
Scheduling and checkpointing optimization algorithm for Byzantine
fault tolerance in cloud clusters

Sathya Chinnathambi1 • Agilan Santhanam2
• Jeyarani Rajarathinam1

• M. Senthilkumar3

Received: 5 February 2018 / Revised: 21 February 2018 / Accepted: 6 March 2018 / Published online: 16 March 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Cloud computing distinguishes itself from other distributed computing paradigm through offering services on-demand

basis without any geographical restrictions. This revolutionizes the computing by offering services to wide array of

customers starting from casual user to highly business oriented Industries. In spite of its capabilities, cloud computing still

struggle with handling wide array of faults, this causes loss of credibility to cloud computing. Among those faults

Byzantine faults offers serious challenge to fault tolerance mechanism, because it often go undetected at the initial stage

and it can easily propagate to other VMs before a detection is made. Consequently some of the mission critical application

such as air traffic control, online baking etc. still staying away from the cloud for such reasons. However if a Byzantine

faults is not detected and tolerated at initial stage then applications such as big data analytics can go completely wrong in

spite of hours of computations performed by the entire cloud. Therefore in the previous work a fool-proof Byzantine fault

detection has been proposed, as a continuation this work designs a scheduling algorithm (WSSS) and checkpoint opti-

mization algorithm (TCC) to tolerate and eliminate the Byzantine faults before it makes any impact. The WSSS algorithm

keeps track of server performance which is part of virtual clusters to help allocate best performing server to mission critical

application. WSSS therefore ranks the servers based on a counter which monitors every virtual nodes (VN) for time and

performance failures. The TCC algorithm works to generalize the possible Byzantine error prone region through moni-

toring delay variation to start new VNs with previous checkpointing. Moreover it can stretch the state interval for

performing and error free VNs in an effect to minimize the space, time and cost overheads caused by checkpointing. The

analysis is performed with plotting state transition and CloudSim based simulation. The result shows TCC reduces fault

tolerance overhead exponentially and the WSSS allots virtual resources effectively.
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1 Introduction

Cloud computing has revolutionized the distributed com-

puting model with service on-demand and pay-as-you-go

features [1, 2]. These features facilitate the businesses with

quick provisioning of unexpected peak demands through

availing a resourceful and cheap cloud service [3, 4].

Simplicity behind deploying cloud services makes it

attractive for budding business to pioneering businesses.

However, cloud services should be reliable to retain the

quality of service (QoS) requirements [5, 6]. At functional

level the cloud computing constitutes various virtual
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machines (VMs) [7] running across data centers that may

be placed in diverse geographical locations to form a vir-

tual cloud cluster which comprises multi-tenants [8]. Single

or more such virtual cloud cluster can be formed dynami-

cally to scale boundaries in accomplishing a single mission.

This multi-tenancy model makes the cloud computing

more prone to various security breaches than other dis-

tributed computing model [5, 9, 10]. Among those, the

most challenging aspect is the attacker’s capability to mask

a breach as a Byzantine fault which most of the times

causes serious damages to Cloud environment [11]. Since it

induces itself evasively and can remain undetected.

Moreover it can spread from one VM to another quickly.

However other faults can be detected but Byzantine faults

remains elusive and causes serious damages, since the

system keeps working even with the induced faults [12].

Moreover Byzantine fault can be used as the mode of

propagation to cause VM, server, network, application and

complete cloud failures [11]. However Cloud services are

on-demand and paid for every unit time. Therefore the

reliability assurance offered is high but due to failures such

as Crash faults, Process Failure, Application failure, Net-

work failure, Node failure, server failure etc. [2, 13] it

becomes extremely difficult to maintain the required level

of performance in fulfilling the QoS agreements. This

could cause the customers discontent towards the cloud

service providers (CSP).

