
A unified algorithm to automatic semantic composition using
multilevel workflow orchestration

U. Arul1 • S. Prakash2

Received: 11 February 2018 / Revised: 13 March 2018 / Accepted: 17 March 2018 / Published online: 29 March 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
As a result of state-of-the-art development in service oriented architecture, we need a composition framework and

comprehensive algorithm to discover and compose the web services from different environments. In this paper, we present

a unified semantic-oriented framework with corresponding algorithm for automatic web service composition that integrates

the comprehensive process of modified multistage composition and rigor of web semantics. Our proposed unified algorithm

introduces the novel features through modified five stage composition such as transformation of non-functional properties

of user requirements to all stages, optimization and semantic validation of abstract workflows using workflow automata,

annotating WSDL files with additional ontologies using ontology based service repository, adopting dynamic change of

user requirements for discovering candidate services, and selecting most optimal services for concrete composition using

non-functional properties are effectively represented. Feasible composition solution obtained for user complex require-

ments through semantic web service discovery mechanism for discovering and selecting the most suitable service can-

didates. Furthermore, our unified algorithm can provide a composition solution through wider acceptance of semantics-

oriented documents such as web ontology language for services and web service modeling ontology. We evaluate the

proposed unified algorithm for automatic generation of composition using our motivating scenario, namely, home loan

approval inference process. We also evaluate algorithm for automated and dynamic composition on service repositories of

various sizes in increasing the levels of nesting and present the performance results.

Keywords SOA � Automatic semantic composition � Workflow orchestration � Non-functional properties �
Levels of nesting � SWSD

1 Introduction

The enhancement of Internet technologies has improved

many cutting-edge technologies such as Webservices. The

Web services provide a solution to the deployment of a

complex enterprise software system in the collaborative

and interoperable environment of the service-oriented

architecture (SOA) [1, 2]. The main advantage of SOA is

that it supports the Web service composition (WSC) which

deploys a complex workflow for enterprise applications

integration using web services in platform independently.

In spite of the benefits of the SOA to the WSC, it has many

issues need to be addressed during the development process

of existing workflow systems such as, (i) interaction

between the services is fixed statically and hardcoded, (ii)

modifications of services in terms of inputs, outputs, or

behavior can cause the entire system to fail, (iii) static

binding of services avoids the reusability the new gener-

ated services, and, (iv) difficult to handle the failures of

services during runtime of composition process. The major

challenge to solve these issues is to build the workflow for

complex enterprise systems without human intervention

during runtime in automatically and satisfy dynamic

change of user requests [3, 4].

& U. Arul

arulmee08@gmail.com

S. Prakash

prakash.sav4@gmail.com

1 Department of Computer Science and Engineering,

Dhanalakshmi College of Engineering, Chennai, India

2 Department of Electronics and Communication Engineering,

Jerusalem College of Engineering, Chennai, India

123

Cluster Computing (2019) 22:S15387–S15408
https://doi.org/10.1007/s10586-018-2604-2(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-7784-0820
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2604-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2604-2&domain=pdf
https://doi.org/10.1007/s10586-018-2604-2

In order to build the AWSC for dynamic change of user

requests, we need a semantic oriented approach that allows

composition applications can realize about service’s func-

tionalities, its required inputs and expected outputs to a

level of detail during runtime in machine understandable

manner. Furthermost, all existing web services are

appeared by having the pure syntactic descriptions rather

than semantic. Hence, it is necessary to add semantic

capabilities with syntactic service descriptions to realize

automatic composition is more feasible.

With regard to automatic service composition, the

existing composition process has been decomposed into

four phases, such as: (i) Planning—generating an abstract

workflow based on the specification collected from user,

(ii) Discovery—identifying the services that are matching

with plan i.e., the generated workflow, (iii) Selection—

choosing the best matched candidate services for deploy-

ment, and, (iv) Execution—executing the composition of

candidate services. In our literature survey most research

efforts has focused on one or more of these four phases.

Our main objective of research in this paper is to pro-

vide a comprehensive algorithm to automatic web service

composition (AWSC) for satisfying the dynamic change of

user requests in automatically and generating a scalable

composition process. Our unified composition algorithm

additionally proposes a new phase, called as Validation and

Optimization that appears after the planning stage. It per-

forms both structural and semantic validation on generated

workflow to generate an optimized abstract workflow that

satisfies the user requests with most suitable tasks. We

provide a more contemporary algorithm for automatic

service composition, which addresses the solutions to

composition issues by adding the following features:

1.1 Multilevel orchestration for workflow
generation

In order to provide a scalable composition solution, our

proposed algorithm considers the functional goals of user

requests in more comprehensive manner and it generates

the abstract workflow in nested multi-levels. In addition,

our algorithm can also include dynamically evolving

workflows to meet the ever changing user goals at higher

level.

1.2 Annotating additional metadata to web
services

From our literature survey, we understood that the existing

composition approaches used additional metadata (only I/O

parameters) for providing semantics to web services. We

consider the I/O parameters are inadequate to signify

semantics to services. So, our proposed algorithm can as

well state the pre-/post- conditions to services for grasping

a realistic composition.

1.3 Transformation of QoS parameters (non-
functional properties)

In general, the functional properties are identified from the

user requests, but the identification of non-functional

properties is difficult because that primarily deliberates the

QoSparameters. Our proposed algorithm can perform the

transformation of NFP’s after identified them in user

requests by using QoS aware service composition.

Additionally, we propose a framework for automatic and

scalable service composition that provides solutions to

reduce the complications during the composition process.

Our proposed framework considers the aforementioned

features for providing automatic service composition in the

case of dynamically changing the user requests.

In the rest of the paper, Sect. 2 presents the existing

work related to our approach. Section 3 gives the overview

of methodology of multilevel workflow orchestration, the

enhanced five phase composition, problem formalization

and motivating scenario for our automated semantic com-

position. Section 4 describes our proposed framework for

automatic semantic composition using multilevel workflow

orchestration. Section 5 elaborates the unified algorithm

for multilevel workflow orchestration which adopts the

modified five stage automatic composition. Section 6

explores the implementation details of modified five stage

composition as well as experimental results and its feasi-

bility analysis. In Sect. 7, we conclude the paper and pre-

sent our future work.

2 Related work

Web service composition approaches broadly categorized

into manual, semi-automated and automated [1, 3, 5]. In

manual composition, the user intervention is mandatory in

each step of the process, where composition is imple-

mented through standard tools, for example, the most

prevalent is Business Process Execution Language for Web

Services (BPEL4WS) [6]. Semi-automated composition

approaches commonly automate only parts of the complete

composition process, for example, they concern service

selection of suitable atomic services, where the other

composition stages implemented in manually during the

composition scheme [7]. The fully automated composition

approaches can automate almost entire composition pro-

cess that range from planning to the selection of atomic

web services, where user intervention is restricted for

specifying user requirements [1]. The important advantages

of full automation of composition comprise scalability and

S15388 Cluster Computing (2019) 22:S15387–S15408

123

dynamic handling. Scalability of composition concerns

continuous increase of services in repositories over time

and it can able to manage effectively the massive amount

of services. The dynamic handling of automated compo-

sition concerns dynamic change of composition environ-

ments, for example, handling of exceptions when service

failure and unavailability of service [8].

Many researches presented algorithms to solve auto-

matic web service composition in two or more phases. The

approaches described in [9–11] attempts to solve the two

phases of composition namely planning and discovery.

They are capturing the semantics of the web service using

description logic. The composition problem is decomposed

as number of sub-services and each constitute an atomic

action during the planning stage. The composition service

is represents the goal that achieved by combining the some

atomic actions. These approaches must require an explicit

goal definition, however, such explicit goal definitions are

usually not represented.

To our best of knowledge, most of the composition

algorithms proposed methodologies in two or more phases

to composition, for example, planning and discovery,

rather than a comprehensive and unified algorithm for all

possible stages of composition. In this paper, we present a

unified algorithm that provides a comprehensive compo-

sition solution through our modified five stages of

composition.

Recently, automated approaches leveraged using AI

techniques to represent the composition problem in well-

defined and obtain composition solutions in optimal man-

ner. In addition, these intelligent techniques provide

methods for representation of knowledge in semantics to

facilitating the more enhanced intelligent automated com-

position [12]. An initial and heuristic based Hierarchical

Task Network (HTN) planning was introduced in SHOP2

[13] by accommodating AI planning for service composi-

tion. SHOP2 supported for encoding OWL-S processes,

when encoding the planning problem in automatic web

service composition. The main drawback of this approach

is that it applies decomposition rules in planning stage for

constructing HTN network and requires a prior knowledge

for encoding the rules with the help of ontologies from

DAML-S (DARPA agent Markup Language for Services)

processes.

