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Abstract
For signal de-noising approach based on singular value decomposition (SVD), the method of determining the row number

(p) of Hankel matrix and the effective rank (r) both are key problems. In this paper, an adaptive signal de-noising approach

which based on genetic algorithm (GA) and SVD was proposed. Choosing signal to noise ratio (SNR) as fitness function,

GA was introduced to automatically optimize the parameter of p and r. Then inverse SVD was conducted to achieve the de-

noised signal. In order to demonstrate the validity of the approach, two numerical simulation signals with different

frequency components are employed. The results show that p can be N/4 or N/3 (N is the length of data), r is twice as the

number of dominating frequency. As for measured signal, the complication of the frequency components might be taken

into consideration. And in order not to miss the true frequency components when dealing with measured signals, r should

be more than twice as the number of dominating frequency, but p can still be N/4 or N/3.

Keywords Singular value decomposition � Genetic algorithm � Signal de-noising � Modal parameter identification

1 Introduction

The ambient excitation method to identify large-scale

structure modal parameters is widely used for structural

health monitoring (SHM). Different from traditional

methods, modal parameters (e.g., natural frequency,

damping ratio, mode shape) can be identified from output-

only data in ambient excitation method. As affected by the

violent background vibration or the strong environmental

electromagnetic disturbances, the signals collected from

field are often inevitably contaminated by noise. This sit-

uation often leads to serious difficulties in many applica-

tions as they require high quality measured signal data.

In order to reduce the noise residents in the measured

signals, many methods had been tried, such as time series

analysis [1, 2], wavelet analysis [3–5], parameter estima-

tion algorithms [6–8], special numerical filters [9–13] and

so on. The singular value decomposition (SVD) technique

is a very useful tool in linear matrix theory, due to its

simple calculation method, now it has been widely used in

many fields in recent years, such as acoustics [14], smart

control [15, 16], electronics [17, 18], signal processing

[19, 20], mathematics [21, 22] and so on. However, com-

pared to its achievements in above-mentioned fields, the

research in noise reduction field has not been done suffi-

ciently, especially for the two key problems: determining

the row number (p) of Hankel matrix and the effective rank

(r). Earlier works done by the authors concentrated on the

determination of row number of Hankel matrix by utilizing

‘‘cut-and-try’’ method [23], singularity spectrum [24, 25],

Singular Entropy [26], and other methods [27–29]. For the

effective rank, structural risk minimization [30], dynamic

clustering [31] and principal component analysis [32] are

applied. The methods mentioned above were illustrated

using simulated test cases where additive and multiplica-

tive types of noise were added to otherwise clean data. It

was found that the methods were fairly successful. How-

ever, the long-term field practices proved that these

methods have their own limitations more or less [33–36].

This current paper is an extension of the works mentioned

above and presents a new method for the elimination of

noise from measured signal data. As signal to noise ratio

(SNR) was chosen as object function, GA is introduced to
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find out the best row number of Hankel matrix and effec-

tive rank so that we can get the most ‘‘cleanest’’ signal.

2 Theorem of noise reduction applied SVD

2.1 Statement of the theorem

Every real matrix A of dimensions p� q can be factorized

as A ¼ U
P

VT , where U of dimensions p� p and V of

dimensions q� q are the orthogonal matrix,
P

is p� q

diagonal matrix with its only nonzero elements on the

diagonal. These elements are called the singular values and

ordered as r1 � r2 � � � � rR; where R ¼ min p; qð Þ. The

columns of U and V are the left, respectively, right singular

vectors of A. More details, including algorithms, on the

SVD can be found in [37].

Then there exists an p� q matrix Â of rank r B R which

minimizes the sum of the squared error between the ele-

ments of A and the corresponding elements of bA when

bA ¼ U
P

VT , where
P

is obtained by setting to zero all but

its r largest singular values. Note that ½�T indicates complex

conjugate transpose in the case of the matrix A being

complex.

2.2 Employed in noise reduction

The SVD technique is also employed in noise reduction.

