approach uses PUF to

achieve integrity and authentication and Channel Status

Information (CSI) technique for confidentiality of fine-

grained sensitive data in Advanced Metering Infrastructure

(AMI). However, the proposed scheme focuses only on

data between the smart meter and the data collector and

requires extra integration of expensively manufactured

PUF component for integrity and authentication.

6.2 Cryptographic approach

The second approach in privacy is the Cryptographic

approach. The Cryptographic approach can be defined as a

way to limit the information that is leaked by the dis-

tributed computation to be the information that can be

learned from the designated output of the computation

[111]. The Cryptographic approach is smart grid is divided

into three categories: Data Obfuscation, Data

Anonymization, Data Aggregation Furthermore, from the

literature we have identified the Pros and Cons of the

current existing work using these cryptographic approaches

in the Tables 1, 2, 3 and 4 to help understand researchers,

the privacy preserving issues and concerns. In the

following sections, we discuss the above three crypto-

graphic approaches in detail.

6.2.1 Data obfuscation

Data obfuscation provides a unique opportunity to mask

the original energy consumption data by applying random

noise [131] or by using an appropriate algebraic transfor-

mation on the fine-grained energy usage data [19]. Table 2

lists a number of data obfuscation methods and highlights

their comparative advantages and disadvantages.

Guan et al. [61] proposed utility-privacy trade off

scheme based on random data obfuscation. In the proposed

scheme, random data-obfuscation generated by the Laplace

distribution [76] are used to mask the real-time data. The

scheme uses data aggregation using homomorphic

encryption and uploads the summation of the collected

smart meter data to the control center. In case of a mal-

functioned smart meter, there might be loss of data

resulting in wrong data aggregation. Therefore, the

scheme provides fault tolerance as the random obfuscation

values are mutually independent and obey Laplace distri-

bution. The proposed scheme balances the utility-privacy

trade off on two metrics namely; the signal-to-noise ratio to

quantify the level of utility and information entropy for

level of privacy. However, the proposed scheme adds a

Key Initialization Center (KIC) to the system model which

initializes keys to smart meters and the control centres and

has higher error rate than Privacy Preserving and Multi-

functional Health Data Aggregation with fault tolerance

(PPM–HAD) [64]. Moreover, in the proposed scheme, KIC

uses Paillier encryption to generate encryption parameters

for all the smart meters and the control center which is

computationally expensive.

Tonyali et al. [125] proposed a data obfuscation

approach to preserve consumer privacy and simultaneously

perform distribution state estimation. In this scheme, the

AMI network gateway computes the obfuscation vectors.

The gateway multiplies the vector with a random number

and distributes it to the smart meters using a shared key.

The proposed scheme provides consumer data privacy and

supports distributed state estimation and third-party billing.

The author has also assessed the impact of this approach

using metrics such as goodput delay and packet delivery

ratio. The proposed scheme assumes only a single gateway

which is not be feasible in large AMI network. On the other

hand, dividing the AMI network into multiple clusters of

smart meters and the distribution of obfuscation value in a

cluster of smart meters is not efficient in terms of com-

putation and transmission. Moreover the proposed

scheme uses multiple gateways to distribute obfuscation

value. Therefore a single compromised gateway may affect

the distribution of obfuscation values to other gateways and
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hence result in modification of the final obfuscated meter

readings. The scheme also does not consider the data fal-

sification/injection issues.

Beussink et al. [17] presented a data obfuscation

scheme for preserving consumer privacy in a 802.11s-

based smart grid AMI. In the proposed scheme, the gate-

way is responsible for distributing the obfuscation values to

the smart meters. The smart meter calculates its obfuscated

power measurements and sends it to the gateway. The

gateway verifies the measurement using the digital signa-

tures and the timestamp. The gateway forwards the mea-

surements to the utility center. The scheme supports

distribution state estimation and billing operations and also

achieves consumer privacy. However, the crossing of

obfuscation values from gateway to the smart meters

increases the traffic which increases the throughput and

end-to-end delay for the proposed scheme.

He et al. [69] proposed a distortion-based privacy-pre-

serving metering scheme that protects a customers privacy.

In this scheme, a random Gaussian noise is added to the

consumers energy consumption data. Further an efficient

algorithm is proposed to remove the random noise for

power demand analysis and prediction. The scheme also

supports privacy preserving billing operations. Although

the scheme conserves the computation abilities, it suffers

from difficulties in reconstructing original data and billing

inaccuracy [2].

