
A novel task scheduling approach based on dynamic queues
and hybrid meta-heuristic algorithms for cloud computing
environment

Hicham Ben Alla1 • Said Ben Alla1 • Abdellah Touhafi2 • Abdellah Ezzati1

Received: 20 June 2017 / Revised: 15 March 2018 / Accepted: 9 May 2018 / Published online: 25 May 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Task scheduling is one of the most challenging aspects to improve the overall performance of cloud computing and

optimize cloud utilization and Quality of Service (QoS). This paper focuses on Task Scheduling optimization using a novel

approach based on Dynamic dispatch Queues (TSDQ) and hybrid meta-heuristic algorithms. We propose two hybrid meta-

heuristic algorithms, the first one using Fuzzy Logic with Particle Swarm Optimization algorithm (TSDQ-FLPSO), the

second one using Simulated Annealing with Particle Swarm Optimization algorithm (TSDQ-SAPSO). Several experiments

have been carried out based on an open source simulator (CloudSim) using synthetic and real data sets from real systems.

The experimental results demonstrate the effectiveness of the proposed approach and the optimal results is provided using

TSDQ-FLPSO compared to TSDQ-SAPSO and other existing scheduling algorithms especially in a high dimensional

problem. The TSDQ-FLPSO algorithm shows a great advantage in terms of waiting time, queue length, makespan, cost,

resource utilization, degree of imbalance, and load balancing.

Keywords Task scheduling � Cloud computing � Fuzzy logic � PSO � Dynamic queues � TSDQ-FLPSO � TSDQ-SAPSO

1 Introduction

Cloud computing is an emerging computing paradigm which

provides flexible and on-demand infrastructures, platforms

and software as services. NIST [1] defines Cloud Computing

as a model that refers to the concept of allowing users to

request a variety of services like storage, computing power,

applications at anytime, anywhere and in any quantity.

However, consumers use the services through the cloud

service delivery model and do not know where the services

are located in the infrastructure [2]. There are usually three

models of cloud: SaaS (Software as a Service), PaaS (Plat-

form as a Service) and IaaS (Infrastructure as a Service).

Scheduling is an important concept in cloud computing

and has attracted great attention. This process refers to the

concept of deciding the distribution of resources between

varieties of possible jobs/tasks. In other words, scheduling

handles the problem of which resources need to be

assigned to the received task. According to the needs of

optimal allocation of resources and achieving good quality

of service (QoS), these tasks are assigned to the appropriate

resources. In cloud computing, independent tasks from

different users may need to be handled and scheduled on

different virtual machines (VMs). Task scheduling is

known as an NP-complete problem due to the different

task’s characteristics and dynamic nature of heterogeneous

resources. In this process, the task scheduler receives the

tasks from the users and maps them to the available

resources, taking into consideration the task’s characteris-

tics and the resource’s parameters. Therefore, an efficient/

& Said Ben Alla

saidb_05@hotmail.com

Hicham Ben Alla

hich.benalla@gmail.com

Abdellah Touhafi

abdellah.touhafi@vub.ac.be

Abdellah Ezzati

abdezzati@gmail.com

1 LAVETE Laboratory, Mathematics and Computer Science

Department, Science and Technical Faculty, Hassan 1

University, 26000 Settat, Morocco

2 Department of Electronics and Informatics (ETRO), Vrije

Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

123

Cluster Computing (2018) 21:1797–1820
https://doi.org/10.1007/s10586-018-2811-x(012 3456789().,- volV)(0123456789().,-volV)

http://orcid.org/0000-0003-1089-9948
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2811-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2811-x&domain=pdf
https://doi.org/10.1007/s10586-018-2811-x

optimal task scheduling algorithm should consider the

system load balancing by achieving a good and efficient

utilization of resources with maximum profit and a high-

performance computing.

Recently, there is a huge interest regarding the use of

artificial intelligence techniques. Several meta-heuristic

algorithms have been applied to address the challenges of

tasks scheduling in cloud computing. Meta-heuristics can

be classified into population-based such as the particle

swarm optimization (PSO) [3] and trajectory-based such as

the simulated annealing (SA) [4]. In this paper, fuzzy logic

theory [5], PSO and SA algorithms are used to solve the

contribution problem.

Based on an investigation of the key characteristics and

properties of the scheduling problem in cloud computing

environment, the proposed work can determine good

approximate solutions for this complicated problem. In this

paper, we focus on task scheduling optimization using a

novel approach based on dynamic dispatch queues (TSDQ)

and two hybrid meta-heuristic algorithms. We extend and

improve our previous work [6] based on fuzzy logic theory

with particle swarm optimization algorithm (FLPSO), and

we present a new algorithm based on simulated annealing

with particle swarm optimization algorithm (SAPSO). We

have focused on the concept of hybridizing meta-heuristic

algorithms for several reasons: due to the NP complexity of

the considered problem, overcoming the inherent limitations

of single meta-heuristic, combining the advantages of these

algorithms in order to enhance the convergence as well as

the effectiveness of the solution space search. Several

experiments representing different scenarios were done to

compare both the efficiency and the effectiveness of our

proposed algorithms with other works from literature. The

simulation experiments were conducted with different set-

tings and using synthetic and real data sets from the parallel

workloads archive (PWA) [7]. The multi-objectives of the

considered performance optimization are as follow: the

waiting time, the makespan, the load balancing, the execu-

tion cost and the resources utilization. The rest of the paper

is organized as follows: in Sect. 2, relevant literatures are

briefly described. In Sect. 3, the background of the proposed

work is presented. Next, the scheduling problem and the

details of the proposed work are described in Sect. 4. The

experiment setup and simulation results are discussed in

Sect. 5. The paper gives a conclusion in Sect. 6.

2 Related works

Recently, there have been many studies in the literature

which have already discussed tasks scheduling in cloud

computing is order to achieve and ensure a good perfor-

mance and maximum utilization of resources on the basis

of users and cloud provider requirements. Meta-heuristics

have gained huge popularity and has been tried by many

researchers to solve the task scheduling problem. Most of

the researches in this field try to optimize some objectives

that can influence tasks scheduling process such as cost,

energy consumption, waiting time, deadline, and make-

span, etc. [8–21]. Moreover, queueing theory and multiple

queues concept are also applied in many studies and

frameworks [22–26]. In the following, we present a brief

description of some works.

Many research papers have been published on the tasks

scheduling based on PSO algorithm [11, 14, 18]. Guo et al.

[11] formulate a model for task scheduling and propose a

particle swarm optimization algorithm which is based on

small position value rule in order to minimize the cost of

the processing. By virtue of comparing the PSO algorithm

embedded in crossover and mutation and in the local

research with PSO algorithm, the results show the faster

convergence of the PSO algorithm in a large scale and

prove that is more suitable for cloud computing. In the

paper [14], Khalili et al. present a single objective PSO

algorithm for workload scheduling in cloud computing.

The PSO algorithm is combined with different inertia

weight strategies in order to minimize the makespan. The

result shows that the PSO combined with linearly

decreasing inertia weight (LDIW) achieves better perfor-

mance and improves the makespan. Al-Olimat et al. [18]

introduce a solution for improving the makespan and the

utilization of cloud resources through the use of PSO and

Random Inertia Weight (RIW). The experimental results

illustrate the maximization of resource utilization and

minimization of the makespan.

Various studies based on other meta-heuristic tech-

niques such as genetic algorithm (GA), ant colony opti-

mization (ACO) and cat swarm optimization (CSO) have

been proposed [13, 17, 19]. Keshk et al. [13] present a

cloud task scheduling policy based on ant colony opti-

mization algorithm for load balancing named MACOLB.

The main contribution of the proposed work is to balance

the system load while trying to minimize the makespan of a

given tasks set. The load balancing factor related to the job

finishing rate is proposed to improve the ability of the load

balancing. In the paper [17], Kaur et al. introduce a mod-

ified genetic algorithm for single user jobs in which the

fitness is developed to encourage the formation of solutions

to minimize the execution time and execution cost.

Experimental results show that under heavy loads, the

proposed algorithm shows a good performance. Gabi et al.

in the paper [19] propose an algorithm called orthogonal

Taguchi based-cat swarm optimization (OTB-CSO) to

minimize total task execution time. The proposed OTB-

CSO explored local search ability of Taguchi optimization

method to improve the speed of convergence and the

1798 Cluster Computing (2018) 21:1797–1820

123

quality of solution by achieving a minimum makespan. The

experimental results showed that OTB-CSO is effective to

optimize task scheduling and improve overall cloud com-

puting performance.

Some works have tried to improve the scheduling pro-

cess by using fuzzy logic theory [15, 16]. For example,

Nine et al. [15] propose an efficient dynamic fuzzy load

balancing algorithm based on fuzzy system. The authors

model the imprecise requirements of memory, bandwidth,

and disk space through the use of fuzzy logic. Then, an

efficient dynamic fuzzy load balancing algorithm is

designed which could efficiently predict the virtual

machine where the next job will be scheduled. The authors

claim that the proposed algorithm outperforms other

scheduling algorithms with respect to response time and

data center processing time.

Many other techniques have been proposed to improve

the scheduling performance [9, 20–22]. For example,

Gupta et al. [9] present an efficient task scheduling algo-

rithm for the multi-cloud environment which considers the

makespan and resource utilization. This algorithm catego-

rizes the complete set of tasks into three categories (long

tasks, medium tasks and small tasks) on the basis of a

threshold value which is calculated based on the execution

time of the tasks on different clouds. Dinesh et al. [20]

introduce a new approach called Scheduling of jobs and

Adaptive Resource Provisioning (SHARP) in cloud com-

puting. The SHARP approach embeds multiple criteria

decision analysis to preprocess the jobs, multiple attribute

job scheduling to prioritize the jobs and adaptive resource

provisioning to provide resources dynamically. The authors

claim that their approach can mitigate the number of jobs

violating their deadline in order to improve user satisfac-

tion. A multi-queue interlacing peak scheduling method is

proposed by Zuo et al. [22]. In this method, the tasks are

divided into three queues based on CPU intensive, I/O

intensive and Memory intensive. The resources are sorted

according to CPU utilization loads, I/O wait times, and

memory usage. Then, based on these queues, the tasks are

scheduled to the resources. The authors declare that their

method can balance loads and improve the effects of

resource allocation effectively. Zhang et al. [21] present a

cloud task scheduling framework based on a two-stage

strategy. The proposed work aims at maximizing tasks

scheduling performance and minimizing non reasonable

tasks allocation in clouds. In the first stage, a job classifier

is utilized to classify tasks based on historical scheduling

data. In the second stage, tasks are matched with concrete

VMs dynamically. Experimental results show that the

proposed work can improve the cloud’s scheduling per-

formance and achieve the load balancing of cloud

resources.