Another approach is tried through planning for imple-

menting the process model in automated service compo-

sition and adopting the modification in the MBP process

[14]. BPEL4WS provides the web services in abstract

descriptions as input to MBP and additionally the goal state

also given to it. It produces the composite service in

descriptions of BPEL4WS as output. But, MBP process is

not consumed semantic information for composition and

scalability is considered as a main drawback of approach.

The approach represented in [15] attempts to dynami-

cally adjust the service composition by modifying the

GOLOG standards and using intelligent agents. Intelligent

agents used to reason on automatic service discovery and

composition. Also, situation calculus used for specifying

the user requirements and constraints. However, the pro-

cess of encoding and translation are considered as very

complex, and level of interoperability measures repre-

sented in existing systems is also decreased.

The SWORD framework [16] attempts to find the

automatic composition using entity—relationship models

and Horn rules. However, the SWORD required the user

intervention in generating the final composition plan

through rule-based expert system. OWLS-XPlan system

[17] produced a planning module called XPlan for gener-

ating composite services by using semantic descriptions of

services from OWL-S. This system uses XML to derive

compliant between XPlan and PDDL (Planning Domain

Definition Language). But, this system not utilized the

semantic information from domain ontologies and there-

fore, exact matching is not performed between service

input and outputs in planning module.

Another active area of research is QoS aware compo-

sition [18–20]. Researchers apply SLA to compositions,

but they do not considered dynamic composition. They

used the existing composition languages to implement the

composite service using predefined template which is used

to select the set of suitable services during the composition.

In addition, they applied a QoS model and non-functional

attributes on composition solutions to ensure that they

adhere with pre-defined attributes. Finally, they filtered the

produced solutions that compliance with SLA agreement.

From our literature survey, we identified that most of the

service composition approaches considered a single stage or

two stages composition implemented on partial algorithms. In

general, most of the composition approaches designed in

different environments, goals and viewpoints. Our composi-

tion approach for AWSC purely focused on multilevel

workfloworchestrationwith semantic discovery and semantic

selection through a unified and comprehensive algorithm.

3 Multilevel workflow orchestration
for automated semantic composition

The automated semantic composition can be realized

through two methods: Top-down and Bottom-up compo-

sition. We used Top-down composition using multilevel

workflow orchestration to achieve the automatic composi-

tion. In this section, we describe our methodology for

automatic semantic composition that produces a workflow

in different sub-levels to adopt the dynamic change of user

requests.

Cluster Computing (2019) 22:S15387–S15408 S15389

123

3.1 Methodology of multilevel workflow
orchestration

Our approach is based on a multilevel orchestration of the

list of candidate services according to the functional and

non-functional properties of user requirements. The pri-

mary feature of our approach is that it invokes the suit-

able composite services in recursive method until the user

requirements are satisfied. Apart from, it can compose

together the suitable dynamic and static services in each

sub-level. The dynamic services are nested by the other

static and dynamic services in recursively for each level of

orchestration to accomplish the composition goals. The

multilevel (hierarchical) workflow generation and adapta-

tion of user requirements during the composition process is

shown in Fig. 1.

3.2 The modified five phase composition

We proposed the modified five phase composition by

examining of different composition approaches and

reviewed at current solutions in the literature survey

[3, 4, 20]. Our contemporary automatic service composi-

tion process has been decomposed into five phases such as

(i) Planning, (ii) Validation & Optimization, (iii) Discov-

ery, (iv) Selection, and, (v) Execution. The first phase

involves generating an abstract workflow that contains set

of tasks and the order in which they need to be composed.

The second phase performs structural and semantic vali-

dation on generated workflow to ensure the connectivity of

tasks structurally and semantically correct. The discovery

phase involves discovering the services matching with

tasks of the workflow. We have enhanced this discovery

phase that also performs a mapping from the syntactic to

semantic definition and standardization of semantic defi-

nition by adding the ontologies for the discovered services.

The selection phase involves producing an optimal con-

crete workflow that contains physically composed services

based on methodology of multilevel workflow orchestra-

tion and non-functional properties. The execution phase

involves executing the services as per the concrete work-

flow and an alternative abstract workflow has to be chosen

when any of services is not available. Figure 2 depicts the

modified five phase composition and it augmented with the

composition features mentioned in Sect. 1.

3.3 Problem formalization

Our proposed automatic composition algorithm must have

to select the appropriate services based on functional

properties, on-functional properties and other user con-

straints for generating executable compositions. To this

objective, we introduce the primary definitions that we

used to perform the multilevel workflow orchestration for

automatic web service composition (AWSC) problem.

Definition 1 (User problem space) User Problem Space

specifies a set of user’s request (UR) consists of functional

properties (FPs), non-functional properties (NFPs) and

constraints (UC). It is described in structural statement over

ontology O. Ontology O represents the real world things

consists of a set of elements OE. OE is a 3-tuple\C, S,

P[, where C represents a set of unary predicates over OE

and denoting concepts, S represents a set of binary

Fig. 1 The proposed methodology of multilevel workflow orchestration

S15390 Cluster Computing (2019) 22:S15387–S15408

123

predicates over C denoting relationship between two con-

cepts, P represents a set of binary predicates over OE,

denoting properties. Every structural statement created as a

composition of predicates from C U P or statements

composed using logical operators such as ^, _, : for

representing user’s request.

In our proposed algorithm, the user problem space

providing functional and non-functional properties of user

requirements to the planning, discovery and selection

phases for constructing an abstract workflow, finding the

services from the service repository and selecting the most

suitable service instances respectively. The construction of

abstract workflow is the Workflow construction problem

and the planning phase has to identify the set of suit-

able tasks, conditions and control/data flow for the work-

flow from the user functional requirements. Next,

discovering the services from the repository that matches

with user’s functional requirements is the Service discovery

problem. The services are discovered, those has to satisfy

the post-conditions with output parameters and the pre-

conditions with input parameters. Finally, selecting the

most appropriate service instances that are satisfying the

non-functional properties is the Service selection problem.

In general, the non-functional properties are understand-

able by the requested users only, but not by service

selector, because the non-functional properties are usually

expressed in an abstract form that is understandable for the

user’s semantics. Also, the non-functional properties are

generally represented in abstract form that cannot be rec-

ognized during the service selection phase. In order to

make the service selector to identify the most suitable ser-

vices for automatic composition, it is mandatory that the

abstract non-functional properties must be converted into

concrete form. Therefore, before the service selection

phase, our algorithm performs a transformation of abstract

non-functional properties into concrete non-functional

properties. Also, the services are present in the selection

phase, among them the most suitable services must be

selected for the execution stage, which requires the

necessary information such as service identification, oper-

ators, and other important parameters. During this trans-

formation, it identifies the terms in the abstract non-

functional properties and links the identified terms with

ontology in order to representing the meaning for each

term. Then it composes the each individual term into

concrete non-functional properties that are able to under-

stand by service selection phase.

Definition 2 (User constraint and constraint expression)

The User Constraint (UC) refers a collection of relative

predicates which must have to meet for confirm the seman-

tics of user request (UR), in addition, to arrange appropriate

ordering of abstract tasks in an abstract workflow (AW).

AW can be defined as AW = {t1, t2, t3…tn}, where ti
indicates abstract tasks in workflow.

The Constraint Expression (CE) is a formal representa-

tion of user constraints is given in the form as following

Constraint : = Constraint Term Relation Instance Data,

where

(1) Constraint Term represents a constraint attribute

(2) Relation represents operators such as = , = ,\ ,

B ,[, C , [, (,) , is, not, in and not in

(3) Instance Data represents data set, including numer-

ical data, set of ontological concepts, other data set

etc.

Definition 3 (Structural validation on abstract workflow)

The structural validation applied on abstract workflow

(AW) to validate the representation of behavioral specifi-

cation and control flow analysis. We use workflow auto-

mata to validate the structural behavior on abstract

workflow.

Definition 4 (Workflow Automata (WA)) Workflow

Automata (WA) is defined as a tuple\T, R, C, d, I, F,
V[for given abstract workflow (AW) and a set of con-

straint attributes.

where,

(1) T =\TPre, TEff[is a pair which represents the

precondition and effect of each task in workflow

(AW). TEff denotes the transformation of one task to

another with matching the precondition TPre.

(2) R = A1, A2,….,An is finite set of actions. Each task ti
of workflow can perform an action Ai to produce

change of task.

(3) C is finite set of states that represents constraints of

CE i.e. precondition TPre of task ti. The constraints of

CE are partitioned into three non-overlapping sets

as\CV, CL, CP[

CV: set of constraint variables that can provide and store

explicit values in task ti

Fig. 2 The modified five phase composition

Cluster Computing (2019) 22:S15387–S15408 S15391

123

CL: set of link constraints that are used to specify control

flow for executing actions on task ti
CP: set of predicate constraints that represents condi-

tional expression appeared in concurrently executing

actions on different tasks of workflow

(4) d is the transition function, that is, C x R x (CV U CL

U CP) ? C

(5) I is finite set of initial states and I (C

(6) F is finite set of final states and F (C

(7) V is an assignment function, such that, V: TEff ? C

Definition 5 (Semantic type definition) Let TD be a type

definition for the tasks t1, t2,…,tn in the abstract workflow.