Kim et al. [74] proposed a scheme which obfuscate

privacy-prone data using error-free state estimation tech-

nique. The scheme selects a lead meter which generates

obfuscation vectors and sends it to other meters. Each

meter then generates an obfuscation measurement which

are sent to a third party to generate state estimators. The

state estimators are further forwarded to the utility provider

to estimate distributed state estimation. The proposed

scheme requires more rigorous privacy guarantees and

statistical methods to determine the obfuscated meter datas

indistinguishable level. Moreover, the scheme requires bad

data detection analysis as there is significant meter data

modification and suffers additional communication

overheads.

6.2.2 Data anonymization

The second approach in cryptography privacy preserving

scheme is data anonymization. The key purpose of

anonymization is to separate the customers identity from

the energy consumption data [119, 142]. The idea is utili-

ties will receive enough information to compute required

information but not enough to associate the data with a

specific meter or a user. These approaches can also be

implemented using an additional trusted infrastructure [3].

Table 3 summarizes the Pros and Cons of the current

related work on the data anonymization approach.

Afrin and Mishra [3] proposed an anonymized authen-

tication framework that consists of an authentication

scheme to protect unauthorized data access and an

anonymization scheme to achieve privacy. The framework

is designed to prevent service providers from correlating

different types of data from a smart meter and avoid single

Table 2 Privacy preserving data obfuscation schemes

Author Method Pros Cons

Guan et al.

[61]

Utility privacy trade-off scheme based

on random data obfuscation

Balances the utility-privacy trade

off

Efficient in computational cost than

Han et al [64]

Addition of KDC

Higher error rate than Han et al [64]

Tonyali

et al.

[125]

Gateway based Provides consumer data privac

Supports distributed state

estimation and third party billing

Single gateway assumption

Smart Meters clustering and vector distribution

not efficient in terms of computation

Beussink

et al. [17]

Prevents eavesdropping

Supports distribution state

estimation and billing

End-to-end delay

Decreased throughput

No comparison with other schemes

He et al.

[69]

Use of random noise to distort data Supports power demand analysis

and prediction

Supports privacy preserving billing

operations

Original data reconstruction is difficulties

Lacks billing accuracy

Kim et al.

[74]

Error-free state estimation technique Supports distributed state

estimation

No additional energy management

facility

Less privacy guarantees

Additional communication overheads

No bad data detection analysis
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point of failure. The scheme achieves the desired level of

consumer privacy. However, the scheme has reduced single

point of failure. The trustworthiness concern of the

Anonymizer (AN), electricity supplier (ES) and the Data

Collector (DC) colluding has not be considered. Moreover,

Table 3 Privacy preserving data anonymization schemes

Author Method Pros Cons

Afrin and

Mishra [3]

Anonymized authentication

Framework

Different types of data service

Reduced single point of failure

Single point of failure

The trustworthiness concern of a

trusted third Party (TTP)

Afrin and

Mishra [4]

Collaborative Anonymity Set

Formation (CASF) method

Enhanced privacy against any internal

and external adversaries

Increase in additional communication

overhead with increase in smart

meters collaboration

Ambrosin

et al. [8]

Collaborative smart meter (SM) protocol

using a random multi-hop path

Guarantees authentication and integrity

Tamper proof device

Knowledge of the permanent IDs in

VC

Susceptible to man-ln-the-middle

(MITM) attack

Computationally intensive

Gong et al.

[57]

Privacy-preserving scheme for IDR Computes individual incentive-basec

rewards

Preserves consumer privacy

Consist of a semi-trusted Proxy, a

gateway or Trusted third party

(TTP) for anonymization

Bao and Chen

[13]

Pseudonym identity-based privacy-

preserving report approach

Efficient computation and

communication overhead

Insider attacks are not considered

He et al. [67] AKD scheme using ECC Efficient computational cost

Efficien communication cost

Resistant to various attacks

High assumptions are needed to

understand the implementation

Rahman et al.

[103]

IDR systems using cryptographic

primitives

Supports incentive-based demand

response (IDR)

No performance analysis

No comparison with other schemes

Diao et al.

[31]

Anonymous credentials using Camenisch–

Lysyanskaya (CL) signature

Authenticated energy consumption

readings

Ability of tracing faulty smart meter is

inefficient

Finster and

Baumgart

[46]

Peer-to-peer protocol allowing Anonymizing metering data

Supports distributed state estimation

Billing operations not considered

Finster and

Baumgart

[47]

Pseudonymous smart metering protocol

without trusted third party (TTP)the

metering data

Lightweight anonymity network Requires the absence of bidirectional

metering communication

Computationally expensive

Stegelmann

Kesdogan

[117]

K-Anonymity using pseudonyms Achieve K-anonymity of smart meters Reveals energy consumption readings

Cheung et al.