Jensen et al. [38] considered a noisy signal vector xkf g ¼
x1; x2; � � � xNf g of N samples and assumed that the noise is

additive and correlated with the signal, i.e.

xkf g ¼ skf g þ nkf g ð1Þ

where skf g represents the signal component and the nkf g
represents the noise. As in other applications, it is proposed

in Jensen et al. [38] that Hankel matrix of dimensions p� q

can be constructed using the signal vector xkf g as

Ap�q ¼

xð1Þ xð2Þ � � � xðqÞ
xð2Þ xð3Þ � � � xðqþ qÞ
..
. ..

.
� � � ..

.

xðpÞ xðpþ 1Þ � � � xðpþ q� 1Þ

2

6
6
6
4

3

7
7
7
5

ð2Þ

where pþ q� 1 ¼ N and p� q. Again, the signal com-

ponent of the noisy signal vector is estimated in accordance

with [37]. Equation (2) could be written as follows:

Ap�q ¼

sð1Þ sð2Þ � � � sðqÞ
sð2Þ sð3Þ � � � sðqþ 1Þ
..
. ..

.
� � � ..

.

sðpÞ sðpþ 1Þ � � � sðpþ q� 1Þ
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4
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5

þ
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� �

ð3Þ

where As represents the signal component and the An rep-

resents the noise.

Then SVD technique is utilized for the estimation of the

rank of the matrix A in the process of noise elimination.
P

r, which represents uncontaminated data space, contains

significant singular values (ri; i ¼ 1; . . .; r).
P

0, which

represents the noise space, contains small singular values

below a threshold (ri; i ¼ r þ 1; . . .;R).
Essentially, the rank is an indicator of the number of

independent characteristics in the data. However, the main

problem in practice is the estimation of the noise threshold,

i.e., the effective rank of the matrix Ap�q. The ways to

estimate the effective rank were described in [23–32]. It

should be noted that the elimination of small singular

values from Ap�q results in a matrix bAp�q which is of non-

Hankel form. Consequently, the content of the matrix bAp�q

needs to be transformed back to a vector form so as to

obtain the uncontaminated data. This is achieved by

arithmetic averaging along the anti-diagonals of bAp�q. If

the signal vector bs of length N is used to construct the bAp�q

matrix, the ith element of the noise-free signal vector bs can

be reconstructed as:

bsðiÞ ¼ 1

k � lþ 1

Xk

j¼1

bAp�q iþ j� 1ð Þ ð4Þ

where l ¼ maxð1; i� pþ 1Þ and k ¼ minðq; iÞ.
Once the noise-free signal vector bs is established, SNR

can also be estimated as

SNR ¼ 10� lg
PS

PN

� �

¼ 10� lg

PN

i

bsðiÞ2

PN

i

xðiÞ � bsðiÞð Þ

2

6
6
6
4

3

7
7
7
5

dBð Þ

ð5Þ

where Ps and PN represent the effective power of noise-

free signal and noise respectively, xðiÞ and bsðiÞ represent

the signal vector of raw signal data and noise-free signal

data.

The procedure is illustrated in Fig. 1.

S14378 Cluster Computing (2019) 22:S14377–S14387

123



3 Determination of key parameters

For noise-free signal, the Hankel matrix of As is singular,

where k\minðp; qÞ. But the Hankel matrix ni is column

full rank for Gaussian white noise signal, where

k ¼ minðp; qÞ. To ease the comprehension of this problem,

the following simulated signal is considered

xðtÞ ¼ x0ðtÞ þ aeðtÞ ð6Þ

where x0ðtÞ ¼ sinð2pf1tÞ þ cosð2pf2tÞ, f1 ¼ 5 Hz,f2 ¼
10 Hz, eðtÞ represents the Gaussian white noise, a indicates

the noise level. In this paper, the length N of the simulated

signal above is chosen as 2048.

3.1 Row number of Hankel matrix

For the first step of SVD-based de-noising approach, the

signal should be transferred form time series format xðtÞ to
Hankel matrix format Ap�q. The size of the Hankel matrix

deserves special attention. For a given data with a sample

number of N; a square or a nearly square Hankel matrix can

be constructed. However, it is neither necessary nor

desirable to construct a square or nearly square Hankel

matrix for practical applications of the method. Instead, a

rectangular matrix with appropriate selection of the smaller

dimension can be used effectively, provided that the

smaller dimension, i.e. the maximum possible rank, is large

enough to represent the system behavior including the

effect of noise. The reason for this is that nearly square

Hankel matrix may require unnecessary computations

while inadequate setting of the maximum possible rank of

the system may cause loss of performance. It is expected

that if the dimensions of the Hankel matrix are set properly

small singular values will approach an asymptote, other-

wise not.

