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Abstract
In terms of the model of errors-in-variables, this article analyses the causes of deviation based on the existing method of

subspace identification in the closed-loop system; then, it puts forward another method of subspace identification with an

auxiliary variable based on orthogonal decomposition. The auxiliary variables can be selected and improved by this

method, improving the quality of system identification.

Keywords Subspace identification � Errors-in-variables � Orthogonal projection � Closed-loop identification �
Singular value decomposition

1 Introduction

In the past two decades, the subspace identification method

(SIM) has undergone rapid development in both theory and

practice [1–7]. In the actual industrial process, because of

factors such as safety, economical efficiency and operation

stability, the system should be operated under closed loop

conditions; biased estimation may be obtained when

identifying the system model through the method of open-

loop subspace identification. This is a result of feedback

when identifying models in the closed loop, causing the

‘‘future’’ inputs to be relevant to the ‘‘past’’ noise in the

system; thus, the method of orthogonal projection applied

by open-loop subspace identification will not be able to

eliminate noise. Scholars have proposed different solutions

in the field of closed-loop identification. Verhaege [8]

applied the method of MOESP (Multivariable Output Error

State Space) in closed-loop identification with the input

and output state space model. However, a model order

reduction process should be required in this method. Ljung

and McKelvey [9] regarded the high-order ARX models

obtained from the input and output data as a multi-step

forward output predictor, assuming that the vector of the

multi-step output prediction can be obtained when the input

is zero and that system parameters are obtained by the state

space regression equation. However, only the output noise

is considered in these methods, and the input variables are

noise free. Obviously, the assumption is not consistent with

reality because all the observed variables will be affected

by noise pollution.

For the EIV (errors-in-variables) model structure,

namely, the input and output, both are affected by noise

pollution. Chou and Verhaegen [10] put forward a new

method of subspace identification. The method eliminates

noise effects by regarding the past input/output data as

auxiliary variables. Gustafsson and Tony [11] changed the

steps of the traditional SIM and proposed a new subspace

auxiliary variable method (Subspace-based Identification

using Instrumental Variables, SIVs). The algorithm pre-

sented in literature [12] was included, and the identification

precision was improved after the algorithm was modified.

In terms of the algorithm itself, the input being independent

of noise assumption is not involved in the two methods;

thus, it seems that they can be applied for identification in a

closed-loop system. However, this is not the case based on

simulation examples; these two types of algorithms used in
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closed-loop identification do not obtain consensus esti-

mates in some cases.

On the other hand, Wang and Qin [13–15] introduced

the concept of parity space, i.e., considering the input and

output variables at the same time. The EIV mode was

identified in subspace through Principal Component

Analysis, PCA, called SIMPCA. On the basis of this,

through the model combining input/output, Huang [16–18]

analysed the reason why the deviation exists in SIMPCA

when the external excitation signal is white noise in closed-

loop identification and then proposed the improvement on

the new auxiliary variables. In the process of algorithm

implementation, SVD should be applied twice to solve the

orthogonal complement space in the two methods [19, 20].

It is difficult to determine the dimensions of the orthogonal

complement space when the system order is unknown.

According to the theory of stochastic implementation with

external input, Katayama [20–22] decomposed the signal

into a deterministic part and a random part by using

orthogonal decomposition; thus, the system model can be

estimated through the deterministic part.

This article first proposed auxiliary variables based on

orthogonal projection in the framework of SIVs as an

improved strategy of the SIM. Compared with the existing

SIM based on instrumental variables, on the premise of

ensuring high identification, the algorithm of this method is

simpler and the computational complexity is lower.

Through the analysis of the closed-loop identification

problem, this article explains the cause of the possible

errors in estimation through the method under the condition

of closed-loop identification. To eliminate the deviation of

the identification, it can be improved by new auxiliary

variables proposed in this paper, and in addition, it is

compared with PCA and methods of auxiliary variable

subspace identification. The method proposed in this paper

only depends on the choice of auxiliary variables; the

algorithm is simpler and direct and is easy to implement. In

the process of identification, SVD was implemented only

once; the amount of the computation for derived matrix

dimensions can be greatly reduced under the condition of

unknown system order time. In addition, one should dis-

cuss the mode of choosing a variety of secondary variables

and simultaneously validating the results with numerical

simulation.