A type TYPEi associated with tasks ti by TD.

Definition 6 (Semantic validation on abstract workflow)

The Semantic Validation checks the data compatibility

between the precondition (TPre) and effect (TEff) parame-

ters of the connected tasks that presents the data types in

meaningful manner in the abstract workflow.

Our proposed algorithm supports the detection of type

incompatibility between the connected tasks and also it

assists for automatic type conversions using type transfor-

mations. Figure 3 shows semantic data type compatibility

between the tasks in the abstract workflow. For example, the

datatype of effect (TEff) of task T1 is semantically bound to

the datatype of precondition (TPre) of task T2. Our semantic

compatibility validator compares the type compatibility of

task T1 output (source data type) with task T2 input (target

data type). The semantic incompatibility is detected by the

compatibility validator when types of TEff and TPre may be

compatible at syntactic level, but its semantics is actually

incompatible. Suppose, TEff and TPre are belongs to floating

point data type, however TEff represents the value of accel-

eration in metres/second and TPre represents temperature in

degrees of Celsius.

Definition 7 (Quality of service (QoS)) A quality of ser-

vice can be defined as an attribute QoSi that representing

the value of the non-functional property of web service.

In general, the QoS attributes that can be classified into

two categories such as static and dynamic attributes. The

static QoS attributes such as scalability, capacity, accuracy,

security, price etc., are not changed during the execution of

services and usually defined by service providers. The

dynamic QoS attributes such as availability, response time,

throughput, reputation, stability etc., can be changed during

the execution time and these are provided in abstract form

of user’s requests. Our QoS model comprises of dynamic

QoS attributes that are proposed as non-functional prop-

erties. The selection of web service from the optimal subset

of all the discovered services is based on these non-func-

tional properties. We considered the QoS (non-functional)

attributes of web services employed a primary affecting

factor in the Service selection problem, because it is

unavoidable due to the multiple services with same func-

tionality for accomplishing the similar task.

Definition 8 (Semantic service) A Semantic Web Service

SWS can be defined as a tuple, SWS =\ I, O, PreCon,

PostCon, QoSi[, where

(1) I is a list of inputs that are reference the set of

semantic concepts of the service

(2) O is a list of outputs that are reference the set of

semantic concepts of the service

(3) PreCon represents a condition that must hold before

execution of service and must meet to ensure correct

service execution

(4) PostCon represents a condition that must hold after

execution of service

(5) QoSirepresents an n-tuple\QoSi
1, QoSi

2,…..QoSi-
n[, where each QoS

i
jdenotes the corresponding value of

a QoS attribute of the tuple\QoS1,

QoS2,…..QoSn[

Definition 9 (Registering services in service repository)

Service Repository R can be represented as a set of web

services that can be used during the service composition.

Definition 10 (Service discovery using user request (UR))

Service Discovery can be represented by Query Q which is

a tuple Q =\ I0, O0, UR[, where

(1) I0 is a list of provided inputs that are reference set of

concepts in the ontology

(2) O0 is a list of provided outputs that are reference set

of concepts in the ontology

(3) UR is a user requests as specified in definition 1, which

contains functional properties (FPs), non-functional

properties (NFPs) and user constraints (UC)

We extract functional properties (FPs) and user con-

straints (UC) during this discovery stage. We describe the

service discovery is a function of choosing candidate

Fig. 3 Task T1 outputs TEff is

semantic type compatible to the

input TPre of task T2

S15392 Cluster Computing (2019) 22:S15387–S15408

123

services from the service repository for matching with

abstract workflow (AW). The generated candidate services

can be represented as

Candidate Services: AWX FP ? SWS, where

(1) AW is a set of abstract tasks produced during the

planning stage

(2) FP represents the attributes of functional properties

of user request (UR)

(3) SWS is a set of service candidates produced that

ensure the attributes of FP

Definition 11 (Service selection) Service Selection can be

represented as a tuple S =\ SWS, O, NFP[, where

(1) SWS is similar as in definition 8

(2) O is a set of service instances from ontology based

service repository which are matched with input or

output of the real semantic web service of\
IOPE[in OWL-S

(3) NFP is a set of QoS attributes that are semantically

represented in the form of concrete representation

Definition 12 (Web service composition (WSC)) Web

Service Composition can be defined as a finite set of ser-

vice instances that are selected during service selection by

user requests and constraints. These selected service

instances can be represented in the form of directed acyclic

graph G = (V, E) describing the control and dataflow of

execution of selected services that used in service com-

position. The nodes represent service instances those are

selected from service repository R, that are need to be

executed during service composition, i.e. VO [V : WS [R.

The edges represent the control and data flow.

Our approach models an automatic web service com-

position as a multilevel workflow process which imple-

ments an optimized workflow. The optimized workflow

represents the space of all candidate composition solutions

which are generated by discovering the suitable semantic

services for a user request UR. Our objective is to generate

the optimized composition solution, so we used QoS model

with respect to satisfying the non-functional parameters.

3.4 Motivating scenario

We present a real time motivating scenario for a home loan

approval process which elaborates the automatic composi-

tion of a set of web services using multilevel workflow

orchestration. In this scenario, the orchestration (main)

service called as HomeLoanApproval Service that integrates

the most suitable services in different sublevels to accom-

plish the user’s requirements. We need to discover several

services that are belong to either static or dynamic services

and the dynamic services can invoke other most suit-

able services in recursively in different sublevels.

In order to approve the user’s home loan request (the top

level goal), there must be a multiple levels of orchestration

using sub level processes such as, (1) storing the user

requests in the user problem space that is repository of

requests, (2) estimating and validating the credit-worthiness

of the user or customer, (3) confirming the customer’s

assets is worthiness for sanctioning the home loan, and, (4)

reiterating the home loan approval process for all customers

who have applied for a home loan. In our scenario, the

HomeLoanApproval service i.e., orchestrator service is

responsible for retrieving the customer requests from user

problem space and collecting the customer’s details such as

loan information, bank account information, personal

information, home address and other details. In addition, the

orchestrator service has to schedule the home loan approval

plan and ensure whether to approve or reject the customer’s

loan request. Figure 4 shows the motivating scenario for the

home loan approval process using multilevel orchestration.

Firstly, the HomeLoanApproval service calls Calcu-

lateCredit service that calculates the customer’s credit wor-

thiness value and sends it back to orchestrator service. Then,

the orchestrator service invokes AssessCreditWorthiness

service that ensureswhether the customer is creditworthiness

or not. Afterwards, the orchestrator service invokes the

PropertyAppraisal service only if the customer is credit

worthiness, otherwise loan not granted to the particular cus-

tomer and the loan status information can send to the cus-

tomer. The PropertyAppraisal service ensures the assets and

mortgage property of customer is equivalentto the quantity of

the loan. If customer property is worth for amount of loan,

then PropertyAppraisal service sends the output message as

loan granted, otherwise it sends the output message as loan

not granted to the orchestrator service. Finally, the orches-

trator service logs the message in its local database and sends

the status of loan to the customer. In some cases, the

HomeLoanApproval service get an error message since the

any of these dynamic services is unavailable. When an error

or unavailability services is occurred, then our orchestrator

service can return to the service selection stage to choose the

nextmatched alternative service andprecede the composition

process. The orchestrator service calls these dynamic services

in different sublevels in recursively in order to process the

loan applications for the group of customers.

4 Automatic web service composition
framework

Using the problem formation described in Sect. 3.3, we

propose a framework for automatic web service composi-

tion based on modified five phase of orchestration. Our

Cluster Computing (2019) 22:S15387–S15408 S15393

123

proposed framework is depicted in Fig. 5 and it consists of

five phases for composition. The first phase contains a

planner that generates an abstract workflow based on

abstract specification retrieved from user problem space.

The abstract specification of user requirements includes the

functional specifications, non-functional properties and

other user constraints. The second phase concentrates on

validating the generated abstract workflow in both struc-

turally and semantically and generates the optimized

workflow to the web service discovery phase. The third

phase called as semantic web service discovery which

includes mainly semantic markup for WSDL based web

service descriptions and semantic discovery for identifying

the semantic candidate services according to each task

specification existing in the optimized abstract workflow.

The fourth phase concentrates on generating an exe-

cutable composition from optimized abstract workflow by

selecting the most appropriate service instances in fulfilling

the non-functional (QoS) properties [18]. The final phase

includes an execution engine that executes exe-

cutable composition (concrete workflow) represented in

workflow language. In the following, we describe the basic

components of the proposed framework.

4.1 Goal specification through user problem
space

The user problem space includes repository storage that

enables end users to specify their requirements. A

requirement analyzer is integrated into the user problem

space to segregate the functional specifications from non-

functional properties. The functional requirement of user

goal specification includes control flow, data flow, condi-

tions, and other high level goal for abstract representation

of workflow. The non-functional properties include both

static and dynamic QoS parameters to select the optimal

subset of service instances for executing concrete

workflow.