From the results of [23–29], the row number p of Hankel

matrix could be chosen in the range of [N/10, N/2]. In this

section, the simulated signal of Eq. (6) was utilized for the

investigation of distribution characteristic of singular val-

ues when different row number was chosen. The noise

level is 10%, SNR = 10 dB, the length N of the simulated

signal is 2048. The row number was selected as 100, 300,

600, 900, 1024, which is in the range of [N/10, N/2].

Results are illustrated in Fig. 2. It is seen that for all situ-

ations, the distribution of singular values shows an

asymptote after the 4th singular values (twice the number

of modes), the rest of which represent noise. So the row

number is reasonable in the range of [N/10, N/2], but the

trend is more obvious when row number was selected as

1024 (N/2). It means that a square or nearly square Hankel

matrix is preferred if the computation cost is not an issue.

3.2 Effective rank

Then SVD technique is utilized for the estimation of the

rank of the matrix A in the process of noise elimination. In

fact, it has been found that the rank, i.e. the number of

singular values is expected to be twice the number of fre-

quency components included in the signal. But sometimes,

the distribution of singular values is not straightforward

enough for the signal with high noise level, especially for

field measurements. Some real frequency components

would be lost if the rank is set to be too low, otherwise the

noise residual is too much to identify the real frequency

components.

In [26], Yang proposed a method named Singular

Entropy as follows:

Ek ¼
Xk

i¼1

DEi ðk� pÞ ð7Þ

where k is effective rank, DEi is the increment in kth sin-

gular value and it can be obtained through Eq. (8).

DEi ¼ � ki
Xp

j¼1

kj

 !

log ki
Xp

j¼1

kj

 !

ð8Þ

where ki is ith singular value.

The simulated signal of Eq. (6) with different additive

noise levels (10, 20, 50 and 100%) were used in this section

again. It is seen that the distribution of Singular Entropy

increment is straightforward when the noise level is low

and it shows an asymptote after the 4th singular values. But

the asymptote is not obvious enough to determine the rank

of the system in the situation of 100% additive noise. In

order not to miss the real frequency components, usually

we must determine a higher rank, which need more com-

putation. In fact, sometimes the power of noise is even

greater than the power of useful signal for field measure-

ments of civil structures such as bridge and tall building.

So Singular Entropy is not suitable for field measurements.

X(k)=s(k)+n(k) Hankel matrix SVD Inverse 
SVD

Noise-free 
signal

Determination 
of row number

Determination of 
effective rank

Fig. 1 Procedure of SVD-based

de-nosing approach
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4 Adaptive de-nosing approach based
on GA–SVD

4.1 Overview

Genetic algorithm (GA), which is known as a random

optimization method, was invented by John Holland in the

1970s [39]. GA is based on Darwin’s theory of gradual

evolution. For developing the solutions of an optimization

problem, the algorithm uses the same principles that nature

implement on the evolution of gene symbols. A common

method used to implement the GA is as the following:

• Defining the individual for the GA

The population is a set of individuals, and each

individual is a potential solution to the problem.

Therefore, once the target parameter is provided, each

individual has a unique variable (gen). For SVD-based

de-noising approach, the target parameters are the row

number p and effective rank r. The range of p can be

defined to [N/10, N/2], and the range of r could be

determined by distribution of Singular Entropy.

A set of random solutions, which are called popula-

tions, are generated.

• Calculating fitness

The fitness function indicates the accuracy of a solution

by enabling determination of which of two solutions is

superior. Thus, it is essential to define the cost function

correctly if the algorithm is to be effective. In the

proposed approach, SNR is selected as the fitness

function to evaluate the effect of noise reduction.

Fitðp; kÞ ¼
min

1

SNR

� �

Pn

i¼1

1

SNR

�

n

8
>><

>>:
ð9Þ

where n is population quantity.

In each iteration, all solutions are evaluated using the

fitness function. Then, some of the best solutions are

selected using a probability function and constitute a

new population.

• Selection, crossing and mutation

Some of these selected solutions are used without

changing and others using genetic operators such as

Crossover and Mutation are used to generate offspring.

