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Abstract
In this paper, two hypotheses are proposed to explain protein folding, aiming at this hypotheses, an improved 3D Off-lattice

model and Quantum-behaved Particle Swarm Optimization based protein folding algorithm (c-QPSO) for predicting the

protein folding structure are also proposed. The results are sufficiently lowest energy better than the results determined by

the other algorithms for verifying the two hypotheses. For Fibonacci sequence with size 13, 21 and 34, our result is roughly

twice times than that of ELP and 1.5 times for sequence with size 55. It can also be seen that c-QPSO algorithm takes

significantly less time than PSO method. For real protein sequences, the structures predicted by c-QPSO can approximately

simulate the real protein to some extent. Experiments show that the two hypotheses is partially correct, and the improved

3D Off-lattice model is beneficial for c-QPSO algorithm to reduce the computation time and easily get the 3D coordinate of

each amino acid. Some proteins fold faster than they elongate, and it is reasonable to assume that nascent chains can adopt

secondary or tertiary structures cotranslationally.

Keyword Hypotheses � Protein folding � 3D Off-lattice model � c-QPSO

1 Background

Three-dimensional structure of a protein determines its

chemical and physical properties. The premier methods of

determining the three-dimensional (3D) structure of a

protein include Cryo-TEM, X-ray crystallography and

NMR-spectroscopy. However, these experimental methods

are comparatively expensive and time consuming. When

genome sequencing becomes much faster and cheaper, the

gap between the accumulated protein sequences and the

available protein 3D structures have become larger.

Therefore, there is a high demand for applying computa-

tional methods in predicting protein 3D structures solely

from amino acid sequences. The Anfison’s dogma states

that, at least for small globular proteins, the native struc-

ture is determined only by the protein’s amino acid

sequence [1]. This dogma is the basis for most computa-

tional techniques used for predicting structure for globular

proteins. The dogma amounts to saying that, the native

structure is a unique, stable and minimum of the free

energy at the environmental condition. However, due to the

complexity of free energy surface of protein folding, pro-

tein structure prediction is still a very challenging problem

in computational biology.

A variety of mathematical models have been developed

to prediction protein structure from de novo. As free energy

surface of protein folding are very complicated, some

simplified models have been proposed. In those simplified

models the atomic details are sacrificed, however it pre-

serves important features in searching low-energy confor-

mations of protein, and therefore provides insight into

protein folding process. One of the most extensively

studied model is Dill’s hydrophobic-hydrophilic (HP)

model [2], in which each amino acid of a protein can be

one of the two types: H (hydrophobic, i.e. nopolar) or P

(hydrophilic, i.e. polar). There are basically two types of
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HP models: HP lattice models and HP off-lattice models. In

the lattice models, the conformation of the model molec-

ular is defined within a certain type of lattice, which means

each residue can only move between adjacent lattice

points. In the off-lattice models, the angle between adjacent

residues can be any arbitrary value. A popular model is the

AB off-lattice model first proposed by Stillinger et al. in

[3], in which A stands for hydrophobic (non-polar) residues

and B for hydrophilic (polar) residues. In this model, the

distances between two adjacent residues are held fixed, and

potential energy is contributed from each angle between

successive bonds. The off-lattice model can better repre-

sent real proteins. However, its potential energy function is

highly non-linear and contains a huge number of local

minimum points, making protein structure prediction a

typical NP-hard problem. To improve global convergence,

a variety of global optimization algorithms have been put

forward, including colony optimization [4], genetic-an-

nealing algorithm [5, 6], Particle Swarm Optimization

(PSO) algorithm [7, 8] and so on.

