
RALBA: a computation-aware load balancing scheduler for cloud
computing

Altaf Hussain1 • Muhammad Aleem1
• Abid Khan2 • Muhammad Azhar Iqbal1 • Muhammad Arshad Islam1

Received: 23 August 2017 / Revised: 21 January 2018 / Accepted: 6 March 2018 / Published online: 14 March 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Cloud computing serves as a platform for remote users to utilize the heterogeneous resources in data-centers to compute

High-Performance Computing jobs. The physical resources are virtualized in Cloud to entertain user services employing

Virtual Machines (VMs). Job scheduling is deemed as a quintessential part of Cloud and efficient utilization of VMs by

Cloud Service Providers demands an optimal job scheduling heuristic. An ideal scheduling heuristic should be efficient,

fair, and starvation-free to produce a reduced makespan with improved resource utilization. However, static heuristics often

lead to inefficient and poor resource utilization in the Cloud. An idle and underutilized host machine in Cloud still

consumes up to 70% of the energy required by an active machine (Ray, in Indian J Comput Sci Eng 1(4):333–339, 2012).

Consequently, it demands a load-balanced distribution of workload to achieve optimal resource utilization in Cloud.

Existing Cloud scheduling heuristics such as Min–Min, Max–Min, and Sufferage distribute workloads among VMs based

on minimum job completion time that ultimately causes a load imbalance. In this paper, a novel Resource-Aware Load

Balancing Algorithm (RALBA) is presented to ensure a balanced distribution of workload based on computation capa-

bilities of VMs. The RABLA framework comprises of two phases: (1) scheduling based on computing capabilities of VMs,

and (2) the VM with earliest finish time is selected for jobs mapping. The outcomes of the RALBA have revealed that it

provides substantial improvement against traditional heuristics regarding makespan, resource utilization, and throughput.

Keywords Cloud scheduling � Load balancing � Computation-aware scheduling � Resource utilization � Cloud simulation

1 Introduction

Cloud computing [1] is a business-oriented concept to

outsource the elastic and scalable IT resources as a utility

computing [2]. One of the fundamental aspects of this

paradigm is the guaranteed on-demand availability of dis-

tributed resources over the Internet to solve High-Perfor-

mance Computing (HPC) problems [3]. In general,

scheduling is significant and challenging issue known as an

NP-complete problem [4–8] and particularly it must be

addressed to achieve good performance in HPC environ-

ment. The nature of scheduling strategies could be either

static or dynamic. The dynamic strategies can be classified

into two types: online and batch [9]. Online dynamic

strategies deal with the scheduling of a single job, whereas

the batch dynamic scheduling strategies are concerned with

the mapping of job batch. In general, the low scheduling

overhead of static strategies adheres them to outperform

over dynamic strategies [10–12]. In addition, static

scheduling heuristics avoid Virtual Machine (VM) migra-

tion to reduce the execution delays and provide

irrefutable Quality of Service (QoS) [13]. On the other

hand, static heuristics usually produce inefficient and poor

resource utilization due to fixed resource allocation [10].

Improper workload distribution on VMs causes longer

execution time and more energy consumption due to which

most of the scheduling heuristics are not efficient enough to

harness the full capacity of the available Cloud computing

resources. According to a survey [1], approximately 1.6

million tons of additional CO2 emission are caused only

due to the idle computing resources within Cloud data-

& Muhammad Aleem

aleem@cust.edu.pk

1 Department of Computer Science, Capital University of

Science and Technology, Islamabad, Pakistan

2 Department of Computer Science, COMSATS Institute of

Information Technology, Islamabad, Pakistan

123

Cluster Computing (2018) 21:1667–1680
https://doi.org/10.1007/s10586-018-2414-6(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-8342-5757
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2414-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2414-6&domain=pdf
https://doi.org/10.1007/s10586-018-2414-6

centers. Moreover, the idle computing resources cost

additional 19 billion dollars in terms of the consumed

resources and energy cost. To overcome the issue of load

imbalance, several researchers have proposed scheduling

mechanisms [14–16] to maps Cloud jobs in a load balanced

manner to achieve improved resource utilization and sys-

tem throughput [17]. Min–Min scheduling heuristic [18]

offers a reduced makespan for a job pool comprised of

small sized jobs. On the other hand, if the job pool contains

very large size jobs the Min–Min heuristic produces load

imbalance, low resource utilization, and high makespan.

On the other hand, Max–Min [19] provides a quality

solution with reduced makespan for a job pool with a large

number of shorter jobs and few longer ones. However, the

inherent mechanism of Min–Min and Max–Min provides

desired makespan but often leads to a poor resource uti-

lization [17–19]. Most of the proposed scheduling mecha-

nisms do not consider mapping of Cloud jobs in a load

balanced manner, which ultimately results in poor resource

utilization and low system throughput.

This study proposes a scheduling algorithm named Re-

source-Aware Load Balancing Algorithm (RALBA) to

mitigate load imbalance issue in Cloud computing. RALBA

is a novel batch-dynamic scheduling heuristic wherein

Cloud jobs (in batch) are scheduled in a load balanced

manner. RALBA schedules a batch of compute-intensive,

non-preemptive, and independent jobs. The primary objec-

tive of RALBA is to maximize resource utilization, mini-

mize execution time or makespan, and maximize

throughput. RALBA performs execution in two phases; in

the first phase, the workload is scheduled according to the

computing capabilities of Virtual Machines (VMs) and

computing requirements of Cloud jobs. The second phase

schedules the remaining jobs (left by the first phase

scheduling of RALBA) to VMs producing the Earliest

Finish Time (EFT). Experimental evaluation of RALBA has

revealed that the proposed scheduling heuristic has achieved

up to 7.21 times improved resource utilization as compared

to Random Selection (RS) heuristic. The main contributions

of the proposed scheme are as follows:

• In-depth analysis of the current state-of-the-art to identify

merits and demerits of several existing heuristics;

• A novel load-balancing Cloud scheduler for a batch of

compute-intensive, non-preemptive, and independent

jobs that produces reduced makespan, increased

resource utilization, and higher throughput, and;

• Performance analysis and empirical investigation of the

proposed scheduling heuristic against state-of-the-art

scheduling techniques.

The rest of the paper is organized as follows. Section 2

discusses the related work. Section 3 presents the system

architecture, system model, and RALBA algorithm along

with the complexity and overhead analysis. The experi-

mental setup, workload characteristics, performance eval-

uation, and discussion related to the attained performance

results are presented in Sect. 4. In the end, Sect. 5 con-

cludes the paper and identifies some potential future

directions of this work.

2 Related work

Random Selection (RS) Cloud scheduling allocates jobs to

VMs without considering the current load of VMs [20–22].

RS has a minimal scheduling overhead, simple imple-

mentation, and low complexity compared to other Cloud

scheduling heuristics [23]. However, RS arbitrarily assigns

a job to a randomly selected VM. However, the unfair

scheduling mechanism employed by the RS may lead to the

selection of an overloaded VM that could cause the load-

imbalance, low resource utilization, and a long waiting

time for the submitted jobs [20, 21].