In all the works presented above, authors have proposed

different methods and techniques for the scheduling prob-

lem in cloud computing in various aspects. However, there

is still a pressing need for a flexible architecture and

scheduling approach that covers important requirements

which may have a great impact on system performance.

Moreover, some works do not consider tasks characteristics

and resources properties dynamically. Others focus on

optimizing the execution time or response time without

incorporating other performance measures such as load

balancing and resources utilization. Tasks waiting time is

an important performance metrics. However, very few

works have considered and discussed this parameter.

Another issue is identified relating to the fitness function

formulation which still needs to consider both tasks and

resources features. Furthermore, other methods are single

user type, thus, they are not suitable for general cloud

applications.

To address the above-mentioned issues, we design an

efficient approach based on dynamic queues and meta-

heuristic algorithms. We propose a new algorithm called

waiting time optimization based on PSO (WTO-PSO) to

optimize waiting time and decrease the queue length. Also,

we introduce the dynamic queue dispatcher which creates

multiple queues and dispatch the tasks among them. The

decision process to create an optimal number of queues is

based on the optimal result obtained in previous stage by

WTO-PSO, tasks and resources characteristics. Further, in

order to find an optimal mapping of tasks to VMs and

optimize the performance metrics, two hybrid algorithms

based on Fuzzy Logic and Simulated Annealing with PSO

are proposed. The proposed TSDQ-FLPSO and TSDQ-

SAPSO algorithms increase the convergence speed of PSO

and enhance the solution quality by not only incorporating

tasks characteristics and resources capabilities, but also

considering dynamic characteristics of the search space. To

achieve a good QoS for both cloud users and providers, the

proposed algorithms seek to minimize the makespan as

well as the execution cost, maximize the resources uti-

lization and provide a good load balancing. Moreover, we

have considered evaluating our proposed work using not

only synthetic data, but also different real data workloads

in order to strengthen the simulation results. Since the

workloads can be unpredictable, using different real

workloads to do experiments is extremely significant for

tasks scheduling problem in cloud computing.

Cluster Computing (2018) 21:1797–1820 1799

123

3 Background

3.1 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) algorithm is one of the

meta-heuristic algorithms which are used to solve opti-

mization problems and it was successfully used in several

single-objective optimization problems. This algorithm

was first proposed by Kennedy and Eberhart [3]. PSO is a

population based stochastic optimization technique based

on the social behaviors of birds flocking or fish schooling.

This algorithm consists of a set of potential solutions which

evolves to approach a convenient solution (or set of solu-

tions) for a problem. It is used to explore the search space

of a given problem to find the settings or the required

parameters to maximize a particular objective [27]. An

advantage of using the PSO algorithm is that it could be

implemented and applied easily to solve various function

optimization problems which can be treated as function

minimization or maximization problem.

PSO is a computational method that aims at optimizing

a problem by iteratively trying to improve a candidate

solution with regard to a given measure of quality. In this

algorithm, the population of the feasible potential solutions

of the optimization problem is often called a swarm. The

feasible potential solutions are called particles. The key

concept of PSO is initialized by creating a group of random

particles and then searches for optimum in the problem

space by updating generations. We consider that the search

space is d-dimensional. During all iterations, each particle

is updated by following two ‘‘best’’ values, pi called per-

sonal best (pbest), is the best position achieved so far by

particle i and pg called global best (gbest), is the best value

tracked by the particle swarm optimizer, obtained so far by

any particle in the population. After finding the two best

values, the particle updates its velocity and positions with

following Eqs. (1) and (2):

vtþ1
i ¼ x � vtid þ c1 � r1 � pti � xti

� �
þ c2 � r2 � ptg � xti

� �
ð1Þ

xtþ1
i ¼ xti þ vtþ1

i ð2Þ

where x is the inertia weight, vti and xti are the component

in dimension d of the ith particle velocity and position in

iteration t respectively. c1, c2 are acceleration coefficients

(learning factors). r1; r2 are random variables in the [0,1]

interval. The particle used to calculate pg depends on the

type of neighborhood selected. In the basic PSO either a

global (gbest) or local (lbest) neighborhood is used. In the

case of the local neighborhood, neighborhood is only

composed by a certain number of particles among the

whole population. The local neighborhood of a given

particle does not change during the iteration of the

algorithm. The parameters x, c1 and c2 must be selected

properly to increase and enhance the capabilities of PSO

algorithm [28]. The inertia weight is an important param-

eter for controlling and enhancing the PSO global search

capability by providing balance between exploration and

exploitation process, which means that the inertia weight

parameter can affects the overall performance of the

algorithm in finding a potential optimal solution in less

computing time. However, numerous strategies have been

introduced for adjusting the inertia weight and choosing the

proper value, such as chaotic inertia weight (CIW) [29],

The linearly decreasing inertia weight strategy (LDIW)

[30], random inertia weight (RIW) [31] and fuzzy particle

swarm optimization (FPSO) [32].

However, the original PSO version is not designed for

discrete function optimization problems but for continuous

function optimization. Therefore, in order to solve this

issue, a Binary version of PSO (BPSO) algorithm was

developed [33]. BPSO implements the decision model of a

particle based on discrete decision i.e., ‘‘true’’ or ‘‘false’’,

‘‘yes’’ or ‘‘no’’, etc. The main difference between binary

PSO and continuous PSO is that the velocities of particles

in binary version are defined as probabilities that a bit take

0 or 1 value. Thus, a velocity must be restricted within the

range [0,1]. The logistic sigmoid function of the particle

velocity is used as the probability distribution to identify

new particle position based on binary values.

The logistic sigmoid function shown in Eq. (3) is used to

limit the speed of the particles as the probability stays in

the range of [0,1]:

S vtþ1
i

� �
¼ 1

1þ e�vtþ1
i

ð3Þ

The Equation that updates the particle position is given in

(4):

xtþ1
i ¼ 1 if r3Sðvtþ1

i Þ
0 otherwise

�
ð4Þ

where r3 is a random factor in the [0,1] interval.

3.2 Simulated annealing and random inertia
weight

Simulated annealing (SA) is trajectory-based search algo-

rithm that belongs to the field of stochastic optimization

and meta-heuristics. It is based on probabilistic methods

that avoid being stuck at local optimal solution. This

technique is inspired by the process of annealing in met-

allurgy. SA is based on the idea of searching for feasible

solutions and converging to an optimal solution. The

strategy called random inertia weight (RIW) proposed in

[31] uses the idea of SA and the fitness of the particles to

design another inertia weight to improve the global search

1800 Cluster Computing (2018) 21:1797–1820

123

ability of PSO and to increase the probability of finding a

near-optimal solution in fewer iterations and computing

time. A cooling temperature was used in SA mechanism to

adjust the inertia weight according to certain probability so

as to be adapted to the complex condition. The simulated

annealing probability is expressed in (5):

p¼
1; min1� i�m f

t�k
i min1� i�m f

t
i

exp �min1� i�m f
t�k
i �min1� i�m f

t
i

Ti

� �
; min1� i�m f

t�k
i min1� i�m f

t
i

8
><

>:

ð5Þ

where the adaptive cooling temperature used to jump off

the local optimal solution is given in (6):

Tt ¼
f tavg

f tbest
� 1 ð6Þ

where Tt is the cooling temperature in the tth iteration, f tavg
is the average fitness value in the tth iteration using the

formula (7), f tbest is the current best fitness value, m is the

number of particles, and f ti is fitness value of the i particle

in the tth iteration.

f tavg ¼
1

m

Xm

i¼1

f ti ð7Þ

The inertia weight is defined in Eq. (8):

xt ¼
a1 þ

r

2:0
; p� r

a2 þ
r

2:0
; p\r

8
<

:
ð8Þ

where r is random number in range [0,1], a1; a2 are con-

stants in range [0,1], with a1 [a2. The RIW combined

with SA method is used in this work, as it can achieve best

convergence velocity and precision, and can help to keep

swarm variety.

3.3 Fuzzy logic theory

Fuzzy logic is a powerful mathematical tool to deal with

uncertainty and imprecision. Fuzzy Logic attempts to solve

problems by considering all available information and

making the best possible decision given the input. The

fuzzy logic theory is often applied by advanced trading

models/systems that are designed to react to the changing

markets. The fuzzy controller uses a form of quantification

of imprecise information or input fuzzy sets to generate an

inference scheme, which is based on a knowledge base of

control, a precise control force to be applied on the system.

The advantage of using the quantification is that the fuzzy

sets can be represented by linguistic expressions such as

low, medium or high. The linguistic expression of fuzzy

sets is known as term, and a collection of such terms

defines a library of fuzzy sets. Therefore, a fuzzy controller

converts the linguistic control strategy typically based on

expert knowledge into an automatic control strategy. The

logical controller has three main components as shown in

Fig. 1: (i) a Fuzzifier component where the information

(crisp set of input data) is quantified and converted to a

fuzzy set using fuzzy linguistic variables, fuzzy linguistic

terms and membership functions [34]. (ii) a fuzzy inference

engines component which converts the input fuzzy sets into

control force fuzzy sets through rules collected in the

knowledge base and aggregates the resulting fuzzy sets and

(iii) a Defuzzifier component where the output fuzzy

information is converted into a precise value.

4 Proposed architecture

4.1 Scheduling problem

Nowadays, much attention has been devoted to the task

scheduling as an interesting aspect of cloud computing, due

to the big overlap between the cloud provider requirements

and user preferences such as the quality of service, the

priority of users, the cost of services, etc. Thus, the user’s

satisfaction, optimization of profit for the providers and

other factors should be taken into consideration when

scheduling the tasks. Therefore, as this process is NP-

complete problem, an efficient approach should not only

optimize some objectives of cloud user and provider, but

also take into consideration the dynamic characteristics of

cloud computing environment.

Cloud computing is composed of a large number of

datacenters containing multiple physical machine (Host).

Each host runs several virtual machines (VMs) which are

responsible for executing user’s tasks with different QoS.