In previous work using off-lattice models and opti-

mization algorithms, the contributions from all residues of

a protein to the potential energy function are calculated

simultaneously. In another word, each position of the tested

protein is equally weighted in prediction. In this way, with

the increase of protein lengths, the computational cost and

complexity will increase exponentially. The natural protein

synthesis process suggests an alternative strategy to make

the protein structure prediction. The ribosome functions as

a fully automatic, extremely efficient assembling machine

for making proteins, and a polypeptide chain can only be

synthesized by one ribosome, from its N-terminal to its

C-terminal. It has been found out that the folding process

of the nascent chain starts early during the synthesis pro-

cess, and the amount of the ordered structure increases with

the elongation of the peptide chain [9, 10]. Such a co-

translational strategy has been exploited in protein folding

study with lattice models [11, 12]. In the current work, co-

translational strategy has been applied on the 3D off-lattice

model with the Quantum-behaved Particle Swarm Opti-

mization (QPSO) algorithm for protein tertiary structure

prediction. In this strategy, protein structure is predicted

from its N-terminal, and residue is added one by one. To

avoid the newly formed trapped in local minimum, we

have also added turbulence.

If these assumptions holds true, it will significantly

reduce the difficulty of the problem for protein folding

prediction in mathematics and has a great significance in

biology.

2 Methods

2.1 The AB off-lattice model

The AB off-lattice model was first proposed by Stillinger

et al. in [3]. The model can work in two dimensions or

three dimensions. In the 2D AB off-lattice model, the bond

distances between adjacent amino acids are held fixed to 1,

and there is the lowest protein bending energy folding state

for a protein from each bond angle hi between successive

bonds. The potential energy function / can concisely

expresses the spatial structure of the set of amino acids, it

can be expressed as:

/ ¼
Xn�1

i¼2

V1ðhiÞ þ
Xn�2

i¼1

Xn

j¼iþ2

V2 rij; ni; nj
� �

ð1Þ

Where:

V1ðhiÞ ¼
1

4
1� cos hið Þ ð2Þ

V2ðrij; ni; njÞ ¼ 4 r�12
ij � Cðni; njÞr�6

ij

h i
ð3Þ

Cðni; njÞ ¼
1

8
1þ ni þ nj þ 5ninj
� �

ð4Þ

Here V1 is the bending potential energy of protein back-

bone and V2 is the gravitational potential energy between

nonadjacent amino acids; rij is the Euler Distance between

monomer i and j, ni is ?1 if the ith amino acid is labeled

with A, while ni is - 1 if ith amino acid is labeled with B;

C(ni, nj) is ? 1, ? 0.5 and - 0.5 for AA, BB, and AB

pairs respectively, to weigh the attraction among these

pairs.

Without changing the energy function, Irback et al. [13]

and Hsu et al. [14] proposed the 3D AB off-lattice model

based on the 2D version. Recently, energy landscape

paving minimizer method [15] and conformational space

annealing method [16] have been put forward and have

achieved better results in three dimensions.

2.2 Developing a new 3D off-lattice model

In this work, we have proposed a new 3D Off-lattice

model, which can take good advantage of the Particle

Swarm Optimization (PSO) algorithm to reduce the com-

putation time and easily get the 3D coordinate of each

amino acid. In this model, we use horizontal angle ai and
vertical angle bi to derive the coordinates of the ith residue.

We put the first residue at the Origin Point (0, 0, 0), the

second residue at the X axis with the coordinate (1, 0, 0),

and the X–Y plane was defined by the first three residues

(Fig. 1a). The beginning of vector r~i of the ith residue is

placed at the end of vector r~i�1 of the previous residue. The
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vector r~i is represented by the horizontal bond angle ai and
vertical angle bi, in which ai is the angle between the X

axis and the projection of the vector r~i on the X–Y plane,

and bi is the angle between the Z axis and the projection of

the vector r~i on the X–Y plane (Fig. 1b).