Fig. 4 The motivating scenario

for home loan approval process

S15394 Cluster Computing (2019) 22:S15387–S15408

123

4.2 Processing non-functional properties
through transformation engine

We suggest a novel solution to identify the non-functional

properties and transform them into the concrete form

through the transformation engine. Commonly, the user

requests represented in abstract form that may not be

understand by the service selector for selecting the most

suitable service instances. So that, the abstract non-func-

tional properties must be transformed to concrete form

before making the service instance selection, because of

abstract form represents informal representation of user

requests. In our research, a new methodology called as

transformation engine that identifies the non-functional

properties of user requests and it converts them into con-

straint expression (concrete form of NFP’s). The constraint

expression has a set of terms that can linked into concepts

of domain ontology i.e. the ontology repository and each

term has binding information to identify specific task in

concrete workflow. Therefore, the constraint expression

can facilitate to identify service instances for service

selection and concrete composition.

The ontology repository contains a set of classes with

hierarchical relationships which allows the constraint

expression for performing logical reasoning and getting

information about the services. Our transformation engine

can select the exactly matched classes from ontology

domain as links for connecting terms in constraint

expression. The transformation engine can use both

ontology based service registry (service domain) and

ontology domain to perform the transformation.

Our proposed methodology of transforming the abstract

representation of non-functional properties into concrete

representation is represented in procedure 1.

Procedure 1 Processing non-functional properties

(1) Take a user request from problem space to

transform it into constraint expression.

(2) Divide the abstract form of user request into a set of

tokens i.e. terms.

(3a) If the token is a constant (constraint value), then

add it into constraint expression.

(3b) Else if the token is an index, then find context and

ontology class from domain ontology, after that

bind it into suitable class of domain of ontology

and add it into theconstraint expression.

(4a) Else if the token has no operator, in this case, it

involves a single class alone, then token is

converted to constraint variable. Here, the identi-

fication of an index of token from domain ontology

is done for matching it to a service in service

domain and then added it into the constraint

expression.

(4b) Else, if the token has an operator (i.e., more than

one class involved), then it collects the related

(contextual) information in order to find the index

and domain for all classes related to the operator

from the domain ontology and map the identified

classes with corresponding services of service

domain. Then add it into the constraint expression.

(5) Repeat the steps from 3 to 4 until each identified

tokens processed.

(6) Return a generated constraint expression to seman-

tic service selector.

Fig. 5 The framework for automatic web service composition

Cluster Computing (2019) 22:S15387–S15408 S15395

123

5 Multilevel workflow orchestration
algorithm

The proposed Automatic Web Services Composition

(AWSC) based on top-down orchestration approach can be

an extension of the conventional service composition

approaches. We modified the discovery and the execution

stages in the algorithm, by analyzing the characteristics of

dynamic services. The main characteristic of dynamic

services is it can be able to adapt more than one static

service. In the AWSC described here, several sequences of

abstract workflows can be generated in the planning stage,

and then abstract workflows can be validated using both

structural and semantic validation that traversing all

abstract workflows and the most optimized workflow can

be identified in the optimization stage. The service

instances that have required operators are identified from

the service registry for each abstract task of optimized

workflow during the invocation of discovery stage. We also

extended the discovery stage by adding an additional phase

that can used to facilitate for adding new services in the

service registry. At the end, the AWSC outputs the com-

posite services by combining the operators of the selected

services. The following algorithm shows the top-down

approach for multilevel composition, where the necessary

methods and parameters are presented to accomplish a

preferred composition.

Algorithm : Multilevel workflow for Automatic Web Service Composition

Input :A set of available ontology based services in (Service Repository) R = (WS1,
WS2,…WSn), and a user request UR = (FPs, NFPs, UC)
Output :A feasible composite workflow that satisfy user request UR

1: Let AbstractTask be a set of tasks for a workflow
2: Let Workflow be a set of abstract workflows
3: Let Awnew be an initialization of abstract workflows
4: Let OptimizedWorkflow be a set of structurally validated abstract workflows
5: Let CL be a set of link constraint variables for specifying control flow and executing action in task
ti

6: LetTYPEibe a data type associated with tasks ti in abstract workflow
7: Let ServiceProfile be a set of service profiles of all registered semantic services in service
repository
8: Let ServiceModel be service types for an optimized workflow
9: Let ServiceExamplebe service instances for a service model
10: Let ConcreteWorkflowbe a workflow constituted of set of service models
11: Let ExecutableWorkflow be a workflow consisting of set of selected services
// Planning Stage
12: Workflow generateWorkflow(UC, FPs)
// Initialization of abstract workflow
13: Awnew InitializeOAW(AW, UC)
14: Add NS to AW

15: Add NT to AW

16: for each node N ∈AWdo
17: Label N as “unMatched”
18: end for

S15396 Cluster Computing (2019) 22:S15387–S15408

123

36: else
37:for each node Ni of visited do
38: if node Ni is not anCL and labeled as “unmatched” then
39:traverseAllAbstractWorkflows (Awi,Ni, NT, WA)
40:else
41: if allNi’s parents are labeled as “matched” then
42: traverseAllAbstractWorkflows (Awi,Ni, NT, WA)
43: end if
44: end if
45: end for
46: end if
47:Traverse next workflow of Awnew

48: end for
// Discovery Stage
// Phase 1: Service Registration
49: ServiceProfile registerSemanticService(ServiceProvider, ServiceName,
ServiceDescription)
50: ifServiceDescription == WSDL then
51:Read the abstract definition of WSDL
52:ifTypes == PrimitiveXSDthen
53:Convert PrimitiveXSD to OWL ontology
54: else ifTypes == ComplexXSDthen
55: Create temporary ontology with a concept and properties
56: Search ontology into ontology repository
57: ifSearch Ontology not produced result then
58:Insert temporary ontology into ontology repository
59:else

// Optimization Stage
19: OptimizedWorkflow generateOptimizedWorkflow(Awnew , WA)
20: traverseAllAbstractWorkflows(Awnew,NS, NT, WA)
21: foreach workflow Awi of Awnewdo
22:path.length = Awi.pathlength
23: visited = path.length
24:if visited is anCL set then
25:Label the node visited as “matched”
26: semanticTypeValidate(TYPEi TEff , TYPEj TPre) // Semantic Type Validation
27: ifTYPEi ≠ TYPEjthen
28: Identify the semantic type TYPEiofTEff associated with the task ti

29: Identify the semantic type TYPEjofTPre associated with the task tj

30: Convert TYPEjofTPre to match with TYPEiof TEff

31: else
32:Move to next node
33:end if
34:if visited == NTANDall visited’s parents are labeled as “matched” then
35:storeOptimizedWorkflow(Awopt)

Cluster Computing (2019) 22:S15387–S15408 S15397

123

78:end for
79:OptimizedWorkflow[i].setServiceModels(ServiceExample)
80: end for
// Selection Stage
81: ConcreteWorkflow performCompositePropertySelection(UC, OptimizedWorkflow)
// Execution Stage
82: ExecutableWorkflow produceExecutableServices (ConcreteWorkflow)
83: fori = 0 to ExecutableWorkflow.lengthdo
84:ExecutableWorkflow[i].Publish()
85: end for
86: if Workflow is in nestedPlanthen
87: return ExecutableWorkflow
88: else
89: return invocation outputs of ExecutableWorkflow
90: end if

60: Select the most suitable ontology from resulted ontologies
61:end if
62: end if
63: end if
64:Extract Service Name and its description
65: Extract inputs and outputs of the service
66: Define preconditions and effects in ServiceProfileof the service
67:Add non-functional properties to ServiceProfile
68: end if
// Phase 2: Discovery Process
69: for i=0 to OptimizedWorkflow.lengthdo
70:ServiceModel OptimizedWorkflow[i].getServiceModels()
71:forj=0 toServiceModel.lengthdo
72:ServiceExample searchServices(ServiceModel[j])
73: ifServiceExample.length is 0 orServiceModel[j]calls a dynamic service then
74: nestedPlan generatePlanning(ServiceModel[j])
75: ServiceExample (ServiceExample) generateWorkflow (UC, nestedPlan)
76: end if
77: ServiceModel[j].setServiceExamples(ServiceModel)

The algorithm for multilevel workflow for AWSC takes

input as a set of ontology based web services from the

service repository and user problem space. The user

problem space specifies a set of user requests that includes

functional properties, non-functional properties and user

constraints.

The flow of the algorithm is as follows: First, the

algorithm invokes the generateWorkflow function which

takes the user constraints and functional properties as

depicted in line 12 for the planning stage. The user con-

straints specify a set of context conditions that must be met

to ensure the semantics of user request and correct order of

abstract tasks in an abstract workflow. The functional

properties are derived from the user’s requirement and it is

varied from the user constraints. The Workflow is used for

storing the state of the results derived from planning stage.