However any fault handling mechanism in cloud can be

categorized as Fault detection, Fault removal, fault pre-

vention, fault forecasting, and fault tolerance [11]. Among

those fault detection is the crucial and initial fault handling

mechanism. However due to the evasive nature of the

Byzantine faults it becomes tedious to detect it in the initial

state. Therefore in the previous work a hash based delay

sensitive Byzantine fault checking mechanism has been

proposed which is proved to be capable of detecting the

Byzantine faults effectively [11]. As the name implies

other mechanism thrives to deal with the faults at various

stages either in proactive or reactive fashion. Among those

the fault prevention is vital since it tries to prevent the

faults with proper defensive mechanism. However often

the faults are developed to overcome the existing defense

system therefore fault tolerance becomes crucial in the

cloud systems as a contingency fault handling mechanism

[14]. Apart from other techniques Fault tolerance is an

attempt to ensure service continuity in spite of the fault

occurrences. Fault tolerance is an attempt to enhance the

cloud reliability from the practical implications [15]. There

are various fault tolerance mechanisms such as check-

pointing, replication, task migration, self- healing, safety-

bag checks, retry, task resubmission, reconfiguration,

masking etc. [13, 15–17].

Among those in cloud services the checkpointing is a

widely adapted fault tolerance mechanism [6]. The

checkpointing techniques frequently saves the state of

every VM as image files and are readily deployable if any

VM or cluster of VMs fails [18]. However to maintain

collective checkpointing for an error prone situation where

failure is expected, requires intense checkpointing for

every minimized time intervals. The smaller time interval

becomes more space and time consuming the checkpoint-

ing can be. Moreover dividable tasks such as in case of big

data analytics [19]; if any one VM generates erroneous

output it can be passed on to others and thus the entire

output can be corrupted [20]. In such cases checkpointing

is tedious and causes tremendous performance overhead.

However there is only limited number of research publi-

cations were available for checkpointing improvisation,

still the problem of strategizing the checkpointing remains

an open challenge. Therefore checkpointing is done as an

all inclusive task which means if a failure is expected the

number of checkpointing is increased for every VMs

invariably [21].

Large scale data processing such as big data analytics

are often run on Cloud computing platforms due to vast

processing requirements which cannot be achieved by

stationary facility [20, 22]. Such cases involve automatic

distribution of input as many blocks often called jobs

[5, 23]. The jobs can be further sub divided as tasks which

are made suitable for VM level processing [24]. However

task is not always considered as the sub-division of jobs but

in some cases it is seen as the representation of jobs.

However the job is often fragmented into various tasks to

suit the VMs. The sub division of application to tasks or

workloads can involve ‘n’ levels before it becomes pro-

cess-able by VMs. In this scenario even if a single VM

generate an error it can create a dominos effect by

spreading to other VMs [1]. Moreover those are delay

sensitive application because if a VM takes more time to

complete a task then it can delay the complete application.

Moreover due to uncertainty that revolves around Byzan-

tine error detection mostly checkpointing is rollbacked to

few or initial stages and individual task migration is often

replaced with complete job migration even if an error is

detected at the individual VN.

However to overcome these problems a Scheduling

algorithm to monitor the performance of the VNs online to

rate the physical server has been proposed to identify the

appropriate VNs for mission critical applications. More-

over effective checkpointing algorithm to sustain the task

and job migration applications with minimal overhead has

been proposed. This algorithm effectively determines the

VM faults and often migrate the task to another working

VM, in some cases it requires to migrate the entire batch of

task that constitute the job.
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2 Literature survey

A redundant VM placement optimization approach in an

attempt to address huge network resource consumption issue

during failure recovery in cloud services is presented in [6].

The approach employs three algorithms. The first algorithm

is to select a set of VM-hosting servers from a huge list of

servers based on their network performance. The second is

an optimal strategy which places the VMs and backups in a

way to ensure k-fault-tolerance. The last one is a heuristic to

address the task-to-VM reassignment optimization problem,

which is formulated as finding a maximum weight matching

in bipartite graphs. The spot instances as a less expensive but

mostly unreliable option allow the users to bid on unused

cloud computing capacity as instances and use it till the bid

exceeds the current spot price. However its unreliable nature

makes it more prone to faults and can cause serious delay in

task completion. Therefore in an attempt to reduce the delay

[24] proposes a service level agreement (SLA) price history

based checkpointing scheme. It aims to reduce the number

of checkpoint attempts to improve the spot performance.