[24]

Anonymous credential using Blind

Signature

Distributed state estimation service

not considered

Chim et al.

[25]

Privacy-preserving authentication

scheme (PASS) scheme

Tamper resistant

HMAC based authentication

Packet filtering

Device dependent pseudo identities

generation

Transmission delay when under attack

Bohli et al.

[18]

Gaussian noise addition to metering data Energy consumption privacy preservation Inaccurate aggregated reading

Easy to recover actual readings

Smart Meters report erroneous outputs

Efthymiou

and

Kalogridis

[37]

Securely anonymizing data and using a

TTP Escrow mechanism for

authentication

Supports billing and distributed state

estimation using a TTP Escrow

mechanism for authentication

Single point of failure

The trustworthiness of the trusted

service

Data mining reveals usage patterns

Fhom et al.

[45]

User centric privacy protection scheme User control their privacy through a

privacy manager

Use of trusted third party as privacy

manager
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Table 4 Privacy preserving data aggregation schemes

Author Approach Method Pros Cons

Yan et al.

[137]

IAC protocol Efficient in terms of end-to-end delay and

packet loss

Malfunctioning node not considered

Energy efficiency issue not

considered

Bartoli

et al. [14]

Hop-By-

hop

Aggregation using the

concatenation operation

End-to-end security Additional overheads

No notable bandwidth saved

High drop rate in lossy channel

Tonyali

et al.

[126]

FHE or randomly generated

polynomial (secure MPC)

Preserves the actual meter readings Significant data size and high delay

Badra and

Zeadally

[11]

Symmetric homomorphic

encryption and key

exchange methods

Low transmission and message overheads

Resiliency against numerous attacks

High DH exchange and computation

time

Li et al.

[84]

PPMA scheme Guarantees the privacy of individual Dynamic pricing not supported

Malfunctioned smart meters not

considered

High complexity

Wang

[135]

Identity based data

aggregation protocol

Achieves identity based signature with an

aggregation

High performance cost

Ford et al.

[50]

Novel data aggregation

protocol for secure and

efficient communication

Supports time-of-use billing

Achieves desired confidentiality, integrity

and consumer privacy

Assumption of TTP and UC won’t

collude

He et al.

[68]

Lightweight data aggregation

using ECC

Thwarts internal attacks and external

attacks

Achieves confidentiality, integrity and

authentication

Higher computation cost compared to

[118] Consist of aggregator and a

trusted third party (TTP)

Power consumption readings known

by aggregator

Shen et al.

[113]

Efficient privacy-preserving

Cube-data aggregation

Efficient in terms of communication costs

and scalable

Higher computational cost

Additional pairing operation

Ferrag [43] Bilinear pairing identity-based

encryption

Achieves data and gateway privacy.

Prevents data replay, modifcation, man-

in-the-middle and Sybil attacks

False data injection attack not

considere Partially resilient to

collusion and diction attack

Bae et al.

[12]

PECA Privacy with user-specific DR services High computational overheads

High communication overheads

Abdallah

and Shen

[1]

End-to-end

encryption

Lightweight lattice-based

homomorphic cryptosystem

Prevents replay attacks and ensures data

integrity

High computational cost compared to

[125]

He et al.

[66]

Privacy preserving data

aggregation scheme against

internal attackers

Efficient computational cost Energy cost privacy not considered

Location privacy not considered

Lu et al.

[90]

Set-based aggregation

approach

More fine-grained data aggregation result

Efficient in terms of computational and

communication costs

Lacks data integrity

Tahir et al.

[121]

Set-based aggregation

approach with data integrity

Ensures data integrity Suffers additional overheads

Shi et al.

[114]

Diverse grouping-based

aggregation protocol

Supports data aggregation with error

detection

Complex implementation

Only malicious data mining attack is

considered

Li et al.

[82]

Dual-functional aggregation

scheme based on Lattice

Cryptographic technique

Efficient computational cost

Efficient in communication overhead

Only plaintext-attack considered

No comparison analysis with other

schemes

Internal attacks not considered

Chen et al.

[23]

PDAFT Supports fault tolerance Lacks computation cost analysis

High complexity

Cluster Computing (2019) 22:43–69 59

123



the proposed scheme does not consider any external pri-

vacy attacks.