Round Robin (RR) scheduling mechanism distributes

Cloud jobs over the available VMs in a circular order

[21, 23]. The equitable scheduling of RR results in a

mapping of an almost equal number of jobs to VMs

regardless of the job sizes [21, 23]. RR has minimal

scheduling overhead as compared to the other scheduling

techniques [20, 21, 24]. However, the assignment of small

jobs to the faster resources and large jobs to the slower

resources originates the longer makespan, poor resource

utilization, and load imbalance [20, 24].

Minimum Completion Time (MCT) heuristic assigns the

candidate job to a VM producing minimum completion

time for it [7, 22, 25, 26]. The current load of a VM is

employed to identify appropriate VM for assignment of the

job [7, 20]. At each scheduling step, MCT heuristic has to

scan all the available VMs to find the machine producing

minimum completion time for a candidate job that causes

significant scheduling overhead. On the other hand, MCT

heuristic produces improved makespan and resource uti-

lization compared to the RR and RS techniques [27].

Another concern of the MCT is that it assigns more jobs to

faster VMs that leads to load imbalance [17, 24, 25].

Min–Min heuristic is based on the MCT mechanism

[7, 26–28]. The functionality of this heuristic follows two

steps; firstly, the earliest finish time of all jobs is determined

by considering all VMs. In the second step, the job with the

minimum earliest finish time is selected and assigned to the

concerned VM. On each scheduling decision, the ready time

of the candidate VM is updated and this process continues

until all the jobs have been scheduled on the VMs. Min–Min

heuristic favors smaller jobs and penalizes larger jobs

[17, 20, 29]. Min–Min often results in low resource uti-

lization for a job pool based on fewer larger jobs

1668 Cluster Computing (2018) 21:1667–1680

123

[21, 25, 27]. Moreover, Min–Min overloads faster VMs with

smaller jobs that lead to load imbalance.

Max–Min has a resemblance to Min–Min. Both

heuristics have a divergent job selection policy but the

functionality of both the heuristics is almost identical. In

Max–Min, the first step is identical to Min–Min but in the

second step, the job with the maximum earliest finish time

is selected and assigned to the concerned VM [26, 27, 30].

On each scheduling decision, the ready time of the VM is

updated and the process is repeated until all the jobs have

been scheduled. Max–Min favors larger jobs by producing

minimum completion time; on the other hand, Max–Min

penalizes smaller size jobs [18, 22, 29–31]. Moreover,

Max–Min heuristic produces load imbalance for a job pool

with larger size jobs [8, 18, 31].

Resource-Aware Scheduling Algorithm (RASA) [18, 29]

uses Min–Min and Max–Min alternatively to utilize the

merits of both heuristics. RASA was originally proposed

for grid computing. First, RASA develops a job-related

resource-matrix that contains the completion time of each

job on all the resources. For the mapping of a first job,

Min–Min heuristic is employed if numbers of jobs are odd;

otherwise, Max–Min is used for mapping the jobs. After

that, all the remaining jobs are scheduled using one of the

two algorithms (i.e., Min–Min and Max–Min) alterna-

tively. RASA provides fair scheduling for both large and

small size jobs [18, 23, 28]. On the other hand, RASA

generates load imbalance [21] and penalizes smaller jobs if

the workload contains a large number of big jobs [30, 32].

Sufferage heuristic [16, 23, 24] computes the sufferage-

value for each job by finding the difference between its

MCT and the second MCT (higher than the first MCT)

generated by any VM. The job with largest sufferage-value

is assigned to the VM producing minimum completion

time for it. Sufferage produces minimal makespan; but it

has a consequential scheduling overhead due to the large

number of calculations (to compute sufferage-value) in

each scheduling decision [31]. Mostly, Sufferage produces

minimal makespan compared to RS, RR, MCT, Min–Min,

and Max–Min [23, 28].

Task-Aware Scheduling Algorithm (TASA) favors

smaller jobs in one step by using Min–Min and finds an

appropriate VM for the job by using Sufferage in the

second step [33]. TASA generates better makespan and

resource utilization as compared to Min–Min, Max–Min,

RASA, and Sufferage [33].

Panda et al. [16] proposed a Skewness-Based Min–Min

Max–Min (SBM2) for scheduling of skewed size workload

on Grid. If the dataset contains a large number of shorter

jobs with a few longer jobs then the dataset is referred as

positively skewed. On the other hand, if the dataset is

comprised of a large number of longer jobs with a few

shorter jobs then the dataset is known as negatively skewed

[16]. SBM2 computes the skewness of the workload in each

scheduling decision. Min–Min is employed if the workload

is negatively skewed; otherwise, Max–Min is adopted for

the scheduling of positively skewed workload.

Priority-Aware Load-Balanced Improved Min–Min

(PA-LBIMM) heuristic is proposed in [15]. PA-LBIMM

categorizes both the jobs and resources in VIP and normal

classes. First, the VIP jobs are scheduled on VIP resources

using Min–Min. After that, PA-LBIMM schedules the

normal jobs on all resources using Min–Min.

Service Level Agreement Min–Min (SLA-Min–Min) and

Service Level Agreement MCT (SLA-MCT) are proposed in

[34]. SLA-Min–Min and SLA-MCT are SLA-based

heuristics, which provide a quality solution to form a bal-

ance between makespan and penalty cost on execution time.

Table 1 presents a concrete summary of the related work.

Synthesis of the literature has revealed that most of the

contemporary scheduling heuristics often result in the form

of low resource utilization and load imbalance. The empir-

ical analysis (in our experiments) exhibits that a smaller

makespan produced by the existing scheduling techniques

cannot guarantee the load balanced mapping of the jobs.

3 Proposed load balancing algorithm

This section presents a detailed overview of the proposed

scheduling heuristic RALBA. The system architecture,

overall system and performance model, algorithm, com-

putational complexity, and overhead analysis are presented

in this section.

3.1 RALBA overview and background

RALBA is a resource-aware load balancing algorithm

comprises of two sub-schedulers: Fill and Spill. Figure 1

presents the abstraction layer of RALBA based Cloud

computing architecture. A renowned simulator CloudSim

[35] is employed to evaluate the performance of the pro-

posed RALBA scheduler. Cloudlet is used as a synonym

for the job in CloudSim simulator. Physical and virtual

instance layers provide a foundation for the delivery of

Infrastructure-as-a-Service (IaaS) and Platform-as-a-Ser-

vice (PaaS) to the Cloud users [35]. The computing power

of a Cloud data-center is represented as a collection of

physical host machines along with the storage servers at the

physical instance layer. These resources are transparently

managed by harnessing the virtualization concept to pro-

vide dynamic sharing of computing and storage resources

at the virtual instance layer. A Cloud resource manager

maintains the track and records the status of VMs in the

virtual instance layer. The resource manager is account-

able for creation, termination, and migration of VMs when

Cluster Computing (2018) 21:1667–1680 1669

123

required. Cloud resource manager provides to RALBA the

information pertaining to the available VMs and their

computing capabilities. To utilize the VMs for their full

capacity, a resource-aware scheduler is required on top of

the virtual instance layer for a balanced distribution of

cloudlets among VMs. The system accessibility layer

provides a user-friendly interface for the submission of

HPC based cloudlet instances to the Cloud. To improve

resource utilization and balanced job scheduling, we pro-

pose RALBA on top of the virtual instance layer (as shown

in Fig. 1).