Cloud computing can execute workflows to sustain business

process management system. A lightweight checkpointing

suitable to ensure fault tolerance in cloud computing during

the execution of workflows has been proposed in [1]. It is an

adaptive time based coordinated checkpointing ATCCp,

method suitable for soft checkpointing which helps to

minimize the storage time and improves consistency. Mobile

cloud computing (MCC) usually means a heterogeneous

mobile cloud offloading service is an attempt to enhance the

performance of mobile devices. It involves a shared resource

pool consisting of mobile ad-hoc networks, nearby cloudlets,

and private/public cloud services. However it is prone to a

variety of faults due to its ad-hoc nature. In order to improve

the mobile cloud service reliability [25] presents a group

based fault tolerant mechanism GFT-mCloud that classifies

mobile devices into groups based on its processing capacity,

mobility, and reliability. Different fault tolerance techniques

are then applied to different groups based on the task

offloading schedules. [26] presents a layered abstraction

approach for developing and managing fault tolerance

without bothering about the implementation details. This

approach allows the users to just specify the desired fault

tolerance level to make it operational. The current MapRe-

duce Framework based rescheduling applied fault tolerance

methods fails to keep track of the location of distributed

data, the computation and storage overhead caused by the

rescheduled failure tasks. However to overcome this prob-

lem [14] presents a replication-based mechanism which

considers both task and node failure while computation. The

energy consumption increases extensively in cloud systems.

This calls for green computing sensitive task scheduling

which attempts energy reduction while meeting the QoS

requirements. [27] presents a DVFS-enabled energy-effi-

cient workflow task scheduling algorithm (DEWTS). It

attempt to reclaim slack time through merging underutilized

servers in an attempt to reduce energy consumption.

DEWTS calculates the initial scheduling order of all tasks,

and obtains the whole makespan and deadline based on

heterogeneous-earliest-finish-time (HEFT) algorithm.

3 Insights from previous work: checkpoint
optimization

The previous work explored the possibility of using MD5

hash and Delay variation as a combined strategic parameters

to detect node (VM) level Byzantine faults [11]. According

to the concept, hypervisor or monitoring unit auto generate

the simple message and sends it to VM at every state

interval VM generate hash and communicate it back to

monitoring unit. The monitoring unit measures the delay

variation and changes in hash to health and integrity of every

VMs deployed under it. However the massive achievement

in the previous work is about optimizing the state interval to

reduce the processing and cost overhead, which serves as the

fundamental idea for the proposed scheduling and check-

pointing algorithm discussed as follows.

Optimizing the fault tolerance techniques such as

Checkpoint/Restart, job migration etc. becomes a chal-

lenging task due to time, cost and space overhead it creates.

This is vastly due to the reason, that the fault tolerance

mechanism is performed indifferently for the entire virtual

components for every regular interval without considering

their performance, health etc. Therefore the goal is increase

or decrease the state interval based on the performance and

health of the VMs to limit the overheads to a moderate

level even when the Cloud deployment grows in size and

complexity such as with big data processing applications.

The following Table 1 and Fig. 1 are constructed with

delay variation (c) with set of possibilities P {high = 0,

extreme = 1} since those are the delay that intimate that the

observed virtual node may be transpiring to erroneous state

or already erroneous. The other lower possibilities P {low,

medium} which is extensively studied with previous work

are not considered for optimization for better fault

Table 1 State transition with decisive checksum and simplified delay

variation

Present state Next state Output

00 01 10 11

S0 S1 S2 S2 S2 1

S1 S1 S2 S2 S2 1
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isolation. Moreover the c¢ = 0 denotes the absence of c
value this denotes whether delay is low or normal and the

Virtual Node (VN) is running problem free. However delay

variation ‘extreme’ implies the VM is transpiring into a

fatal stage, where as high indicate further monitoring is

necessary for coming to a conclusion. Similarly, the

Checksum (¢) variable takes on values from the set of

P {no error = 0, error = 1}. Moreover the state transition

diagram and table were obtained for virtual node states

{fail-safe, Byzantine, fail-stop} with respective state vari-

ables {S0, S1, S2} as follows.

However if no error in checksum and if the delay vari-

ation is not high or extreme then the input for both c¢ = 0

this can happen only in state S1. This implies that after

exhibiting high c in previous state which caused the

observing node ni to transition from S0 ? S1, it has recov-

ered from the setback and for the current state the transition

occur from S1 ? S0. Therefore in the current state obser-

vation the c seems to be either low or normal and thus makes

the c input missing. This helps to generalize the nodes which

though show no checksum error but shows slightly increased

delay over consecutive state observations.

