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Abstract
In order to effectively overcome the disadvantages of the traditional artificial bee colony (ABC) algorithm, i.e., its tendency

to fall into local optima and low search speed, an improved ABC algorithm based on the self-adaptive random optimization

strategy (SRABC) is proposed. First, the improved algorithm was derived from the self-adaptive method to update the new

location of an ABC to improve the correlation within the bee colony. It converges swiftly and obtains the optimal solution

for the benchmark function. Second, the bidirectional random optimization mechanism was used to restrain the search

direction for the fitness function in order to improve the local search ability. Moreover, the particle swarm optimization

algorithm regarded as the initial value of the SRABC algorithm was introduced at the initial stage of the improved ABC

algorithm to increase the convergence rate, search precision and searchability, and greatly reduce the search space. Finally,

simulation results for benchmark functions show that the proposed algorithm has obviously better performance regarding

the search ability and convergence rate, which also prevents early maturing of algorithm.

Keywords Swarm intelligence � Artificial bee colony (ABC) � Bidirectional random optimization (BRO) �
Self-adaptive � Particle swarm optimization (PSO)

1 Introduction

Optimization problems have always been widely used in

mathematical programming, computer technology, engi-

neering design, etc. Moreover, the solution of an optimiza-

tion problem with simulations of group behaviors has

become a popular research topic. Among the possible sim-

ulation techniques, Ant Colony Optimization (ACO) [1]

proposed by Dorgo and particle swarm optimization (PSO)

[2] proposed by Kennedy are relatively mature in this field.

In recent years, a new random search method in the

optimization field has been developed—namely, artificial

bee colony (ABC) algorithm, which was proposed by

Karaboga and successfully applied to the optimization

problem of functions [3]. It mainly simulates a bee colony

that gathers honey intelligently and exchanges information

about nectar sources according to the different divisions of

labor within the bee colony until the optimal nectar source

is found. In references [4, 5], the performance of the ABC

algorithm was tested with five common benchmark func-

tions, showing that the ABC algorithm has good optimal

performance similar to the Genetic Algorithm (GA), PSO,
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and Differential Evolution (DE). However, it has disad-

vantages such as a low convergence rate and tendency to

‘‘mature early.’’ Targeting these problems, the ‘‘early

maturing’’ phenomenon in the ABC algorithm was over-

come by combining it with the DE algorithm and intro-

ducing an elimination rule during iteration [6]. Chaotic

thought was introduced to the ABC algorithm in references

[7, 8], and the characteristics of chaotic motion, such as the

randomness and ergodicity, were used to improve the

overall searchability of the algorithm.

In order to improve the convergence rate of the ABC

algorithm and overcome its tendency to fall into local

optima in a later period, an improved algorithm based on

the self-adaptive random optimization strategy (SRABC)

was proposed on the basis of references [6, 9, 10] to

improve the local searchability of the algorithm by taking

advantage of self-adaptive thought and the bidirectional

random optimization mechanism. In addition, PSO was

introduced at the initial stage of the improved algorithm to

increase its convergence rate.

In order to improve the exploitation capability, the

chaotic gradient ABC algorithm was proposed in Ref. [11],

its effectiveness was tested on three different benchmark

text datasets namely Reuters-21,578, Classic4, and

WebKB. Astute Artificial Bee Colony (AsABC) algorithm

proposed by Ref. [12] circumvents three problems: slow

convergence speed, local optima stagnation and scalability

problem. What’s more it is able to maintain a better trade-

off between two conflicting aspects, exploration and

exploitation in the search space.

A decentralized form of ABC algorithm with dynamic

multi-populations by means of fuzzy C-means (FCM)

clustering proposed by Ref. [13] improves the convergence

rate and makes a balance between the global search and

local turning abilities. A novel ABC algorithm with

dynamic population (ABC-DP) proposed by Ref. [14–16]

synergizes the idea of extended life-cycle evolving model

to balance the exploration and exploitation tradeoff. ABC-

DP is then used for solving the optimal power flow (OPF)

problem in power systems that considers the cost, loss, and

emission impacts as the objective functions. Taking

Kapur’s entropy as the optimized objective function, Ref.

[17–20] put forward the modified quick ABC algorithm

(MQABC), which employed a new distance strategy for

neighborhood searches.