Then, the generated set of workflows is initialized to

facilitate the search for optimization stage by invoking

function InitializeOAW with parameters such as user con-

straints and functional properties (line 13). In this function,

the starting node NS and terminal node NT are added to

connect all the generated workflows (lines 14–15). All

nodes are initialized as ‘‘unmatched’’in connected work-

flows to perform the workflow based search(lines 16–18).

Secondly, the algorithm invokes the optimization stage

by calling the generateOptimizedWorkflow function that

takes two arguments such as the initialized workflow

S15398 Cluster Computing (2019) 22:S15387–S15408

123

AWnew and the workflow automata WA (line 19). The

generateOptimizedWorkflow function calls traverseAllAb-

stractWorkflows to identify the optimized workflow among

all connected workflows by performing traversing in

workflows using automata (line 20). In traverseAllAb-

stractWorkflows, we first record the tasks (nodes) currently

being visited and that are stored into the variable visited

(lines 21–23). The visited tasks (nodes) matching with link

constraint CL that specifies control flow and executes an

action in the task of workflow, then nodes are marked as

‘‘matched’’ (lines 24–25). In addition, our algorithm

ensures the type compatibility between the connected tasks

and it assists for automatic type conversions to produce

semantically validated abstract workflow (lines 26–30).

Then, we verify whether node in workflow has been

accessed or not. If yes, and all visited nodes are identified

as non-terminal nodes, also all of its parents has been

marked as ‘‘matched’’. This means that we have found a

path from the initial node to the terminal node in workflow

AWi, that represents an optimized workflow Awopt and we

stored the optimal workflow using the function storeOpti-

mizedWorkflow (lines 34–35). If not, we call tra-

verseAllAbstractWorkflows itself for all the workflows AWi

of the current node, and then complete the traverse for

connected workflows in a recursive manner (lines 36–48).

Each recursive call of traverseAllAbstractWorkflows func-

tion that brings next unvisited workflow, Awnew, from

connected workflows. We continue this traversing process

till all workflows AWi of connected workflows have visited

and identified the optimized workflow for discovery stage.

We segregated the discovery stage into two phases such

as (i) Service Registration and (ii) Discovery Process. In

service registration, we perform mapping from WSDL to

OWL-S before the web service registered into Ontology

based Service Repository (OSR). OSR is an ontology based

web service registry designed for storing semantic web

services and its related ontologies, concepts, properties and

relationships. The reason for mapping WSDL to OWL-S,

the OWL-S focuses on the description of functional and

non-functional properties of semantic web service. WSDL

descriptions usually represented in syntactic manner

therefore WSDL must be converted into ontology. We use

registerSemanticService function to store semantic web

service profile into OSR (line 49). This function performs

parsing of WSDL service, extracts service description

details, and fill the required properties that must be needed

to construct the service profile of OWL-S. However,

WSDL does not contain all required descriptions to build

OWL-S particularly non-functional descriptions. The nec-

essary non-functional properties needed to build service

profile of OWL-S can be automatically added through

extracting from user constraints UC. We consider XSD

types conversion of WSDL is the most important in service

registration process of algorithm. Typically, XSD has two

types: primitive XSD types and complex XSD types. The

primitive XSD is converted to OWL-S in directly. How-

ever, the complex XSD is converted into OWL by

searching most related ontologies that already exist in

OSR. If most suitable ontology is not able to be searched

from OSR, then we ask service provider to insert most

suitable ontology into OSR. Suppose the ontology inserted

by service provider that is also not matching with complex

XSD type, then our algorithm can search the suitable on-

tology from public ontology repositories. Upon the com-

pletion of XSD types to ontological concepts, this

algorithm automatically register the ServiceProfile of new

semantic service into OSR (lines 50–68).

The discovery process (phase 2) of discovery stage for

multi-level top-down AWSC is shown lines between 69

and 80. This process discovers the suitable ServiceExample

(service instances) for each ServiceModel (service type) of

an OptimizedWorkflow. If the ServiceExample set cannot

be discovered for a ServiceModel from the local service

repository OSR, or the ServiceModel is considered as a

dynamic service, then internal AWSC is invoked in

recursive manner to generate ServiceExample set for the

ServiceModel. Following the call of inner AWSC or

dynamic service invocation, a variable nestedPlan is gen-

erated through the generatePlanning method. The inner

AWSC can search semantic web services that satisfy the

functional goal using the generated nested plan and the

matched semantic web services for nested plan can

embedded in OptimizedWorkflow. The proceduressetSer-

viceExamples and setServiceModels are used to write the

attained parameters to the resultant variables.

The method performCompositePropertySelection is

invoked by passing arguments user constraint UC and

Optimizedworkflow to generate Concreteworkflow (line

81). The performCompositePropertySelectionmethod

selects the optimal ServiceExample from the discovered

ServiceExamples for each ServiceModel by using the non-

functional properties and user constraint. The result of

selection stage is ConcreteWorkflow that has optimal ser-

vice examples for the service models.

The execution stage of this algorithm starts in line 82,

the produceExecutableServices method gets input as Con-

creteWorkflow from selection stage and generates a set of

executable workflows. The generated executable work-

flows by the execution stage that are published temporarily

as web services, these can be accessed by any client

application. If the workflow has nested plan, it returns the

inner AWSC process in the form of ExecutableWorkflow as

denoted in line 87. In the invocation of inner AWSC by

parent AWSC, the parent AWSC can obtain the Ser-

viceExampleset from the inner AWSC shown in line 75.

The invocation outputs of ExecutableWorkflow are retuned

Cluster Computing (2019) 22:S15387–S15408 S15399

123

in line 89. This multilevel process for AWSC is invoked

when prevalent services located on the multilevel nested

structure are generated. Subsequently, the inner AWSC can

be invoked recursively and the nested automatic dynamic

composition structure can be generated.

6 Implementation and experimental
feasibility analysis

This section describes implementation details of the unified

composition algorithm through motivating scenario. We

also analyze the feasibility of the performance and illus-

tration of experimental results.

6.1 Lower-level implementation

The lower-level implementation of unified composition

algorithm is based on proposed framework for the moti-

vating scenario, since the framework presents the abstract

model of multilevel workflow orchestration. As we

described the problem formalization in Sect. 3.3, our

implementation mainly focus on three parts, the workflow

generation (planning) phase, the discovery phase and the

selection phase. In addition, it focuses on two new parts

namely transformation engine and multilevel orchestration.

6.1.1 Workflow generation through planning

The workflow generation for dynamic service composition

is generally achieved using AI planning techniques under

semantic aware services. Our multilevel workflow gener-

ator can generate workflow in automatically using Hierar-

chical Task Network (HTN) planner. The multilevel

workflow generator can encode any format of representa-

tion of user specifications and also OWL-S process. We

adapted the graph based planning with user constraints for

defining the characteristics of the HTN planning. The graph

based planning technique generates the abstract plan using

task decomposition which involves decomposing the goal

task into several subtasks and continuing to apply the

decomposition in recursively until the resultant subtasks

can be achieved. The multilevel workflow generator can

produce an abstract task workflow with a set of constraints

for the service discovery phase which attempts to find a

composition solution that satisfies the associated con-

straints and identifying a set candidate services with

respect to the given task workflow.

For instance, as per the definition 2 in Sect. 3.3, a set of

tasks generated for abstract workflow using decomposition

of our motivating scenario is represented in Table 1. In this

workflow, the goal task homeLoanApproval is decomposed

into several subtasks in iteratively until the resultant sub-

tasks are produced by the planner.

6.1.2 Semantic web service discovery

We divided the semantic web service discovery (SWSD)

into two separate parts such as (i) mapping of WSDL into a

semantic web service during service registration, (ii)

semantic service discovery. The primary reason for divid-

ing the SWSD into two separate parts, we find the SWSD is

a complex process and in order to reduce the complexity of

whole discovery process.