Fig. 1 State transition with

decisive checkpoint and

simplified delay variation
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For the nodes that remain in S0 the next interval for

monitoring can be increased from interval j to 2j and after

2j it still remains in S0 the interval can be further shifted to

3j etc. Nodes in state S1 alone needs frequent monitoring

for every interval j, If the node in S1 transitioned to state S0

then the successive interval can be increased as long as it

stays in S0. However if it transitioned back to S1 then the

interval is reduced to initial value. Moreover for ith node if

it stays at high for three successive intervals in state S1 then

it could be suspended for evaluation. This way the crucial

overhead reduction has been achieved through minimiza-

tion of the interruption time and through the signification

reduction of the number of Checkpoints implemented not

only for the erroneous case but also for normal case.

Moreover restart can be promptly initialized with previ-

ously saved checkpoint with minimal overhead. This

algorithm has been obtained as the result of working out

various algorithms with state transition and mathematical

modeling [11].

4 Proposed work

The cloud computing involves dynamic allocation of

resources that involves data centers that are often geo-

graphically distributed. The hypervisor or virtual machine

monitor (VMM) [28] is the high level monitoring unit that

divides the available resource of the Server into various

processing unit called virtual machines (VMs) or virtual

nodes (VNs) and monitors their availability and perfor-

mance. Based on the user request, single or more VMs are

allocated to execute the submitted application. The

advantage of using virtual machine is that they can execute

the application across different operating systems, IDEs, or

software environments. Usually the virtual infrastructure

management (VIM) module of Cloud computing performs

resource pooling, managing physical and virtual resources

etc. [17]. However the VIM is not the commonly used

terminology for all the cloud platforms, instead one way

are another these higher management modules integrates

themselves to the basic hypervisors [29]. Therefore in this

research for simplicity cloud supervisor is used to mention

higher management module that monitors VNs, allocates

tasks to VNs, constitute virtual clusters (VCs) and performs

fault tolerance.

The next important element is VC [30]. Usually the

virtual cluster is assumed as the dynamic grouping of

various VMs. Though they are logically assumed to be in

same virtual cluster but in reality, they may be placed

across various physical clusters. However for better gen-

eralization in this work the virtual cluster is considered as

a set of physical servers. Since most of the cases, a server

with group of VMs is allocated to a Virtual Cluster [31].

Single VM for a virtual cluster is an idealistic case. This

beforehand grouping of physical servers helps the CSP to

provision VMs to virtual cluster dynamically upon user

request or SLA agreement [3]. If CSPs does not have such

beforehand knowledge allotting service to a user can be

highly unrealistic and unreliable. Therefore for imple-

menting a mission critical application or the application

which involves big data processing requires the best

physical servers to stand ready for dynamic allocation of

VMs to make it reliable and credible.

4.1 Workload sensitive server scheduling (WSSS)

The mission critical applications require the best available

service from the Cloud service provider (CSP). The

intention behind the WSSS algorithm is to keep track of

every server provided to form the Virtual Cluster. It is a

lightweight module and is incorporable to Cloud Supervi-

sors. WSSS counts number of failed delay sensitive tasks

which exceeds the SLA agreed QoS delays, and faults such

as due to VM errors, communication errors etc. Then uses

the count to rank the server after every state interval, the

server with less fault counts precedes the list. This way

WSSS can assist dynamic placement of jobs based on the

performance of the server. Moreover it can help to rate the

servers based on its previous performances with main-

taining the performance status for previous virtual cluster

implementations. Having such insight about past perfor-

mance can help the management model to appropriately

and dynamically choose the server for constituting VCs to

run sensitive applications (Table 2).

Table 2 Notations and basic definitions

Term Basic definitions

À Cloud executable application

S List of available servers {s1, s2, s3 … Sn)

Job Task batch (set of separately executable tasks)

Jobi Current task batch

W Failed workload or task (erroneous)

Y Failed delay sensitive workload

Count Function to count the failed tasks

VN Virtual node

WSS Workload Sensitive Server / List of efficient servers ranked

in ascending order

D Fault tolerance state interval
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Once the appropriate server is chosen for processing the

job the next step is to monitor the VM performance for

implementing appropriate fault tolerance mechanism. The

monitoring is greatly discussed in the previous work [11].

Therefore the fault tolerance algorithm is discussed as

follows.

4.2 Tactical coordinated checkpointing (TCC)

The previous work [18] discusses in details, about per-

forming kernel level checkpointing for VM to achieve

better task management, communication and performance.