The scheduling process in cloud computing environment is

depicted in Fig. 2. Suppose that N users submit their tasks

i.e., T1; T2; . . .; TN to be scheduled to M Virtual Machines

i.e., VM1;VM2; . . .;VMM . We assume that tasks are mutu-

ally independent i.e., there is no precedence constraint

between tasks, they are not pre-emptive and they cannot be

interrupted. Moreover, these tasks have different charac-

teristics such as length, arrival time, burst time, deadline,

etc. We assume also that VMs are heterogeneous in terms

of CPU speed, RAM, bandwidth, etc. The cloud broker

Fig. 1 Fuzzy logic system architecture

Cluster Computing (2018) 21:1797–1820 1801

123

queries the cloud information service (CIS) to provide

information about the services required to execute the

received tasks, then schedule the tasks on the discovered

services. The choice of the tasks to be served is determined

by multiple factors and QoS requirements assured by the

broker. The cloud broker is the main component of tasks

scheduling process, which mediates negotiations between

user and provider and is responsible also for making

scheduling decisions of task to the specific and particular

resource. However, some issues need to be taken into

account. Firstly, the tasks submitted by users join the first

queue in the system and have to wait while the resources

are used. Consequently, this extends the queue length of

the system and increases the waiting time. However, this

queue has to be managed with an efficient method rather

than First Come First Served (FCFS) policy. Secondly,

when the provider handles the tasks, many parameters can

be considered as single objective optimization or multi-

objective simultaneously such as the makespan that has a

direct effect on utilization of resources. Therefore, a good

tasks scheduling approach should be designed and imple-

mented in the cloud broker to not only satisfy the QoS

constraints imposed by cloud users, but also perform good

load balancing among virtual machines in order to improve

the resources utilization and maximize the profit earned by

the cloud provider. Such approach should also have the

adaptability to adjust the scheduling process according to

dynamic scheduling requirements in cloud environment.

Based on the issues mentioned above, the proposed

approach is designed to optimize specific performance

metrics. Particularly, our goal is to minimize the makespan,

minimize the waiting time, maximize the resources uti-

lization, achieve better load balancing and reduce the cost

of demanded resources. A detailed description of these

parameters is given in the following subsection.

4.2 Measures of effectiveness

In the process of task scheduling, various parameters can

be considered as performance metrics such as makespan,

cost, flowtime, waiting time, tardiness, turnaround time,

throughput, load balancing, resource utilization, etc. In this

paper, the optimized performance metrics are defined as

follows:

(i) Makespan Indicate the time spent for executing all

tasks (i.e.: the finishing time of the last task). This

metric can be calculated by Eq. (9):

Makespan ¼ maxi2tasks FTif g ð9Þ

where FTi denotes the finishing time of task i [35].

(ii) Waiting time In this paper, the waiting time of task

refers to the time spent in the queue before

execution. The minimum value of waiting time

indicates the right/optimal order of the tasks that

can minimize the waiting time as well as the

queue length.

(iii) Degree of Imbalance (DI) This metric measures

the imbalance among VMs. The Degree of

Imbalance metric represents an important QoS

metric to show the distribution efficiency of tasks

and load balancing among the virtual machines.

DI is calculated using the following Eq. (10):

DI ¼ Tmax � Tmin

Tavg
ð10Þ

where Tmax, Tmin, Tavg are the maximum, mini-

mum and average total execution time of all VMs

respectively [36].

(iv) Cost: This metric is calculated using the following

formula (11):

Cost ¼
X

ETi j � CVMj
ð11Þ

where ETi j is the execution time of the task i on

VMj and CVMj
is the cost of VMj per unit time.

(v) Resource utilization (RU) The resource utilization

can be calculated by Eq. (12):

Average resource utilization ¼
PN

i¼1 TVMi

Makespan � N

ð12Þ

where TVMi
is the time taken by the VMi to finish

all tasks, and N is the number of resources [35].

4.3 Proposed approach

Cloud computing environment has seen a rapid and enor-

mous growth over the last few years. Notwithstanding, task

scheduling is considered as one of the challenges which

have to be solved. However, an efficient approach of tasks

scheduling remains a long-standing problem in terms of the

task’s characteristics, the cloud provider’s requirements,

user’s preferences and the type of optimization problem to

be solved. In general, the proposed approach stems from

the need to incorporate the solutions of these issues in

simplified design architecture. In fact, the motivation of our

work is the following: Firstly, tasks waiting time and

Fig. 2 Cloud scheduling environment

1802 Cluster Computing (2018) 21:1797–1820

123

waiting queue length are important indicators of quality of

services offered by cloud providers; therefore, it is very

important to consider these constraints when designing a

scheduling algorithm. However, traditional FCFS strategy

completely ignores these indicators. To overcome this

issue, a Waiting Time Optimization algorithm based on

PSO (WTO-PSO) is proposed. It aims at finding an optimal

solutions (optimal order) which can effectively minimize

the tasks waiting time and reduce the queue length. Sec-

ondly, we introduce a technique to dispatch the tasks

among dynamic queues. Dynamic queue dispatcher is

designed to analyze different characteristics of the search

space problem under consideration and to create an optimal

number of queues which can improve the ability of TSDQ-

SAPSO and TSDQ-FLPSO algorithms in the next step to

schedule tasks efficiently. Dynamic dispatch queues algo-

rithm makes its decision to create an optimal number of

queues and dispatch the tasks among them based on the

waiting time result, task lengths and resource computing

capabilities. Finally, two hybrid meta-heuristic algorithms

are proposed in order to find an optimal mapping of tasks to

resources and optimize the performance metrics under

consideration such as minimize the makespan, achieve a

good load balancing, reduce the execution cost and

increase the resources utilization. The proposed algorithm

combines the advantages of Fuzzy Logic and SA with PSO

algorithm. The idea was to use different algorithms to

enhance the convergence performance of PSO and to

improve the search ability as well as the solution quality.

Based on the observation that inertia weight is a crucial

parameter that affects the performance of PSO signifi-

cantly, both proposed algorithms adjust this parameter

dynamically in order to improve the search ability of PSO.

Moreover, after analyzing dynamic characteristics of the

problem in hand, the proposed solution based on fuzzy

model incorporates also tasks characteristics and resources

capacities. The main difference between these hybrid

algorithms lies in the way to adjust inertia weight and in

the fitness calculation model. Therefore, in TSDQ-SAPSO

algorithm, we adjusted the inertia weight parameter using

SA algorithm. However, in TSDQ-FLPSO algorithm,

Fuzzy Logic is applied not only to adjust the inertia weight,

but also to calculate fuzzy fitness which is modeled to

consider both tasks length and resources features such as

CPU speed, RAM memory, bandwidth and status of the

VM.

The main purpose of our contribution is to satisfy the

performance requirements, enhance the cloud provider’s

profit and provide a good QoS for users. Therefore, we

solve the task waiting time problem by managing the task

waiting queue using a meta-heuristic algorithm rather than

basic policy such as FCFS which completely ignores

waiting time and queue length. FCFS schedules the tasks

according to their arrival time and does not consider any

other factors that may have great impacts on system per-

formance. As a result, this will create a long queue in the

system which may be an indicator of slow service. More-

over, this can have a negative impact on user’s satisfaction

especially when the estimated waiting time or the queue

length is too long. Thus, we use an efficient algorithm

based on PSO algorithm to optimize the average waiting

time and to keep the task waiting queue in the system as

short as possible. As shown in Fig. 3, in the Task Waiting

Queue, the tasks are queued based on their arrival time.

Then, the waiting time optimization WTO-PSO algorithm

is applied to manage the batch of tasks T1, T2,…,Tn stored

in this queue. The proposed algorithm jointly considers two

issues to optimize the waiting time and reduce the queue

length. Therefore, it starts to calculate the waiting times of

all possible tasks sequences to get the best or optimal

sequence, then, return the minimum value, which refers to

the right order of the tasks that can minimize the waiting

time and reduce the queue length.

To optimize the waiting time, Eq. (13) is defined as the

objective function of this problem. Therefore, the fitness

function used to calculate the solution of each particle in

PSO algorithm, and examine the solutions to find an opti-

mal solution for the problem under consideration is given

in Eqs. (14) and (15).

objective function ¼ minimize Waiting Timef g ð13Þ
Fitness ¼ MinTWt ð14Þ

where the total waiting time of tasks TWT can be expressed

as follow:

TWT ¼ 1

n

Xn

i¼1

WTTask i ð15Þ

where WTTask i is the waiting time of task i and n is the

number of tasks in the queue.

When the minimum value is returned by WTO-PSO

algorithm, we ultimately get the best/optimal order of

tasks. Next, based on this result, the dynamic dispatch

queues algorithm TSDQ which manages the tasks auto-

matically is applied. The main goal of the TSDQ algorithm

is to create an optimal number of queues and dispatch the

received tasks to these queues based on an efficient

Fig. 3 The proposed approach model

Cluster Computing (2018) 21:1797–1820 1803

123

strategy. TSDQ algorithm calculates the best threshold

value and starts to calculate the sum of task length until the

threshold is reached, then create a new queue and dispatch

the appropriate tasks to this queue. Next, it restarts the

calculus again until it dispatches all arrived tasks. Conse-

quently, applying the TSDQ can create dynamic queues on

the basis of a decision threshold.

The pseudo code of the proposed work is presented as

Algorithm 1:

In the cloud, the resources and users requests can change

dynamically. Therefore, a scheduling algorithm should be

smart enough to make real-time responses to a changing

environment. Consequently, there is a need to develop an

approach in order to respond correctly to the QoS

requirements. Building upon these observations, we

decided to develop an intelligent algorithm that integrates

the concept of queueing model which is increasingly used

for the analysis and design of complex service systems.

The proposed strategies based on dynamic queues model is

designed to be able to analyze different characteristics of

the search space problem under consideration. Moreover, it

can change dynamically the numbers of needed queues and

the number of tasks they stored on the basis of tasks

characteristics and resources requirements and availability.