We can use horizontal angle ai and vertical angle bi to
calculate the coordinates of the ith residue:

xi ¼ xi�1 þ cos ai � cos bi
yi ¼ yi�1 þ sin ai � cos bi
zi ¼ zi�1 þ sinbi

9
=

; ð5Þ

The euclidean Distance rij between the ith and the jth

amino acids are calculated from the coordinates of the two

residues:

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2þ yi � yj

� �2þ zi � zj
� �2

q
ð6Þ

Therefore, the angle hi between vector r~iþ1 and vector r~i
can be represented by the ai and bi angles:

hi ¼ arccos cos r~i; r~i�1h ið Þ

¼ arccos

cos bi � cos ai � cos bi�1 � cos ai�1

þ cos bi � sin ai � cos bi�1 � sin ai�1

þ sinbi � sin bi�1

0
B@

1
CA ð7Þ

2.3 The QPSO algorithm

The Particle Swarm Optimization (PSO) algorithm is a

population based stochastic optimization algorithm origi-

nally proposed by Kennedy and Eberhart [17]. The basic

PSO algorithm works by S particles in the N-dimensional

search-space by Rn. At each generation t, each particle has

a position marked Xi(t) = (Xi1(t), Xi2(t), …, XiN(t)) and a

velocity marked Vi(t) = (Vi1(t), Vi2(t), …, ViN(t)). These

particles move according to the following equation:

Vijðt þ 1Þ ¼ wVijðtÞ þ c1r1½PiðtÞ � XijðtÞ� þ c2r2½GjðtÞ
� XijðtÞ�

ð8Þ
Xijðt þ 1Þ ¼ XijðtÞ þ Vijðt þ 1Þ ð9Þ

where c1 and c2 are acceleration coefficients representing

the cognitive behavior and social behavior; w is coefficient

of inertia; r1 and r2 are uniformly distributed random

numbers in the interval [0, 1]; Pi(t) is the best previous

position of the ith particle and is called personal best

position; G(t)is the best solution by any particle in the

swarm and is called global best position; Vij(t) is the cur-

rent velocity; Vij(t ? 1) is the new velocity; Xij(t) is the

current position; Xij(t ? 1) is the new position.

A variety of improved PSO algorithms have been pro-

posed. The Quantum-behaved Particle Swarm Optimiza-

tion algorithm (QPSO) is a PSO algorithm incorporating

properties of quantum mechanics, and this algorithm was

proposed by Mikki and Kishk [18]. QPSO is a strong

global convergent algorithm and could be an effective

means for the optimization problem of complex systems

[7, 19]. In the QPSO algorithm, the particles move

according to the following equation:

Xijðt þ 1Þ ¼ pijðtÞ � a CjðtÞ � XijðtÞ
�� �� � ln 1

u

� �
u 2 Uð0; 1Þ

ð10Þ

C(t) is the mean of personal best positions among the

particles:

CðtÞ ¼ 1

M

XM

i¼1

PiðtÞ ð11Þ

The new personal best position of Pi(t ? 1) is

Piðt þ 1Þ ¼ uPiðtÞ þ ð1� uÞGðtÞ u 2 Uð0; 1Þ ð12Þ

Where the u and u are uniformly distributed random

numbers in the interval [0, 1], and a is contraction–ex-

pansion coefficient.

Fig. 1 Definition of coordinate of each amino acid. a Shows the

definition of X–Y plane, b Shows the definition of ai, bi and hi
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2.4 Modify the QPSO algorithm for co-
translational folding strategy

In this work, we havemodified the QPSO algorithm to predict

protein structure following the co-translational folding pro-

cess. We call this modified QPSO algorithm c-QPSO where

‘c’ stands for the co-translational strategy. To do this, we

postulate that the newly added residue can choose their own

space position to make the newly formed three-dimensional

structure achieve lowest free energy, and the addition of the

new residue will not drastically disturb the preformed low-

energy conformation of the previous residues.

This algorithm works by n particles in the 3d-dimension,

in which d is the number of amino acids for a protein.