2 Description of the problem
and assumptions

Assuming the system is defined as shown in Fig. 1, the

discrete-time linear time-invariant model can be repre-

sented as the following state space form:

xðkÞ ¼ AxðkÞ þ Bu�ðkÞ þ pðkÞ
y�ðkÞ ¼ CxðkÞ þ Du�ðkÞ

ð1Þ

xðkÞ 2 <n; u�ðkÞ 2 <l; y�ðkÞ 2 <m are state variables,

noise-free input, and noise-free output; pðkÞ 2 <n is the

process noise. The observable input u(k) and output y(k) are

used for identification:

yðkÞ ¼ y�ðkÞ þ oðkÞ
uðkÞ ¼ u�ðkÞ þ vðkÞ

ð2Þ

We assume that vðkÞ 2 <l; oðkÞ 2 <m denote the input

noise and output noise. They are considered according to

the description based on the method of symmetry [10].

Here, the following assumptions are introduced:

A1 The system is asymptotically stable, for example, all

the eigenvalues of A are strictly inside the unit circle.

A2 (A,C) is observable.

A3 Process noise p(k), measurement noise o(k) and v(k)

are white noise, and they have past statistical

independence from the noise input u*(k), e.g.,

E u� kð Þ
p jð Þ
o jð Þ
v jð Þ

2
64

3
75
T8><

>:

9>=
>;

¼ 0 j� k ð3Þ

A4 v(k) and o(k) are independent input noise and output

noise, respectively, of the state sequence x(k);

process noise p(k) (k C 1) is independent of the

initial state x(1), for example [10],

E x� kð ÞpT jð Þ
� �

; for j� k� 0

A5 Three white noise sequences are relevant, and their

covariance is determined by the following unknown

matrix:

E

pðkÞ
oðkÞ
vðkÞ

2
4

3
5½ pðjÞT oðjÞT vðjÞT �

8<
:

9=
;

¼
Rpp Rpo Rpv

RT
po Roo Rov

RT
pv RT

ov Rvv

2
4

3
5dkj ð4Þ

dkj is the Kronecker delta function. Noise-free input

u*(k) meets the condition of ‘‘persistent excitation’’.

Because of the dynamics of system modelling, we apply

the extended state space model, e.g., stacking relationships

between continuous variables. Regarding any time k as the

current time, define the past and the future output vectors

and the Hankel matrix output in the following form:
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ypðkÞ ¼

y k � pð Þ
y k � pþ 1ð Þ

..

.

y k � 1ð Þ

2
666664

3
777775
2 <mp ð5Þ

yf ðkÞ ¼

y kð Þ
y k þ 1ð Þ

..

.

y k þ f � 1ð Þ

2
666664

3
777775
2 <mf ð6Þ

Yp ¼ yp kð Þ yp k þ 1ð Þ . . . yp k þ N � 1ð Þ
� �

2 <mp�N

ð7Þ

Yf ¼ yf kð Þ yf k þ 1ð Þ . . . yf k þ N � 1ð Þ
� �

2 <mf�N

ð8Þ

p� f [ n

Iterating formulas (1) and (2), there exists

yf ðkÞ ¼ Cf xðkÞ þ Hf uf ðkÞ � Hf vf ðkÞ þ Gf pf ðkÞ þ of ðkÞ
ð9Þ

yf ðkÞ ¼ Cf xðkÞ þ Hf uf ðkÞ � Hf vf ðkÞ þ Gf pf ðkÞ þ of ðkÞ
ð10Þ

which is an extended observable matrix with rank n.

Hf ¼

D 0 � � � 0

CB D � � � 0

..

. ..
. . .

. ..
.

CAf�2 CAf�3B � � � D

2
664

3
775 2 <mf�lf ð11Þ

Gf ¼

0 0 � � � 0

C D � � � 0

..

. ..
. . .

. ..
.