6.1.2.1 Mapping of WSDL into semantic service during
service registration Our implementation supports the

mapping of WSDL into semantic service descriptions

during the service registration. Our proposed framework

contains one of the primary components called semantic

service repository that constitutes of two parts of databases

such as (i) Ontology based Service Registry (OSR), and,

(ii) Domain Ontology. The OSR is a repository of services

which stores semantic service description document for

each service. The semantic service description of a service

can itself used to specify the capabilities of the service

which is searched during semantic service discovery

(SSD). The existing web service descriptions are described

in syntactic in nature, so that, the syntactic description of

web service i.e. WSDL document must be mapped into

semantic service description before it stored in OSR. In

order to convert the WSDL document to semantic

description of service, we used a domain ontology which is

an ontology repository and contains common real world

concepts. Semantic service repository also uses WordNet

to provide comprehensive ontological concepts for domain

ontology. We implemented a conversion function as

specified in the proposed algorithm, which initially per-

forms parsing the WSDL of web service, then extracts the

details from service description, and then fill the needed

properties in OWL-S service profile. But, WSDL file does

not include the needed properties to construct OWL-S. So,

the required non-functional properties can be extracted

from user constraints UC. This conversion process con-

sidered the conversion of XSD types such as primitive and

complex types. The primitive type of XSD is converted

directly into OWL-S. But, the conversion of complex type

of XSD to OWL-S is performed by searching the most

suitable related ontologies stored in OSR. In case, the

suitable ontology is not found in OSR, then the conversion

function searches in WordNet and otherwise it searches the

needed ontology from public ontology repositories. After

completion of conversion of XSD types into ontological

concepts, our conversion function can register the new

semantic service into semantic service repository. Also, the

S15400 Cluster Computing (2019) 22:S15387–S15408

123

input, output and other necessary parameters of syntactic

service is mapped to semantically using the concepts in

WordNet and makes the syntactic-to-semantic mapped

services directly searchable. Additionally, we used theory

of service substitution [4], which describes the semantic

relations between ontological concepts of WordNet to

develop the semantic relations among the web services.

6.1.2.2 Semantic service discovery The semantic service

discovery (SSD) process is primarily used to identify the

suitable service instances that must be matched with tasks

of the optimized workflow. We consider GT
i and GT

j be the

graph based nodes (tasks) of optimized workflow for

matching with the semantic service instances R and S

respectively. The degree of match between two tasks of

optimized workflow such as R 2 V GT
i

� �
and S 2 V GT

j

� �
is

calculated based on the precondition (TPre) and effect (TEff)

of tasks Ti and Tj matching with the corresponding service

instances R and S respectively. For service instances

matching with tasks, we used a condition which impose S

matches a request of R, only if, (a) effect (TEff) i.e., output

offered by S match effect (TEff) requested by R, and (b)

precondition (TPre) i.e., input provided by R match pre-

condition (TPre) required by S. To provide a solution for

discovery problem, as we taken the preconditions of R and

S, the degree of match between V GT
i

� �
represented by R

and V GT
j

� �
represented by S, the whole formulation is

denoted by domPRE(R, S), is calculated as follows.

domPREðR,SÞ ¼

P

u 2 PRES

max
v 2 PRER

sim ðu; vÞf g

PREsj j ð1Þ

such that PRERand PRES represent the set of preconditions

of R and S, respectively. Similarly, as considered the

effects (TEff) of R and S, is denoted as follows.

domEFFðR,SÞ ¼

P

u 2 EFFR

max
v 2 EFFS

sim ðu; vÞf g

EEFRj j ð2Þ

We implemented the Semantic Service Discovery (SSD)

processor by adopting the above formulas (1) and (2) to

find the match between the tasks of optimized workflow

and semantic service instances. This discovery processor

compares the user constraints associated with optimized

workflow with all the service instances in the ontology

based service registry (OSR).

6.1.3 Service selection using non-functional properties

The service selection is mandatory for concrete composi-

tion that can identify a set of service instances for execu-

tion engine. The semantic service selector must select the

most suitable service instances that can satisfy the non-

functional (QoS) properties [14]. In our implementation,

we used dynamic non-functional parameters that are

changed during the composition. We considered the

dynamic non-functional parameters such as availability,

response time, throughput, reputation, stability etc., for

service instance selection. In general, non-functional

parameters are represented in abstract form that can be

Table 1 Abstract workflow generation through planner

Cluster Computing (2019) 22:S15387–S15408 S15401

123

converted into concrete form in order to make understand

by the service selector. We used the transformation engine

which can identify the non-functional parameters from user

requests and also it converts them into the concrete form

for service selection. In the Sect. 4.2, we presented our

methodology for transforming the non-functional parame-

ters using the transformation engine.

6.2 Experimental results and feasibility analysis

Our comprehensive algorithm provides an optimal solution

for AWSC problem using modified five stage of compo-

sition, even it does augmented with multilevel workflow

generation to handle the dynamic change and scalability

during runtime of composition. So, it is considered a

complicated task to provide a most suitable solution for

AWSC problem, because of the difficulties such as pro-

viding an implementation solution for all stages of com-

position, generating an optimal workflow for planning,

discovering and identifying the suitable candidate services

from large search space, and finding an optimal composi-

tion solution. Even though some of the research imple-

mentations [18, 21, 22] concentrated on identifying a

solution for optimal composite service, our algorithm

combines all the required solutions applied in modified five

stage of composition.

The experimental setup for implementation of our uni-

fied composition algorithm was conducted in the environ-

ment as follows: Intel core i5 CPU with speed of

2.50 GHz, running under Windows 7 OS. In order to

analysis the performance of the proposed algorithm, we

used two predominant standards such as OWL-S and

WSMO for creating the semantic web services. Also, we

created a set of semantically annotated web services from

their corresponding WSDL file using OWL-S [23] and

WSMO [24]. We implemented a set of WSML files using

WSMO tool which provided goals and mediators. We

looked at goals to specify user’s functional requirements

that used for discovering and mapping with candidate

services. We used mediators in order to perform transfor-

mation between different kinds of data and different pro-

cessing levels. We implemented a semantic service

repository that stored semantic descriptions of thousands of

web services. In addition, we used the Web Service

Challenge (WSC) 2009 dataset that contains more than

40,000 concepts and 4000 service instances.

6.2.1 Analysis of automatic workflow generation

To conduct the experiments of automatic workflow gen-

eration for our comprehensive algorithm, we used multi-

level workflow generator. Our multilevel workflow

generator is implemented by combining the benefits of an

efficient planner Xplan and HTN planer. In order to use

Xplan with HTN planner for generating workflow in

AWSC, we used a conversion tool called as OWLS2PDDL

that converts OWLS service descriptions to corresponding

planning descriptions for PDDL language. The generated

planning descriptions are taken as input by Xplan to pro-

duce a workflow plan for service composition that matches

a given functional requirement of user.

Our multilevel workflow generator initially pre-pro-

cesses the user query and divides the given query into

atomic terms and then matches all terms into ontological

terms. The semantic relations of all terms are also pro-

cesses and stored as ontological relational terms in ontol-

ogy service registry (OSR). After the pre-processing is

completed, then construction of workflow started against

all these ontological relational terms by provided them as

inputs to Xplan and HTN planners.

We evaluated our approach of automated workflow

generation on varying the number of semantic web services

(size of repository) as well as varying levels of nesting for

each repository size. We tabulated pre-processing time,

number of tasks generated for constructing the workflow

and number of optimal workflow selected. We observed

that there was a significant increase in pre-processing time

from initial to subsequent runs on the same size of repos-

itory. Table 2 presents the performance results of our

unified composition algorithm on automatic workflow

generation for the user query.

The experiments were conducted by varying the levels

of nesting on different size of repository. The performance

of workflow generation is graphically presented in Fig. 6

where pre-processing time, number of tasks implemented

and number of optimal workflow generated respectively,

on varying the levels of nesting. The graphs exhibit

incremental behavior of pre-processing time, number of

tasks generated and number of optimal workflow generated

by varying levels of nesting on fixed repository sizes of

1000, 2500 and 4000.

6.2.2 Analysis of semantic web service discovery

In order to evaluate the performance of service discovery

of our unified algorithm, we used the repository of services

and service instances of WSC 2009 dataset. We executed a

various user queries based on our motivating scenario and

presented a sample user query as listed in Table 3. The

process of service discovery can automatically finding the

service instances from the repository that matches the

requested output parameters which should satisfy the post-

conditions and requested input parameters which should

satisfy the pre-conditions and the same process is described

in Sect. 6.1.2.2.

S15402 Cluster Computing (2019) 22:S15387–S15408

123

We ran different types of discovery based matchmakers

along with our unified algorithm (by holding a thresh-

old = 0.5) on the repository of services and WSC 2009

dataset. We compared our discovery technique of unified

composition algorithm against the different discovery

based matchmakers such as Description Logics (DL),

Keyword-based and Hybrid-based. Our discovery based

matchmaker can combine concept level matching (concept

and concept type) and graph based matching (graphpath,

interior nodes and leaves). We adopted this combination of

discovery techniques that can compensate the deficiencies

of specific types of matchmakers. We describe the

Table 2 Performance on workflow generation

Number of web services (repository

size)

Levels of

nesting

Pre-processing time

(ms)

Number of tasks

implemented

Optimal workflow

generation

1000 2–6 37 332 25

1000 7–12 46 596 34

1000 13–18 58 830 47

2500 2–6 48 489 28

2500 7–12 59 846 45

2500 13–18 72 995 57

4000 2–6 57 667 42

4000 7–12 77 980 60

4000 13–18 88 1347 85

Fig. 6 Performance on workflow generation

Cluster Computing (2019) 22:S15387–S15408 S15403

123

configuration of other types of matchmakers as follows:

(a) Description Logic based matchmaker: uses an approx-

imate matching filters for user requests and produces a

ranking of service candidates with different degrees of

match that is similar to SAWSDL-MX1. (b) Keyword-

based matchmaker: uses a non-logic based similarity

function for performing matching on a weighted value of

synonyms and it is same as to Jaccard matching algorithm.