In order to overcome the poor exploitation of ABC

algorithm, inspired by the gravity model, ABCG was

proposed on basis of a novel solution search equation and

multiple solution search equations. The results of testing on

benchmark functions show that ABCG is regarded as a

competitive solution [21].

A novel strategy based on node electrical relevance and

ABC algorithm was proposed to minimize outage losses

and make use of renewable energy sources. The results of

testing on the IEEE 69-bus distribution system show that

the proposed strategy is more feasible and efficient than

other strategies from the literature [9].

On basis of the ABC algorithm, a new topological shape

optimization scheme was proposed. The algorithm is the

most effective among the comparison methods [22].

In order to overcome the weakness of slow convergence

in ABC, CosABC based the cosine similarity was pro-

posed. Via testing on a test suite composed of twenty-four

benchmark functions, the effectiveness of CosABC is

demonstrated [7].

Recommender systems make an important role in elec-

tronic commerce sites, which helps to achieve better cus-

tomer satisfaction and bring those products into the notice

of the customer. A movie recommender system based on

collaborative filtering technique was presented. On the

basis of CPU Time and two standard functions, ant colony

optimization and artificial bee colony optimization were

compared.

The rest of paper is organized as follows. Section 1

presents the ABC algorithm, and Sect. 2 presents the

essential concepts of the SRABC and the strategy for self-

adaptive random optimization. Section 3 discusses the

performance of the proposed approach for various bench-

mark functions. Finally, the conclusions are provided in

Sect. 5.

2 Principles of the ABC algorithm

The ABC algorithm is a random search algorithm based on

the behaviors of a bee colony [3]. In the ABC algorithm, an

ABC falls into three categories according to the labor

distribution: honey-gathering, observation, and investiga-

tion bees. Generally, both the honey-gathering and obser-

vation bees account for half of the bee colony, and there is

only one honey-gathering bee for one nectar source. During

the initialization of the algorithm, M initial solutions are

first generated randomly; then, the optimal solution is

found with the following search process: (1) the honey-

gather bee searches and memorizes the amount of honey in

the nectar source—namely, the quality of the solution

(fitness); (2) the observation bee selects a nectar source by

determining the yield rate according to the information

about the nectar source obtained by the honey-gathering

bee and changes the position memorized; and (3) when a

nectar source is given up after it is exhausted, an investi-

gation bee is produced to search for new nectar source.

In the algorithm, in order to generate a new candidate

position Vi according to the memorized position Xi, the

following equation is used for updating:
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vij ¼ xij þ uijðxij � xkjÞ ð1Þ

where k is a nectar source different from i, j is the subscript

of a randomly selected nectar source, and uij is a random

number in the range [- 1, 1]. According to the amount of

honey at the nectar source, the probability at which a nectar

source is selected by the observation bee is

pi ¼
fitðhiÞ
PS

i¼1

fitðhiÞ
ð2Þ

where S is the total number of nectar sources, hi is the ith

nectar source, f(hi) is the fitness of nectar source hi, and
i [ P{1, 2, …, S}.

Suppose that after ‘‘limit’’ times of cycling search and

update, the fitness of the nectar source could still not be

improved; then, it would be given up, and the honey-

gathering bee would turn into an investigation bee. ‘‘Limit’’

is an important control parameter in the ABC algorithm for

the selection of the investigation bee. The procedure for the

investigation bee finding a new nectar source and replacing

Xi is expressed as follows:

x
j
i ¼ x

j
min þ randð0; 1Þðx j

max � x
j
minÞ ð3Þ

3 Improvement in the ABC algorithm

In order to improve the convergence rate of the ABC

algorithm and overcome its tendency to fall into local

optima in a later period, an improved algorithm based on

the self-adaptive random optimization strategy is proposed

on the basis of the above-stated ABC algorithm principle.

Together with weighted PSO, the convergence rate and

local searchability of the algorithm are improved by taking

advantage of self-adaptive thought and bidirectional ran-

dom optimization to improve the optimal search perfor-

mance of this algorithm.