Thus, such representation allows not only to minimize the

search space, but also to partition it in order to improve the

search ability of the proposed TSDQ-SAPSO and TSDQ-

FLPSO algorithms in high-dimensional problem. In other

words, dynamic dispatch queues algorithm makes deci-

sions in the best possible ways to create the optimal

Algorithm 1. Pseudo-code of TSDQ-SAPSO/FLPSO Algorithm

1. create list of received tasks {Ltask} and determine all required parameters

2. create list of VMs {LVMs} and determine all required parameters

3. all tasks {Ltasks} are at first stored into Tasks Waiting Queue

4. Waiting Time Optimization based on PSO (WTO-PSO) is applied to get the
minimum waiting time. {Fitness solution of PSO: Equations (14,15) }

5. return the best obtained sequence (minimum waiting time) as Ltask'

6. initialize BestDecisionTreshold

7. for each task in Ltask' do

8. Calculate the Decision Distribution Threshold ({Ltask'},{LVMs})

9. end for

10. Return the best Decision Threshold as BestDecisionTreshold

11. Create an empty queue Q;

12. for each task in {Ltask'} do

13. if SumTaskLenght(task) < bestDecisionTreshold then

14. put the task into the queue Q

15. else

16. create the next queue Q

17. initialize SumTaskLenght

18. end if

19. end for

20. return list {LQueue:Q1,..QN} of all created queues

21. for each queue Q in {LQueue} do

22. FLPSO or SAPSO algorithm is applied to get the best fitness solution.

23. keep track of the best solution

24. end for

1804 Cluster Computing (2018) 21:1797–1820

123

number of queues which can guarantee to schedule the

tasks efficiently. For this reason, it exerts an intelligent

strategy so as to enforce that the optimization waiting time

result (the optimal sequence order which can reduce the

waiting time and decrease the queue length) is used. The

importance of this step when dispatching the tasks among

dynamic queues comes from the reason that the waiting

time of some tasks may be too long in these queues,

especially for those coming first, because their arrival order

is changed. Consequently, their completion time could be

significantly increased, which has negative impact on the

system’s performance and QoS constraints. Thus, to

overcome this problem, the decision made by dynamic

queue dispatcher takes into account also the obtained

waiting time result. This strategy helps to avoid perfor-

mance degradation when the number of tasks scales up. In

addition, it gives the proposed hybrid algorithms the flex-

ibility to analyze and explore the tasks set stored in these

queues in order to find the best mapping of tasks to the

computational resources.

After the TSDQ is finished, FLPSO or SAPSO algorithm

selects each queue and schedules the tasks to the appro-

priate resources. In fact, an efficient process of tasks

scheduling requires an optimal/efficient algorithm that

takes into consideration the tasks properties and resources

configuration. Therefore, the main objective of these

algorithms is to assign the most suitable resources for tasks

based on the computational capabilities of the resources

and the tasks characteristics. Our proposed TSDQ-SAPSO

and TSDQ-FLPSO algorithms use PSO as the main search

algorithm, while SA and Fuzzy Logic are used to improve

the fitness value and promote the convergence rate. There

are some reasons for using these algorithms. First, we need

an algorithm that is based on a population that can search

the entire cloud space for the problem in hand. Second, the

scheduling algorithm must be fast enough to adapt with

dynamic characteristics of cloud and must be able to con-

verge faster than other algorithms. Third, due to complex

structure of search space and critical role of inertia weight

in the convergence behavior of PSO, the standard PSO is

not performing well. That is why we combined PSO with

SA and Fuzzy Logic algorithms that are strong in local

searches and used practical rules to address these chal-

lenges. The two hybrid algorithms TSDQ-FLPSO and

TSDQ-SAPSO are used to minimize the makespan, mini-

mize the execution cost, achieve a good load balancing and

a high utilization of resources. The details of our

algorithms used in this paper are described in the next

subsections: in Sect. 4.3.1, we describe the SAPSO algo-

rithm based on Simulated Annealing and PSO, and in

Sect. 4.3.2 we explain the FLSPO algorithm based on

Fuzzy Logic and PSO.

4.3.1 SAPSO algorithm: simulated annealing and PSO
algorithms

In the following, we propose a new algorithm to address

the scheduling problem. For this, we develop a hybrid

algorithm named SAPSO based on PSO algorithm com-

bined with SA (Algorithm 2 and 3) to achieve the best

convergence speed of PSO algorithm. The Inertia weight is

one of the most critical factors affecting the convergence

performance of PSO. Therefore, SA algorithm is used to

adjust this factor based on certain probability to facilitate

jumping off local optimal solutions. In other words, SA

employs certain probability to avoid becoming trapped in a

local optimal and the search process can be controlled by

the cooling schedule. Thus, the hybrid algorithm SAPSO

combines the advantages of both algorithms to improve the

robustness and accuracy. In the proposed algorithm, an

initial swarm of N particles is randomly generated. Each

particle represents a possible solution for the task

scheduling problem. So, according to collective experi-

ences, the particle vectors will be iteratively modified in

order to improve their solution quality [37]. According to a

particular objective function, the group of particles moves

in the given problem space to search for an optimum

solution. The main objective in our case is to minimize the

makespan using Eq. (16). Therefore, the fitness value of

each particle defined in Eqs. (17) and (18) are used to

calculate the executions times of all possible tasks

sequences on each cloud resource.

Objective function ¼ minimize Makespanf g

¼ min Max uvm1
;uvm2

; . . .;uvmj
; . . .;uvmm

n oh i

ð16Þ

Fitness ¼ Max uvm1
; . . .;uvmm

	

withuvmj
¼

Xn

i¼0

dj taskið Þ
ð17Þ

djðtaskiÞ ¼
LðtaskiÞ

npej � Vmipsj

8i ¼ f1; 2; . . .; ng; j ¼ 1; 2; . . .;mf g
ð18Þ

Cluster Computing (2018) 21:1797–1820 1805

123

where is the total execution time of a set of tasks running

on vmj, djðtaskiÞ is the execution time of task i on vmj, n is

the number of tasks and m is the number of VM, LðtaskiÞ is
the length of a task in million instruction (MI), npej is the

number of processing elements and Vmipsj is the VM

speeds in million instructions per second (MIPS).

The pseudo-code of SAPSO is described in Algorithm 2.

This algorithm starts with initialization part which consists

of generating the swarm with random position and velocity.

Then successively updating velocity, position, local best and

global best solution in each iteration. The process ends when

the termination criteria are met: either the number of itera-

tions is exceeded or the optimal solution is obtained. We used

the SA algorithm for optimizing the inertia weight to speed

up the convergence of PSO towards the optimal solution.

The pseudo-code of simulated annealing method is

shown as follow:

Algorithm 2. Pseudo-code of SAPSO Algorithm

1. Initialize particles with random position and velocity

2. repeat

3. for each particle do

4. calculate the inertia weight using SA combined with RIW(Algorithm3)

5. calculate the fitness value using Equation (17)

6. if the fitness value is better than the best fitness

 value (pbest-old) then

7. set current value as the new pbest

8. end if

9. end for

10. select the particle with the best fitness value of all the particles as gbest

11. for each particle do

12. update particle velocity using Equation(1)

13. update particle position using Equation(4)

14. end for

15. until termination criterion is met

16. output the best solution obtained

1806 Cluster Computing (2018) 21:1797–1820

123

In this process, an initial S0 is generated and the tem-

perature is set at initial Temperature. Iterations are per-

formed until a certain stopping criterion is met. In each

step, SA considers some neighboring solution Snew of the

current solution S0 and decides between moving to Snew or

staying in S0 with some probability. The new solution

(Snew) will be accepted if it has a better fitness compared

to the current solution (S0). However, if the new solution is

worse than the current one, it will be accepted with the

probability showed in line 10 of the pseudo code. Once

thermal equilibrium is reached, the temperature is reduced

according with the annealing schedule. The main advan-

tage of the simulated annealing algorithm is its strong local

search ability to avoid falling into local optimal solution.

4.3.2 FLPSO algorithm: fuzzy Logic and PSO algorithm

In this section, the proposed algorithm FLPSO based on

fuzzy logic with PSO algorithm is discussed. Fuzzy logic

employs linguistic terms which deal with the causal rela-

tionship between input and output variables. Hence, the

approach makes it easier to handle and solve problems.

Therefore, our proposed algorithm is designed to adjust

dynamically the inertia weight and to enhance the fitness

function value using a mechanism based on fuzzy rules.

The fuzzy logic theory is used in two stages: Firstly, to

calculate the inertia weight parameter. A suitable value for

inertia weight provides the desired balance between the

global and local exploration ability of the swarm and,

consequently, improves the effectiveness of FLPSO algo-

rithm. Secondly, to calculate the fitness value of each

particle used in FLPSO algorithm to get a better chance to

find an optimal solution in a reasonable number of itera-

tions. Accordingly, using Fuzzy Logic controller aids

FLPSO to converge to the optimum solution based on the

fitness value defined by combining the satisfaction of task

requirements and VM capabilities. The flowchart of

FLPSO algorithm is described in Fig. 4.

Using FLPSO algorithm, we seek to assign the most

suitable resources to tasks based on the computational

capabilities of the resources and the tasks characteristics,

taking into account the performance metrics. Thus, we

need an intelligent algorithm which finds the best solution

based not only on the search space structure, but also on the

dynamic tasks and resources characteristics. Therefore,

fuzzy logic is applied to calculate the inertia weight w as an

output based on iteration parameter input. The inertia

weight was adaptively adjusted to increase the convergence

speed and accuracy of our algorithm. Moreover, Fuzzy

Logic is used to calculate the fitness value of particles

Algorithm 3. Pseudo-code of Simulated Annealing (SA)

1. S0 = Generate_initial_solution()

2. Sbest = S0

3. Temperature = Initialize_Temp()

4. repeat

5. repeat

6. Temperature = calculate_temperature()

7. Snew = Create_neighbor_solution(S0)

8. if (Fitness(Snew) < Fitness(S0)) then

9. Sbest = Snew

10. else if (rand() <
()() ()0Fitness S Fitness Snew

Tempe
−

)

11. S0 = Snew

12. end if

13. until thermal equilibrium is reached

14. decrease Temperature according with the annealing schedule;

15. until stopping criterion is met

16. return Sbest

Cluster Computing (2018) 21:1797–1820 1807

123

based on the following input parameters: task length, RAM

memory, CPU speed and status of the resource (i.e., the

occupancy rate of the VM). Therefore, the objective

function is to minimize the makespan which means to get

the best solution of all fitness values calculated by Fuzzy

Logic for all possible tasks sequences on cloud resources.

This means to find the most suitable resources to process

the tasks.

To get the output value of fuzzy logic, the fuzzy infer-

ence converts the input fuzzy sets into control force fuzzy

sets, through rules collected in the knowledge base.

In this paper, we use Mamdani [38] inference system to

derive the fuzzy outputs from the inputs fuzzy sets

according to the relation defined through fuzzy rules. We

construct the fuzzy inference system (FIS) for calculating

the inertia weight value with the rules shown in Table 1.

For the fitness value, the FIS is constructed with the rules

shown in Table 2.

