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Abstract

In order to effectively overcome the disadvantages of the traditional artificial bee colony (ABC) algorithm, i.e., its tendency
to fall into local optima and low search speed, an improved ABC algorithm based on the self-adaptive random optimization
strategy (SRABC) is proposed. First, the improved algorithm was derived from the self-adaptive method to update the new
location of an ABC to improve the correlation within the bee colony. It converges swiftly and obtains the optimal solution
for the benchmark function. Second, the bidirectional random optimization mechanism was used to restrain the search
direction for the fitness function in order to improve the local search ability. Moreover, the particle swarm optimization
algorithm regarded as the initial value of the SRABC algorithm was introduced at the initial stage of the improved ABC
algorithm to increase the convergence rate, search precision and searchability, and greatly reduce the search space. Finally,
simulation results for benchmark functions show that the proposed algorithm has obviously better performance regarding
the search ability and convergence rate, which also prevents early maturing of algorithm.

Keywords Swarm intelligence - Artificial bee colony (ABC) - Bidirectional random optimization (BRO) -
Self-adaptive - Particle swarm optimization (PSO)

1 Introduction

Optimization problems have always been widely used in
mathematical programming, computer technology, engi-
neering design, etc. Moreover, the solution of an optimiza-
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and Differential Evolution (DE). However, it has disad-
vantages such as a low convergence rate and tendency to
“mature early.” Targeting these problems, the “early
maturing” phenomenon in the ABC algorithm was over-
come by combining it with the DE algorithm and intro-
ducing an elimination rule during iteration [6]. Chaotic
thought was introduced to the ABC algorithm in references
[7, 8], and the characteristics of chaotic motion, such as the
randomness and ergodicity, were used to improve the
overall searchability of the algorithm.

In order to improve the convergence rate of the ABC
algorithm and overcome its tendency to fall into local
optima in a later period, an improved algorithm based on
the self-adaptive random optimization strategy (SRABC)
was proposed on the basis of references [6, 9, 10] to
improve the local searchability of the algorithm by taking
advantage of self-adaptive thought and the bidirectional
random optimization mechanism. In addition, PSO was
introduced at the initial stage of the improved algorithm to
increase its convergence rate.

In order to improve the exploitation capability, the
chaotic gradient ABC algorithm was proposed in Ref. [11],
its effectiveness was tested on three different benchmark
text datasets namely Reuters-21,578, Classic4, and
WebKB. Astute Artificial Bee Colony (AsABC) algorithm
proposed by Ref. [12] circumvents three problems: slow
convergence speed, local optima stagnation and scalability
problem. What’s more it is able to maintain a better trade-
off between two conflicting aspects, exploration and
exploitation in the search space.

A decentralized form of ABC algorithm with dynamic
multi-populations by means of fuzzy C-means (FCM)
clustering proposed by Ref. [13] improves the convergence
rate and makes a balance between the global search and
local turning abilities. A novel ABC algorithm with
dynamic population (ABC-DP) proposed by Ref. [14-16]
synergizes the idea of extended life-cycle evolving model
to balance the exploration and exploitation tradeoff. ABC-
DP is then used for solving the optimal power flow (OPF)
problem in power systems that considers the cost, loss, and
emission impacts as the objective functions. Taking
Kapur’s entropy as the optimized objective function, Ref.
[17-20] put forward the modified quick ABC algorithm
(MQABC), which employed a new distance strategy for
neighborhood searches.

In order to overcome the poor exploitation of ABC
algorithm, inspired by the gravity model, ABCG was
proposed on basis of a novel solution search equation and
multiple solution search equations. The results of testing on
benchmark functions show that ABCG is regarded as a
competitive solution [21].

A novel strategy based on node electrical relevance and
ABC algorithm was proposed to minimize outage losses
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and make use of renewable energy sources. The results of
testing on the IEEE 69-bus distribution system show that
the proposed strategy is more feasible and efficient than
other strategies from the literature [9].

On basis of the ABC algorithm, a new topological shape
optimization scheme was proposed. The algorithm is the
most effective among the comparison methods [22].

In order to overcome the weakness of slow convergence
in ABC, CosABC based the cosine similarity was pro-
posed. Via testing on a test suite composed of twenty-four
benchmark functions, the effectiveness of CosABC is
demonstrated [7].