RALBA system and performance model are presented

using mathematical expressions. The basic definitions,

terminologies, and the notations used in the mathematical

expressions are listed in Table 2.

3.2 RALBA system architecture

RALBA is based on batch dynamic scheduling technique

wherein a batch of cloudlets is formulated and a balanced

mapping of cloudlets is performed. The system architecture

of RALBA is depicted in Fig. 2. RALBA comprises of two

sub-schedulers i.e., Fill and Spill schedulers. Fill Scheduler

performs Cloudlet to VM allocation via considering the

computing share of VMs. Fill scheduler selects VMj with

Largest_VMShare and determines maxPCloudletVMj for

VMj. The candidate Cloudlet to VM allocation is performed

and VMSharej of VMj is modified after allocation of the

Cloudlet. Fill scheduler repeats the process of cloudlets

mapping until there does not exist VMj with non-empty

RPCloudletj or the CLS becomes empty.

Spill scheduler performs Cloudlets to VMs allocation

based on EFT of candidate Cloudlet. After Fill scheduler,

RALBA system switches to the Spill scheduler to allocate

Table 1 Summary of the related work

Heuristics Strengths Weaknesses

RS [20–22] Minimal scheduling overhead [24], simple implementation

with low complexity [23],

No fairness in scheduling [20, 21], produces load-imbalance

[20, 21]

RR [21, 23] Fairness in scheduling [21, 24], minimal scheduling

overhead [23, 25]

Generally poor makespan [22], poor resource utilization [24],

load-imbalance [20, 24]

MCT [9, 11, 12] Improved makespan than RS and RR [27], machine-aware

scheduling [20]

Faster resource overloaded with more jobs [22, 23], load-

imbalance [24, 25, 28],

Min–Min

[25–27]

Favors smaller jobs [29], reduced makespan for smaller jobs

[17, 20]

Penalize larger jobs [22], load imbalance [17, 23, 26, 31],

overloads faster machines with smaller jobs [17, 20, 29, 31]

Max–Min

[16, 30, 36, 45]

Favors larger jobs [20, 36], reduced makespan for larger

jobs [24, 29, 33]

Penalize smaller jobs [29, 46]., load-imbalance for job pool

with more larger jobs [7, 20, 24, 26, 29]

Sufferage

[18, 25, 26]

Improved makespan than RS, RR, MCT, Min–Min, and

Max–Min [26, 28], job allocation to appropriate machine

[25, 26]

More scheduling overhead due to computing sufferage-value

in each scheduling decision [31]

TASA [33] Improved makespan than Max–Min, Min–Min, RASA, and

Sufferage [33], favor smaller jobs [33]

Load balancing is not considered [33]

RASA [21, 29] Fair treatment of larger and smaller jobs [18, 23, 28],

relatively improved makespan than Min–Min and Max–

Min [18, 26]

Load-imbalance [21], penalize smaller jobs in some cases

[32]

SBM2 [16] Fair treatment for positively and negatively skewed

workload [16], reduced makespan than Min–Min and

Max–Min [16]

Heap of calculation in finding positive and negative skewness

in each scheduling decision [16], Load balancing not

considered

PA-LBIMM [15] Improved makespan for VIP jobs [15], priority-aware

scheduling

Penalize normal jobs due to VIP jobs, relatively increased

makespan than Min–Min [15]

Fig. 1 Abstraction layer of RALBA architecture

1670 Cluster Computing (2018) 21:1667–1680

123

the remaining Cloudlets of CLS. The maxCloudlet is

selected and allocated to the specific VM that produces

EFT for this maxCloudlet. On candidate Cloudlet–VM

allocation, the completion time of the VM is updated.

Cloudlet to VM allocation is repeated until CLS becomes

empty.

3.3 RALBA system model

A unified Cloud system model is formed to delineate the

performance of RALBA based cloudlet scheduling. A

Cloud comprises of a set of VMs represented as

VMS = {VM1, VM2,…,VMm}, where m is the total number

of VMs and a specific VM can be represented as VMj

Table 2 Preliminary notations

used in RALBA system and

performance model

Notations Descriptions

Cloudlet A notation for a job in CloudSim simulator

MI Million Instructions (size of a Cloudlet)

MIPS Million Instructions Per Second (computing power of a VM)

VMS Set of VMs in a data-center

vmCrMap Set of sorted VMs with its computing ratio

vmCrMapj Computation Ratio of VM j in vmCrMap

CLS Set of all cloudlets (to be scheduled)

Cloudleti.MI Size of Cloudleti in MI

VMj:MIPS Computing power of VMj in MIPS

RPCloudletj Set of remaining possible cloudlets that can be assigned to VMj

maxPCloudletVMj Largest cloudlet in RPCloudletj that is assigned to VMj

minCloudlet Smallest sized Cloudlet (to be scheduled)

maxCloudlet Largest sized Cloudlet (to be scheduled)

VMShare Set of sorted VMs with its computing share

VMSharej Computing share of VM j (in MI) in VMShare

Largest VMShare Current largest computing share for any VM in VMS

Cloudlet CTij Expected completion time of Cloudleti on VM j

VM CTj Completion time of VM j

Cloudlet EFTi Earliest finish time of Cloudleti

ARUR Average Resource Utilization Ratio (ARUR) of VMS

Fill Scheduler Sub-scheduler that assigns Cloudleti to VMj based on VMSharej

Spill Scheduler Sub-scheduler that assigns Cloudleti to VMj based on Cloudlet EFTi

Fig. 2 RALBA system

architecture

Cluster Computing (2018) 21:1667–1680 1671

123

(1 B j B m). VMS represents the computing resources

responsible for the execution of cloudlets. The set of

cloudlets is presented as CLS = {Cloudlet1, Cloudlet2,…,

Cloudletn}, where n is the total number of cloudlets and a

specified cloudlet can be represented as Cloudleti (1 B i

B n). A resource manager in Cloud is responsible to pro-

vide the computation ratios (vmCrMap) of all VMs to

RALBA, where vmCrMapj can be computed as:

vmCrMapj ¼
VMj:MIPS

Pm
k¼1 VMk:MIPS

� �

8j ¼ 1; 2; . . .;mf g

ð1Þ

vmCrMap is used to maintain a balanced workload

allocation to VMs and assists in calculating the computing

share of all VMs (VMShare). The VMSharej of a specified

VM is mathematically expressed as:

VMSharej ¼
Xn

i¼1

Cloudleti:MI

 !