The Fig. 5(a) and (b) show the fuzzy sets for the task

length and CPU speed of VM parameters. The

Fig. 6(a) and (b) show the fuzzy sets for the status of VM

and RAM parameters. The Fig. 7(a) and (b) show the fuzzy

Fig. 4 Flowchart of FLPSO

algorithm

1808 Cluster Computing (2018) 21:1797–1820

123

sets for the fitness value and Center of Gravity. The

Fig. 8(a) and (b) show the fuzzy sets for the inertia weight

and the iteration parameters. The implementation of FIS

and the creation of membership functions have been done

by using the JFuzzyLogic [39] library for the Fuzzification,

Defuzzification and for defining the rule blocks. This

library allows designing and developing FLCs according to

the standard IEC 61131 [40]. JFuzzyLogic offers a fully

functional and complete implementation of a FIS according

to this standard and provides a programming interface and

plug-into easily write and test code for fuzzy control

applications.

4.3.3 Running example of proposed approach

We now provide a simple example as shown in Tables 3

and 4(a) and (b) to illustrate the functionality of the pro-

posed work. Our example consists of a case where we

schedule 10 tasks. We compare our proposed algorithms

with the basic policy FCFS. This example is done under the

same settings presented in Table 6, except the change of

CPU speed of VMs to 500 MIPS. We assume that the cost

of using the full computing power of the resources is $20

per unit time. To simplify our example, we assume that

users send 10 tasks {T1, T2, T3,…T10} with the length and

burst time characteristics shown in Table 3. These tasks are

at first stored into the waiting time queue. Therefore, to

optimize the waiting time of tasks set, WTO-PSO algo-

rithm is applied as shown in Table 4(a). The best opti-

mization is obtained by WTO-PSO with minimum waiting

time which is 62.9 and the optimal order is T6-T7-T1-T3-

T4-T9-T2-T8-T5-T10. However, the waiting time result is

88.7 in the case of using FCFS which keep the same order

of tasks as in the waiting time queue. The best sequence

which can minimize the waiting time and decrease the

queue length is used now as an input of the next part.

Therefore, based on the optimal tasks sequence obtained,

the dynamic dispatch queues algorithm is applied in order

to dispatch these tasks among dynamic queues. The opti-

mal number of queues in the case of TSDQ-FLPSO is 5

queues and 4 queues are created in the case of TSDQ-

SAPSO. The difference in the dispatching queues strategy

Table 1 Fuzzy rules for

calculating the inertia weight
Iteration Result

Low High

Medium Medium

High Low

Table 2 Fuzzy rules for calculating the fitness value

Task length CPU speed RAM Status of VM Result

Low Low Low Low High

Low Low Medium Low High

Low Medium Low Medium Medium

Low Medium Medium High Medium

Low Medium High Medium Medium

Low High Medium Low High

Low High Medium Medium Medium

Low High High High Low

Medium Low Low Low High

Medium Low Medium High Low

Medium Low High Medium Medium

Medium Medium Medium Medium Medium

Medium Medium Medium Low High

Medium High Low Low High

Medium High Medium High Low

Medium High Low Medium Medium

High Low Low Low Medium

High Low Medium Medium Low

High Low High High Low

High Medium Low Low High

High Medium Medium Medium Medium

High Medium Medium High Low

High High Low Low High

High High High Medium Medium

Fig. 5 a Fuzzy sets for task

length parameter. b Fuzzy sets

for CPU parameter

Cluster Computing (2018) 21:1797–1820 1809

123

is shown clearly in Table 4(b). For example, the first queue

Q1 in TSDQ-FLPSO store only one tasks (T6) which is the

first one in task sequence processed but TSDQ-SAPSO

store two tasks (T6 and T7) in the first queue Q1. This

process continues until it dispatches all arrived tasks. After

the dynamic dispatch queues process is finished, FLPSO/

SAPSO algorithm selects each queue and schedules the

tasks to the appropriate resources. The final results show

different performance metrics of our algorithms compared

to FCFS. We can detect that there is a very slight difference

between the proposed algorithms TSDQ-FLPSO and

TSDQ-SAPSO. Both proposed algorithms can achieve

better results than FCFS in terms of waiting time,

makespan, execution cost, Degree of imbalance (DI) and

Resource Utilization (RU). Finally, we conclude that the

proposed algorithms achieve the goal of scheduling opti-

mization and exhibit favorable performance.

5 Performance evaluation of simulation
results

5.1 Simulation environment

In order to evaluate the effectiveness of the proposed

approaches TSDQ-SAPSO and TSDQ-FLPSO, the

Fig. 6 a Fuzzy sets for status of

VM parameter. b Fuzzy sets for

RAM of VM parameter

Fig. 7 a Fuzzy sets for fitness

value. b Center of gravity of

fitness value

Fig. 8 a Fuzzy sets for inertia

value. b Fuzzy sets for Iteration

value

1810 Cluster Computing (2018) 21:1797–1820

123

performance evaluations and the comparison with other

algorithms were implemented on the CloudSim Cloud

Simulator [41]. This simulator allows modeling and sim-

ulating extensible clouds, and testing the performance of

developed application service in a controlled environment.

CloudSim toolkit supports modeling of cloud system

components such as cloud data centers, users, virtual

machines and resource provisioning policies. Cloudsim

gives several functionalities such as generating a different

workload with different scenarios and performing robust

tests based on the custom configurations.

5.2 Experimental results

Several experiments with different parameters settings

were performed to evaluate the efficiency of our work.

Therefore, to objectively assess the performance of the

proposed algorithms, we have compared our algorithms

TSDQ-SAPSO and TSDQ-FLPSO with other works pro-

posed in [13, 14, 17, 18]. The evaluation has been done

using synthetic and real data sets from workload data

generated from real systems available from the parallel

workload archive (PWA) [7]. We have evaluated the pro-

posed work as following:

(1) First experiment: FCFS versus WTO-PSO: We

compare our algorithm WTO-PSO with FCFS in

terms of waiting time.

(2) Second experiment: TSDQ-SAPSO versus TSDQ-

FLPSO versus FCFS versus PSO-LDIW versus

PSO-RIW: In this experiment, we compare our

algorithms with PSO-LDIW [14], PSO-RIW [18]

and FCFS in terms of average makespan.

(3) Third experiment: TSDQ-SAPSO versus TSDQ-

FLPSO versus SGA versus MGA: In this experi-

ment, the simulation results of our proposed algo-

rithms is compared with SGA and MGA results

reported in literature [17] in terms of average

makespan and execution cost.

(4) Fourth experiment: TSDQ-SAPSO versus TSDQ-

FLPSO versus MACOLB: we compare our algo-

rithms results with MACOLB results reported in

literature [13] in terms of average makespan and

average degree of imbalance.

(5) Fifth experiment: TSDQ-FLPSO versus TSDQ-

SAPSO versus SA_PSO versus PSO: In the last

experiment, we test TSDQ–FLPSO, TSDQ-SAPSO,

SA_PSO (Simulated Annealing combined with PSO)

and PSO in terms of makespan, degree of imbalance,

resource utilization and cost. Finally, we compare

TSDQ–FLPSO and TSDQ-SAPSO in terms of

average number of dynamic queues created during

the execution of the algorithms in this experiment.

5.2.1 First experiment: FCFS versus WTO-PSO

In the first experiment, we compared the proposed algo-

rithm WTO-PSO with FCFS algorithm. The purpose of this

simulation is to find the best minimum waiting time

sequence in the tasks waiting queue. To illustrate the case,

we provide a simple example. We assume that 3 inde-

pendent tasks (T1, T2, T3) are submitted by users to be

handled by a provider and are at first stored into waiting

time queue. In this simulation, 10 experiments have been

done where the burst time has changed for each task in

these experiments. The parameter settings of WTO-PSO

are described in Table 7.

Table 5 shows the comparison results in terms of the

waiting time of each sequence and the total average wait-

ing time. For example, in the last Serial No. 10, there are

three tasks (T1,T2,T3) which require processing time

(16,10,14) respectively. Using FCFS algorithm, the waiting

time in this case is 14,00. However, by using WTO-PSO

algorithm which has obtained the T2,T3,T1 sequence

which is the best solution that gives the minimum waiting

time, the result becomes 11.33 which is less than using

FCFS algorithm. The results show that WTO-PSO can

optimize the waiting time of different serials and reduce

the total average waiting time. In the case of FCFS algo-

rithm, it is shown clearly that it cannot provide an opti-

mized performance which consequently leads to long

waiting times and long waiting queue, particularly when

the number of tasks is very large. This important difference

between the two algorithms shows that managing the tasks

waiting queue by WTO-PSO instead of FCFS can effec-

tively minimize the waiting time and decrease the queue

length. As a result, this can improve the system perfor-

mance significantly, especially when the number of tasks

scales up in high dimensional problem.

Table 3 Tasks characteristics

Task ID Task burst time Task length

1 10 800

2 30 100

3 13 3500

4 19 3000

5 44 2326

6 4 3300

7 8 4000

8 36 5000

9 20 6000

10 50 7000

Cluster Computing (2018) 21:1797–1820 1811

123

Figure 9 shows that the proposed algorithm WTO-PSO

outperforms FCFS algorithm. Our algorithm can effec-

tively overcome the shortcoming of FCFS and give an

optimized solution, which increases speed and efficiency of

managing the task waiting queue by minimizing the tasks

waiting time spent in the queue, reducing the queue length

and keeping it as short as possible.

5.2.2 Second experiment: TSDQ-SAPSO versus TSDQ-FLPSO
versus PSO-LDIW versus PSO-RIW versus FCFS

For the second experiment, we compare TSDQ-SAPSO

and TSDQ-FLPSO algorithms with PSO-LDIW [14], PSO-

RIW [18] and FCFS in terms of makespan. In this simu-

lation, the standard formatted workload of a High-Perfor-

mance Computing Center North called (HPC2N) log was

Table 4 Comparison results of the running example

(a)

(b)

 Waiting Time Queue
Waiting Time Optimization Algorithm

Waiting
time

Optimal order

TSDQ-
FLPSO

Algorithm

62.9

TSDQ-
SAPSO

Algorithm

62.9

FCFS
Algorithm

88.7

Waiting Time
Optimization Queue

Dynamic Dispatch
Queues Algorithm

Performance metrics

Fitness
value Makespan DI RU Cost

TSDQ-
FLPSO

Algorithm
1.596 14.09 0.92 82.1% $281,8

TSDQ-
SAPSO

Algorithm
1.701 14.15 0.93 82 % $283

FCFS
Algorithm

--- --- 18.75 1.09 75% $375

1812 Cluster Computing (2018) 21:1797–1820

123

used to generate different workloads [42]. This log contains

three and a half years’ worth of accounting records from

the High-Performance Computing Center North in Sweden.