Furthermore Afrin and Mishra [4] proposed four vari-

ants of a distributed anonymization method for smart

metering data privacy, referred to as the Collaborative

Anonymity Set Formation (CASF) method. The proposed

scheme adopts the network setup with an Anonymizer

(AN) as mentioned in [3] from Table 3. The Anonymizer

performs the anonymization and provides pseudonyms to

the smart meters. The proposed scheme provides enhanced

privacy against any internal and external adversaries.

However, in the proposed scheme, due to the CASF request

circulation and signing of pseudonym, additional commu-

nication overhead is incurred which increases with the

number of collaborating smart meters. Also, the scenario of

duplicate CSAF request is not considered.

Ambrosin et al [8] presented an anonymously fine-

grained meter data collection scheme. A collaborative

Smart Meter (SM) protocol anonymously transmits

metering data to a Meter Data Management System

(MDMS) using a random multi-hop path. The scheme also

guarantees authentication and integrity of metering data via

a group key using hash-based message authentication code

(HMAC) [77]. The metering data is encrypted using the

public key of the utility. Also, a tamper proof device is

equipped at each meter to secure the keys. The

scheme consists of Trusted Third Party (TTP) entity such

as a Verification Centre (VC) responsible for proper

functioning of Smart Meters (SM) which has knowledge of

the permanent IDs assigned to the Smart Meters (SM).

Also, the Smart Meters (SM) share symmetric keys using

Diffe-Hellman Key exchange [21] which is easily suscep-

tible to Man-In-The-Middle (MITM) attack and are com-

putationally intensive.

Gong et al. [57] proposed a privacy-preserving

scheme for Incentive-based Demand Response programs in

Smart Grid (SG). The proposed scheme enables the pro-

vider to compute individual incentive-based rewards while

simultaneously preserving consumer privacy by

anonymizing fine-grained energy usage data. The

scheme consist of a semi-trusted Proxy, a gateway or

Trusted Third Party (TTP) entity responsible for

anonymization of the metering data. Similarly, Tan et al.

[123] proposed a pseudonym-based privacy-preserving

scheme reassuring privacy, integrity, and authenticity in

AMI [44].

Bao and Chen [13] presented an efficient pseudonym

identity-based privacy-preserving report approach for the

control center to obtain the fine-grained usage data of all

the users while protecting user’s privacy. Data integrity is

achieved using hash tree-based mechanism. The scheme is

efficient in terms of computation and communication

overhead. However the scheme does not prevent insider

attacks.

He et al. [67] preserves consumer privacy in the pro-

posed AKD scheme using the elliptic curve cryptography.

The AKD scheme is efficient in terms of computation cost

and communication cost compared to the scheme presented

in [127].The AKD scheme is resistant to impersonation

attack, replay attack, modification attack, and man-in-the-

middle attack, but many assumptions are needed in order to

understand the implementation.

Rahman et al. [103] proposed a private and secure

bidding protocol for incentive-based demand-response

systems using cryptographic primitives to achieve anon-

ymity. However, the scheme lacks performance analysis

and comparison with other schemes.

Diao et al. [31] proposed a privacy preserving

scheme based on linkable anonymous credentials using

CamenischLysyanskaya (CL) signature [132]. Timely-

based credentials are used by the Smart Meter (SM) to

transmit energy consumption readings. The data collectors

Table 4 (continued)

Author Approach Method Pros Cons

Jia et al.

[71]

Data aggregation for time-

series data

Supports high frequency metering data Low frequency metering data not

supported

Lu et al.

[89]

EPPA Resist various threats

Less computation and communication

overhead

Unchanged session keys

Internal attacks not considered

User data exposed

Garcia and

Jacobs

[52]

Paillier encryption on

Additive Sharing

Notable leakage detection High communication overhead

Expensive encryption

Non-scalability
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use credentials from the center to verify the meter signa-

ture. The energy consumption readings are authenticated

using the CL signatures. However, the proposed

scheme does not have the ability to trace faulty smart meter

is an efficient way.

Finster and Baumgart [46] proposed a peer-to-peer

protocol allowing near real-time smart metering and

simultaneously preserving the consumer privacy. The pri-

vacy of consumers is preserved by anonymizing metering

data within small, peer-to-peer random groups of smart

meters. The proposed scheme does not consider billing

operations of Advanced Metering Infrastructure.