(c) Hybrid-based matchmaker: uses the logic and non-logic

based matching techniques which is similar as OWLS-MX.

6.2.3 Evaluation service discovery results

In order to evaluate the performance of different types of

matchmakers and discovery technique of our unified

algorithm, we used the evaluation metrics of information

retrieval such as precision and recall. We calculated mean

average of precision (MAP) [25, 26] that relates to the

precision values of discovered semantic services returned

by the matchmaker algorithm for all user queries at dif-

ferent recall points. We considered the evaluation of a

single query is not sufficient toarrive a significant conclu-

sion, so we calculated MAP over all user queries. We made

a comparison of our unified composition algorithm with

Description logic-based, Keyword-based and Hybrid-based

as depicted in Table 4 and the same graphically repre-

sented in Fig. 7. We observed from the evaluation of var-

ious discovery-based matchmakers, our algorithm has

produced the best Mean Average Precision of 0.75.

6.2.4 Performance analysis of composition process

To analysis the performance of our composition algorithm,

we selected five measurable factors that influenced during

entire composition process. The measurable factors such as

(i) Transformation of NFPs, (ii) Generation of workflow,

(iii) Workflow optimization, (iv) Discovery of services,

and, (v) Selection of suitable services. These factors

comprise composition process to provide an execution of

workflow through services in a concrete environment.

Also, we considered an important variable called level of

nesting that impacts the entire performance of service

composition. Apart from the variable level of nesting, other

four variables (refer Table 2 in Sect. 6.2.1) that are

explicitly affecting the composition process such as: pre-

processing time for user query, number of tasks imple-

mented for constructing the workflow, number of optimal

workflow generated, and, the size of web service reposi-

tory. From the analysis of experimental results of our

composition algorithm, we plotted a graph (Fig. 8) and its

corresponding table representation (Table 5). Figure 8

represents the execution time in milliseconds (msec) for the

measurable factors that were increased proportionally

while progressive increment in level of nesting. From our

experimental analysis of composition process, we found

the primary factor of increased in execution time during the

service selection. We identified the service selection which

consumed at maximum time (51 percent) of total compo-

sition time during the execution of our motivating scenario.

Table 3 Semantic web service discovery—a sample query using motivating scenario

Semantic service Input parameters Pre-conditions Output parameters Post-conditions

User query ApplicantName, ApplicantPersonalInfo,

ApplicantLoanInfo,

ApplicantBankAccInfo,

ApplicantPanNum,

ApplicationSubmitDate

LoanApprovedInfo,

LoanRejectedInfo,

LoanProcessingNum,

LoanAccountNum

CalculateCreditValue ApplicantName, ApplicantLoanInfo,

ApplicantBankAccInfo,

ApplicantPanNum

CreditScore

AssessCreditWorthiness ApplicantName, ApplicantLoanInfo,

ApplicantBankAccInfo,

ApplicantPanNum

CreditScore B 750 LoanRejectedInfo LoanCancel-

MesgToApplicant

CreditScore C 750 LoanProcessingNum

PropertyAppraisal ApplicantName, LoanProcessingNum LoanProcessingNum

Generated

LoanRejectedInfo LoanCancel-

MesgToApplicant

LoanApprovalInfo LoanApproval-

MesgToApplicant

RejectLoan ApplicantName LoanRejectedInfo LoanCancel-

MesgToApplicant

ApproveLoan ApplicantName LoanApprovalInfo LoanAccountNum,

LoanApproval-

MesgToApplicant

S15404 Cluster Computing (2019) 22:S15387–S15408

123

6.2.5 Discussion

We evaluated our composition algorithm through the

measurable factors such as transformation of NFPs,

workflow generation, workflow optimization, service dis-

covery and service selection that are considered as

affecting factors of the whole process of composition. The

service selection is considered as primary affecting factor,

since, it has to select more number of service instances and

in-turn the selected services must matched with a task of

generated abstract workflow. Also, we identified when

increasing in level of nesting during workflow generation

Fig. 7 Mean averaged

precision/recall graph of

different discovery algorithms

Table 4 Mean averaged precision/recall of different discovery algorithms

Precision Recall

Description logic based Keyword based Hybrid based Our unified composition algorithm

0 1.00 0.92 0.93 0.97

0.1 0.91 0.84 0.91 0.94

0.2 0.87 0.81 0.86 0.92

0.3 0.69 0.79 0.78 0.86

0.4 0.58 0.70 0.66 0.78

0.5 0.32 0.64 0.62 0.76

0.6 0.28 0.60 0.59 0.68

0.7 0.12 0.51 0.57 0.63

0.8 0.00 0.27 0.35 0.60

0.9 0.00 0.10 0.16 0.49

1 0.00 0.06 0.08 0.32

Fig. 8 Analysis of composition cost of AWSC

Cluster Computing (2019) 22:S15387–S15408 S15405

123

that proportionally increase the time in service selection.

The composition cost of other measurable factors such as

transformation of NFPs, workflow generation and opti-

mization are consumed very small time during planning

phase. The composition cost of service discovery is

increased progressively to corresponding increment of

number of tasks in generated workflow, however, its pro-

gressiveness is lies between workflow generation and ser-

vice selection at most of the time. We observed the

composition time of transformation of NFPs is linearly

increased depends on complexity of its associated user

constraints.

7 Conclusion

Due to the revolutionary advancement of web service

technologies and increasing enormous amount of web

services, we require dynamic and automatic service com-

position to reuse the prevalent services in efficiently. It is

also mandatory that the web service composition solutions

should be obtained in more optimal way. In this paper, our

comprehensive algorithm uses the modified five stage

composition for discovering and orchestrating web services

based on semantic web technologies. With the use of

semantic description of web services and ontological

classes, our proposed algorithm can find the composite

services matching for the user request. The entire compo-

sition process is done automatically without intervention of

any manual process. Our algorithm finds the composition

solution for any user requests, whether the given user

request is simple or complex, and also it automatically

generates the service composition in OWL-S descriptions.

An optimization on composition is considered as another

important affecting factor for AWSC. We implemented

additional features with our algorithm to provide optimal

composition solution, these features includes, transforming

the non-functional properties of user requests to all stages

during automatic composition and optimization on the

resultant abstract workflows from planning stage using

workflow automata.In order to provide seamless automatic

composition, the non-functional properties from user

requests were identified and converted into constraint

expression to select most optimal semantic services. The

workflow optimization is implemented as an additional

phase in composition process, called as validation and

optimization, it performs both structural and semantic

validation on workflows and produced the optimized

workflows. The discovery process is modified in our

algorithm which is intended for identifying the suit-

able web services that matching with tasks in abstract

workflow and additionally it performs transformation of

syntactic description of web service (WSDL) into a

semantic description using the standards OWL-S and

WSMO. The process of transformation of WSDL to

semantic description of web services is also done by

annotating WSDL files with additional ontologies stored in

ontology based service repository (OSR).

Our comprehensive algorithm provides a practical

solution to enterprise service orchestration developers. The

experimental evaluation and feasibility analysis for our

motivating scenario proves the relationship among func-

tional factors and also scalability of our algorithm for large

scale of services and ontologies. We performed various

experiments to analysis the performance of our unified

algorithm and its results were also observed. The experi-

ments conducted during automatic workflow generation

stage that shows incremental behavior of pre-processing

time, number of tasks and optimal workflow generated in

efficiently when varying levels of nesting on different

repository sizes. We conducted experiments to evaluate the

performance of different types of matchmakers and dis-

covery technique of our unified algorithm using the eval-

uation metrics of information retrieval. We observed from

the performance of various discovery-based matchmakers,

our algorithm has produced the best Mean Average Pre-

cision of 0.75. In addition, we analyzed the composition

cost of our composition algorithm through the measurable

factors such as transformation of NFPs, workflow genera-

tion, workflow optimization, service discovery and service

selection and its experimental analysis shows that the

method of generating composite service is seamless and

scalable to handle largest collection of web services while

increasing the levels of nesting.

Our feature research includes introducing fault-tolerant

composition [27, 28] and investigating the different context

Table 5 Analysis of composition cost of AWSC

Level of nesting Transformation of NFPs Workflow generation Workflow optimization Service discovery Service selection

2–6 428 1284 642 4063 2128

7–12 1154 3461 1731 9957 14,235

13–18 1710 5130 2565 14,671 24,642

S15406 Cluster Computing (2019) 22:S15387–S15408

123

aware composition approaches to adapt more interactive

process and robustness in composition solution. Further-

more, analyzing the choice of bio-inspired algorithms such

as Ant Colony Optimization, Evolutionary Algorithm and

Particle Swarm Optimization and other recent composition

algorithms are also part of our future work. We are also

discovering technologies and domain-specific languages in

automated web service composition to develop a compre-

hensive framework for problem solving in software

engineering.