HPC2N is a joint operation with several universities and

facilities, and containing 527,371 jobs. The simulation has

been done based on the parameter settings of PSO-LDIW

[14] and PSO-RIW [18] described in Tables 6 and 7.

In Fig. 10, performances were compared in terms of

average makespan for different numbers of tasks. The

results obtained show that the makespan of the proposed

algorithms TSDQ-SAPSO and TSDQ-FLPSO is better and

increases more slowly than the other algorithms. It can be

seen that the proposed algorithms take less time to execute

all tasks and outperform PSO-LDIW and PSO-RIW in

terms of both quality of solutions and the convergence

speed. From the figure, we can see that, when the search

space expands, both proposed algorithms show more sta-

bility. But in the case of PSO-LDIW and PSO-RIW algo-

rithms, the chance of finding an improved optimal solution

becomes harder. TSDQ-FLPSO algorithm shows good

convergence characteristics. As a result, the makespan is

reduced significantly especially when the number of tasks

increases. This is because, as mentioned earlier, based on

dynamic queues and Fuzzy Logic in two stages, TSDQ-

FLPSO algorithm assigns tasks to the most suitable re-

sources by taking into consideration task length and VM

capabilities such as CPU speed, occupancy rate, RAM and

bandwidth. This helps find an optimal mapping and com-

plete tasks in a shorter time. Besides, in every iteration

while searching for the optimum, the algorithm assesses the

solutions returned to choose the optimal one. In addition, as

the VM status or the occupancy rate of the VM is one of the

input parameters of the proposed algorithm, all this gives

TSDQ-FLPSO the ability not only to make the best deci-

sion to assign the most suitable resources to the received

tasks, but also to keep the resources as busy as possible.

Table 5 Results comparison of

WTO-PSO and FCFS
Serial no. Burst time of tasks FCFS WTO-PSO

T1 T2 T3

1 6 4 8 5.33 4.67

2 34 12 20 26.67 14.67

3 43 15 30 33.67 20.00

4 24 25 10 24.33 24.33

5 13 5 20 10.33 7.67

6 30 12 18 24.00 14.00

7 40 20 33 33.33 24.33

8 14 24 21 17.33 16.33

9 8 3 14 6.33 4.67

10 16 10 14 14.00 11.33

Total average waiting time 195.33 142.00

Fig. 9 Average waiting time using FCFS and WTO-PSO

Table 6 Resource parameters

Parameters Values

Datacenter

Number of datacenters 1

Number of hosts 2

Virtual machine

Number of VMs 5

MIPS 9726

VM memory (RAM) 0.5 GB

Bandwidth 1 GB

Tasks source Workload HPC2N log

Table 7 Parameter settings for PSO

Parameters Values

Particle size 100

Maximum iteration 1000

Acceleration coefficients (C1,C2) 1.49445

Cluster Computing (2018) 21:1797–1820 1813

123

This effectively decreases the makespan by increasing the

execution time of tasks.

5.2.3 Third experiment: TSDQ-FLPSO versus TSDQ-SAPSO
versus SGA versus MGA

In the third simulation experiment, we compare the simu-

lation results of the proposed algorithm TSDQ-FLPSO and

TSDQ-SAPSO with SGA and MGA results reported in

literature [17]. The performance evaluation is compared in

terms of the average makespan and execution cost with a

different number of tasks. The simulation has been done

under the same conditions described in Tables 8 and 9 as

specified in [17]. Table 8 shows the resources parameters

and Table 9 presents the processor capacities and the costs

of using the resources for processing which are selected

randomly.

The Figs. 11 and 12 present the average makespan and

execution cost of the various task scheduling algorithm

compared under the same conditions, from which we can

conclude that the proposed algorithms show significant

improvements over SGA and MGA algorithms in mini-

mizing makespan and minimizing execution cost respec-

tively. Figure 11 shows that the makespan of TSDQ-

FLSPO and TSDQ-SAPSO increases more slowly than

SGA and MGA algorithms. This improvement is attributed

to the proposed model which considers the tasks require-

ments and resource capabilities. Therefore, it can dynam-

ically create the needed queues to manage the tasks and

search for the solution based on the fitness function in order

to find the efficient mapping of tasks to the most suit-

able resources. In general, TSDQ-SAPSO and TSDQ-

FLPSO rapidly converge to the best solution in less

Fig. 10 Average makespan with different number of tasks

Table 8 Resource parameters

Parameters Values

Datacenter

Number of datacenters 2

Number of hosts 2

Virtual machine

Number of VMs 10

MIPS 100–500

VM memory(RAM) 512–2048 MB

Bandwidth 500–1000 MB

Tasks source

Number of tasks 10–30

Length of tasks 10,000–100,000 MIPS

Table 9 Resource parameters

Processor capacity Per unit cost

100 15

200 20

300 25

400 30

500 40

Fig. 11 Average makespan of our algorithms compared with SGA

and MGA Reproduced with permission from [17]

Fig. 12 Average execution cost of our algorithms compared with

SGA and MGA Reproduced with permission from [17]

1814 Cluster Computing (2018) 21:1797–1820

123

iteration. The results demonstrate also that the proposed

algorithms solve two conflicting objectives by optimizing

not only the makespan but also the execution cost. In the

proposed algorithms, the resource is selected in a way that

the task execution takes the minimum time and without

ignoring the other metrics such the resource utilization and

execution cost. The superiority of TSDQ-SAPSO and

TSDQ-FLPSO is shown clearly in Fig. 12. Because the

goal is to find a compromise between better execution time

and low cost. In other words, to use the resources with

lower processor capacity as much as possible while the

solution obtained is reasonably good. From these results,

we can outline that the proposed algorithms have the

flexibility to dynamically optimize the resources allocation,

improve the execution time and reduce the execution cost.

5.2.4 Fourth experiment: TSDQ-FLPSO versus TSDQ-SAPSO
versus MACOLB

In this simulation experiment, we compare the simulation

results of the proposed algorithms TSDQ-FLPSO and

TSDQ-SAPSO with MACOLB results reported in litera-

ture [13]. The performance evaluation is compared in terms

of the average makespan and average degree of imbalance

with a different number of tasks. The simulation has been

done under the following conditions described in Table 10

as specified in [13].

The Figs. 13 and 14 plot the comparison of proposed

algorithms with MACOLB in terms of the average make-

span and average degree of imbalance versus number of

tasks. Experimental results show that the two task

scheduling algorithms based on dynamic queues have

obvious efficiency advantages and show approximately the

same performances for all datasets. The average makespan

and average DI of our algorithms is better than MACOLB

algorithm. As can be seen, there is a significant difference

between the proposed algorithms and MACOLB in terms

of execution time and system load balancing. The proposed

algorithms minimize the makespan, but meanwhile, they

also pay much more attention to the system load balancing.

It can be observed that the solution quality of our algo-

rithms improves significantly when the number of tasks

increases. Because important factors such as VM status and

CPU speed are taken into account during the scheduling

process. Our algorithms use all possible capabilities of the

resources while scheduling tasks. Furthermore, TSDQ-

SAPSO and TSDQ-FLPSO show excellent ability to

determine the optimal load balancing between resources

which prevent the makespan from growing too large and

avoid unbalanced workload of VMs. In other words, this

means that the resources have an optimal amount of load;

none of them is too busy while some others are idle or not

used at any given time. Hence, the optimal and good load

balancing leads to the highest resource utilization.

Table 10 Resource parameters

Parameters Values

Datacenter

Number of datacenters 10

Number of hosts 2–6

Virtual machine

Number of VMs 50

MIPS 500–2000

VM memory (RAM) 256–2048 MB

Bandwidth 500–1000 MB

Number of PEs requirement 1–4

Tasks source

Number of tasks 100–1000

Length of tasks 1000–20,000 MIPS

Fig. 13 Average makespan of our algorithms compared with

MACOLB Reproduced with permission from [13]

Fig. 14 Average degree of imbalance (DI) of our algorithms

compared with MACOLB Reproduced with permission from [13]

Cluster Computing (2018) 21:1797–1820 1815

123

5.2.5 Fifth experiment: TSDQ-FLPSO versus TSDQ-SAPSO
versus SA_PSO versus PSO

In the fifth experiment, exhaustive simulations have been

done to compare the following algorithms TSDQ-FLPSO,

TSDQ-SAPSO, SA_PSO and PSO (PSO with constant

inertia weight [43, 44]). The goal of this experiment was to

examine and evaluate the performance of our algorithms to

determine which algorithm works better and more

stable under different scenarios. Compared with the pre-

vious experiments, we have increased significantly the

overall tasks set, resources and their characteristics.

Therefore, the performance evaluation is compared in

terms of the average makespan, degree of imbalance, cost

and resource utilization. In addition, we used a large real

dataset generated from the NASA Ames iPCS/860 log [45].

The advantage of using this log directly as the input of this

simulation is that it is reflects a real workload precisely,

with all its complexities. This log contains 3 months’ worth

of sanitized accounting records for the 128-node iPSC/860

located in the Numerical Aerodynamic Simulation (NAS)

Systems Division at NASA Ames Research Center. The

workload on the iPSC/860 is a mixture of interactive and

batch jobs (development and production) mainly consisting

of computational aeroscience applications. The parameter

settings of PSO are described in Table 7. The SA_PSO

algorithm is the same SAPSO algorithm used in TSDQ-

SAPSO in order to prove the advantage and effectiveness

of our approach based on the dynamic dispatch queues. The

simulation has been done 100 times under the following

conditions described in Table 11.

In the Fig. 15, there is a clear correlation between the

number of tasks and makespan, as the task quantity affects

the efficiency of execution time of the set of tasks. PSO and

SAPSO algorithms search for an optimal solution in the

entire given search space without considering VMs capa-

bilities and tasks lengths dynamically. Moreover, the

choice of static inertia weight in PSO influences its con-

vergence rate and often leads to premature convergence. As

a result, PSO makespan is higher than all the other algo-

rithms and has the worst makespan in all workload sets. We

can also observe a slow increase in TSDQ-FLPSO make-

span, which means that the execution time is significantly

faster and better than other algorithms. When the number

of tasks increases, the TSDQ-FLPSO makespan becomes

very slower than the TSDQ-SAPSO because the TSDQ-

FLPSO selects the resource on the basis of the task length,

RAM memory, CPU speed and the status of the resources

in the model of fuzzy logic. This model has the potential to

improve the convergence speed and optimization efficiency

of TSDQ-FLPSO algorithm. The TSDQ-FLPSO algorithm

shows a good ability to evaluate the obtained results and to

find the best fitness value and come up with the best

decision even if the number of tasks increases. The results

show that the TSDQ-FLPSO has the characteristics of fast

convergence speed and can achieve good performances to

reduce the makespan in comparison with other algorithms,

notably the TSDQ-SAPSO algorithm based also on

dynamic queues.