3.1 PSO algorithm

In 1995, after the proposal of the basic PSO algorithm by

Zhang et al. [9], an improved PSO algorithm was proposed

by Shi and Eberhart [10]; in it, an inertia factor w is added

to the basic PSO algorithm, and the updated equations for

standard PSO are expressed as

Vtþ1
i ¼ wVt

i þ c1r1ðPt
i � Xt

iÞ þ c2r2ðPt
g � Xt

iÞ ð4Þ

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð5Þ

where Vi is the speed of particle i, Xi is the position of

particle i, c1 and c2 are positive acceleration factors, r1 and

r2 are random numbers distributed within [0, 1], Pi is the

optimal position found by a single particle, Pg is the

optimal position found by the entire colony, t is the tth

iteration. The basic steps of the specific optimization pro-

cess for the PSO algorithm [22] are as follows:

Step 1: Initialize PSO, set the initial position and speed

of m particles randomly, and calculate the fitness of each

particle.

Step 2: For each particle, compare the fitness of the

current position with the fitness at the best position Pi—

namely, Pi,best. If it is better than Pi,best, update Pi and

Pi,best; otherwise, Pi,best remains unchanged.

Step 3: For each particle, compare the fitness of the

current position with the fitness at the best position Pg—

namely, Pg,best. If it is better than Pg,best, update Pg and

Pg,best; otherwise, Pg,best remains unchanged.

Step 4: The speed and position of the particle are

adjusted according to Eqs. (4) and (5).

Step 5: If the fitness of the current position reaches the

termination condition, it would end or return to Step 2.

3.2 Self-adaptive random optimization strategy

3.2.1 Position-update equation for a self-adaptive bee
colony

When adopting Eq. (1) for a position update, a larger uij

causes movement away from the local minimum, whereas a

smaller uij favors the convergence of the algorithm [22].

The best method for the overall search is to adopt a larger

uij at the initial stage of the algorithm to obtain an excel-

lent nectar source with a higher searchability and improve

the search precision. In a later period, a smaller uij is

needed to improve the local searchability of the algorithm

and increase its convergence rate. Therefore, uij is set as

the function for iteration, and it decreases as the number of

iterations increases. uij is defined as follows:

uk
ij ¼ uk�1

ij � Cðwmax � wminÞ
Cmax

ð6Þ

where wmax and wmin are initial and final weights, respec-

tively; Cmax is the maximum number of iterations; and C is

the current number of iterations. As a result, Eq. (1) is

redefined as.

vij ¼ xij þ uk
ijðxij � xkjÞ ð7Þ

Thus, to some degree, Eq. (7) plays a guiding role in the

search trend for the position of a nectar source, overcoming

disadvantages such as the strong randomness and low

convergence rate.
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3.2.2 Bidirectional random optimization mechanism

When calculating the fitness of a nectar source with the

ABC algorithm, the observation bee selects a nectar source

after comparing the ones around hi. The position near the

nectar source is calculated as follows:

hiðC þ 1Þ ¼ hiðCÞ þ uiðCÞ ð8Þ

where ui(c) is the progressive step length produced ran-

domly near hi. After calculating the fitness, if fit(C ? 1)

[ fit(C), then the observation bee would choose hi(-
C ? 1), or ui(c) remains unchanged. If the fitness of a

nectar source is not improved after cycling for a finite

number of iterations, then it should be given up, and the

honey-gathering bee would turn into an investigation bee

according to Eq. (3). There are certain disadvantages

associated with the above-stated method; namely, in each

cycle, the nectar source in a single direction would be

searched, and as a result, there is a tendency to fall into

local optima. In references [23, 24], a bidirectional random

optimization mechanism was proposed in research on the

search hit rate and success rate in a dynamic network

environment [23], which effectively improved the search

feature of the network. Inspired by this thought, an

improved mechanism is introduced to improve the search

direction for a nectar source; if

fitðhi þ lÞ\fitðhiÞ ð9Þ

then

hi ¼ hi þ d ð10Þ

If

fitðhi � lÞ\fitðhiÞ ð11Þ

then

hi ¼ hi � d ð12Þ

or hi remains unchanged.

3.2.3 Algorithm initialization realized by the particle
swarm optimization algorithm

The convergence rate is low in the bee colony algorithm,

whereas it is relatively higher in the PSO algorithm, which

is introduced in the initial stage to improve the algorithm.

That is, the overall optimal solution is obtained by iteration

by taking advantage of PSO; then, the position of a nectar

source would be randomly generated near the optimal

solution. Later, an optimization process is conducted to

calculate the position of a nectar source within an ABC.