Recommender systems make an important role in elec-
tronic commerce sites, which helps to achieve better cus-
tomer satisfaction and bring those products into the notice
of the customer. A movie recommender system based on
collaborative filtering technique was presented. On the
basis of CPU Time and two standard functions, ant colony
optimization and artificial bee colony optimization were
compared.

The rest of paper is organized as follows. Section 1
presents the ABC algorithm, and Sect. 2 presents the
essential concepts of the SRABC and the strategy for self-
adaptive random optimization. Section 3 discusses the
performance of the proposed approach for various bench-
mark functions. Finally, the conclusions are provided in
Sect. 5.

2 Principles of the ABC algorithm

The ABC algorithm is a random search algorithm based on
the behaviors of a bee colony [3]. In the ABC algorithm, an
ABC falls into three categories according to the labor
distribution: honey-gathering, observation, and investiga-
tion bees. Generally, both the honey-gathering and obser-
vation bees account for half of the bee colony, and there is
only one honey-gathering bee for one nectar source. During
the initialization of the algorithm, M initial solutions are
first generated randomly; then, the optimal solution is
found with the following search process: (1) the honey-
gather bee searches and memorizes the amount of honey in
the nectar source—namely, the quality of the solution
(fitness); (2) the observation bee selects a nectar source by
determining the yield rate according to the information
about the nectar source obtained by the honey-gathering
bee and changes the position memorized; and (3) when a
nectar source is given up after it is exhausted, an investi-
gation bee is produced to search for new nectar source.

In the algorithm, in order to generate a new candidate
position V; according to the memorized position X;, the
following equation is used for updating:
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vij = Xy + @y (X — xy) (1)

where k is a nectar source different from i, j is the subscript
of a randomly selected nectar source, and ¢;; is a random
number in the range [— 1, 1]. According to the amount of
honey at the nectar source, the probability at which a nectar
source is selected by the observation bee is

pi= 10 )

S
;ﬁr(@i)

where S is the total number of nectar sources, 0; is the ith
nectar source, f(0;) is the fitness of nectar source 6;, and
ieP{l,2,..,S}

Suppose that after “limit” times of cycling search and
update, the fitness of the nectar source could still not be
improved; then, it would be given up, and the honey-
gathering bee would turn into an investigation bee. “Limit”
is an important control parameter in the ABC algorithm for
the selection of the investigation bee. The procedure for the
investigation bee finding a new nectar source and replacing
X; is expressed as follows:

x) =x 4 rand(0,1)(x)  —x! ) (3)

J
i Xmax

3 Improvement in the ABC algorithm

In order to improve the convergence rate of the ABC
algorithm and overcome its tendency to fall into local
optima in a later period, an improved algorithm based on
the self-adaptive random optimization strategy is proposed
on the basis of the above-stated ABC algorithm principle.
Together with weighted PSO, the convergence rate and
local searchability of the algorithm are improved by taking
advantage of self-adaptive thought and bidirectional ran-
dom optimization to improve the optimal search perfor-
mance of this algorithm.

3.1 PSO algorithm

In 1995, after the proposal of the basic PSO algorithm by
Zhang et al. [9], an improved PSO algorithm was proposed
by Shi and Eberhart [10]; in it, an inertia factor w is added
to the basic PSO algorithm, and the updated equations for
standard PSO are expressed as

ViIrh = wVi 4+ i (P} — X{) + cana (P, — X)) (4)
X=X+ Vv (%)

where V; is the speed of particle i, X; is the position of
particle i, ¢; and ¢, are positive acceleration factors, r; and
r, are random numbers distributed within [0, 1], P; is the

optimal position found by a single particle, P, is the
optimal position found by the entire colony, ¢ is the tth
iteration. The basic steps of the specific optimization pro-
cess for the PSO algorithm [22] are as follows:

Step 1: Initialize PSO, set the initial position and speed
of m particles randomly, and calculate the fitness of each
particle.

Step 2: For each particle, compare the fitness of the
current position with the fitness at the best position P—
namely, P;pe. If it is better than P;,.y, update P; and
P; pess; otherwise, P; .5, remains unchanged.