A comparison of average degree of imbalance with a

different number of tasks between different algorithms is

depicted in Fig. 16. The results show that the proposed

algorithms TSDQ-FLPSO and TSDQ-SAPSO perform

better than the two others algorithms, and have a remark-

able similarity in some cases. However, TSDQ-FLPSO

algorithm has a good stability in the degree of imbalance,

as it is maintained at a low level, and it is observed that it

has a slight increase when the number of tasks increases.

Moreover, all received tasks are distributed between the

resources in the form of balancing, this explains the good

performances achieved in terms of execution time. The use

of SA and fuzzy inferences which are both used not only to

dynamically adjust the inertia weight, but also to incor-

porate both tasks length and VMs capabilities in the fitness

formulation. This hybridization provides good flexibility to

control the balance between local and global exploration of

the problem space and overcome premature convergence of

PSO. Moreover, TSDQ-FLPSO shows some improvements

Table 11 Resource parameters

Parameters Values

Datacenter

Number of datacenters 10

Number of hosts 2–6

Virtual machine

Number of VMs 5–50

MIPS 10,000–30,000

VM memory (RAM) 256–8196

Bandwidth 500–5000

Tasks source Workload NASA iPSC/860 log

Fig. 15 Average makespan of different algorithms

1816 Cluster Computing (2018) 21:1797–1820

123

over TSDQ-SAPSO which can be explained by the

importance of input parameters of TSDQ-FLPSO and the

application of the Fuzzy Logic in two stages. This effec-

tively helps TSDQ-FLPSO not only find a potential optimal

solution with less iteration and less computing time, but

also select the resources with light load and good capa-

bilities to process tasks which have an important length.

The TSDQ-FLPSO algorithm shows superior performance

and achieves good system load balance in any situation and

takes less time to execute tasks.

Figure 17 shows the average resource utilization of the

TSDQ-SAPSO, TSDQ-FLPSO, SA_PSO and PSO algo-

rithms. Resource utilization is an essential performance

metric as it represents the rate of utilization of resources,

and at which level the resources are busy in executing

tasks. The result illustrates that the resource utilization of

TSDQ-FLPSO is maintained at a high level which means

that it has the best resource utilization comparing with

TSDQ-SAPSO, SA_PSO and PSO. SA_PSO algorithm

shows good performance in comparison with PSO. How-

ever, the difference between our proposed algorithms and

these algorithms is significant and prove the effectiveness

of the proposed algorithms based on dynamic dispatch

queues. Therefore, TSDQ-SAPSO and TSDQ-FLPSO have

the flexibility to analyze, explore and schedule the tasks

sets stored in the dynamic queues to carry out more intel-

ligent scheduling decisions. The comparison between the

two proposed algorithms shows that TSDQ-SAPSO exhibit

less performance than TSDQ-FLPSO which shows better

performances despite a slight decrease which could be

observed before it continues to increase when the received

workload becomes important. In addition, it can achieve a

good utilization of resources and maintain a high occu-

pancy rate of resources during the process of scheduling

task. Indeed, TSDQ-FLPSO algorithm keeps the resources

as busy as possible and uses all possible resources capa-

bilities. The resource utilization metric is gaining signifi-

cance as service providers want to earn a maximum profit

by renting a limited number of resources.

Figure 18 illustrates the comparison of the cost between

TSDQ-FLPSO, TSDQ-SAPSO, SA_PSO, and PSO with a

different number of tasks. This metric presents the total

amount of resources utilization that a user needs to pay to the

service provider. For example, in this simulation, we assume

that the cost of 5000 MIPS computing power of the resource

is $10 per unit time. The result of simulation shows that the

TSDQ-FLPSO performs better with less cost when the

number of tasks increases. Based on the proposed scheduling

strategy, TSDQ-FLPSO shows better flexibility to distribute

incoming requests to the heterogeneous VMs, e.g., it is able

to determine the most appropriate VM to execute each task

in order to minimize the cost while considering other QoS

requirements. TSDQ-FLPSO algorithm considers dynami-

cally the task length and the resource processor capacity on

the basis of the Mamdani inference system and defined rules.

In other words, when the proposed algorithm calculates the

function fitness, it takes into consideration the task and

resource proprieties such as task length and CPU power of

resource. Hence, the best fitness means that the TSDQ-

FLPSO algorithm selects and uses VMs with higher com-

puting power if the VMs with lower computing power

cannot provide good results to tasks or give a non-optimal

solution. As a result, the TSDQ-FLPSO algorithm can

effectively achieve good performances in terms of cost.

Figure 19 illustrates the average dynamic queues cre-

ated by TSDQ-FLPSO and TSDQ-SAPSO algorithms in

this experiment. The two proposed algorithms search to get

Fig. 16 Average degree of imbalance of different algorithms

Fig. 17 Average resource utilization of different algorithms Fig. 18 Cost (in $) with different number of tasks

Cluster Computing (2018) 21:1797–1820 1817

123

an optimal result by taking into consideration the best

decision threshold. Both of the proposed algorithms use the

best threshold value that can not only create the queues

dynamically, but also give good results while dispatching

tasks among queues. The result shows that TSDQ-SAPSO

algorithm creates minimum number of queues, but TSDQ-

FLPSO algorithm creates more queues while searching for

the optimum and attempting to find the best potential

solution for the current set of tasks. The experimental

results indicate that the optimal number of queues helps

TSDQ-FLPSO to exhibit superior performance in terms of

the convergence speed and the four performance metrics

examined above. The TSDQ-FLPSO algorithm shows also

a great advantage in comparison with TSDQ-SAPSO in

terms of the number of dynamic queues created while

dispatching the tasks among corresponding queues and

mapping tasks to appropriate resources.

The experimental results above demonstrate that the

proposed algorithms work very well for a different number

of tasks and setting. Several experiments have been carried

out in order to evaluate the proposed work. As we can see,

the proposed approach based on dynamic queues and two

hybrid meta-heuristic algorithms generates good solutions.

The experiments conducted show that the superiority of our

algorithms is not only applicable for synthetic tasks but

also for real tasks. Finally, the results conclude that the

proposed approach is an intelligent architecture which

obtains optimal solutions and achieves better global con-

vergence capability in terms of the performance metrics

under consideration.

6 Conclusion

Tasks scheduling is one of the most challenging problems

in cloud computing and plays an important role in the

efficiency of the whole cloud computing facilities. The

goal of task scheduling is to map tasks to the most

appropriate and suitable resources to be executed with

optimization of different parameters such as the execution

time, cost, resource utilization, load balancing and so on. In

this paper, we have proposed a novel approach for task

scheduling optimization based on dynamic dispatch queues

and hybrid meta-heuristic algorithms. We have proposed

two hybrid meta-heuristic algorithms, the first one using

Fuzzy Logic with Particle Swarm Optimization Algorithm

(FLPSO), and the second one using Simulated Annealing

with Particle Swarm Optimization algorithm (SAPSO).

The objective of this approach is to get the best order of

tasks to minimize the waiting time in the task waiting

queue and dispatch the tasks among dynamic queues cre-

ated by TSDQ algorithm, then assign the tasks to the most

suitable resources and optimize the performance metrics of

cloud. Several experiments have been done in order to

evaluate the performances of the proposed approach com-

pared with other works from literature such as PSO-LDIW,

PSO-RIW, SGA, MGA and MACOLB. Our algorithms

were later compared with PSO with constant inertia weight,

and SA_PSO algorithm to show clearly the advantage of

using the dynamic dispatch queues process in our

approach. Also, to determine which algorithm works best

and most stable under different scenarios. The superiority

of the proposed work is validated with extensive experi-

ments using CloudSim simulator with synthetic and real

data sets from real systems available from the Parallel

Workload Archive (PWA). TSDQ-FLPSO and TSDQ-

SAPSO achieve good performance in minimizing the

waiting time as well as the queue length, reducing the

makespan, maximizing resources utilization, minimizing

the execution cost and improving the load balancing.

Finally, the experiments results prove the effectiveness of

our algorithms and the optimal results is provided using

TSDQ-FLPSO compared to TSDQ-SAPSO and other

existing scheduling algorithms especially in a high

dimensional problem.

In the future, we intend to enhance our work, by inte-

grating other optimization algorithms and techniques,

improving the robustness of algorithms, considering more

QoS parameters such as the priority of tasks, allowing the

migration of tasks between the queues, considering the

energy consumption and VM migration concept.

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing,

p. 800. National Institute of Standards and Technology. The

NIST Special Publication, Gaithersburg (2011)

2. Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R.,

Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D.,

Fig. 19 Average dynamic queues created by TSDQ-FLPSO and

TSDQ-SAPSO algorithms

1818 Cluster Computing (2018) 21:1797–1820

123

Rabkin, A.: A view of cloud computing. Commun. ACM 53, 50
(2010)

3. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In:

Proceedings of the 1995 IEEE International Conference on

Neural Networks, pp. 1942–1948. IEEE Service Center, Piscat-

away (1995)

4. Eglese, R.: Simulated annealing: a tool for operational research.

Eur. J. Oper. Res. 46, 271–281 (1990)

5. Lee, C.: Fuzzy logic in control systems: fuzzy logic controller.

I. IEEE Trans. Syst. Man Cybern. 20, 404–418 (1990)

6. Ben Alla, H., Ben Alla, S., Ezzati, A., Mouhsen, A.: A Novel

Architecture with Dynamic Queues Based on Fuzzy Logic and

Particle Swarm Optimization Algorithm for Task Scheduling in

Cloud Computing. Lecture Notes in Electrical Engineering,

pp. 205–217. Springer, New York (2016)

7. Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/paral

lel/workload

8. Sujan, S., Kanniga Devi, R.: An efficient task scheduling

scheme in cloud computing using graph theory. Proceedings of

the International Conference on Soft Computing Systems.

pp. 655–662 (2015)

9. Gupta, J., Azharuddin, M., Jana, P.: An effective task scheduling

approach for cloud computing environment. Lecture Notes in

Electrical Engineering. pp. 163–169 (2016)

10. Ma, J., Li, W., Fu, T., Yan, L., Hu, G.: A novel dynamic task

scheduling algorithm based on improved genetic algorithm in

cloud computing. In: Wireless Communications, Networking and

Applications. pp. 829–835 (2015)

11. Guo, L., Zhao, S., Shen, S., Jiang, C.: Task scheduling opti-

mization in cloud computing based on heuristic algorithm.