The parameters were selected as follows [39]: selection

percentage: 80%, crossing probability: 7%, mutation

probability: 5%.

The process is continued to find the optimal solution.

• Stopping criterion

The algorithm terminates when the number of iterations

reaches a maximum or the change in the average fitness

value is less than a given constant value.

The GA flowchart is shown in Fig. 3.

4.2 Numerical study: case I

As illustrated before, the simulated signal of Eq. (6) con-

tains two frequency components:f1 ¼ 5 Hz, f2 ¼ 10 Hz.

Different additive noise levels (10, 20, 50 and 100%) were

used and the distribution of Singular Entropy can been

found in Fig. 4. It is seen that the abrupt change of Singular

Entropy at the 15th singular for the situation of additive

(a) (b)
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Fig. 2 Distribution of normalized singular values to a simulated signal with 10% additive noise. a Whole, b detail
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Fig. 3 Flowchart of GA
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noise levels: 100%. Using the GA–SVD de-noising

approach, the parameters are defined as follow:

Sampling frequency: 100 Hz;

Length N of data: 1024

Range of p is defined to [N/10, N/2];

Range of r is defined to [1, 15];

Number of population: 20;

Number of iterations: 30

It take 16 min for computation and the procedure of

iteration is illustrated in Fig. 5.

The effect of de-noising is illustrated in Table 1. The

increment of SNR for the four situations is about

15–20 dB. It is seen that the row number p is almost half of

the length of data, which means that the Hankel matrix is

nearly a square matrix. The effective rank r is 4, which is

twice the number of frequency components.

For numerical case I, the length data is 1024, which is

suitable for numerical study. But for real measurements of

civil structures, it usually need to do data collection for

more than 20 min. In order to get better effect of de-

noising, for this huge amounts of data, is it necessary to

construct a square Hankel matrix? It might take us a couple

of days for computing. The second situation, which is

disturbed by 50% additive noise level, is under investigated

here. The effective rank r is set to be 4. Row number p is

set to be from 50 to 900, with a increment step of 50.

Figure 6 shows that in the range of 200–800

(p � ½N=5; 2N=3�), we get very close results, which means

that SNRs of de-noised signal are almost about 23 dB. So,

for improving the calculating efficiency, a rectangular

matrix with appropriate selection of row number p is large

enough to represent the system behavior including the

effect of noise.

4.3 Numerical study: case II

In case I, the simulated signal with two frequency com-

ponents was disturbed by Gaussian white noise. As affec-

ted by the violent background vibration or the strong

environmental electromagnetic disturbances, the signals

collected from field are often inevitably contaminated by

not only Gaussian white noise, but also non-Gaussian

colored noise. Additionally, for vibration-based SHM, we

usually care about the first few frequencies [39, 40]. In case

II, the following simulated signal is considered

xðtÞ ¼ sinð3ptÞ þ sinð5ptÞ þ sinð10ptÞ þ sinð1ptÞ
þ cosð20ptÞ þ a1e1ðtÞ þ e2ðtÞ þ e3ðtÞ ð10Þ

where f1 ¼ 0:5 Hz, f2 ¼ 1:5 Hz, f3 ¼ 2:5 Hz, f4 ¼ 5 Hz,

f5 ¼ 10 Hz; e1ðtÞ represents the Gaussian white noise, a
indicates 50% noise level; e2ðtÞ represents colored noise

with bandwidth of [0.2–20] Hz; e3ðtÞ represents impulse

noise; the length N of the simulated signal above is chosen

as 1024.

SNR of the mixed signal is - 5.5742 dB, which indi-

cates that the power of noise is greater than the power of

pure signal. Distribution of Singular Entropy is illustrated

in Fig. 7, which shows an asymptote after the 20th singular

values. Using GA–SVD approach, the range of effective

rank r is set to be in the range of [4, 20], the range of row

number p is set to be in the range of [N/10, N/2]. Procedure

of iteration is shown in Fig. 8. SNR of the de-noised signal

is 6.1388 dB, which illustrates that the noise has been

weakened greatly. The row number p = 413 (about N/3),

effective rank r = 10 (twice the number of frequency

components). Figure 9 shows a pure signal in red color,

which is so clear that the waveform can be distinguished

from noise. The five frequency components can be iden-

tified accurately by peak picking method.
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Fig. 4 Distribution of Singular Entropy to a simulated signal with different additive noise level
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It is worth noted that, from the results of case I and II:

(1) effective rank can be defined as twice the number of

frequency components; (2) row number p can be defined in

the range of [N/5, 2 N/3], which is\N/2. For real mea-

surements of civil structures, it usually need to do data

collection for [ 20 min. So we can defined row number

p as N/4 or N/3, which construct a rectangular matrix and

less computations are needed.
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Fig. 5 Procedure of iterations and effect of de-noising. a additive noise levels: 10%, b additive noise levels: 20%, c additive noise levels: 50%,

d additive noise levels: 100%

Table 1 Effect of de-noising

using GA–SVD
Noise level (%) Raw signal (SNR: dB) De-noised signal (SNR: dB) Row number p Rank r

10 10.0000 30.6245 509 ð� N=2Þ 4

20 6.9930 27.5708 443 ð� 2N=5Þ 4

50 3.0136 23.4362 454 ð� 2N=5Þ 4

100 0.0033 15.6093 451 ð� 2N=5Þ 4
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4.4 Experimental study

An operational modal test was conducted in 2011, for a

long span cable-stayed bridge, whose span combination is

165 m ? 338 m ? 165 m, Fig. 10. For vertical vibration

modal test, the sampling frequency was set to 160 Hz, each

group of data lasts for about 20 min. At first, we must

confirm the modes that we care about. From the analysis of

Finite Element Model (FEM), it is known that the first 15

modes are \ 5 Hz, who are usually used for SHM. Sec-

ondary, the data was resampled at 12 Hz. The data of the

first 170 s was chosen for analyzing, whose length is 2048.

FFT was conducted to the raw acceleration data, the

spectrogram illustrated in Fig. 11 that: (1) the first three

natural frequencies are obviously to identified by the peaks

in the range of [0, 1] Hz; (2) in the range of [1, 2] Hz, the

peaks are not so obvious. The identification accuracy is

determined by frequency resolution; (3) in the range of [2,

6] Hz, the peaks are too messy to identified.

Using GA–SVD, row number p was set as 512 (N/4) to

construct Hankel matrix. Distribution of Singular Entropy

was illustrated in Fig. 12. From the analysis of FEM, it is

known that there are 15 modes in the range of [0, 5] Hz.

According to the conclusion of numerical studies above,
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Fig. 10 Experimental study: Yamen bridge. a Finite element mode, b modal test of vertical vibration
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the effective rank r should be as twice the number of fre-

quency components. But for this field measurement data,

some real modal frequency will be filtered if effective rank

r is set as 30. When row number p was set as 512 and

effective rank r is set as 40, it is obvious that better result

will be gotten. So when dealing with real measurements,

effective rank r should be greater than twice the number of

frequency components.

Eigensystem Realization Algorithm was applied to

identify modal parameters based on the de-noised signal.

As shown in Table 2 and Fig. 13, the first six modes

identified are in great agreement with [40], which can

reflect the real dynamic characteristic of the structure,

though there are closely spaced modes in the range of [0,

2] Hz.

5 Conclusion

An adaptive approach for noise reduction is proposed

which based on GA and SVD. Both the row number of

Hankel matrix p and effective rank r are difficult to

determine for noise reduction based on SVD. For the

adaptive approach, GA is applied to determine the two key

parameters adaptively. In order to demonstrate the validity

of the approach, two numerical simulation signals with

different frequency components are employed. The results

show that p can be N/4 or N/3 (N is the length of data), r is

twice as the number of dominating frequency. As for
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Table 2 Result of modal parameters identification

Modal parameters Mode order

1 2 3 4 5 6

Frequency (Hz) 0.399 0.611 0.957 1.247 1.468 1.961

Damping ratio (%) 2.89 1.45 1.04 0.92 0.88 0.85
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Fig. 13 Spectrogram of raw

signal and de-noised signal
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measured signal, the complication of the frequency com-

ponents might be taken into consideration. And in order not

to miss the real frequency components when dealing with

measured signals, r should be more than twice as the

number of dominating frequency, but p can still be N/4 so

that no additional computation is needed.
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