CAf�2 CAf�3B � � � 0

2
664

3
775 2 <mf�nf ð12Þ

are Toeplitz matrices with two blocks;

vectors vf ðkÞ 2 <lf ; of ðkÞ 2 <mf ; pf ðkÞ 2 <nf ; yf ðkÞ and

yf(k) have similar definitions.

Define

zf ðkÞ ¼
yf ðkÞ
uf ðkÞ

" #
2 <ðlfþmf Þ ð13Þ

Formula (9) is rewritten as

I j � Hf

� �
zf ðkÞ ¼ Cf xðkÞ � Hf vf ðkÞ þ Gf pf ðkÞ þ of ðkÞ

¼ Cf xðkÞ þ ef ðkÞ
ef ðkÞ ¼ �Hf vf ðkÞ þ Gf pf ðkÞ þ of ðkÞ

ð14Þ

Once Hankel matrix data are used to replace the data

vector, the extended model can be rewritten as follows:

Yf ¼ Cf XðkÞ þ HfUf þ Ef ð15Þ

XðkÞ ¼ x kð Þ x k þ 1ð Þ � � � x k þ N � 1ð Þ½ � 2 <n�N

Uf, Ef and Yf have the same structure, and formula (15) can

be converted to formula (16) and augmented data matrix Zf:

I j � Hf

� �
Zf ¼ Cf Xf þ Ef ð16Þ

Zf �
Yf

Uf

" #
2 <ðlfþmf Þ�N

Based on orthogonal subspace projection (ORT), the

problem of EIV model identification is converted into

giving input and output data of the noise distur-

bance,{u(k)}, {y(k)}, and setting point signal data if nec-

essary; thus, the consensus estimates of the rank of the

system and the system matrices for A, B, C, and D can be

obtained.

Fig. 1 EIV model structure
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3 Subspace Variable Method based
on Orthogonal projection (ORT)

Stacking the vector in formulas(9)-(12)and replacing the

block Hankel matrix, we can obtain

Yf ¼ Cf Xk þ HfUf � HfOf þ GfPf þ Vf ð17Þ

The key point in the method of subspace identification is to

estimate the first term on the right side of formula (17); the

extended observable matrix Cf or the state sequence Xk can

be estimated after SVD. Therefore, we can estimate the

parameter matrix in the system generally in the method of

subspace identification. First, the second term of formula

(17) (future input) can be eliminated by projection; then,

the last three terms on the right side of formula (17) can

also be eliminated by auxiliary variables, which is appli-

cable in terms of the open-loop system. However, for the

closed-loop system, a correlation exists between the input

and output future noise; results may appear as a deviation

caused by these identification steps. This situation can be

improved if we change these two steps.

Step 1 Eliminate the noise terms. Suppose Zp �

Yp

Up

" #
2 <ðlpþmpÞ�N then, make an orthogonal projection

for Zp on both sides of formula (17),

Yf =Zp ¼ Cf Xk=Zp þ HfUf =ZpþKf =Zp ð18Þ

Define Kf ¼ GfPf þ Vf � HfOf

Yf =Zp ¼ YfPZp ¼ Yf Z
T
p ðZpZT

p Þ
�1
Zp

This definition is similar to the rest because input in the

past is irrelevant to output in the future; therefore,

Kf =Zp ¼
1

j
Kf Z

T
p

1

j
ZpZ

T
p

� ��1

Zp ! 0 w:p:l as j ! 1

ð19Þ

When j ! 1; formula (18) can be rewritten as

YfPZp 	 Cf Xk=Zp þ HfUf =Zp ð20Þ

Suppose H ¼ PZp ; obviously HT ¼ H; so

bQyf n ¼ Cf
bQxn þ Hf

bQuf n w:p:l as j ! 1

bQyf n ¼
1

j
YfH

T ; bQxn ¼
1

j
XkH

T ; bQuf n ¼
1

j
UfH

T
ð21Þ

In fact, H is an auxiliary variable matrix.

Step 2 Eliminate the impact of future input data by

orthogonal projection.

Project formula (21) onto the null space of bQuf n

bQyf nP
?
uf n ¼ Cf

bQxnP
?
uf n w:p:l as j ! 1

P?
uf n ¼ I �QT

uf n Quf nQT
uf n

� ��1

Quf n

ð22Þ

Obviously,

RangeðCf Þ ¼ Rangeð bQyf nP
?
uf n Þ

Range(*) stands for range space.