Finster and Baumgart [47] proposed a pseudonymous

smart metering protocol that does not require a Trusted

Third Party (TTP). The scheme enables authenticated and

anonymous pseudonyms and negates the risk of transmit-

ting pseudonymized data using a lightweight anonymity

network. However, the scheme requires unidirectional

communication i.e. a peer-to-peer overlay network with

probabilistic forwarding. Therefore the control center does

have the functionality of acknowledging or answering the

messages received. The algorithms require computationally

expensive public key operation for each round of data

transmission [3]. The scheme also lacks comparison on

communication overhead with other Trusted Third Party

(TTP) solutions.

Stegelmann and Kesdogan [117] proposed using a

trusted data aggregator to collect energy consumption data

from the Smart Meters (SM). K-anonymity is achieved

using pseudonyms which prevent service providers from

identifying specific meters. However, the individual energy

consumption readings become known to the data aggre-

gator, which can be compromised to access unprotected

data.

Cheung et al. [24] presented a privacy preserving

scheme using anonymous credential under the principle of

bling signature. In this scheme, a customer generates a set

of credentials and blinding factors which are signed by

control centers private key. When the customers need more

power, they send a credential to the control center anony-

mously and the control center will adjust the power for the

area where the customer is located. However, the dis-

tributed state estimation service is not taken into

consideration.

Chim et al. [25] presented a Privacy-preserving Authen-

tication Scheme (PASS) schemewhich addresses the privacy

concern using tamper-resistant device and pseudo identities.

The authentication process is carried out using of Hash-

based Message Authentication Code (HMAC). The genera-

tion of pseudo identities depends on the lifespan of the

tamper-resistant devices in each smart appliance. The

scheme also suffers transmission delay when under attack

due to the authentication and filtering of packets.

Bohli et al. [18] presented two design solutions to pro-

vide privacy with and without a Trusted Third Parties

(TTP). The proposed scheme adds Gaussian noise to each

smart meter in a bid to prevent from acquiring real energy

consumption patterns. The proposed scheme has several

issues such as a substantial amount of smart meters are

required to ensure the accurate aggregated reading and

protect the privacy of individuals, it is easy to recover true

readings because the Gaussian noise added to each smart

meter follows the same distribution and approximately half

of the smart meters report erroneous outputs [133].

Efthymiou and Kalogridis [37] proposed a scheme to

securely anonymizing frequent energy consumption data

sent by a smart meter using a third-party escrow mecha-

nism for authentication. Every Smart Meter (SM) has two

integrated pseudonyms for monthly billing data and fine-

grained data respectively. The Energy Supplier (ES)/Utility

Back Office is associated with the pseudonym for monthly

billing. The Trusted Third Party is well-known with the

association of the two pseudonym pair for authentication

purposes. The use of an escrow mechanism or TTP has

several problems such as single point of failure, the trust-

worthiness of the trusted service and the data can mined for

usage patterns because of the pseudonym ID.

Fhom et al. [45] proposed a user-centric privacy pro-

tection scheme which allows entities to control their pri-

vacy through a privacy manager who supports

pseudonymity and data masking. The user can control his

privacy preferences using a subset of infrastructure wide

security policies.

6.2.3 Data aggregation

The third approach in privacy preserving cryptographic

scheme is data aggregation. The basic idea behind data

aggregation technique is to use aggregators in the network

to concatenate and summarize data packets from several

devices using functions such as sum or average. Although

data aggregation reduces data transmission, it has privacy

issues as the aggregation operation requires access to

plaintext data. In Table 4, we have highlighted two com-

mon privacy preserving data aggregation methods namely:

Hop-By-Hop [99] and End-to-End Encryption [104].

Table 4: Start of privacy preserving data aggregation

schemes.The different research work outlined in Table 4 is

discussed below.

Hop-by-hop concatenation In Hop-by-Hop data aggre-

gation protocols, secure data aggregation is achieved in a

hop-by-hop manner. For instance, data aggregators

decrypts every message received from his neighbouring

nodes. Then an aggregation is performed according to an

aggregation function, and the aggregated result is encryp-

ted forwarding it to the next node or aggregator. In Hop-by-
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Hop data aggregation protocols, the aggregators share keys

with their neighbouring nodes. Therefore aggregators

cannot provide data confidentiality i.e. the sensitive data in

transit can be revealed at every intermediate nodes. Thus

hop-by-hop aggregation represents a weaker model to

preserve consumers data privacy [33, 98, 144].