As part of the work, the management module has been

extended to every VM in an effective way. Moreover a

checkpoint proxy is dedicated to sort more stable storage

memory to place the checkpoint files even to a remote

location in an effective way. Moreover highly capable VM

snapshot technique has also been devised in previous work

for quick VM imaging and minimizing the storage space

requirements. Now the challenge is to determine whether

the checkpointing performed is going to be independent or

synchronous [1].

Usually employed checkpointing is Synchronous, it

involves at least checkpointing all the tasks involved in a

job to maintain a global consistency [1]. In general all the

VMs running concurrently as a part of executing an

application were checkpointed at regular interval to elim-

inate the domino-effect that is usually caused by a single

Byzantine error at a single VM. This is therefore the most

inefficient time, space and cost consuming model, still it is

used in many cases to ensure the application safety and

cloud credibility. Most often neglected and underestimated

checkpointing is Independent checkpointing, because it is

uncoordinated and imaged here and there without bother-

ing about the state interval. Therefore in case if a Byzantine

error intrudes a single VM and go undetected then there is

no state guarantee to move back to previous checkpointing

but instead it often requires rollback to the initial stage.

However if the independent checkpointing is done with the

better detection capabilities then it can greatly reduces the

time, space and cost requirements. Therefore this work

combines both the checkpointing technique to come-out

with an efficient hybrid checkpointing for better opti-

mization termed as tactical coordinated checkpointing.

The following is the list of algorithm that is expected to

be running while the application is assigned to the cloud

clusters.

Monitor (Hash; Delay Variation)\\Detailed in [11], it

challenges VNs with message M at optimized intervals to

detect Byzantine error. Every VN generates hash and sent

back to cloud supervisor.

Checksum Challenge ()\\Performed by the Cloud

Supervisor after Monitor () operation [11]. It generates own

hash and compare it with hash generated by each VM for

message M.

Compare delay variation ()\\Performed by the Cloud

Supervisor after Monitor () operation. It compares the

delay variation of every VM with SLA delay [11]

UpdateWSSS ()\\it make sure the algorithm 2 is evoked

and runs throughout execution

State Interval Optimization (c, ¢)\\calls algorithm 1

usually at every state interval for optimization

HPR_Checkpoint ()\\Detailed in [18], this algorithm

covers the back-end checkpointing process in a effective

way
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The algorithm is the attempt to categorize the VN at

every state interval into two groups based on their perfor-

mance. Any VN at the given state interval will fall at the

set of possibilities P {Performing = 1, Not perform-

ing = 0}. The VN which are performing marginally that is

causing some delay but not errors were also been catego-

rized as not performing, so as to avoid all possibility of

error in a mission critical application. For the performing

VNs the state interval is incremented twice this ensures

performance improvement and overhead reduction in terms

of cost, space and time. In the previous work a separate

space in the VN is reserved for periodic hash processing

without interrupting the running tasks. Therefore there is

no processing or performance overhead reflected to cus-

tomers in implementing the Monitor (hash, checkpoint)

algorithm.
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5 State transition computation

The state transition is computed to understand and correlate

the objective of the algorithm with its flow. Such as using

the state transition computation, whether the proposed fault

tolerance narrows down to Byzantine error prone region or

not has to be analyzed. Subsequently, whether the perfor-

mance improves with increasing the state interval for VNs

or not needs to be investigated. Moreover the checkpoint

optimization attempt, which involves grouping the VNs

into two categories with an objective to arrive somewhere

between synchronous and independent checkpointing is

met or not needs examination.

5.1 State transition with checkpointing status

Initially the state transition has been obtained for TCC

algorithm with Checkpointing Status (§). The states that are

applicable for all the following state transitions involves

the set of possibilities P {fail-safe, Byzantine, fail-stop}

denoted with state variables {S0, S1, S2} respectively. The

Checkpointing Status is given as the set of possibilities

{Null, Confirmed, Previous, Complete} denoted with bin-

ary values {00, 01, 10, 11} (Table 3).

Among those the state S2 is assigned as acceptor because

if a transition ends in S2 then the entire job running VNs are

shut and a completely new set of VNs are started with the

previous checkpointing. This marks the closing of states for

the current set of VNs. Therefore the objective is never to

transition into state S2.