� vmCrMapj

8j ¼ 1; 2; . . .;mf g
ð2Þ

Fill scheduler allocates Cloudlet to VM based on

VMShare. The RPCloudletj of a specified VMj can be

computed as:

RPCloudletj

¼ Cloudletj8Cloudlet 2CLS;Cloudlet:MI�VMSharej
� �

ð3Þ

maxPCloudletVMj in each scheduling decision of Fill

scheduler can be computed as:

maxPCloudletVMj ¼ max
8p2RPCloudletj

SizeðpÞ ð4Þ

In addition, on each scheduling decision of Fill and Spill

schedulers, the candidate cloudlet is removed from the list

of cloudlets with Eq. (5):

CLS ¼ CLSð Þ � maxPCloudletVMjð Þ;Using Fill Scheduler

CLSð Þ � maxCloudletð Þ; Using Spill Scheduler

�

ð5Þ

Equations (6) and (7) computes minCloudlet and max-

Cloudlet, respectively.

minCloudlet ¼ max
8c2CLS

SizeðcÞ ð6Þ

maxCloudlet ¼ max
8c2CLS

SizeðcÞ ð7Þ

On cloudlet–VM allocation, VMSharej of VMj is mod-

ified by Fill Scheduler as:

VMSharej

¼
Switch to Spill Scheduler;VMSharej\minCloudlet

VMSharej � maxPCloudletVMj:MI;VMSharej �minCloudlet

�

ð8Þ

In each scheduling decision of the Fill scheduler, the

VM with largest VMSharej is selected. The Largest_

VMShare can be computed as:

Largest VMShare ¼ max
8j2 1;2;3;...;mf g

VMSharej
� �

ð9Þ

Spill scheduler uses Cloudlet EFTi to allocate the

remaining cloudlets to VMs. The Cloudlet EFTi of a

specified Cloudleti is computed using the mathematical

relation:

Cloudlet EFTi ¼ min
8j2 1;2;3;...;mf g

Cloudlet CTij
� �

ð10Þ

where Cloudlet CTij is the expected completion time of

Cloudleti on VMj: The Cloudlet CTij is mathematically

defined and expressed as:

Cloudlet CTij ¼
Cloudleti:MI

VMj:MIPS

� �

þ VM CTj ð11Þ

The VM CTj is the completion time of VMj for already

assigned workload prior to the allocation of Cloudleti and

computed as:

VM CTj ¼
Xn

i¼1

Cloudleti:MI � F i; j½ �
VMj:MIPS

� �

ð12Þ

where F[i,j] is a Boolean variable that determines the

allocation of Cloudleti to VMj represented in Eq. (13).

F i; j½ � ¼ 1; cloudlet i is assigned to VMj

0; Otherwise

�

ð13Þ

3.4 Performance model

This study evaluates RALBA based scheduling using

makespan, throughput, and resource utilization perfor-

mance metrics. The mathematical presentation of make-

span is [27, 34]:

Makespan ¼ max
8j2 1;2;3;...;mf g

VM CTj
� �

ð14Þ

Throughput definition is presented in Eq. (15). A higher

throughput value indicates high workload execution per

unit time.

Throughput ¼ n

Makespan
ð15Þ

where, n represents total Cloud jobs executed. ARUR is a

measure to present the overall utilization of Cloud [27, 34]

(expressed in Eq. (16)). The value of ARUR remains

between 0 and 1. The higher ARUR value represents higher

resource utilization in Cloud.

1672 Cluster Computing (2018) 21:1667–1680

123

ARUR ¼

Pm

j¼1
VM CTj

m

� �

Makespan
ð16Þ

3.5 RALBA algorithm

This section elaborates the proposed scheduling heuristic

RALBA (shown in Algorithm 1) with its two primary

modules i.e., Fill Scheduler (presented in Algorithm 2) and

Spill Scheduler (shown in Algorithm 3). Table 3 illustrates

the interpretations of data items harnessed in Algorithms 1–3.

List of Cloudlets and list of all VMs computation ratio

(provided by Cloud resource manager) are used as input

parameters in RALBA (Algorithm 1). To perform mapping

of Cloudlets to VMs, RALBA invokes Fill scheduler (line

2 of Algorithm 1) and then invokes the Spill scheduler (line

5 of Algorithm 1).

Fill Scheduler (Algorithm 2) performs the necessary

initializations (lines 1–4) and computes the totalLength of

all the cloudlets in the submitted batch (lines 5–6). After-

wards, the computing share of each VM (vShareMapv) is

calculated (lines 7–8 of Algorithm 2) by using Eq. (2). A

while-loop (lines 9–15 of Algorithm 2) is used to select the

VM with the largest computation share and to determine

the maxPCloudletVm for scheduling. On each scheduling

decision (lines 13–15 of Algorithm 2), the candidate

cloudlet is removed from the cloudletList and the

vShareMapv of the candidate VM is modified (using

Eq. (8)). This process (lines 9–15 of Algorithm 2) is

repeated until the smallest size cloudlet becomes greater

than the largest vShareMapv in vShareMap.

After cloudlets–VMs allocation by the Fill scheduler, the

Spill Scheduler (Algorithm 3) is employed for the allocation

of the remaining cloudlets to VMs. While-loop (in line 1 of

Algorithm 3) allocates the remaining cloudlets (in descend-

ing order of cloudlets size) to VMs based on EFT. The

maxCloudlet is selected on line 2 and the VM producing

Cloudlet_EFT is determined in line 3. This candidate

cloudlet to VM allocation is performed in line 4 within each

loop-iteration. At each scheduling decision, the candidate

cloudlet is removed from the cloudletList and the VM CTj
of VMj is modified (using Eq. (12)). This process is repeated

until cloudletList becomes empty. RALBA produces a load-

balanced schedule in the form of cloudletVmMap.

The source code of the RALBA is available on the

Bitbucket Repository1 in a project named prjRALBA.

Table 3 Variables and their

interpretation (used in

Algorithms 1—3)

Variables Description

vmList List of VMs in a data-center

cloudletList List of cloudlets (to be scheduled)

cloudletVmMap Allocation map (vm, cloudlet) of cloudlets to VMs

totalLength Sum of cloudlet sizes in cloudletList (in MI)

vShareMap Computing share map (vm, share) of VMs

vShareMapv Computing share of VM v in vShareMap

newVShare Updated computation share of a VM

V An instance of a VM

Cloudlet An instance of a Cloudlet

1 https://bitbucket.org/RALBA_18/ralba/src.