Yan et al. [137] presented a new protocol, Integrated

Authentication and Confidentiality (IAC), to provide effi-

cient secure AMI communications. The scheme uses hop-

by-hop data aggregation and forwarding approach for

efficient system security by grouping intermediate nodes.

The scheme uses message authentication and encryption to

achieve data integrity and confidentiality. The scheme does

not consider the malfunctioning of intermediate nodes

which may jeopardize transmission. The proposed protocol

is also vulnerable to replay attack and forgery attack and

compromising of one node will risk the whole network as

the intermediate node share the same secret key.

Bartoli et al. [14] proposed a scheme to aggregate

encrypted packets at an aggregator by using the concate-

nation operation. In the proposed scheme, a shared key and

a Message Integrity Code (MIC) is used between the smart

meter and the utility to provide end-to-end security. The

second key is used by the aggregator and its parent node for

Hop-By-Hop authentication. Although the protocol pro-

vides end-to-end security, it incurs additional overheads.

The protocol does not save notable amount of data band-

width as the saving occurs only on the head count. Also,

due to the large size of the data packets, the drop rate is

higher in lossy channel.

End-to-end encryption In the end-to-end secure data

aggregation protocols, intermediate nodes aggregate data

directly without decrypting the received data. The inter-

mediate node apply an aggregation function on the data

without decryption as they do not have access to the keys

shared between the data originators. Aggregation of end-to-

end encrypted data is possible using homomorphic

encryption as the most commonly used encryption

scheme as shown in Table 4. Even though the data is

captured, an adversary cannot get the original information

[94, 98, 144].

Tonyali et al. [126] proposed a secured privacy pre-

serving protocol for smart metering systems. The proposed

protocol hides the sensitive metering data using Fully

Homomorphic Encryption (FHE) [53] with a randomly

generated polynomial (secure MPC). Instead of using a

single gateway for aggregation, the proposed scheme uses

multiple aggregating smart meters who aggregate data

received from a small group of meters. The aggregation at

smart meters is done using a packet reassembly protocol.

The encrypted data is aggregated using a hierarchical

manner and without revealing the actual meter readings.

However, FHE requires lattice-based cryptosystem which

is very complex. Thus implementing a lattice-based cryp-

tosystem requires significantly high and complex compu-

tations and ciphertext sizes.

Badra and Zeadally [11] proposed an efficient, light-

weight privacy-preserving data aggregation approach that

makes use of symmetric homomorphic encryption and

DiffieHellman (DH) or Elliptic Curve DiffieHellman

(ECDH) key exchange methods. Due to the implementa-

tion of DiffieHellman key exchange [21], the frequent key

update makes the scheme expensive in terms of overhead

and computation time.

Li et al. [84] proposed a privacy-preserving multi-subset

data aggregation scheme, PPMA, in smart grid. PPMA can

aggregate users electricity consumption data of different

ranges respectively, while guaranteeing the privacy of

individual users using the Paillier cryptosystem [100].

However, the scheme does not consider malfunctioned

smart meters and does not support dynamic pricing.

Wang [135] presented an identity-based data aggrega-

tion protocol for the smart grid, which prevents unautho-

rized reading of fine-grained data and its analysis. The

protocol is based on identity-based encryption and signa-

ture scheme [110], in which an additive homomorphic

identity-based encryption scheme is combined with an

identity-based signature scheme with an aggregation

property. The identity-based protocol is costly in terms of

performance because of the pairing operations that have to

be used to deal with the identities.

Ford et al. [50] proposed a protocol for secure and

efficient communication of energy consumption data. The

protocol supports time-of-use billing and data mining for

sensitive fine-grained measurements. Fine-grained data are

encrypted by the smart meter and anonymized by the utility

center before transmission to a trusted third party. The

protocol achieves desired confidentiality, integrity and

consumer privacy. It is assumed that the trusted third party

would not collude with the utility center.

He et al. [68] presented a lightweight data aggregation

scheme using Elliptic Curve Cryptography (ECC) to pre-

vent internal attacks on the smart grid. The proposed

scheme consist of three phases: initialization, registration

and aggregation. In the initialization phase, the aggregator

and the TTP together produce a blind factor that is used to

prevent internal attacks. The aggregator registers the smart

meter in the registration phase. The proposed scheme suf-

fers from higher computational cost as compared to [41].

Moreover the power consumption readings are known by

the aggregator.