The next steps are similar to the method of typical

subspace identification; first, obtain the augmented matrix

through singular value decomposition (SVD), and then, the

system matrix can be calculated.

bQyf nP
?
uf n

¼ U1 U2½ �
R1 0

0 R2

" #
VT
1

VT
2

" #
ð23Þ

Thus, we can obtain Cf = U1T, where T stands for a non-

singular transformation matrix, usually a valued unit matrix

or T ¼ R1=2
1 (Table 1).

Obviously, there are many other forms of auxiliary

variables available; here, we choose the form based on the

orthogonal projection called SIVort,

U ¼ UT
p UT

f

h iT
; �Z ¼ UT

p UT
f YT

p

h iT
; bQu ¼

1

j
UUT

bQ�z ¼
1

j
�Z �ZT ; bQzp ¼

1

j
ZpZ

T
p

The above four algorithms are proposed in terms of the

EIV model structure. Thus, the auxiliary variables in CSIV

are the most simple and direct; the CSIV algorithm can be

obtained by standardizing the method of CSIV. Literature

[11] has described that the estimation accuracy can be

further improved by these changes.

ZfP
?
Zp

h i
ZfP

?
Zp

h iT
¼ Zf Z

T
p ZpZ

T
p

� ��1=2
� 	

Zf Z
T
p ZpZ

T
p

� ��1=2
� 	T

ð24Þ

Therefore, in terms of estimates of the augmented

observable matrix, the two algorithms SIV and SIVort are

essentially the same. However, from the perspective of

algorithm development, the inverse square root needs to be

Table 1 Available forms of auxiliary variables in the sub-space

identification method

Algorithm o(k) H

CSOPIM Noise free bQ�1=2
�z U

CSIMPCA Noise free bQ�1=2
u

�Z

CSIV Noise bQ�1=2
zp

Zp

CSIVort Noise PZp
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solved if we want to use standardized auxiliary variables,

which requires a large calculation. Apparently, using the

auxiliary variables in the form of orthogonal projection is

much simpler.

In the algorithm, first perform RQ decomposition for the

three algorithms:

Uf

Yf

� 	
HT ¼ R11 0

R21 R22

� 	
QT

1

QT
2

� 	
ð25Þ

Thus, we can obtain bQyf nP
?
uf n ¼ R22Q

T
2 Range(Cf Þ

= Range(R22Þ:
The estimation of R22 can be obtained based on SVD, so

we can estimate the system matrix.

To date, it seems that the structure of EIV algorithms,

such as CSIV, CSOPIM and CSIVort, can be applied for

data in closed-loop identification because they do not

require the input signal be independent of noise. However,

some simulation results show that these algorithms may be

inconsistent with the closed-loop estimation in some cases.

Next, this issue will be specifically analysed.

4 Method of subspace identification based
on auxiliary variable orthogonal
projection

4.1 Analysis of the closed-loop solutions

Since the above algorithm performed well in open-loop

system identification, the problem must be generated by the

controller because both of them performed well in an open-

loop condition. To determine the problem, the controller

state-space model is as follows:

xcðk þ 1Þ ¼ Acx
cðkÞ þ Bc rðkÞ � yðkÞð Þ ð26Þ

uðkÞ ¼ Ccx
cðkÞ þ Dc rðkÞ � yðkÞð Þ ð27Þ

r stands for setpoint, and c stands for controller.

We can obtain the controller by subspace symbols as

follows:

Uf ¼ Cc
i X

c
f þ Hc

i Rf � Yf

 �

ð28Þ

Up ¼ Cc
i X

c
p þ Hc

i Rp � Yp

 �

ð29Þ

Rf and Rp are the Hankel data matrix for set points.

Xp
c and Xf

c are the state matrix for the controller, Ci
c is the

extended observable matrix, and Hi
c is a three blocked

Toeplitz matrix.