The improved initial position of the nectar source with the

ABC algorithm is as follows:

Xi ¼ PM
g;best þ uM

i
� Pg;best ð13Þ

where PM
g;best is an M-dimensional vector, and each element

is equal to Pg,best. uM
i
is an M-dimensional vector in [- 1,

1] produced randomly. According to the above-mentioned

strategy, the specific procedures for improving the algo-

rithm are as follows:

Step 1 The related initial parameters for the ABC and

PSO algorithm are set. The initial speeds and positions

of M particles are randomly generated according to

Eqs. (4) and (5).

Step 2 The optimal solution Pg,best within the number of

cycles c is determined by calculating the fitness value of

each particle for comparison.

Step 3 The honey-gathering bee searches for a new

nectar source according to Eqs. (6) and (7) and calcu-

lates its fitness. If it is better than the original position,

then the original position is replaced with the new one.

Step 4 The observation bee selects a nectar position

according to the amount of honey in the nectar source

according to the probability in Eq. (2), generates a new

position according to the bilateral random optimization

mechanism, and evaluates this position.

Step 5 If the nectar source is given up, then the honey-

gathering bee at this nectar source would turn into an

investigation bee according to Eq. (3).

Step 6 The current optimal position and fitness value are

recorded.

4 Analysis of the simulation experiment

In order to verify the effectiveness of the proposed algo-

rithm and conduct a performance analysis, seven bench-

mark functions are selected for comparison and testing,

which are different from the traditional ABC algorithm. A

comparison of the performance of a hybrid ABC is pro-

posed in reference [25].

(1) Rastrigin function

f ðxÞ ¼
PD

i¼1

x2i � 10 cosð2pxiÞ þ 10

� �

is a multi-

modal function whose optimal solutions are dis-

tributed evenly with the search scope within [- 20,

20] and the overall optimal solution of 0.

(2) Griewank function

f ðxÞ ¼ 1
4000

PD

i¼1

x2i

� �

�
QD

i¼1

cosð xiffi
i

p Þ
� �

þ 1 is a

multimodal function whose optimal solutions are

distributed evenly. However, its local optima

increase as the number of dimensions increases.
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The search scope is within [- 600, 600], and the

optimal solution is 0.

(3) Sphere function

f ðxÞ ¼
Pn

i¼1

x2i is a continuous convex function with

a single peak whose search scope is within [- 100,

100]. The lowest point of the function is 0.

(4) Rosenbrock function

f ðxÞ ¼
Pn�1

i¼1

½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2�; the

search scope is within [- 30, 30], and the optimal

solution is 0.

(5) Ackley function

f ðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

D

XD

i¼1

x2i

v
u
u
t

0

@

1

A

� exp �0:2
1

D

XD

i¼1

cosð2pxiÞ
 !

þ 20þ e

; the search scope is within [- 30, 30], and the

lowest point of the function is 0.

(6) Pathological function

f ðxÞ ¼
Xn�1

i¼1

0:5þ
sin2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100x2i þ x2iþ1

q
Þ � 0:5

ð1þ 0:001ðx2i þ x2iþ1 þ 2xixiþ1Þ2Þ

0

@

1

A

; the search scope is within [- 100, 100], and the

lowest point of the function is 0.

(7) Alpine function

f ðxÞ ¼
PD

i¼1

xi sinðxiÞ þ 0:1xij j; the search scope is

within [- 10, 10], and the lowest point of the

function is 0.

The parameters for the algorithms are set as follows. For

the SRABC algorithm, the scale of the colony S = 60,

limit = 60, the number of PSOs is 60, and the number of

cycles for the PSO algorithm c = 100. For the standard

ABC algorithm S = 60, limit = 60, the maximum number

of iterations is 2500, and the algorithm operates 30 times

independently. A comparison of the maximum, minimum,

average, and variance obtained after the independent

operation of various functions in different dimensions 30

times is summarized in Table 1.

From Table 1, although the optimization results for the

Sphere function with a single peak for different dimensions

do not greatly improve with the SRABC algorithm, it is

still better than those obtained by the standard ABC and the

hybrid artificial bee colony (HABC) algorithms. For the

multimodal Griewank and Rastrigin functions, there are

complicated nonlinear overall optimization problems.