Shen et al. [113] proposed an Efficient Privacy-Pre-

serving Cube-Data Aggregation Scheme [109]. The

schemes topology consist of a control center, two-level

gateways namely the district gateway and a residential

gateway and, the home area network. The multi-
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dimensional data is aggregated at the district gateway and

the residential gateway. The verification of data at user

level, residential gateway and the district gateway and the

aggregation at the two gateways contribute to high com-

putational cost as well as the Pailler cryptosystem. The

scheme also requires additional time-consuming pairing

operation.

Ferrag [43] used a bilinear pairing identity-based

encryption scheme to update certificates in smart grid

communications. The proposed scheme can achieve both

data and gateway privacy. Although, the scheme prevents

data replay, modification, man-in-the-middle and Sybil

attacks, it is partially resilient to collusion and dictionary

attack. Moreover, false data injection attack is not

considered.

Bae et al. [12] proposed a privacy preserving

scheme called PECA. The protocol assures user privacy as

well as user-specific services of Demand Response pro-

grams. The scheme divides the data part into two regions:

homomorphic and non-homomorphic parts. The homo-

morphic part is used for aggregation using three algo-

rithms: KeyGen, Encrypt and Decrypt, while the non-

homomorphic part is secured using a PKE [38]. The non-

homomorphic part is used to identify user-specific services.

The scheme incurs large overheads due to the two-time

encryption i.e. PKE and the homomorphic encryption.

Abdallah and Shen [1] presented a lightweight privacy-

preserving electricity consumption aggregation

scheme that exploits lightweight lattice-based homomor-

phic cryptosystem. In the proposed scheme, the smart

appliances are responsible for data aggregation and .The

data is sent to the control center via the smart meter and the

base station. The scheme prevents replay attacks and

ensures data integrity via verification by smart meter or the

base station. However, the scheme is has higher compu-

tational overhead compared to [5].

He et al. [66] proposed a data aggregation scheme that

can achieve authentication and privacy-preserving data

aggregation against internal attackers. Although the

scheme is efficient in terms of computational cost, the

energy cost and location privacy aspects are not

considered.

Lu et al. [90] proposed a set-based aggregation scheme.

The scheme divides the user data into two groups to

achieve a two-subset aggregation. The scheme allows the

control center to acquire more fine-grained data aggrega-

tion result for efficient controlling of the smart grid. The

scheme is efficient in terms of computational and com-

munication cost but lacks the ability to ensure data integ-

rity. Furthermore, Tahir et al. [121] extended set-based

aggregation approach by adding data integrity. The

scheme uses hash chaining technique to ensure data

integrity. However, hash chaining involves extra cost. The

scheme suffers from additional communication overhead

and aggregation time as compared to [90].

Shi et al. [114] proposed a diverse grouping-based

aggregation protocol with error detection called DG-

APED. The DG-APED protocol consists of three phases;

data encryption and reporting, aggregation with error

detection and dynamic join and leave. The scheme has

complex implementation and only malicious data mining

attack is considered.

Li et al. [82] proposed a privacy-preserving dual-func-

tional aggregation scheme based on lattice cryptographic

technique. The scheme consists of three phases; user report

generation, privacy-preserving report aggregation and

secure report reading. PDA is efficient in terms of com-

putation cost and communication overhead. The

scheme considers only plaintext-attack and does not have

any comparative analysis with other schemes.

Chen et al. [23] proposes a data aggregation

scheme with fault tolerance, called PDAFT. The

scheme use homomorphic Paillier encryption to encrypt

sensitive user data. The scheme lacks computation cost

analysis. Jai et al. [71] presented a data aggregation

scheme which could support efficient data aggregation for

time-series metering data without leaking the individual

value. The scheme consist of one aggregator which is the

utility center or the grid operator and number of users i.e.

smart meters. The scheme is based on meter reading

reports and privacy preserving aggregation. The

scheme divides the metering data for a given time slot into

various small shares. Each share is encrypted and for-

warded to the aggregator which aggregates the share to get

an output. The scheme considers HDA attack and the

aggregator to be untrusted. Therefore, binomial distribution

is used to add noise by each meter which results in

aggregator computing the noisy aggregation. However, the

scheme does not consider low frequency metering data.

The addition of noise and computation of noisy aggregated

meter readings, is not suitable for low frequency metering

data which require accurate readings. Therefore, the

scheme is suitable only for high frequency metering data.