Formula (28) can be rewritten as:

Hc
i I

� �
Wf ¼ Cc

i X
c
f þ Hc

i Rf ð30Þ

Multiplying HT on the right of both sides of formula

(28),

bQuf n ¼ Cc
f
bQxcn � Hc

f
bQðyf nÞ þ Hc

f
bQrf n ð31Þ

If the condition is satisfied, we can obtain

lim
L!1

1

j
RfH

T ¼ 0 ð32Þ

Thus,

bQuf n ¼ Cc
f
bQxcn � Hc

f
bQyf n w:p:l as j ! 0 ð33Þ

Compared with formula (21), it is obvious that both

bQxcn and bQxn are included in bQuf n
bQyf n

h iT
in terms of

the row space. The models obtained from identification

may be the process model, controller model or mutual

interference model. Therefore, to ensure independence

between the identified models and controllers, only the

dynamics of the process need to be described, i.e., to make

the auxiliary variables satisfy both conditions

simultaneously:

lim
L!1

1

j
Wf Vf Of

� �T¼ 0 ð34Þ

lim
L!1

1

j
RfH

T 6¼ 0 ð35Þ

Specifically, the selected auxiliary variables should be

irrelevant to the various system noise and should be rele-

vant to pumping signals of the set point at the same time.

4.2 Selection of the auxiliary variables based
on orthogonal projection

Since the selection of auxiliary variables has a great impact

on the results of recognition, we should treat this issue with

caution. Combined with the results of the preceding anal-

ysis, it is natural that more information about Rf should be

contained in the auxiliary variables.

suppose ~H ¼
Rf

Rp

Zp

2
64

3
75 ð36Þ

Thus, the auxiliary variable matrix can be determined

according to the following method:

H

~H CSOPIM

ð ~H ~HTÞ1=2 ~H CSIV

P ~H CSIVort

8<
: ð37Þ

To facilitate the description, the auxiliary variables are

divided into three categories:

The direct form, e.g., CSOPIM and SOPIM

(1) The standard form, e.g., CSIV and SIV

(2) The Orthogonal projection form, e.g., CSIVort and

SIVort
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Given data uðkÞ; rðkÞ; yðkÞ; k ¼ 1. . .N; parameters in the

time domain are f,p.

The improved subspace methods are as follows:

Step 1 Establish the block Hankel matrix

Up;Uf ; Yp; Yf ;Rf ;Rp;

Step 2 Select the auxiliary variable matrix H according

to PZp or methods in formula (37);

Step 3 Perform an RQ decomposition as in formula (25);

Step 4 Perform a singular value decomposition in SVD

on R22, so Cf ¼ U1;

Step 5 Compute system matrices A,B,C,D.

Remark 1 Different algorithms are required because of

different auxiliary variables; apart from the previous forms

of auxiliary variables, we have many other forms.

Remark 2 We should consider the model of noise, for

example, the output forecast; the new system can be

introduced in the following form:

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ þ KeðkÞ ð38Þ
yðkÞ ¼ CxðkÞ þ DuðkÞ þ eðkÞ ð39Þ

Here, the variances of the Kalman gain K and new

sequence e(k) need to be estimated. After obtaining the

estimations for Cf ;Hf ; K and Re can be obtained by using

the method described in the literature [14].

5 Simulation study

In this section, the benchmark will be utilized to evaluate

the raised method and compare it with a type of existing

SIM. We will use the representative subspace algorithms

described in the following literature: subspace identifica-

tion algorithms in the EIV model proposed in the literature

[1, 8, 10, 11, 14, 15], e.g., CSOPIM, CSIV, CSIMPCA and

CSIVort. To follow the practice in the literature for sub-

space identification [10, 15], Monte Carlo simulations are

performed and plotted with averaged Bode values. The

estimated error variance can be presented by a scatter plot

of estimated poles.