From the table, the precision of the simulation results of

seven functions for different dimensions with the SRABC

algorithm is better than those of the ABC and HABC

algorithms. In particular, the 60-dimensional Rastrigin

function converges to 0 rapidly. The overall optimal

solution of the Rosenbrock function is distributed in a long,

narrow, and flat parabolic valley, and it is difficult to

converge to this solution. From Table 1, although the

average values of the Ackley function, f the Alpine func-

tion and the Pathological function are large, the average

values of the proposed algorithm are obviously smaller

than the other two, and the minimum is close to the optimal

solution. From the test of the Ackley function, the perfor-

mance of the SRABC algorithm is not much better than

that of ABC and HABC algorithms when the number of

dimensions is low; however, as the number of dimensions

increases, the precision of the optimal solution of the

SRABC algorithm is obviously better than the other two

algorithms. From the test of the Alpine function in Table 1,

the performance of the HABC algorithm is better than that

of the ABC algorithm, and the performance of the proposed

SRABC algorithm is much better than the other two. From

the test of the Pathological function in Table 1, the search

precision of the proposed algorithm is more stable than the

other two when the number of dimensions is 30, and there

is not much difference between the three algorithms when

the number of dimensions is 60. Further, from Table 1, the

improved algorithm maintains the features of its original

algorithm and improves the calculation precision and sta-

bility compared to the traditional and HABC algorithms.

In Figs. 1, 2, 3, 4, 5, 6 and 7, the curves showing the

optimal values obtained by the ABC, HABC, and SRABC

algorithms versus the number of iterations for each func-

tion with 30 and 60 dimensions are shown. In order to show

the results clearly, the number of iterations is plotted along

the x axis, and the optimal values are plotted along the y

axis on a logarithmic scale.

In Figs. 1, 2, 3, 4, 5, 6 and 7, for the same number of

iterations and targeting different dimensions of seven

benchmark functions, iteration of the optimal value nearly

stops in a later period, and there is a certain improvement

obtained by the HABC algorithm compared to the ABC

algorithm. Further, the performance of the SRABC algo-

rithm is greatly improved by the proposed optimization

process. From Fig. 1, the SRABC algorithm converges

swiftly and obtains the optimal solution for the Sphere

function. Since the optimization result at the initial stage of

the PSO algorithm is regarded as the initial value of the

SRABC algorithm, the search space is greatly reduced, and

the convergence rate is further improved. From Figs. 2 and

3, for a certain number of iterations, the optimal values

could be achieved by the SRABC algorithm at an early
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stage for the Griewank and Rastrigin functions, which

nearly decrease linearly, and the convergence rate is

smaller than those of the other two algorithms. From

Figs. 4 and 5, the SRABC algorithm has a greater precision

than the ABC and HABC algorithms for 30 dimensions if

the number of iterations is low. Moreover, as the number of

iterations increases, the SRABC algorithm converges to the

optimal value gradually and steadily. The proposed

Table 1 Test results for different functions

Test function Algorithm Dimension Average value Variance Maximum value Minimum value

(f1) Sphere function ABC 30 1.13714E-015 2.97144E-016 1.79207E-015 5.46909E-016

HABC 5.55572E-016 9.00306E017 7.23074E-016 4.09377E-016

SRABC 2.95155E-016 5.79213E-17 4.61564E-016 1.80046E-016

ABC 60 2.34037E-014 1.82907E-014 7.64184E-014 4.13668E-015

HABC 3.6088E-015 1.45665E-015 8.65843E-015 1.87149E-015

SRABC 8.15309E-016 1.32347E-016 9.89696E-016 4.72298E-016

(f2) Rastrigin function ABC 30 2.58239E-009 1.03788E-008 5.65922E - 008 1.13687E-012

HABC 1.13687E-012 1.64169E-012 8.15703E-012 1.12578E-015

SRABC 1.32635E-014 1.78719E-14 5.68434E-014 0

ABC 60 0.167895 0.458241 1.99033 1.72463E-010

HABC 4.56788E-008 1.53871E-007 8.25186E-007 1.3074E-011

SRABC 1.21393E-010 2.62695E-010 1.2559E-009 1.7053E-013

(f3) Griewank function ABC 30 2.18149E-012 9.27583E-012 4.90501E-011 9.99201E-016