Step 3: For each particle, compare the fitness of the
current position with the fitness at the best position P,—
namely, Pg .. If it is better than P, .y, update P, and
Pg pess; otherwise, Pg ., remains unchanged.

Step 4: The speed and position of the particle are
adjusted according to Eqgs. (4) and (5).

Step 5: If the fitness of the current position reaches the
termination condition, it would end or return to Step 2.

8

3.2 Self-adaptive random optimization strategy

3.2.1 Position-update equation for a self-adaptive bee
colony

When adopting Eq. (1) for a position update, a larger ¢;;
causes movement away from the local minimum, whereas a
smaller ¢; favors the convergence of the algorithm [22].
The best method for the overall search is to adopt a larger
@;; at the initial stage of the algorithm to obtain an excel-
lent nectar source with a higher searchability and improve
the search precision. In a later period, a smaller ¢; is
needed to improve the local searchability of the algorithm
and increase its convergence rate. Therefore, ¢;; is set as
the function for iteration, and it decreases as the number of
iterations increases. ¢;; is defined as follows:

oy = gt - St =) ©
max

where wp,.x and wy,;, are initial and final weights, respec-

tively; Cpnax 1S the maximum number of iterations; and C is

the current number of iterations. As a result, Eq. (1) is

redefined as.

vy = X+ @ (xy — x5) (7)

Thus, to some degree, Eq. (7) plays a guiding role in the
search trend for the position of a nectar source, overcoming
disadvantages such as the strong randomness and low
convergence rate.

@ Springer
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3.2.2 Bidirectional random optimization mechanism

When calculating the fitness of a nectar source with the
ABC algorithm, the observation bee selects a nectar source
after comparing the ones around 6,. The position near the
nectar source is calculated as follows:

0:(C+1) = 0;(C) + ¢:(C) (3)

where @;(c) is the progressive step length produced ran-
domly near 0;. After calculating the fitness, if firf(C + 1)
> fit(C), then the observation bee would choose 60;(-
C + 1), or ¢;i(c) remains unchanged. If the fitness of a
nectar source is not improved after cycling for a finite
number of iterations, then it should be given up, and the
honey-gathering bee would turn into an investigation bee
according to Eq. (3). There are certain disadvantages
associated with the above-stated method; namely, in each
cycle, the nectar source in a single direction would be
searched, and as a result, there is a tendency to fall into
local optima. In references [23, 24], a bidirectional random
optimization mechanism was proposed in research on the
search hit rate and success rate in a dynamic network
environment [23], which effectively improved the search
feature of the network. Inspired by this thought, an
improved mechanism is introduced to improve the search
direction for a nectar source; if

fit(6; + 1) <fit(6;) 9)

then

0, =0,+d (10)
If

fit(0; — 1) <fit(6;) (11)

then

0i=0—d (12)

or 0; remains unchanged.

3.2.3 Algorithm initialization realized by the particle
swarm optimization algorithm

The convergence rate is low in the bee colony algorithm,
whereas it is relatively higher in the PSO algorithm, which
is introduced in the initial stage to improve the algorithm.
That is, the overall optimal solution is obtained by iteration
by taking advantage of PSO; then, the position of a nectar
source would be randomly generated near the optimal
solution. Later, an optimization process is conducted to
calculate the position of a nectar source within an ABC.
The improved initial position of the nectar source with the
ABC algorithm is as follows:

@ Springer

M M
Xi = Py oy T @, - Pgpest (13)
where Pg’{bm is an M-dimensional vector, and each element

is equal t0 P peqr. @M is an M-dimensional vector in [— 1,
1] produced randomly. According to the above-mentioned
strategy, the specific procedures for improving the algo-
rithm are as follows:

Step 1 The related initial parameters for the ABC and
PSO algorithm are set. The initial speeds and positions
of M particles are randomly generated according to
Egs. (4) and (5).

Step 2 The optimal solution P, ., within the number of
cycles c is determined by calculating the fitness value of
each particle for comparison.

Step 3 The honey-gathering bee searches for a new
nectar source according to Egs. (6) and (7) and calcu-
lates its fitness. If it is better than the original position,
then the original position is replaced with the new one.
Step 4 The observation bee selects a nectar position
according to the amount of honey in the nectar source
according to the probability in Eq. (2), generates a new
position according to the bilateral random optimization
mechanism, and evaluates this position.