Cluster Computing (2018) 21:1667–1680 1673

123

https://bitbucket.org/RALBA_18/ralba/src

3.6 Complexity and overhead analysis

This section delineates the complexity and overhead

analysis of the scheduling heuristics. To scrutinize the

complexity of RALBA, we consider N as the total number

of cloudlets and M as the total number of VMs in a Cloud

data-center. In worst-case, Fill scheduler selects a VM with

largest VMShare using M number of comparisons and

determines maxPCloudletVM after N comparisons. After

cloudlet–VM allocation, the vShareMapv is modified in

vShareMap with a maximum of M comparisons. The time

complexity of Fill scheduler is O(M2N); where M � N on

the real Cloud. On the other hand, Spill scheduler selects

the maxCloudlet from a sorted cloudletList and assigns to

the VM producing EFT for it. In worst-case, when

N cloudlets are scheduled by Spill scheduler, the time

complexity of Spill scheduler is O(MN). If n is the number

of cloudlets scheduled by Fill scheduler, then remaining N–

n cloudlets will be scheduled by Spill scheduler. Therefore,

the computational complexity of RALBA becomes

O(M2.n ? M.N–n). Table 4 provides a comparison of the

computational complexities of RALBA and the existing

scheduling heuristics.

Furthermore, we profile the simulation code of RALBA

and other existing scheduling heuristics to collect the time

overhead related to the scheduling decisions. RR presents

the minimal scheduling overhead against the other heuris-

tics. Table 5 delineates the relative scheduling overhead in

terms of complexity order (N times of RR scheduling) from

best to worst i.e., RS, MCT, RALBA, Max–Min, RASA,

Min–Min, TASA, and Sufferage. The Sufferage heuristic

has the most expensive time overhead among the given set

of heuristics. Considering the computational complexity

(Table 4) and the overhead analysis (Table 5), RALBA is

promised to schedule jobs in a scalable manner for large-

dataset.

4 Experimental evaluation and discussions

This section encompasses the experimental evaluation of

RALBA as compared to the other scheduling heuristics.

4.1 Experimental setup

For empirical evaluation, we employ a renowned Cloud

simulator CloudSim [35]. It is an open-source framework

for modeling and performance analysis of Cloud environ-

ment and services. The experiments are performed on a

machine equipped with Intel Core i3-4030U Quad-core

processor (having 1.9 GHz clock speed) and 04 GBs of

main memory. Table 6 illustrates the configuration detail

for the employed simulation environment. All the experi-

ments are performed by using 50 VMs, hosted on 30 host

machines within a data-center. Figure 3 presents the

overall statistics of the VMs and their computing power in

Table 4 Computational complexity of scheduling heuristics

Heuristics RR and RS

[7]

MCT

[7]

Min–Min, Max–Min, RASA, TASA, and Sufferage [18, 29] RALBA

Complexity O(N) O(MN) O(MN2) O(M2n ? M.N–

n)

Table 5 Overhead analysis of scheduling heuristics

Heuristics RS MCT RALBA Max–Min RASA Min–Min TASA Sufferage

Scheduling overhead (N times of RR) 1.01 1.24 1.43 2.05 3.45 6.40 11.11 13.36

Table 6 Configuration of the simulation environment

Simulator/version CloudSim version 3.0.2

Computing power of cloud host machines 04 Dual-core (4000 MIPS), 26 Quad-core (4000 MIPS)

Total cloud host machines 30

Host machine memory 16,384 MBs each

Total VMs 50 heterogeneous VMs (as shown in Fig. 3)

Total cloudlets 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000

1674 Cluster Computing (2018) 21:1667–1680

123

terms of Millions of Instructions Per Second (MIPS). As

shown in Fig. 3, the slowest and fastest VMs have the

computing power of 100 and 4000 MIPS, respectively.

4.2 Workload generation

For experiments, two workloads of independents cloudlets

are generated using the guidelines available in the literature

[35–38], i.e., (i) synthetic workload (ii) Google-like real-

istic workload. The synthetic workload is created using

random-number generation mechanism employing 05 dif-

ferent cloudlet-size ranges i.e., tiny (1–250 MI), small

(800–1200 MI), medium (1800–2500 MI), large

(7000–10,000 MI), and extra-large (30,000–45,000 MI) (as

shown in Fig. 4).

UsingMonte-Carlo simulation method [39], the Google-

like workload is generated based on the realistic Google

cluster traces. For the creation of real-world traces, analysis

of Google cluster traces [38, 40–46] and MapReduce logs

from the M45 supercomputing cluster [44] was performed.

The analysis affirms that the majority of cloudlets were of

small (execution time less than 15 min) and few large size

cloudlets (exceeding the execution time over 300 min)

[38]. Based on the analysis, we formulate the following

cloudlet sizes for the Google-like realistic workload: small

(15,000–55,000 MI), medium (59,000–99,000 MI), large

(101,000–135,000 MI), extra-large (150,000–337,500 MI),

and huge (525,000–900,000 MI) (as shown in Fig. 5).

4.3 Simulation results

The performance of RALBA and the other Cloud

scheduling heuristics (i.e., TASA, Sufferage, Max–Min,

RASA, Min–Min, MCT, RR, and RS) is compared by using

1
2
3
4
5
6
7
8

N
um

be
r o

f V
M

s

Computa�on powers of VMs

Fig. 3 Computation power of

heterogeneous VMs

20

60

5
10

5

0
10
20
30
40
50
60
70

�ny
(1 - 250 MI)

small
(800 - 1200 MI)

medium
(1800 - 2500 MI)

large
(7000 - 10000 MI)

extra large
(30000 - 45000

MI)

%
ag

e
Cl

ou
dl

et
s

Cloudlet size

Fig. 4 Composition of synthetic

workload

20

40
30

4 6

0
10
20
30
40
50
60

small
(15k - 55k MI)

medium
(59k - 99k MI)

large
(101k - 135k MI)

extra-large
(150k - 337.5k MI)

huge
(525k - 900k MI)

%
ag

e
Cl

ou
dl

et
s

Cloudlet size

Fig. 5 Composition of Google-

like realistic workload

Cluster Computing (2018) 21:1667–1680 1675

123

makespan, Average Resource Utilization Ratio (ARUR),

and throughput metrics. Each experiment is performed 05

times and the analysis is conducted on average values.

Figure 6 presents the average makespan based results

for the synthetic workload. Figure 6 shows that RALBA

consumes on average 5.5, 6.9, 243.9, 246.4, 46.1, and

41.9% less time for the execution of synthetic workload as

compared to the TASA, Sufferage, Max–Min, RASA,

Min–Min, and MCT heuristics, respectively. For the

execution of Google like realistic workload (shown in

Fig. 7), RALBA consumes on average 3.8, 1.8, 47.5, 24.5,

28.1, and 18.6% lower time as compared to the TASA,

Sufferage, Max–Min, RASA, Min–Min, and MCT heuris-

tics, respectively.