HABC 4.08007E-014 9.89653E-014 4.99267E-013 4.44089E-016

SRABC 6,25426E016 1.41953E-015 7.54952E-015 0

ABC 60 2.79554E-013 8.89572E-013 4.85578E-012 2.77556E-015

HABC 1.4011E-013 2.87342E-013 1.20581E-012 2.33147E-015

SRABC 1.72825E-015 1.94662E-015 8.54872E-015 1.11022E-016

(f4) Rosenbrock function ABC 30 0.250332 0.235661 1.04043 0.0199202

HABC 0.247764 0.277462 1.43555 0.0262511

SRABC 0.0142749 0.0138214 0.0513423 0.0013952

ABC 60 4.3507 3.10707 11.5256 0.344054

HABC 1.37106 1.12131 3.99565 0.114811

SRABC 0.0300207 0.0329917 0.140948 0.00193665

(f5) Ackley function ABC 30 1.00483E-013 2.62522E-014 1.83853E-013 6.30607E-014

HABC 6.30607E-014 1.07237E-014 7.72715E-014 4.88498E-014

SRABC 5.50671E-015 1.49796E-015 6.21725E-015 2.66454E-015

ABC 60 2.88426E-007 1.1748E-007 5.20881E-007 1.55876E-007

HABC 3.74634E-09 1.11671E-010 5.88862E-010 2.44249E-09

SRABC 1.00625E-012 1.41953E-013 1.00755E-012 1.053214E-013

(f6) Alpine function ABC 30 5.09234E--007 7.75053E-007 2.52902E-006 1.18207E-008

HABC 1.5524E-010 6.28861E-010 3.45098E-009 1.85747E-015

SRABC 3.63054E-014 6.75367E-014 2.48683E-013 5.55035E-016

ABC 60 0.0248383 0.0254136 0.0939726 0.000341641

HABC 0.00120275 0.00241429 1.58433E-006 0.0123575

SRABC 8.13672E-07 8.46449E-07 6.36929E-07 3.35827E-04

(f7) Athological function ABC 30 0.00817639 0.00873776 0.029539 2.23771E-005

HABC 0.00237032 0.00266042 0.00884325 6.21676E-005

SRABC 1.11085E-005 1.13333E-005 3.31772E-005 5.36175E-008

ABC 60 0.103806 0.0385138 0.210675 0.085155

HABC 0.0790134 0.0195857 0.0958031 0.036461

SRABC 0.0164499 0.0185505 0.0745268 6.4964E-005
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algorithm could perform more steady astringency and local

or overall searchability when the number of dimensions is

60. From Figs. 6 and 7, compared with the other two

algorithms, the proposed algorithm ensures an initial search

precision and converges to the optimal value as the number

of iterations increases.

The self-adaptive random optimization strategy for a bee

colony could increase the convergence to an optimal value

during the entire optimization process, which could guide

individuals to the overall optimal value. There are

substantial improvements in the precision and convergence

rate when comparing the ABC and SRABC algorithms,

which also prevents early maturing of algorithm.

5 Conclusion

As a novel intelligent swarm optimization algorithm, the

ABC algorithm is characterized by its easy realization,

simple operation, and few control parameters [21, 26].

Fig. 1 Comparison of different dimensions for the Sphere function

Fig. 2 Comparison of different dimensions for the Rastrigin function

Fig. 3 Comparison of different dimensions for the Griewank function
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Targeting the weak local searchability, low search preci-

sion, and low convergence rate of the ABC algorithm, a

PSO algorithm was introduced at the initial stage to ini-

tialize the bee colony. On the basis of self-adaptive thought

and the bidirectional random optimization mechanism, an

improved algorithm based on the bidirectional random

optimization strategy was proposed to effectively over-

come disadvantages such as the strong randomness and

single search direction during the optimization process,

which avoided the tendency to fall into local optima to a

certain degree. Through a comparison with the traditional

algorithm and the HABC algorithm proposed in Ref. [6],

the proposed algorithm was generally found to be effective

for seven different benchmark functions, which improved

optimization ability of algorithm on the basis of raising

convergence rate of algorithm.

Fig. 4 Comparison of different dimensions for the Rosenbrock function

Fig. 5 Comparison of different dimensions for the Ackley function

Fig. 6 Comparison of different dimensions for the Alpine function
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