According to Fig. 2 among various transitions the null

transition i.e. § == ‘00’ marks the possibility of improvi-

sation because it denotes the set of intervals where the VN

is trusted to operate without checkpointing. Initially state

interval is D then next time it is incremented to 3D if there

is no problem with the VNs. If the state intervals for usual

case are compared with the proposed TCC case then usual

states will be fixed so the series is {D, 2D, 3D, 4D …} but

the interval series for TCC for error free and healthy VNs is

{D, 3D, 6D, 12D …}. Hence the overhead reduction

achieved with every null transition i.e. for intervals {2D,
4D, 5D, 7D, 8D, 9D, 10D, 11D …} increases exponentially

compare to usual case.

5.2 State transition with VN performance

The state transition for VN Performance (Þ) has been

developed to understand the applicability of the proposed

TCC algorithm. The states {fail-safe, Byzantine, fail-stop}

Table 3 State transition with delay variation

Present state Next state Output

00 01 10 11

S0 S0 S0 S1 S2 0

S1 S0 S0 S1 S2 0

Fig. 2 State transition diagram

with checkpointing status
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remains the same for all the cases and their respective state

variables remains the same as {S0, S1, S2}. In Table 2 the

Input is constructed with the possibilities P {Not Per-

forming, Performing, wary} represented by corresponding

binary inputs {00, 01, 10}. Moreover the S2 remains the

acceptor, in here if more VNs that is (Number[ 5)

underperforms then only it transitions to S2 where all the

VNs halt with referring to previous checkpointing such a

situation is marked with a possibility ‘wary’ performance.

However the ‘Number’ serves as a threshold and it can be

increased if more number of VNs are running to accom-

plish the tasks. Say if 100 VNs is running and if � of that

25 VNs experience some hiccup in delay then it indicates

the necessity of the complete job migration through refer-

ring WSSS algorithm. If the running application is very

critical application then 1/5 of 100 VNs that is 10 VNs

experience some hiccup in delay then in this case it can

considered as the necessity for complete job migration.

Therefore the Threshold setting is left to the user’s choice.

Table 4 and Fig. 3 indicate that the proposed Byzantine

fault tolerance operates as avoidance mechanism since it

eliminates the state transition S0 ? S1. According to pre-

vious study the checkpointing is decisive in nature it

detects the Byzantine error with 99% accuracy most of the

times but even in the worst case scenario it detects with

88% accuracy [11].

This creates only 12% possibility of Byzantine error

getting missed out with hash based detection alone. But

further analysis show that this 12% exhibits high delay

variation due to the sudden inducement of foreign data in

case of Byzantine error. Therefore if the delay variation is

‘high’ then the node is checkpointed to the previous state

and the node is considered not performing. This causes the

checkpointing algorithm to halt the node and transfer the

workload to another node from pervious checkpointing this

way it effectively implements semi independent check-

pointing. Moreover the ‘wary’ case as defined before is

effective implementation of semi synchronous check-

pointing. Hence according to the state transition analysis

the proposed algorithm though eliminating the risk of

Byzantine errors completely yet managed to optimize the

Table 4 State transition with VN performance

Present state Next state Output

00 01 10

S0 S2 S0 S2 1

S1 State nullified 1

Fig. 3 State transition diagram

with checksum
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fault tolerance techniques with considerable overhead

reduction.

5.3 Byzantine problem tolerability analysis

In any system a solution to the Byzantine fault tolerance

usually is complex and assumed to require 3 K ? 1 active

replication system to tolerate K failures [12]. However

usually the K failure in cloud system is unpredictable so the

K simply be assumed as number of all running VNs i.e.

K = n. This way any cloud system to run a mission critical

application it requires to place K ? 1 replica to stand ready

to replace any failed nodes. Therefore even if the k com-

ponents fail it will have 1 redundant component after

replicating all the failed nodes. The challenge that the

Cloud faces is that, there is no certainly to say it is K-fault

tolerant even after having the K ? 1 replacement possi-

bilities, simply because an evasive Byzantine error corrupts

all the running VNs without proper detection. However, the

hash and delay sensitive based detection turns out to be

K ? 1 fault tolerant [11]. Therefore with TCC and WSSS

it is modest to say it is K fault tolerant. In reality, for a

mission critical application with WSSS and TCC it greatly

reduces the replacement requirements to\K.