Step 5 If the nectar source is given up, then the honey-
gathering bee at this nectar source would turn into an
investigation bee according to Eq. (3).

Step 6 The current optimal position and fitness value are
recorded.

4 Analysis of the simulation experiment

In order to verify the effectiveness of the proposed algo-
rithm and conduct a performance analysis, seven bench-
mark functions are selected for comparison and testing,
which are different from the traditional ABC algorithm. A
comparison of the performance of a hybrid ABC is pro-
posed in reference [25].

(1) Rastrigin function
D
flx) = (Z x? — 10 cos(2mx;) + 10) is a multi-
i=1

modal function whose optimal solutions are dis-
tributed evenly with the search scope within [— 20,
20] and the overall optimal solution of 0.

(2) Griewank function

fx) = 1 (ixiz) — <1Q[1 cos(%)) +1 is a

i=1
multimodal function whose optimal solutions are
distributed evenly. However, its local optima

increase as the number of dimensions increases.
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The search scope is within [— 600, 600], and the
optimal solution is 0.
(3)  Sphere function

n
f(x) =" x? is a continuous convex function with
i=1
a single peak whose search scope is within [— 100,
100]. The lowest point of the function is 0.
(4) Rosenbrock function

n—1

Fx) =3 [1000xi 1 — x7)* + (i — 1)7; the

i=1
search scope is within [— 30, 30], and the optimal
solution is 0.

(5) Ackley function

f(x) = —20exp| —0.2

i=1

| L
—exp (—O.ZBZ cos(ani)> +20+e

; the search scope is within [— 30, 30], and the
lowest point of the function is 0.
(6) Pathological function

sin?(1/100x? +x2_;) — 0.5 )

n—1
flx) = 0.5+
2 (14 0.001(x? + 22, + 2x:x;41)°)
; the search scope is within [— 100, 100], and the
lowest point of the function is 0.
(7)  Alpine function

D
f(x) = > |xisin(x;) + 0.1x;]; the search scope is
i=1

within [— 10, 10], and the lowest point of the
function is 0.

The parameters for the algorithms are set as follows. For
the SRABC algorithm, the scale of the colony S = 60,
limit = 60, the number of PSOs is 60, and the number of
cycles for the PSO algorithm ¢ = 100. For the standard
ABC algorithm § = 60, limit = 60, the maximum number
of iterations is 2500, and the algorithm operates 30 times
independently. A comparison of the maximum, minimum,
average, and variance obtained after the independent
operation of various functions in different dimensions 30
times is summarized in Table 1.

From Table 1, although the optimization results for the
Sphere function with a single peak for different dimensions
do not greatly improve with the SRABC algorithm, it is
still better than those obtained by the standard ABC and the
hybrid artificial bee colony (HABC) algorithms. For the
multimodal Griewank and Rastrigin functions, there are

complicated nonlinear overall optimization problems.
From the table, the precision of the simulation results of
seven functions for different dimensions with the SRABC
algorithm is better than those of the ABC and HABC
algorithms. In particular, the 60-dimensional Rastrigin
function converges to O rapidly. The overall optimal
solution of the Rosenbrock function is distributed in a long,
narrow, and flat parabolic valley, and it is difficult to
converge to this solution. From Table 1, although the
average values of the Ackley function, f the Alpine func-
tion and the Pathological function are large, the average
values of the proposed algorithm are obviously smaller
than the other two, and the minimum is close to the optimal
solution. From the test of the Ackley function, the perfor-
mance of the SRABC algorithm is not much better than
that of ABC and HABC algorithms when the number of
dimensions is low; however, as the number of dimensions
increases, the precision of the optimal solution of the
SRABC algorithm is obviously better than the other two
algorithms. From the test of the Alpine function in Table 1,
the performance of the HABC algorithm is better than that
of the ABC algorithm, and the performance of the proposed
SRABC algorithm is much better than the other two. From
the test of the Pathological function in Table 1, the search
precision of the proposed algorithm is more stable than the
other two when the number of dimensions is 30, and there
is not much difference between the three algorithms when
the number of dimensions is 60. Further, from Table 1, the
improved algorithm maintains the features of its original
algorithm and improves the calculation precision and sta-
bility compared to the traditional and HABC algorithms.