Figure 8 presents the mean ARUR based experimental

results for execution of the synthetic workload. Figure 8

shows that RALBA has attained 10.9, 9.8, 103.3, 117.6,

121.6, 65, 624.1, and 541.2% higher resource utilization as

compared to TASA, Sufferage, Max–Min, RASA, Min–

Min, MCT, RS, and RR heuristics, respectively. For the

execution of Google like realistic workload, RALBA has

achieved higher resource utilization of 16.9, 7.4, 15.9, 13.9,

78.8, 30.1, 550.6, and 541.7% as compared to the TASA,

Sufferage, Max–Min, RASA, Min–Min, MCT, RS, and RR

scheduling heuristics, respectively (see Fig. 9).

Figure 10 presents average throughput results for exe-

cution of the synthetic workload. As shown in Fig. 10,

RALBA has achieved 6.2, 7.5, 151.6, 160.1, 47.2, 42.1,

2047, and 1812% higher throughput as compared to the

TASA, Sufferage, Max–Min, RASA, Min–Min, MCT, RS,

and RR scheduling heuristics, respectively. Figure 11

shows the average throughput results for Google like

realistic workload. As shown in Fig. 11, RALBA has

31
.1

06

33
.9

34
.3

2 11
0.

43

11
1.

23

46
.9

3

45
.5

7

69
9.

28

73
5.

63

Av
er

ag
e

M
ak

es
pa

n
(S

ec
on

ds
)

Scheduling Heuris�cs

Fig. 6 Average makespan—synthetic workload

11
02

.9
4

11
45

.5

11
23

.6
9

16
26

.7
1

13
73

.6
4

14
12

.8
3

13
08

.7
8 22
32

4.
87

20
55

3.
63

Av
er

ag
e

M
ak

es
pa

n
(S

ec
on

ds
)

Scheduling Heuris�cs

Fig. 7 Average makespan—Google-like workload

0.
84

0.
75

7

0.
76

5

0.
41

3

0.
38

6

0.
37

9 0.
50

9

0.
13

1

0.
11

6

M
ea

n
AR

U
R

(0
 -

 1
)

Scheduling Heuris�cs

Fig. 8 Mean ARUR—synthetic workload

0.
93

7

0.
80

1

0.
87

2

0.
80

8

0.
82

2

0.
52

4

0.
72

0.
14

6

0.
14

4

M
ea

n
AR

U
R

(0
 -

1
)

Scheduling Heuris�cs

Fig. 9 Mean ARUR—Google-like workload

16
.1

03

15
.1

6

14
.9

7

6.
4

6.
18

10
.9

3

11
.3

3

0.
84

2

0.
75

Av
er

ag
e

Th
ro

ug
pu

t (
 jo

bs
/s

ec
on

d
)

Scheduling Heuris�cs

Fig. 10 Average throughput—synthetic workload

1676 Cluster Computing (2018) 21:1667–1680

123

attained higher job execution throughput of 5.6, 3.1, 20.1,

8.4, 33.8, 21.9, 1125, and 1785% as compared to the

TASA, Sufferage, Max–Min, RASA, Min–Min, MCT, RS,

and RR heuristics, respectively.

4.4 Results and discussion

It can be scrutinized that the proposed scheduling heuristic

has successively achieved significant improvements in

terms of makespan and resource utilization for the skewed

workload [16] (especially the positively skewed one)

because of the inherent resource aware scheduling mech-

anism employed by RALBA. We refer workload having a

large number of shorter cloudlets (positively skewed) and a

large number of longer size cloudlets (negatively skewed).

A modest improvement in makespan and significant higher

resource utilization is observed for execution of non-

skewed workload. The higher resource utilization achieved

by RALBA is due to the resource aware mapping that

results in a load balanced execution of the workload.

The composition of the synthetic workload (as shown in

Fig. 4) shows that there are a large number of smaller and a

few outsized (i.e., 10% large and 05% extra-large) cloud-

lets. This workload composition shows that the synthetic

workload is a more positively skewed as compared to the

Google-like realistic workload (i.e., 05% more number of

large cloudlets). Experiments have revealed that the MCT

scheduling heuristic reduces the makespan; however, it

causes an imbalanced mapping of cloudlets by overloading

the faster VMs. The execution of the synthetic workload

has resulted in more imbalanced mapping as compared to

the scheduling of Google like realistic workload which

arose due to the more positively skewed nature of the

synthetic workload as compared to the Google-like

workload.

The experimental evaluation has revealed that the Min–

Min has acquired reduced makespan as compared to the

Max–Min due to a large number of shorter size cloudlets in

both workloads (i.e., synthetic and Google like). The

inherent scheduling mechanism of Max–Min maps some

larger cloudlets to slow VMs producing a longer makespan

[21]. As compared to Min–Min heuristic, RALBA has

achieved 28.1% (for Google like realistic workload) and

46.1% (for synthetic workload) reduced makespan. More-

over, RALBA has consumed 243.9 and 47.5% reduced

time as compared to Max–Min for execution of the Goo-

gle-like and synthetic workloads, respectively. Max–Min

has produced longer makespan (for Google-like realistic

workload) due to few huge size cloudlets as compared to

the synthetic workload. Alternatively, Max–Min has sig-

nificantly improved the resource utilization as compared to

the Min–Min that overloads faster VMs (producing load

imbalance). However, Max–Min has not significantly

improved the resource utilization (for execution of the

synthetic workload) as compared to the Google-like

workload because the synthetic workload contains high

number of large size cloudlets.

Our experimental evaluation exhibits that the Sufferage

scheduling heuristic produces lower makespan and higher

resource utilization as compared to the Min–Min, Max–

Min, and RASA heuristics. This reduced makespan and

higher resource utilization are achieved due to the selection

of a suitable VM for cloudlet mapping. The suitable VM

represents the computing resource which will suffer most

(in terms of makespan) if the candidate cloudlet has not

been mapped to that resource (in the current scheduling

iteration).

The VM–cloudlet allocation mechanism of TASA is

based on Sufferage and Min–Min heuristics. Therefore,

TASA provides reduced makespan among the existing

heuristics. Figure 7 shows that RALBA has produced

slightly reduced makespan as compared to TASA and

Sufferage for the Google-like workload (i.e., 1.88 and

3.86% reduced, respectively). TASA and Sufferage have

performed almost identical to RALBA due to the inherent

resource-aware mapping mechanism employed by both of

these scheduling heuristics. However, RALBA also con-

siders load-balance factor for scheduling; therefore, it has

produced higher resource utilization (i.e., 7.45 and 16.97%

more resource utilization as compared to TASA and Suf-

ferage, respectively) for Google like workload as well. It is

evident that the TASA has produced lower resource uti-

lization (as compared to the Sufferage) due to the inherent

use of Min–Min scheduling mechanism.