6 Experimental results and analysis

This section attempts to measure the performance of the

proposed algorithms through simulating them in CloudSim

[5]. CloudSim is a dedicated simulation tool for Cloud

computing supports modeling the entire scenarios includ-

ing data centers, VMs, VM provisioning, scheduling

algorithms, fault tolerance etc.

6.1 System implementation

Evaluating the proposed server level scheduler requires to

run it in a massive cloud application. Therefore a huge data

migration application which scales cloud clusters is pro-

grammed using CloudSim with the support of planet lab

dataset. Now the voluminous data is split into various jobs

and then the jobs are fragmented into workloads. The

workload is bulk and requires effective server level

scheduling, for that the most efficient server first (MESF)

[23] scheduling algorithm is implemented and compared

with WSSS algorithm. MESF is chosen because it out-

performs industry standard greedy algorithm [23]. More-

over it attempts to schedule the tasks to a minimum number

of servers and keeps track of response time [23]. The

MESF algorithm though works at server level it does not

monitor the VN failures closely as WSSS algorithm. The

programs for both MESF and WSSS algorithm is then

developed in the CloudSim using workflowSim-01 package

and tested on real-time planet lab dataset. The CloudSim

version 3.03 and supporting Java version is required to

configure Eclipse IDE to run both programs.

However the complete set of cloud input includes

sequence of things, they are setting the parameters and

implementing and calling the MESF and WSSS schedulers,

initializing all the variables suitable for operating on

available Planet Lab datasets. Once it is done, the relevant

Scheduler that starts and allocates the VMs to the migrating

workloads is run as CloudSim Program. The following is

the performance comparison of the MESF and WSSS

Schedulers over the same real-time migration dataset.

6.2 Comparing WSSS with MESF algorithm

Evaluating MESF in a homogeneous cloud environment

can easily show green benefits and is capable of completing

the tasks without failure [23, 25]. However evaluating the

MESF and WSSS in heterogeneous environment offers

insights close to real world scenario. Moreover a thorough

evaluation not only considers green benefits but also con-

siders all the metrics from time, space and cost perspec-

tives. These are the factors usually accompany time-

sensitive, delay-sensitive and space consuming workloads.

Though the Cloud Services is highly dynamic in nature

provisioning such sensitive and mission critical applica-

tions requires dedicated pre-allocated resources also.

Therefore the limitation in handling them at scheduler level

can affect the cloud service performance. The comparison

result is presented in the following table.

According to the Table 5 it is evident that the MESF

algorithm consumes more processing time due to the pre-

processing of resources before allotting it to workloads.

This makes it less suitable for mission critical applications.

However the proposed WSSS algorithm handles workload

or tasks comparatively better than the MESF algorithm.

The performance of cloud on sensitive tasks has been

substantially improved with the WSSS and the failure in

completing the workload is effectively reduced.

Moreover after initial implementation and after con-

ducting various test-runs with CloudSim the MESF algo-

rithm is found to be struggling to accommodate sufficient

VMs for the delay sensitive migration process. Conse-

quently the MESF is integrated with the default fallback

procedure available in the workflowsim even then the

MESF algorithm finds trouble in accommodating VMs.

The reason is MESF algorithm operates initially to evaluate

the VMs in every server before allotting it to the workloads

even when the workload is dynamically increasing, this

makes the cloud supervisor to bypass the MESF and ran-

domly allocate to available VMs this causes the mix-up and

results in poor performance. Therefore MESF is found to
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be more suitable for static workload and homogeneous

environment. Whereas the WSSS doesn’t interrupt the

initial allocation but maintains a ranking of all available

servers for further allocation this way it assist the Cloud

Supervisor instead of looking to overtake it. Therefore it

requires no fallback procedure and it operates better than

MESF.

6.3 Determining performance range

Moreover in Table 5 the values presented as mean and

standard deviation marks the range of possibilities. Hence

to evaluate such possibilities few important metrics are

branched out and presented as normal distribution as

follows.

The oscillation in the range of data in cloud processing

can be more tightly coupled than other applications.

Therefore as in Figs. 4 and 5 the most occurable range of

any number of instances in case of MESF is 11.62 to

27.82 s where as for WSSS is 7.57 to 20.37 s. In case of

MESF, it takes 5 to 7 s extra delay in allotting workloads.