Considering the minimal problem, given the ith particle, let

Xi = (ai1, ai2, …, aid, bi1, bi2, …, bid) be its current unit

vector and Pi = (pix, piy, piz) be its coordinates. Following

the co-translational strategy, d is initially set to 3 and will

increase according to the iteration number, and Xi?1(t) is

defined as follows:

Xijðt þ 1Þ

¼
pijðtÞ � a CjðtÞ � XijðtÞ

�� �� � ln 1

u

� �
j 2 ½n; n� 1; . . .; n� f þ 1; r�; u 2 Uð0; 1Þ

XijðtÞ j 62 ½n; n� 1; . . .; n� f þ 1; r�

8
<

:

ð13Þ

where f is the degree of freedom and represents the new

amino acids; r is the random number in the range between

1 and n, and this random number is designed to introduce

turbulence to the lowest energy conformation of the pre-

vious residues when a new residue is added.

The process of the algorithm is described as following:

Step 1: Initialize all of the particles as 6 dimensions, for

the ith particle, set Xi,Pi1,Pi2 to(0, 0, 0, 0, 0, 0),

(0, 0, 0)and (1, 0, 0) respectively.

Step 2: Update each particle’s horizontal angle aid and

vertical angle bid randomly in the range of [- p, p].
Step 3: Compute the energy function value Ei of each

particle, where i = 1, 2, …, n

Step 4: Update each particle’s vector;

Step 5: Renew global minimum unit vector and compute

the global minimum energy;

Step 6: repeat step 2, 3, 4 until accuracy requirement of

energy function or iteration limit is met;

Step 7: Compute 3D coordinate of each residue and

output the global minimum energy value.

In this work, for all test sequences, the population size is

set to 1000. Maximum iteration is set to 500. All the

experiments were run for 50 times and the lowest protein

folding energies was calculated. The simulation was run

with Delphi 7 on personal computer with the Intel i7-

5600 CPU, 4.00 GB RAM, installed with

Windows 10 system.

3 Results

3.1 The lowest energy conformations
with amino acid sequence length increasing

To verify the second hypothesis, we experimented on

1AGT from the PDB database. The information about its

sequence is as follows:

[1AGT:

GVPINVSCTGSPQCIKPCKDQGMRFGKCMNRKCH

CTPK

Figure 2 depicts the lowest energy conformations in the

2D off-lattice model obtained by our c-QPSO algorithm, In

which black spots and white spots represent hydrophobic A

monomers and hydrophilic B monomers, Fig. 3 shows the

Fig. 2 The lowest energy conformations for the 1AGT sequence with amino acid sequence length increasing predicted by c-QPSO algorithm
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global lowest energy value decreases gradually with amino

acid sequence length increasing. The process indicates that

the AB model in two dimensions with 1AGT sequences

displays the important feature, the lowest energy protein

structure have small changes when a new acid joined.

3.2 Find the best degree of freedom for the c-
QPSO algorithm using Fibonacci sequences

To find out the best degree of freedom for the c-QPSO

algorithm, we calculated the lowest free energy at different

degree of freedom on the four Fibonacci sequences with

size 13, 21, 34 and 55. Fibonacci sequences are widely

used in protein folding prediction, which are defined

recursively Si?1 = Si-1 * Si, where ‘*’ is the connection

operator. For example, if S0 = a, S1 = b, then S2 = ab,

S3 = bab and so on. In this study we have tested the fol-

lowing four Fibonacci sequences (S0, S1, S2 and S3)

studied in the previous work [17], where A denotes

hydrophobic residues and B denotes hydrophilic residues.