The scheduling mechanism of RASA is based on Max–

Min and Min–Min heuristics. Therefore, RASA provides

improved resource utilization over TASA for the Google-

like workload (better resource utilization due to the

inherent Max–Min mechanism). Overall scrutinization of

the conducted experiments persuades that RALBA has

achieved significant improvement in resource utilization,

0.
49

0.
46

4

0.
47

5

0.
40

8

0.
45

2

0.
36

6

0.
40

2

0.
02

6

0.
04

Av
er

ag
e

Th
ro

ug
pu

t (
 jo

bs
/s

ec
on

d
)

Scheduling Heuris�cs

Fig. 11 Average throughput—Google-like workload

Cluster Computing (2018) 21:1667–1680 1677

123

makespan, and throughput as compared to the existing

scheduling heuristics. However, RALBA does not support

SLA-aware scheduling of Cloud jobs. Therefore, the SLA

based resource (e.g., execution-cost, bandwidth, memory,

etc.) and deadline constrained cloudlets may not be

scheduled adequately.

5 Conclusions and future work

In-depth analysis of the current state-of-the-art scheduling

heuristics results in inefficient resource utilization, reduced

makespan, and low throughput due to the imbalanced

mapping of Cloud jobs. This study presents a novel Cloud

scheduling heuristic RALBA that ensures improved

resource utilization with minimal makespan and increased

throughput. The performance of RALBA has been com-

pared with the state-of-the-art scheduling heuristics in

terms of makespan, resource utilization, and throughput.

The detailed analysis of experimental results has shown

that RALBA has successively attained lower makespan,

higher throughput, and improved resource utilization as

compared to the existing Cloud scheduling heuristics (i.e.,

TASA, Sufferage, Max–Min, RASA, Min–Min, MCT, RS,

and RR). In future, we intend to enhance the functionalities

of RALBA to deal with the unexpectedly slow computing

resources and to cope with the sudden resource failures

with a fault-tolerant scheduling mechanism.

References

1. Ray, P.P.: The Green grid SAGA—A Green initiative to data

centers: a review. Indian J. Comput. Sci. Eng. 1(4), 333–339
(2012)

2. Hayes, B.: Cloud computing. Commun. ACM 51(7), 9 (2008)

3. Rimal, P., Choi, E., Lumb, I.: A taxonomy and survey of cloud

computing systems. In: NCM 2009—5th International Joint

Conference INC, IMS, IDC, pp. 44–51 (2009)

4. Fernandez-baca, D.: Allocating modules to processors in a dis-

tributed system. IEEE Trans. Softw. Eng. 15(11), 1427–1436

(1989)

5. Cook, S.A.: The complexity of theorem-proving procedures. In:

in: Proceedings of 3rd Annual ACM Symposium on Theory of

Computing, pp. 2–8 (1971)

6. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge com-

plexity of interactive proof system. SIAM J. Comput. 18(1),
186–208 (1989)

7. Braun, T.D., et al.: A comparison of eleven static heuristics for

mapping a class of independent tasks onto heterogeneous dis-

tributed computing systems. J. Parallel Distrib. Comput. 61(6),
810–837 (2001)

8. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling

independent tasks on nonidentical processors. J. ACM 24(2),
280–289 (1977)

9. Deldari, A., Naghibzadeh, M., Abrishami, S.: CCA: a deadline-

constrained workflow scheduling algorithm for multicore

resources on the cloud. J. Supercomput. 73(2), 756–781 (2016)

10. Kumar, S., Nadjaran, A., Gopalaiyengar, S.K.: SLA-based virtual

machine management for heterogeneous workloads in a cloud

datacenter. J. Netw. Comput. Appl. 45, 108–120 (2014)

11. Jennings, B., Stadler, R.: Resource management in clouds: survey

and research challenges. J. Netw. Syst. Manag. 23(3), 567–619
(2014)

12. Wu, F., Wu, Q., Tan, Y.: Workflow scheduling in cloud: a survey.

J. Supercomput. 71(9), 3373–3418 (2015)

13. Farrag, A.A.S., Abbas, S., El-Horbaty, E.-S.M.: Intelligent cloud

algorithms for load balancing problems: a survey. In: IEEE

Seventh International Conference on Intelligent Computing and

Information Systems (ICICIS), December 2015, pp. 210–216

(2015)

14. Lenzini, L., Mingozzi, E., Stea, G.: Tradeoffs between low

complexity, low latency, and fairness with deficit round-robin

schedulers. IEEE/ACM Trans. Netw. 12(4), 681–693 (2004)

15. Chen, H., Wang, F., Helian, N., Akanmu, G.: User-priority gui-

ded min–min scheduling algorithm for load balancing in cloud

computing. In: 2013 National Conference on Parallel Computing

Technologies, PARCOMPTECH 2013, pp. 1–8 (2013)

16. Panda, S.K., Agrawal, P., Khilar, P.M., Mohapatra, D.P.: Skew-

ness-based min–min max–min heuristic for grid task scheduling.

In: Proceedings of the 2014 Fourth International Conference on

Advanced Computing & Communication Technologies,

pp. 282–289 (2014)

17. Hung, T.C., Phi, N.X.: Study the effect of parameters to load

balancing in cloud computing. Int. J. Comput. Netw. Commun.

8(3), 33–45 (2016)

18. Yu, X., Yu, X.: A new grid computation-based min–min algo-

rithm. In: Sixth International Conference on Fuzzy Systems and

Knowledge Discovery, pp. 43–45 (2009)

19. Mao, Y., Chen, X., Li, X.: Max–min task scheduling algorithm

for load balance in cloud computing. In: Proceedings of Inter-

national Conference on Computer Science and Information

Technology, vol. 255, pp. 457–465 (2014)

20. Muhammed, A., Abdullah, A., Hussin, M.: Max-average: an

extended max–min scheduling algorithm for grid computing

environment. J. Telecommun. Electron. Comput. Eng. 8(6),
43–47 (1843)

21. Tabak, E., Cambazoglu, B., Aykanat, C.: Improving the perfor-

mance of independent task assignment heuristics minmin, max-

min and sufferage. IEEE Trans. Parallel Distrib. Syst. 25(5),
1244–1256 (2014)

22. Aditya, A., Chatterjee, U., Gupta, S.: A comparative study of

different static and dynamic load balancing algorithm in cloud

computing with special emphasis on time factor. Int. J. Curr. Eng.

Technol. 5(3), 2277–4106 (2015)

23. Mohialdeen, I.A.: Comparative study of scheduling algorithms in

cloud computing environment. J. Comput. Sci. 9(2), 252–263
(2013)

24. Tchernykh, A., et al.: Online Bi-Objective Scheduling for IaaS

Clouds Ensuring Quality of Service. J. Grid Comput. 14(1), 5–22
(2016)

25. Elzeki, O.M., Rashad, M.Z., Elsoud, M.A.: Overview of

scheduling tasks in distributed computing systems. Int. J. Soft

Comput. Eng. 2(3), 470–475 (2012)

26. Li, B., Pei, Y., Wu, H., Shen, B.: Heuristics to allocate high-

performance cloudlets for computation offloading in mobile ad

hoc clouds. J. Supercomput. 71(8), 3009–3036 (2015)

27. Biradar, S., Pawar, D.: A review paper of improving task division

assignment using heuristics. Int. J. Sci. Res. 4(1), 609–613 (2015)

28. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.:

Dynamic mapping of a class of independent tasks onto

1678 Cluster Computing (2018) 21:1667–1680

123

heterogeneous computing systems. J. Parallel Distrib. Comput.