In Figs. 1, 2, 3, 4, 5, 6 and 7, the curves showing the
optimal values obtained by the ABC, HABC, and SRABC
algorithms versus the number of iterations for each func-
tion with 30 and 60 dimensions are shown. In order to show
the results clearly, the number of iterations is plotted along
the x axis, and the optimal values are plotted along the y
axis on a logarithmic scale.

In Figs. 1, 2, 3, 4, 5, 6 and 7, for the same number of
iterations and targeting different dimensions of seven
benchmark functions, iteration of the optimal value nearly
stops in a later period, and there is a certain improvement
obtained by the HABC algorithm compared to the ABC
algorithm. Further, the performance of the SRABC algo-
rithm is greatly improved by the proposed optimization
process. From Fig. 1, the SRABC algorithm converges
swiftly and obtains the optimal solution for the Sphere
function. Since the optimization result at the initial stage of
the PSO algorithm is regarded as the initial value of the
SRABC algorithm, the search space is greatly reduced, and
the convergence rate is further improved. From Figs. 2 and
3, for a certain number of iterations, the optimal values
could be achieved by the SRABC algorithm at an early

@ Springer
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Table 1 Test results for different functions

Variance

Maximum value

Minimum value

Test function Algorithm Dimension Average value
(f1) Sphere function ABC 30 1.13714E—-015
HABC 5.55572E—-016
SRABC 2.95155E-016
ABC 60 2.34037E—-014
HABC 3.6088E—015
SRABC 8.15309E—-016
(f2) Rastrigin function ABC 30 2.58239E—-009
HABC 1.13687E—012
SRABC 1.32635E—-014
ABC 60 0.167895
HABC 4.56788E—008
SRABC 1.21393E—-010
(f3) Griewank function ABC 30 2.18149E—012
HABC 4.08007E—014
SRABC 6,25426E016
ABC 60 2.79554E—013
HABC 1.4011E-013
SRABC 1.72825E—-015
(f4) Rosenbrock function ABC 30 0.250332
HABC 0.247764
SRABC 0.0142749
ABC 60 4.3507
HABC 1.37106
SRABC 0.0300207
(fs) Ackley function ABC 30 1.00483E—-013
HABC 6.30607E—014
SRABC 5.50671E—-015
ABC 60 2.88426E—007
HABC 3.74634E—09
SRABC 1.00625E—012
(fo) Alpine function ABC 30 5.09234E——-007
HABC 1.5524E—010
SRABC 3.63054E—-014
ABC 60 0.0248383
HABC 0.00120275
SRABC 8.13672E—-07
(f7) Athological function ABC 30 0.00817639
HABC 0.00237032
SRABC 1.11085E—005
ABC 60 0.103806
HABC 0.0790134
SRABC 0.0164499

2.97144E—-016
9.00306E017
5.79213E—17
1.82907E—014
1.45665E—015
1.32347E-016
1.03788E—008
1.64169E—012
1.78719E—14
0.458241
1.53871E—007
2.62695E—010
9.27583E—-012
9.89653E—014
1.41953E—015
8.89572E-013
2.87342E—-013
1.94662E—015
0.235661
0.277462
0.0138214
3.10707
1.12131
0.0329917
2.62522E—014
1.07237E—014
1.49796E—015
1.1748E—007
1.11671E-010
1.41953E—-013
7.75053E—007
6.28861E—010
6.75367E—014
0.0254136
0.00241429
8.46449E—-07
0.00873776
0.00266042
1.13333E—005
0.0385138
0.0195857
0.0185505

1.79207E—015
7.23074E—-016
4.61564E—016
7.64184E—014
8.65843E—-015
9.89696E—-016
5.65922E — 008
8.15703E—-012
5.68434E—014
1.99033
8.25186E—007
1.2559E—009
4.90501E—-011
4.99267E—013
7.54952E—-015
4.85578E—012
1.20581E—-012
8.54872E—-015
1.04043
1.43555
0.0513423
11.5256
3.99565
0.140948
1.83853E—013
7.72715E—-014
6.21725E—015
5.20881E—007
5.88862E—010
1.00755E—-012
2.52902E—-006
3.45098E—009
2.48683E—013
0.0939726
1.58433E—006
6.36929E—07
0.029539
0.00884325
3.31772E—-005
0.210675
0.0958031
0.0745268