J. Netw. 7, 547–553 (2012)

12. Wu, X., Deng, M., Zhang, R., Zeng, B., Zhou, S.: A task

scheduling algorithm based on QoS-driven in cloud computing.

Proc. Comput. Sci. 17, 1162–1169 (2013)

13. Keshk, A., El-Sisi, A., Tawfeek, M.: Cloud task scheduling for

load balancing based on intelligent strategy. Int. J. Intell. Syst.

Appl. 6, 25–36 (2014)

14. Khalili, A., Babamir, S.M.: Makespan improvement of PSO-

based dynamic scheduling in cloud environment. In: Proceedings

of the 23rd Iranian Conference on Electrical Engineering,

pp. 613–618 (2015)

15. Zulkar Nine, M., Azad, M., Abdullah, S., Rahman, R.: Fuzzy

logic based dynamic load balancing in virtualized data centers.

In: Proceedings of the 2013 IEEE International Conference on

Fuzzy Systems (FUZZ-IEEE) (2013)

16. Chen, Z., Zhu, Y., Di, Y., Feng, S.: A dynamic resource

scheduling method based on fuzzy control theory in cloud envi-

ronment. J. Cont. Sci. Eng. 2015, 1–10 (2015)

17. Kaur, S., Verma, A.: An efficient approach to genetic algorithm

for task scheduling in cloud computing environment. Int. J. Inf.

Technol. Comput. Sci. 4, 74–79 (2012)

18. Al-Olimat, H., Alam, M., Green, R., Lee, J.: Cloudlet scheduling

with particle swarm optimization. In: 2015 Fifth International

Conference on Communication Systems and Network Tech-

nologies (2015)

19. Gabi, D., Ismail, A., Zainal, A., Zakaria, Z.: Solving task

scheduling problem in cloud computing environment using

Orthogonal Taguchi-Cat Algorithm. Int. J. Electr. Comput. Eng.

7, 1489 (2017)

20. Komarasamy, D., Muthuswamy, V.: ScHeduling of jobs and

adaptive resource provisioning (SHARP) approach in cloud

computing. Clust Comput (2017). https://doi.org/10.1007/

s10586-017-0976-3

21. Zhang, P., Zhou, M.: Dynamic cloud task scheduling based on a

two-stage strategy. IEEE Trans. Autom. Sci. Eng. 15, 1–12

(2017)

22. Zuo, L., Dong, S., Shu, L., Zhu, C., Han, G.: A Multiqueue

interlacing peak scheduling method based on tasks’ classification

in cloud computing. IEEE Syst. J. 6, 1–13 (2016)

23. Peng, Z., Cui, D., Zuo, J., Li, Q., Xu, B., Lin, W.: Random task

scheduling scheme based on reinforcement learning in cloud

computing. Clust. Comput. 18, 1595–1607 (2015)

24. Karthick, A., Ramaraj, E., Subramanian, R.: An Efficient multi

queue job scheduling for cloud computing. In: Proceedings of the

2014 World Congress on Computing and Communication Tech-

nologies. (2014)

25. He, T., Cai, L., Deng, Z., Meng, T., Wang, X.: Queuing-Oriented

Job Optimizing Scheduling In Cloud Mapreduce. In: Proceedings

of the International Conference on Advances on P2P, Parallel,

Grid, Cloud and Internet Computing. pp. 435–446 (2016)

26. The Apache Hadoop Project: http://hadoop.apache.org/

27. Blondin, J.: Particle swarm optimization: a tutorial (2009). http://
www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf

28. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability,

and convergence in a multidimensional complex space. IEEE

Trans. Evol. Comput. 6, 58–73 (2002)

29. Feng, Y., Teng, G., Wang, A., Yao, Y.: Chaotic Inertia Weight in

Particle Swarm Optimization. In: Proceedings of the Second

International Conference on Innovative Computing, Information

and Control (ICICIC 2007). (2007)

30. Xin, J., Chen, G., Hai, Y.: A Particle Swarm Optimizer with

Multi-stage linearly-decreasing inertia weight. In: Proceedings of

the 2009 International Joint Conference on Computational Sci-

ences and Optimization. (2009)

31. Yue-lin, G., Yu-hong, D.: A new particle swarm optimization

algorithm with random inertia weight and evolution strategy. In:

Proceedings of the 2007 International Conference on Computa-

tional Intelligence and Security Workshops (CISW 2007). (2007)

32. Kumar, S., Chaturvedi, D.: Tuning of particle swarm optimiza-

tion parameter using fuzzy logic. In: Proceedings of the 2011

International Conference on Communication Systems and Net-

work Technologies. (2011)

33. Kennedy, J., Eberhart, R.: A discrete binary version of the par-

ticle swarm algorithm. In: Proceedings of the 1997 IEEE Inter-

national Conference on Systems, Man, and Cybernetics.

Computational Cybernetics and Simulation. (1997)

34. Mendel, J.: Fuzzy logic systems for engineering: a tutorial. Proc.

IEEE 83, 345–377 (1995)

35. Kalra, M., Singh, S.: A review of metaheuristic scheduling

techniques in cloud computing. Egypt. Inform. J. 16, 275–295
(2015)

36. Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D.: Cloud task

scheduling based on load balancing ant colony optimization.

2011 In: Proceedings of the Sixth Annual Chinagrid Conference.

(2011)

37. Yin, P., Yu, S., Wang, P., Wang, Y.: Task allocation for maxi-

mizing reliability of a distributed system using hybrid particle

swarm optimization. J. Syst. Softw. 80, 724–735 (2007)

38. Mamdani, E.: Application of fuzzy algorithms for control of

simple dynamic plant. Proc. Inst. Electr. Eng. 121, 1585 (1974)

39. Cingolani, P., Alcalá-Fdez, J.: jFuzzyLogic: a Java library to

design fuzzy logic controllers according to the standard for fuzzy

control programming. Int. J. Comput. Intell. Syst. 6, 61–75 (2013)
40. Cingolani, P., Alcala-Fdez, J.: jFuzzyLogic: a robust and flexible

Fuzzy-Logic inference system language implementation. In:

Proceedings of the 2012 IEEE International Conference on Fuzzy

Systems. (2012)

41. Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., Buyya,

R.: CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning

algorithms. Software 41, 23–50 (2011)

Cluster Computing (2018) 21:1797–1820 1819

123

http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload
https://doi.org/10.1007/s10586-017-0976-3
https://doi.org/10.1007/s10586-017-0976-3
http://hadoop.apache.org/
http://www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf
http://www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf

42. The High-Performance Computing Center North (HPC2N) in

Sweden, http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/

43. Arumugam, M., Rao, M.: On the performance of the particle

swarm optimization algorithm with various inertia weight vari-

ants for computing optimal control of a class of hybrid systems.

Disc. Dyn. Nat. Soc. 2006, 1–17 (2006)

44. Umapathy, P., Venkataseshaiah, C., Arumugam, M.: Particle

swarm optimization with various inertia weight variants for

optimal power flow solution. Disc. Dyn. Nat. Soc. 2010, 1–15
(2010)

45. Parallel Workloads Archive: NASA Ames iPSC/860, http://www.

cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/

Hicham Ben Alla is currently a

Ph.D. student at Hassan first

University, Settat (Morocco).

He obtained the Computing

Engineering degree from the

same University in 2014. His

research interests include Cloud

Computing, Scheduling Algo-

rithms, Resources Management,

High-Performance Computing

and Artificial Intelligence.

Said Ben Alla received his M.S.

degree in Telecommunications

and Networks in 2009 from the

University of Cadi Ayyad,

Morocco and his Ph.D. from the

Hassan 1st University, Faculty

of Sciences and Techniques

(FSTS) Settat, Morocco in

2013. He is currently a professor

at ESTB, Hassan 1st University

Settat. His current research

interests include Cloud Com-

puting, embedded Real-Time

Systems, Wireless Sensor Net-

works (WSNs), wireless ad hoc

networks with main focus on Routing Protocols Development and

Mobility Management.

Abdellah Touhafi is obtained his

M.Sc. degree in Electronic

Engineering from Vrije Univer-

siteit Brussel (Belgium) in 1995

and his Ph.D. from the Faculty

of Engineering Sciences from

Vrije Universiteit Brussel (Bel-

gium) in 2001. In 2001 he

became post-doctoral researcher

at Erasmushoge School Brussel

where he researched on envi-

ronmental monitoring systems.

In 2003 he became professor

and founded his research group

on reconfigurable and embed-

ded systems. Since 2009 he is the program coordinator in the

Industrial Sciences Department. His current research interests include

Cloud Computing, High Performance and Reconfigurable Computing,

Embedded Real-time Systems, Security, Software Defined Radio and

Digital Communication Circuits.

Abdellah Ezzati received a

Research Habilitation degree

from the Hassan 1st University,

Faculty of Sciences and Tech-

niques (FSTS), Settat, Morocco,

in 2012. Since 1994 he has been

working as a Professor at the

Department of Mathematics and

Computer at the Faculty of

Sciences and Techniques, Set-

tat, Morocco. His research

interests are cloud computing,

distributed systems and WSN

management. Dr. Abdellah

Ezzati is also interested in Pro-

tocol Specifications and Mobility Management.

1820 Cluster Computing (2018) 21:1797–1820

123

http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/
http://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/
http://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/

	A novel task scheduling approach based on dynamic queues and hybrid meta-heuristic algorithms for cloud computing environment
	Abstract
	Introduction
	Related works
	Background
	Particle swarm optimization (PSO)
	Simulated annealing and random inertia weight
	Fuzzy logic theory

	Proposed architecture
	Scheduling problem
	Measures of effectiveness
	Proposed approach
	SAPSO algorithm: simulated annealing and PSO algorithms
	FLPSO algorithm: fuzzy Logic and PSO algorithm
	Running example of proposed approach

	Performance evaluation of simulation results
	Simulation environment
	Experimental results
	First experiment: FCFS versus WTO-PSO
	Second experiment: TSDQ-SAPSO versus TSDQ-FLPSO versus PSO-LDIW versus PSO-RIW versus FCFS
	Third experiment: TSDQ-FLPSO versus TSDQ-SAPSO versus SGA versus MGA
	Fourth experiment: TSDQ-FLPSO versus TSDQ-SAPSO versus MACOLB
	Fifth experiment: TSDQ-FLPSO versus TSDQ-SAPSO versus SA_PSO versus PSO

	Conclusion
	References