S0 (13aa): ABBABBABABBAB

S1 (21aa): BABABBABABBABBABABBAB

S2 (34aa): ABBABBABABBABBABABBABABBAB

BABABBAB

S3 (55aa): BABABBABABBABBABABBABABBAB

BABABBABBABABBABABBABBABABBAB

We tested on the degree of freedom from 1 to 10, and

the Table 1 shows the lowest energies for the four

sequences at different freedom degrees. Our calculations

have shown that basically the lowest energies occurs when

the degree of freedom is 2. Therefore, we choose the

number 2 as the degree of freedom of the c-QPSO algo-

rithm for the future predictions. Table 2 lists the lowest

energies obtained by PSO, LPSO, ACMC, ELP algorithms

for comparison. It can be seen that our results are suffi-

ciently better than the results determined by the other

Fig. 3 The lowest energy values

for the 1AGT sequence with

different length predicted by

c-QPSO algorithm

Table 1 The relationship between degree of freedom and the lowest energy

Size Name Degree of freedom

1 2 3 4 5 6 7 8 9 10

13 A - 9.96 - 10.95 - 4.94 - 5.81 - 3.57 - 3.48 - 4.69 - 3.84 - 1.64 - 3.28

21 B - 20.32 - 22.71 - 11.75 - 12.12 - 8.42 - 6.63 - 2.78 - 2.24 - 4.56 - 4.78

34 C - 37.56 - 22.73 - 14.37 - 11.3 - 10.47 - 14.65 - 13.24 - 8.43 - 6.92 - 4.32

55 D - 59.63 - 60.12 - 21.21 - 12.11 - 10.41 - 13.25 - 11.34 - 8.48 - 6.94 - 7.54

Table 2 Lists the lowest energies obtained by other algorithms

Size Name PSO LPSO ACMC ELP c-QPSO Time (m)

PSO c-QPSO

13 A - 2.822 - 4.616 - 3.294 - 4.967 - 10.914 86 6

21 B - 4.152 - 6.647 - 6.198 - 12.316 - 22.721 326 8

34 C - 4.224 - 7.338 - 10.806 - 25.476 - 50.328 452 11

55 D - 8.021 - 13.049 - 18.741 - 42.428 - 60.145 600 16
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algorithms. For sequence with size 13, 21 and 34, our result

is roughly twice times than that of ELP and 1.5 times for

sequence with size 55. It can also be seen that c-QPSO

algorithm takes significantly less time than PSO method.

Figure 4 shows the Protein spatial structure of lowest

energy for the four sequences.

3.3 Compare to other methods using Fibonacci
sequences

The same four Fibonacci sequences (S0, S1, S2 and S3)

have been used to compare the performance of our c-QPSO

algorithm to traditional algorithms including the PSO [8],

LPSO [8], ACMC [20], ELP [13] that do not apply the co-

translational strategy. It can be seen that for each of the

four sequences the lowest free energy predicted by the

c-QPSO algorithm is much lower than that determined by

the other algorithms (Table 2). When the c-QPSO and

traditional PSO algorithms are compared, we can see

clearly that applying the co-translational strategy also

drastically decrease the computational time (Table 3).

3.4 Predict on real protein sequences

We then predict on the following four real protein

sequences from the PDB database:

[2KGU

GYCAEKGIRCDDIHCCTGLKCKCNASGNCVCRKK

[1CRN

TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPG

ATCPGDYAN

[2KAP

KEACDWLRATGFPQYAQLYEDFLFPIDISLVKREH

DFLDRDAIEALCRRLNTLNKCAVMK

[1PCH

AKFSAIITDKVGLHARPASVLAKEASKFSSNITIIA

NEKQGNLKSIMNVMAMAIKTGTEITIQADGNDADQ

AIQAIKQTMIDTALIQG

In these sequences, D, E, F, H, K, N, Q, R, S, T, W and

Y are treated as hydrophilic amino acids while I, V, L, P,

C, M, A and G are hydrophobic ones according to the K-D

method. We can see that the structures predicted by

c-QPSO can significantly reduce the protein folding energy

compared with other methods (Table 4). Figure 5a shows

the progression of the lowest free energy at different

extrusion lengths for each of the four proteins, and Fig. 5b

show the predicted backbone structures of each protein,

with the corresponding backbone structures from PDB

database shown in Fig. 5c. From these figures, we can see

that the structures predicted by c-QPSO can approximately

simulate the real protein to some extent.