Lu et al. [89] proposed a privacy-preserving aggregation

scheme for secure and efficient smart grid communication

from user to the data center. The scheme utilizes a multi-

dimensional data aggregation approach based on the

homomorphic Paillier cryptosystem. This scheme performs

data aggregation at the local gateway and uses batch ver-

ification for reducing authentication cost. However, the

scheme assumes that the session keys between the home

area network (HAN) users and the building area network

gateway (BG) are unchanged. Therefore, once an adversary

compromises the session keys, the adversary can decrypt

any previous response messages [83].
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Garcia and Jacobs [52] proposed a privacy preserving

protocol for E-meters using elementary cryptographic

operations. The protocol uses homomorphic properties of

Paillier encryption on the additive sharing of the E-meters

reading. Every E-meter helps to compute the share sum-

mation. Unfortunately, the protocol uses secret sharing, it

suffers from high communication overheads between the

meters and is expensive in terms of encryption. The pro-

tocol also suffers in non-scalability.

7 Conclusion and future works

The data collected in AMI plays an important role in

providing services such as the periodic billing, distributed

state estimation, real-time pricing, etc. These services dif-

fer in terms of the level of fine-grained data required to

perform these services, the level of metering frequency and

the accuracy of the data. While keeping in mind the privacy

use cases and the privacy preserving aspect of consumer

data, we have reviewed various non-cryptographic and

cryptographic solutions for ensuring consumer privacy in

AMI. According to our analysis and from the aforemen-

tioned survey papers, while some existing solutions tend to

fulfil these services and simultaneously ensure consumer

privacy, they suffer from several disadvantages. In the

following, we highlight some of these open problems.

7.1 Privacy preserving data

Some of the privacy preserving approaches rely on pro-

viding privacy while the data is in transit, while some hide

data at the smart meter level. Other approaches hide data

from the utility companies by using trusted third parties. As

mentioned in the non-cryptographic technique, the Battery-

based Load Hiding (BLH) is a good approach, but contains

severe problem which needs to be considered. The charg-

ing and discharging of the battery may conflict with the

dynamic price, capacity of the battery is not considered.

The existing solutions also lack the ability to provide dif-

ferential privacy and cost saving simultaneously.

The reliance of data anonymization methods on escrow

service or trusted third party services is not sufficient since

it requires the escrow service or the trusted third party

service to be trustworthy about the actual identities. While

distributed anonymization can reduce this dependency, the

distributed communication introduces extra overheads and

requires approaches to prevent other attacks.

One of the most common approaches in data aggrega-

tion is to use homomorphic encryption. Homomorphic

encryption are considered to be computationally expensive

and complex, and practically infeasible for smart grids. The

differential privacy and the error tolerance are two other

issues related to homomorphic encryption. However, a

development of computationally efficient fully homomor-

phic cryptosystem would result in greater acceptance.

Simple multi-party communication (SMPC) techniques

can be used to ensure that the aggregator learns only the

sum of the meter readings for distributed state estimation

and monitoring applications. However, SMPC suffer from

high computational cost and also requires the interactions

between the nodes in the computational phase. Reducing

the interaction cost could make it an attractive alternative.

7.2 AMI services

The AMI data in transit are used in providing services and

various operations such as periodic or on-demand metering

data, distributed state estimation and real-time pricing. The

existing non-cryptographic and cryptographic works men-

tioned in Sect. 6 focus on preserving consumer privacy in

one or two of the scenarios mentioned above. In most of

these approaches, they do not satisfy the desired require-

ments for these services. For instance, data anonymization

ensures consumer privacy by anonymizing the data to its

original source and providing an overall energy consump-

tion reading for the utility center. Although this approach

offers privacy and allows to perform distributed state

estimation, the utilities may have no access to provide

consumer specific services. Therefore, there is a need to

preserve both, the privacy of the consumer and the ability

to perform services efficiently.

7.3 Privacy tradeoff

There exists a tradeoff that derives from the conflict

between sharing metering data for operational purposes

such as distributed state estimation, demand-response,

billing etc. and withholding the data to ensure end-user

privacy. For instance, on one hand, a utility may require

energy usage data related to user privacy to perform bill-

ing, but preserving this data may affect normal billing

operations. Moreover the technique of adding noise to

preserve privacy can lead to an inaccurate aggregated

results which may reduce the utility of the data. Therefore,

it is essential to analyze and quantitatively measure these

tradeoffs in the context of the information leakage and the

utility retained.

Thus, from the literature survey analysis, there is a need

for a novel privacy preserving schemes that will address

the disadvantages of the existing work and also fulfil the

requirements of the services provided by the AMI.
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