5.46909E—016
4.09377E—-016
1.80046E—016
4.13668E—015
1.87149E—015
4.72298E—-016
1.13687E—012
1.12578E—015
0
1.72463E—010
1.3074E—-011
1.7053E—-013
9.99201E—-016
4.44089E—-016
0
2.77556E—015
2.33147E—015
1.11022E-016
0.0199202
0.0262511
0.0013952
0.344054
0.114811
0.00193665
6.30607E—014
4.88498E—014
2.66454E—015
1.55876E—007
2.44249E—-09
1.053214E—-013
1.18207E—008
1.85747E—015
5.55035E—-016
0.000341641
0.0123575
3.35827E—-04
2.23771E—-005
6.21676E—005
5.36175E—008
0.085155
0.036461
6.4964E—005

stage for the Griewank and Rastrigin functions, which
nearly decrease linearly, and the convergence rate is
smaller than those of the other two algorithms. From
Figs. 4 and 5, the SRABC algorithm has a greater precision
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than the ABC and HABC algorithms for 30 dimensions if
the number of iterations is low. Moreover, as the number of
iterations increases, the SRABC algorithm converges to the
optimal value gradually and steadily. The proposed
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The optimal value
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The number of iterations

(a)D=30

Fig. 1 Comparison of different dimensions for the Sphere function

The optimal value

1000 1500 2000

0 500 2500
The nurmber of iterations
(a)D=30

Fig. 2 Comparison of different dimensions for the Rastrigin function

——ABC
10 ——HABC
—— SRABC

The optimal value

1500 2000

0 500 1000 2500
The number of iterations
(@)D =30

Fig. 3 Comparison of different dimensions for the Griewank function

algorithm could perform more steady astringency and local
or overall searchability when the number of dimensions is
60. From Figs. 6 and 7, compared with the other two
algorithms, the proposed algorithm ensures an initial search
precision and converges to the optimal value as the number
of iterations increases.

The self-adaptive random optimization strategy for a bee
colony could increase the convergence to an optimal value
during the entire optimization process, which could guide
individuals to the overall optimal value. There are

The optimal value

1500 2000

0 560 10b0 2500
The number of iterations
(b)D =60

The optimal value

=
o,
&

10'10

1000 1500 2000 2500

The number of iterations

(b)D = 60

0 500

——ABC
—HABC

The optimal value

1000 1500 2000 2500

The number of iterations

(b)D =60

0 500

substantial improvements in the precision and convergence
rate when comparing the ABC and SRABC algorithms,
which also prevents early maturing of algorithm.

5 Conclusion
As a novel intelligent swarm optimization algorithm, the

ABC algorithm is characterized by its easy realization,
simple operation, and few control parameters [21, 26].
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Fig. 4 Comparison of different dimensions for the Rosenbrock function
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Fig. 5 Comparison of different dimensions for the Ackley function

——ABC
o —HABC
10 — SRABC | 3

The optimal value

L L L
1000 1500 2000

.
0 500 2500
The number of iterations
(@)D =30

Fig. 6 Comparison of different dimensions for the Alpine function

Targeting the weak local searchability, low search preci-
sion, and low convergence rate of the ABC algorithm, a
PSO algorithm was introduced at the initial stage to ini-
tialize the bee colony. On the basis of self-adaptive thought
and the bidirectional random optimization mechanism, an
improved algorithm based on the bidirectional random
optimization strategy was proposed to effectively over-
come disadvantages such as the strong randomness and
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single search direction during the optimization process,
which avoided the tendency to fall into local optima to a
certain degree. Through a comparison with the traditional
algorithm and the HABC algorithm proposed in Ref. [6],
the proposed algorithm was generally found to be effective
for seven different benchmark functions, which improved
optimization ability of algorithm on the basis of raising
convergence rate of algorithm.
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Fig. 7 Comparison of different dimensions for the Pathological function
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