Fig. 4 Protein spatial structure of lowest energy for the Fibonacci sequences with length 13, 21, 34 and 55 predicted by c-QPSO algorithm.

a n = 13; b n = 21; c n = 34; d n = 55. The red balls and grey balls represent hydrophobic A monomers and hydrophilic B monomers

Table 3 Lowest energies of real protein sequence

Size Name PSO LPSO c-QPSO Time (m)

34 2KGU - 8.3635 - 20.9633 - 39.3 4

47 1CRN - 20.1826 - 28.7591 - 72.2053 13

61 2KAP - 8.0448 - 15.9988 - 38.0946 35

89 1PCH - 18.4408 - 46.4964 - 56.3326 55

Table 4 Lowest energies of real protein sequence

Size Name PSO LPSO c-QPSO Time (m)

34 2KGU - 8.3635 - 20.9633 - 39.3 4

47 1CRN - 20.1826 - 28.7591 - 72.2053 13

61 2KAP - 8.0448 - 15.9988 - 38.0946 35

89 1PCH - 18.4408 - 46.4964 - 56.3326 55
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4 Conclusion

In this paper we proposed two hypotheses to explain pro-

tein folding, then we propose a improved 3D Off-lattice

model for predicting the protein folding structure, this

model is beneficial for Quantum-behaved Particle Swarm

Optimization algorithm (QPSO) to reduce the computation

time and easily get the 3D coordinate of each amino acid.

This method converges fast and has strong global search

capability. It is the biggest advantage to reduce the protein

folding energy. So we combine QPSO and protein folding

structure and propose a new algorithm called c-QPSO.

Experiments show that c-QPSO has better performance

than basic PSO so it is a feasible solution for this problem.

Fig. 5 Predict on four real protein sequences by c-QPSO algorithm

Cluster Computing (2019) 22:S14359–S14366 S14365

123



Acknowledgements Both authors contributed equally to this work

and read and approved the final manuscript. This work was jointly

supported by the National Natural Science Foundation of China

(Grant No. 31400709 to X.C.), National Key Technology Support

Program of China (Grant No. 2013BAK06B08), Scientific Research

Fund of Zhejiang Provincial Education Department (China) (Grant

No. Y201432207 to X.C.), and Natural Science Fund of Jiangsu

Province (China) (Grant No: BK20130187).

References

1. Anfinsen, C.B.: Principles that Govern the Folding of Protein

Chains. Science (New York, NY) 181(4096), 223–230 (1973)

2. Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the

conformational and sequence space of proteins. Macromolecules

22, 3986–3997 (1989)

3. Stillinger, F.H., Head-Gordon, T., Hirshfeld, C.L.: Toy model for

protein folding. Phys. Rev. 48(2), 1469–1477 (1993)

4. Chu, D., Till, N., Zomaya, A.: Parallel ant colony optimization

for 3D protein structure prediction using the HP off lattice model.

In: Proceedings of the 19th IEEE International Parallel and

Distributed Processing Symposium (2006)

5. Zhang, X., Lin, X.: Effective protein folding prediction based on

genetic- annealing algorithm in Toy model. In: 2006 Workshop

on Intelligent Computing & Bioinformatics of CAS (2006)

6. Zhang, X., Lin, X., Wan, C., Li, T.: Genetic-annealing algorithm

for 3D off-lattice protein folding model. PAKDD 4819, 186–193
(2007)

7. Ho, S.Y., Lin, H.S., Liauh, W.H., Ho, J.S.: OPSO: orthogonal

particle swarm optimization and its application to task assign-

ment problems. IEEE Trans. Syst. Man Cybern. A 38(2),
288–298 (2008)

8. Chen, X., Lv, M., Zhao, L., Zhang, X.: An improved particle

swarm optimization for protein folding prediction. Int. J. Inf. Eng.