References

1. Rao, J., Su, X.: A survey of automated web service composition

methods. Semant. Web Serv. Web Process Compos. 3387, 43–54
(2005)

2. Kona, S., Bansal, A., Blake, M.B., Gupta, G.: Generalized

semantics-based service composition. In: IEEE International

Conference on Web Services (ICWS), pp. 219–227 (2008)

3. Srivastava, B., Koehler, J.: Web service composition: current

solutions and open problems. In: Proceedings of Workshop

Planning for Web Services (2003)

4. Kona, S., Bansal, A., Simon, L., Mallya, A., Gupta, G.: USDL:

aservice-semantics description language for automatic service

discoveryand composition. Int. J. Web Serv. Res. 6(1), 20–48
(2009)

5. Milanovic, N., Malek, M.: Current solutions for web service

composition. IEEE Internet Comput. 8(6), 51–59 (2004)

6. Thatte, S: BPEL4WS (Version 1.1). http://www.ibm.com/devel

operworks/library/specification/ws-bpel (2003)

7. Casati, F. et al.: Adaptive and Dynamic Service Composition in

eFlow. In: Proceeding of 12th International Conference on

Advanced Information Systems Engineering(CAiSE’00) (2000)

8. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated

composition of web services by planning at the knowledge level.

In: Proceeding of 19th International Joint Conference on Artifi-

cial Intelligence (IJCAI’05) (2005)

9. Rao, J., Dimitrov, D., Hofmann, P., Sadeh, N.: A mixed initiative

approach to semantic web service discovery and composition:

SAP’s guided procedures framework. In: International Confer-

ence on Web Services. ICWS’06, 2006, pp. 401–410 (2006)

10. McIlraith, S., Son, T.C.: Adapting golog for composition of

semantic web services. KR 2, 482–493 (2002)

11. Pistore, M., Roberti, P., Traverso, P.: Process-level composition

of executable web services: on-the-fly versus once-for-all com-

position. In: Gomez-Perez, A., Euzenat, J. (eds.) The Semantic

Web: Research and Applications, pp. 62–77. Springer, Berlin

(2005)

12. Zhan, R., Arpinar, B., Aleman-Meza, B.: Automatic composi-

tionof semantic web services. In: Proceeding of International

Conference on Web Services(ICWS’03) (2003)

13. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning

for web service composition using Shop2. J. Web Semant. 1(4),
377–396 (2004)

14. Feng, Y., Ngan, L.D., Kanagasabai, R.: Dynamic service com-

position with service-dependent QoS attributes. In: 2013 IEEE

20th international conference on web services (ICWS), pp. 10–17

(2013)

15. McIlraith, S., Son, T.: Adapting golog for composition of

semantic web services. In: Proceeding of Eighth International

Conference on Knowledge Representation and Reasoning,

pp. 482–493 (2002)

16. Ponnekanti, S.R., Fox, A.: SWORD: a developer toolkit for web

service composition. In: Proceeding of 11th International WWW

Conference (WWW’02), pp. 83–107 (2002)

17. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service

composition planning with OWLS-XPlan. In: Proceedings of

AAAI Fall Symposium onSemantic Web and Agents (2005)

18. Dong, W., Jiao, L.; QoS-awareWeb service composition based on

SLA. In: Fourth International Conference on Natural Computa-

tion (ICNC), vol. 5, pp. 247–251 (2008)

19. Yan, J., Kowalczyk, R., Lin, J., Chhetri, M.B., Goh, S.K., Zhang,

J.: Autonomous service level agreement negotiation for service

composition provision. Future GenerComputSyst 23(6), 748–759
(2007)

20. Wada, H., Champrasert, P., Suzuki, J., Oba, K.: Multiobjective

optimization of sla-aware service composition. In: IEEE Con-

gress on Services-Part I, 2008, pp. 368–375. IEEE (2008)

21. Claro, D.B., Albers, P., Hao, J.K.: Selecting web services for

optimal composition. In: ICWS International Workshop on

Semantic and Dynamic Web Processes, Orlando-USA (2005)

22. Ramanathan, R., Latha, B.: Towards optimal resource provi-

sioning for Hadoop-MapReduce jobs using scale-out strategy and

its performance analysis in private cloud environment. Clust.

Comput. (2018). https://doi.org/10.1007/s10586-018-2234-8

23. OWL-S 1.1: http://www.daml.org/services/owl-s/1.1 (2012)

24. WSMO:. http://www.w3.org/2005/04/FSWS/Submissions/1/

wsmo_position_paper.html (2005)

25. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and

Mapping. Springer, New York (2011)

26. Algergawy, A., Nayak, R., Siegmund, N., K̈oppen, V., Saake, G.:

Combining schema and level-based matching for web service

discovery. In: ICWE (2010), pp 114–128 (2010)

27. Vijayakumar, K., Arun, C.: Automated risk identification using

NLP in cloud based development environments. J. Ambient

Intell. Hum. Comput. (2017). https://doi.org/10.1007/s12652-

017-0503-7

28. Vijayakumar, K., Arun, C.: Continuous security assessment of

cloud based applications using distributed hashing algorithm in

SDLC. Clust. Comput. (2017). https://doi.org/10.1007/s10586-

017-1176-x

U. Arul has received his

Diploma in Computer Technol-

ogy from Directorate of Tech-

nical Education in 1994. He has

received his B.E. degree in

Computer Science and Engi-

neering from Madras University

in 1998. He received his M.E.

degree in Computer Science and

Engineering from Anna

University in 2007. He is at

present a Ph.D. Research Scho-

lar in Computer Science and

Engineering pursuing from

Anna University. Further, cur-

rently he is working as Associate Professor in the Department of

Computer Science and Engineering at Dhanalakshmi College of

Engineering, Chennai, India. His research areas are Internet Tech-

nology, Semantic Web, Ontology Learning and Cloud Computing.

Cluster Computing (2019) 22:S15387–S15408 S15407

123

http://www.ibm.com/developerworks/library/specification/ws-bpel
http://www.ibm.com/developerworks/library/specification/ws-bpel
https://doi.org/10.1007/s10586-018-2234-8
http://www.daml.org/services/owl-s/1.1
http://www.w3.org/2005/04/FSWS/Submissions/1/wsmo_position_paper.html
http://www.w3.org/2005/04/FSWS/Submissions/1/wsmo_position_paper.html
https://doi.org/10.1007/s12652-017-0503-7
https://doi.org/10.1007/s12652-017-0503-7
https://doi.org/10.1007/s10586-017-1176-x
https://doi.org/10.1007/s10586-017-1176-x

S. Prakash has received M.E. in

the Department of Electronics

and Communication Engineer-

ing at B.I.T., Mesra, India, in

1992 and received Ph.D. in the

Department of Instrumentation

at I.I.Sc., Bangalore, India, spe-

cializing in the area of amor-

phous memory devices in 1997.

Then, he worked as a research

fellow in the Department of

Electrical and Computer Engi-

neering, at NUS, Singapore on

Ohmic contacts on GaN mate-

rials (September 1997–February

2000). Further, he continued his research as post-doctoral fellow on

TFT’s for imaging and display application in the Department of Elec-

trical and Computer Engineering at University of Waterloo, Waterloo

(January 2000–May 2002). At present, he is working as a professor in

the Department of ECE at Jerusalem College of Engineering, Chennai,

India. He has more than 20 years of research cum teaching experience

in Indian and abroad universities. He has authored and co-authored in

more than 20 research papers at several International journals and

conferences. Under his guidance three have received their Ph.D. from

AnnaUniversity and 13 research scholars fromdifferent universities are

pursuing their research. His areas of interest are fabrication and char-

acterization of amorphous devices, simulation and emulating memris-

tor, computer networks and VLSI design.

S15408 Cluster Computing (2019) 22:S15387–S15408

123

	A unified algorithm to automatic semantic composition using multilevel workflow orchestration
	Abstract
	Introduction
	Multilevel orchestration for workflow generation
	Annotating additional metadata to web services
	Transformation of QoS parameters (non-functional properties)

	Related work
	Multilevel workflow orchestration for automated semantic composition
	Methodology of multilevel workflow orchestration
	The modified five phase composition
	Problem formalization
	Motivating scenario

	Automatic web service composition framework
	Goal specification through user problem space
	Processing non-functional properties through transformation engine

	Multilevel workflow orchestration algorithm
	Implementation and experimental feasibility analysis
	Lower-level implementation
	Workflow generation through planning
	Semantic web service discovery
	Mapping of WSDL into semantic service during service registration
	Semantic service discovery

	Service selection using non-functional properties

	Experimental results and feasibility analysis
	Analysis of automatic workflow generation
	Analysis of semantic web service discovery
	Evaluation service discovery results
	Performance analysis of composition process
	Discussion

	Conclusion
	References