59(2), 107–131 (1999)

29. Parsa, S., Entezari-Maleki, R.: RASA: a new grid task scheduling

algorithm. Int. J. Digit. Content Technol. Appl. 3(4), 152–160
(2009)

30. Sharma, G., Banga, P.: Task aware switcher scheduling for batch

mode mapping in computational grid environment. Int. J. Adv.

Res. Comput. Sci. Softw. Eng. 3, 1292–1299 (2013)

31. Mathew, T.: Study and analysis of various task scheduling

algorithms in the cloud computing environment. In: IEEE Inter-

national Conference on Advances in Computing, Communica-

tions and Informatics (ICACCI), pp. 658–664 (2014)

32. Patel Dhara, R., Thaker, C.: Analysis of various task scheduling

algorithms in cloud computing. Int. J. Sci. Res. Sci. Eng. Tech-

nol. 1(6), 245–249 (2015)

33. Dehkordi, S.T., Bardsiri, V.K.: TASA: a new task scheduling

algorithm in cloud computing. J. Adv. Comput. Eng. Technol.

1(4), 25–32 (2015)

34. Panda, S.K., Jana, P.K.: SLA-based task scheduling algorithms

for heterogeneous multi-cloud environment. J. Supercomput.

73(6), 2730–2762 (2017)

35. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F.,

Buyya, R.: CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of resource pro-

visioning algorithms. Softw. Pract. Exp. 39(7), 701–736 (2009)

36. Mehdi, N.A., Mamat, A., Ibrahim, H., Subramaniam, S.K.:

Impatient task mapping in elastic cloud using genetic algorithm.

J. Comput. Sci. 7(6), 877–883 (2011)

37. Behzad, S., Fotohi, R., Effatparvar, M.: Queue based job

scheduling algorithm for cloud computing. Int. J. Basic Appl. Sci.

4(12), 3785–3790 (2013)

38. Liu, Z., Cho, S.: Characterizing machines and workloads on a

Google cluster. In: 41st International Conference on Parallel

Processing Workshops, pp. 397–403 (2012)

39. Chen, Y., Katz, R.H.: Analysis and Lessons from a Publicly

Available Google Cluster Trace. EECS Dep. Univ. California,

Berkeley, Tech. Rep. UCB/EECS-2010-95 94, p. 11 (2010)

40. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.:

Towards understanding heterogeneous clouds at scale: Google

trace analysis. Intel Sci. Technol. Cent. Cloud Comput. Tech.

Rep. ISTC-CC-TR-12-101

41. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.:

Heterogeneity and dynamicity of clouds at scale. In: Proceedings

of the Third ACM Symposium on Cloud Computing—SoCC’12,

pp. 1–13 (2012)

42. Moreno, I.S., Garraghan, P., Townend, P., Xu, J.: An approach

for characterizing workloads in google cloud to derive realistic

resource utilization models. In: Proceedings of the 2013 IEEE

Seventh International Symposium on Service-Oriented System

Engineering, pp. 49–60 (2013)

43. Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B., Chen, J.: An

adaptive prediction approach based on workload pattern dis-

crimination in the cloud. J. Netw. Comput. Appl. 80, 35–44

(2017)

44. Kavulya, S., Tany, J., Gandhi, R., Narasimhan, P.: An analysis of

traces from a production MapReduce cluster. In: 11th IEEE/ACM

International Conference on Grid Computing (CCGrid),

pp. 94–103 (2010)

45. Elzeki, O.M., Reshad, M.Z., Elsoud, M.A.: Improved max–min

algorithm in cloud computing. Int. J. Comput. Appl. 50(12),
22–27 (2012)

46. De Falco, I., Scafuri, U., Tarantino, E.: Two new fast heuristics

for mapping parallel applications on cloud computing. Futur.

Gener. Comput. Syst. 37, 1–13 (2014)

Altaf Hussain received the M.S.

degree in computer software

engineering from National

University of Science and

Technology (NUST), Islam-

abad, Pakistan. He received his

B.S. in computer science with

distinction from NWFP AUP,

Pakistan. His research interests

include software testing, data

mining and distributing com-

puting comprises performance

analysis and Cloud computing.

He is currently a Ph.D. scholar

at Capital University of Science

and Technology, Islamabad, Pakistan.

Muhammad Aleem received the

Ph.D. degree in computer sci-

ence from the Leopold-Fran-

zens-University, Innsbruck,

Austria in 2012. His research

interests include parallel and

distributed computing comprise

programming environments,

multi-/many-core computing,

performance analysis, cloud

computing, and big-data pro-

cessing. He is currently working

as assistant professor at Capital

University of Science and

Technology, Islamabad,

Pakistan.

Abid Khan is working as an

assistant professor in computer

science department at COM-

SATS Institute of Information

Technology (CIIT), Islamabad.

He was a postdoc fellow at

Politecnico de Torino, Italy

from 2009 to 2011. He did his

Ph.D. from Harbin Institute of

technology, Harbin, P.R. China

in 2008. His research interest

includes applied cryptography,

security and privacy issues in

distributed systems, secure

provenance. He has more than

12 years of teaching, research and development experience.

Cluster Computing (2018) 21:1667–1680 1679

123

Muhammad Azhar Iqbal is an

assistant professor at the Capital

University of Science and

Technology, Islamabad, Pak-

istan. He received Ph.D. degree

in communication and informa-

tion systems from the Huazhong

University of Science and

Technology, Wuhan, P.R. China

in 2012. His research interests

include: coding-aware routing

in vehicular ad hoc networks,

energy-efficient MAC for wire-

less body area networks, large-

scale simulation modeling and

analysis of computer networks in Cloud.

Muhammad Arshad Islam com-

pleted his doctorate from

University of Konstanz, Ger-

many in 2011. His dissertation

is related to routing issues in

opportunistic network. His cur-

rent research interests are rela-

ted to MANETs, DTNs, social-

aware routing and graph algo-

rithms. He is currently working

as an assistant professor at

Capital University of Science

and Technology, Islamabad,

Pakistan.

1680 Cluster Computing (2018) 21:1667–1680

123

	RALBA: a computation-aware load balancing scheduler for cloud computing
	Abstract
	Introduction
	Related work
	Proposed load balancing algorithm
	RALBA overview and background
	RALBA system architecture
	RALBA system model
	Performance model
	RALBA algorithm
	Complexity and overhead analysis

	Experimental evaluation and discussions
	Experimental setup
	Workload generation
	Simulation results
	Results and discussion

	Conclusions and future work
	References