Electron. Bus. (IJIEEB) 3(1), 1–8 (2011)

9. Fedorov, A.N., Baldwin, T.O.: Cotranslational protein folding.

J. Biol. Chem. 272(52), 32715–32718 (1997)

10. Nilsson, O.B., Hedman, R., Marino, J., Wickles, S., Bischoff, L.,

Johansson, M., Muller-Lucks, A., Trovato, F., Puglisi, J.D.,

O’Brien, E.P., et al.: Cotranslational protein folding inside the

ribosome exit tunnel. Cell Rep. 12(10), 1533–1540 (2015)

11. Morrissey, M., Ahmed, Z., Shakhnovich, E.: The role of

cotranslation in protein folding: a lattice model study. Polymer

45(2), 557–571 (2004)

12. Wang, P., Klimov, D.K.: Lattice simulations of cotranslational

folding of single domain proteins. Proteins 70(3), 925–937 (2008)
13. Irback, A., Peterson, C., Potthast, F., Sommelius, O.: Local

interactions and protein folding: a 3D off-lattice approach.

J. Chem. Phys. 107, 273–282 (1997)

14. Hsu, H.P., Mehra, V., Grassberger, P.: Structure optimization in

an off-lattice protein model. Phys. Rev. E 68(3 Pt 2), 037703

(2003)

15. Bachmann, M., Arkin, H., Janke, W.: Multicanonical study of

coarse-grained off-lattice models for folding heteropolymers.

Phys. Rev. E 71(3 Pt 1), 031906 (2005)

16. Kim, S.Y., Lee, S.B., Lee, J.: Structure optimization by confor-

mational space annealing in an off-lattice protein model. Phys.

Rev. E 72(1 Pt 1), 011916 (2005)

17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE

International Conference on Neural Networks Conference Pro-

ceedings Perth, Australia, pp. 1942–1948 (1995)

18. Mikki, S.M., Kishk, M.M.: Investigation of the quantum particle

swarm optimization technique for electromagnetic applications.

In: IEEE Antennas and Propagation Society International Sym-

posium, vol. 2, vo. 2, pp. 45–48 (2005)

19. Sun, J., Liu, J., Xu, W.: QPSO-based QoS multicast routing

algorithm. Int. Conf. Simulat. Evol. Learn. 4247, 261–268 (2006)

20. Liang, F.: Annealing contour Monte Carlo algorithm for structure

optimization in an off-lattice protein model. J. Chem. Phys.

120(14), 6756–6763 (2004)

Ye Chen received the B.S. and

M.S. degrees in electrical engi-

neering and automation from

China University of Mining and

Technology, Xuzhou, P.

R. China, in 2000. He is currently

pursuing the Ph.D. in detection

technology and automatic equip-

ment of China University of

Mining and Technology, Xuzhou,

P. R. China. His main research

interests are Bioinformatics, evo-

lutionary computation and inter-

val optimization.

Xiaoping Yuan received the

Ph.D. degree in journal of con-

trol theory and applications in

2004, Xuzhou, P. R. China.

Since 2007, he has been a pro-

fessor in School of Information

and Electrical Engineering,

China University of Mining and

Technology. His research inter-

ests include coal mine environ-

mental monitoring and control,

signal processing technology

applications, automation and

control engineering, Internet of

Things technology and its

applications, etc.

Xiaohui Cang received his Ph.D.

degree in the Department of

Communication Engineering in

2010, School of Department of

Medicinal Chemistry, College

of Pharmacy, University of

Utah. He is now an associate

professor in the School of

Medicine, Zhejiang University

Hangzhou, Zhejiang, China. His

research interests include

molecular dynamics (MD) sim-

ulations and big data.

S14366 Cluster Computing (2019) 22:S14359–S14366

123


	Two hypotheses and test assumptions based on Quantum-behaved Particle Swarm Optimization (QPSO)
	Abstract
	Background
	Methods
	The AB off-lattice model
	Developing a new 3D off-lattice model
	The QPSO algorithm
	Modify the QPSO algorithm for co-translational folding strategy

	Results
	The lowest energy conformations with amino acid sequence length increasing
	Find the best degree of freedom for the c-QPSO algorithm using Fibonacci sequences
	Compare to other methods using Fibonacci sequences
	Predict on real protein sequences

	Conclusion
	Acknowledgements
	References