This can be lethal in case of delay sensitive applications.

According to the Fig. 6 the MESF algorithm spends

considerable time in executing algorithm before VM

Selection. The probable range for such delay is mostly

within the range of 0.008–0.061 s. In highly capable cloud

computing scenario, such delay is undesirable and need to

be eliminated. According to the Fig. 7 the delay experi-

enced in executing WSSS algorithm for VM Selection

mostly falls within the range of 0.00l–0.006 s. This is the

huge improvement from MESF algorithm. However the

Delay experienced is almost negligible and offers industry

standard allocation condition for even the complicated

Cloud migration application.

This variation of delay in Execution time of Algorithm

in VM Selection and in delay before VM migration is

inversely proportional to the number of workloads

Table 5 Tabulation of data over MESF algorithm

Performance metrics MESF migration WSSS migration

Mean SD Mean SD

Number of hosts 800 800

Number of VMs 1052 1052

Energy consumption (kWh) 177.10 191.73

Number of VM migrations 23035 26634

SLA performance degradation due to migration 0.10% 0.04%

SLA time per active host 6.89% 4.45%

Overall SLA violation 0.12% 0.07%

Average SLA violation: 6.78% 4.14%

Time before a VM migration (s) 19.72 8.10 13.97 6.40

Execution time—VM selection (s) 0.03432 0.02673 0.00892 0.00941

Execution time—host selection (s) 0.01459 0.00814 0.00916 0.00665

Execution time—VM reallocation (s) 0.10560 0.05593 0.08122 0.04261

Execution time—total (s) 0.32130 0.24726 0.20802 0.16453

Fig. 4 Normal distribution of time before a VM migration for MESF

algorithm

Fig. 5 Normal distribution of time before a VM migration for WSSS

algorithm
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migrated. The simple fact that WSSS has migrated 26634

workloads, whereas MESF has migrated only 23035, itself

shows that the MESF fails 3599 workloads. The range

determination and analysis for two sample parameter itself

proves that the MESF algorithm though tries to enhance the

green computing benefits it fails to perform as WSSS

algorithm. However WSSS algorithm performs better than

MESF algorithm and has been proved as the practically

feasible solution for real-time applications.

7 Conclusion and future work

A Byzantine fault often gets induced into a virtual node to

yield incorrect outputs, when shared with other nodes the

error can corrupt the collective outputs. Usually singe VN

is made faulty to generate and propagate Byzantine errors

to other VNs in quick succession. The effective detection

proposed in previous work which includes hash and delay

variation is used to detect Byzantine error on the fly. In this

paper, a tactically coordinated checkpointing (TCC) algo-

rithm is proposed to achieve cost, space and time overhead

reduction through increasing the state interval for every

well performing and error free VNs. Moreover it categories

even the VNs which exhibits slight increase in delay as

non-performing to eliminate all the possibility of Byzantine

errors. Because previous analysis shows that the slight

increase in delay is a good marker of Byzantine error

getting induced. Moreover for such cases, a new VN is

promptly activated with previously saved error-free

checkpoint. This way the proposed algorithm confines to a

narrow region for eliminating the Byzantine risk com-

pletely. The state transition diagram is computed for TCC

with Checkpointing Status and VN performance. The result

shows, that the TCC algorithm achieves exponential

overload reduction and eliminates the Byzantine risks

completely.

Moreover a workload sensitive server scheduling

(WSSS) algorithm has been devised to identify the virtual

components that are part of the Virtual Cluster in accor-

dance to their server. Then it monitors the performance of

the VNs to rate the server. This algorithm presents a

counter which keeps track of the VM failures and SLA

delay exceeds for every participating servers. Then based

on that counter the servers are ranked in ascending order.

The benefit of using WSSS is that, during execution of an

application it presents the best performing servers to start

backup VNs in case of failures. It also offers the history of

the previous performance for making a better initial choice

for running a Cloud application. It is a lightweight module

and is incorporable to Cloud Supervisors. The proposed

model has been simulated using the CloudSim and the

results involving various performance metrics has been

tabulated. The result analysis shows, that the WSSS algo-

rithm performs better and is suitable for real-time

applications.

The future work involves combining all the devised

algorithms to effectively implement fault detection and

tolerance into a package. The package can be then run on a

test-bed like environment to perform various experimental

analyses and to identify further improvement possibilities.
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