Consider the system described in literature [8], which is

also a comparison of a benchmark problem used for a

closed-loop subspace identification algorithm in literature

[15]. In Fig. 1, the block diagram of the original system is

displayed. This new model is presented in the form of an

information state space represented by formulas (1)–(2),

with values as follows:

A ¼

4:40 1 0 0 0

� 8:09 0 1 0 0

7:83 0 0 1 0

� 4:00 0 0 0 1

0:86 0 0 0 0

0
BBBB@

1
CCCCA
; B ¼

0:00098
0:01299
0:01859
0:0033

� 0:00002

0
BBBB@

1
CCCCA

CT ¼

1

0

0

0

0

0
BBBB@

1
CCCCA
; K ¼

2:3
� 6:64
7:515

�4:0146
0:86336

0
BBBB@

1
CCCCA

The state space models of feedback control are as

follows:

Ac ¼

2:65 � 3:11 1:75 � 0:39
1 0 0 0

0 1 0 0

0 0 1 0

0
BB@

1
CCA

Bc ¼

1

0

0

0

0
BB@

1
CCA; CT

c ¼

� 0:4135
0:8629
� 0:7625
0:2521

0
BB@

1
CCA

Dc ¼ 0:61

The conditions of simulation are exactly the same as

those previously published (15); et is a Gaussian white

noise sequence with a variance of 1
9
: The input reference

r(k) denotes Gaussian white noise with a variance of 1. The

simulation carried out at each time generates 1500 data

points, and Monte Carlo simulation is performed 100 times

by using the same input reference r(k) but a different noise

sequence e(k).

In this simulation, we will reproduce the results previ-

ously described in literature [10–12, 14, 15] and compare

them with the proposed CSIVort algorithms; the simulation

results are depicted in Figs. 2 and 5. In terms of bias and

variance, we find that the proposed CSIVort algorithm

achieves better performance than the CSIMPCA algorithm.

However, the proposed algorithm only needs to perform

SVD once during the identification process, greatly

reducing the amount of calculation for the dimension of the

matrix derived under the condition of an unknown system.

To determine the advantages of the proposed algorithm, we

should consider the EIV cases of measured input ut and

output yt with white noise. We ran the Monte Carlo sim-

ulation twice for EIV using a measured noise variance of

0.2 and 0.5. According to Figs. 3 and 5, if there is mea-

sured noise, it can be concluded that the proposed algo-

rithm performed better than the CSOPIM algorithm and

that there is a certain bias in CSOPIM.

The proposed algorithm can be applied to open-loop

identification because it is a closed-loop identification

algorithm. There is a problem in its application method for

S4912 Cluster Computing (2019) 22:S4907–S4915
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open-loop identification. Therefore, we ran the Monte

Carlo simulation using an open-loop device without feed-

back control. The results and other auxiliary variable

subspace identification algorithm results are shown in

Figs. 4 and 5; it can be seen that the CSIVort algorithm

achieved consistent estimation.

Finally, we verify that when the external pumping sig-

nals are white noise, the identification algorithm CSIV with
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auxiliary variables based on orthogonal subspace projec-

tion enables consistent estimates in closed-loop identifica-

tion, but the deviation will be reduced if the external

stimulus is auto-correlative and the bias will be eliminated

effectively by the CSIMPCA algorithm, as shown in Fig. 2.

Simulation results of closed-loop CSIVort are shown in

Fig. 5. In Fig. 5, there is an external excitation of white

noise with unit variance; the right column corresponds to

the relevant external excitation r, where r is white noise

with a filter; the filter is a one rank system, with the pole of

0.9, and the variance of the excitation signal is 1. The

results showed that (1) external incentives of auto-rele-

vance can indeed reduce the deviation of CSIMPCA and

(2) CSIVort performed significantly better than CSIMPCA.

6 Conclusion

In this paper, we develop an algorithm for subspace

orthogonal projection identification based on the EIV

model structure. However, when the external excitation

signal is white, it will produce a bias for closed-loop

identification. With the analysis of deviation in CSOPIM,

CSIMPCA, and CSIV, we find that the same deviation is

also included in other existing auxiliary variable SIMs in a

closed loop, so these methods can only provide a partial

solution for closed-loop identification. Based on this, we

proposed an algorithm of closed-loop subspace with aux-

iliary variable identification (CSIVort) based on orthogonal

decomposition; in addition, the calculation has been

reduced effectively. Simulation of the benchmark allowed

comparison of the proposed algorithm with several typical

subspace auxiliary variable algorithms and verified its

feasibility and closed-loop adaptability.
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