
Multi-prediction based scheduling for hybrid workloads in the cloud
data center

Haiou Jiang1 • Haihong E1 • Meina Song1

Received: 2 May 2016 / Revised: 9 October 2017 / Accepted: 19 February 2018 / Published online: 4 June 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Cloud computing can leverage over-provisioned resources that are wasted in traditional data centers hosting production

applications by consolidating tasks with lower QoS and SLA requirements. However, the dramatic fluctuation of workloads

with lower QoS and SLA requirements may impact the performance of production applications. Frequent task eviction,

killing and rescheduling operations also waste CPU cycles and create overhead. This paper aims to schedule hybrid

workloads in the cloud data center to reduce task failures and increase resource utilization. The multi-prediction model,

including the ARMA model and the feedback based online AR model, is used to predict the current and the future resource

availability. Decision to accept or reject a new task is based on the available resources and task properties. Evaluations

show that the scheduler can reduce the host overload and failed tasks by nearly 70%, and increase effective resource

utilization by more than 65%. The task delay performance degradation is also acceptable.

Keywords Cloud data center � Hybrid workloads � Task scheduling � Multi-prediction � ARMA model � Feedback based

online AR model

1 Introduction

Data centers have gained significant popularity as a cost-

effective platform. However, in traditional data centers, a

tremendous amount of resources are over provisioned to

production applications to accommodate fluctuating

workloads and peak demands as they have high Service

Level Agreement (SLA) requirements and are of the most

importance to the enterprise. Typically, one application is

deployed on a set of hosts to avoid interference and

shortage of resource provision. Although hosts in data

centers are usually not idle, most of the time, hosts operate

at 10–50% of their full capacity, leading to extra expenses

on over-provisioning [1, 2]. As a result, efficient use of data

center resources is an important cost factor for many

organizations [3]. Cloud computing can solve the problem

by intelligently consolidating other tasks with lower

Quality of Service (QoS) and SLA requirements and

leverage the over-provisioned resource effectively. The

data center can then fulfill diverse resource demands and

performance objectives of hybrid workloads with high

scalability and flexibility.

In such cloud data center with hybrid workloads, pro-

duction workload should have the highest priority since

they are of the most importance to the enterprise. They are

latency-sensitive and have the highest QoS and SLA

requirements, and should not be killed due to host overload

or evicted by other tasks. Other tasks with lower QoS and

SLA requirements can also be divided into two categories.

Workloads, like non-interactive batch jobs used for com-

puting purposes and enterprise daily management transac-

tional applications, only have deadline constraints or

completion time constraints, and are not too sensitive to

latency. They can be killed when the host is overloaded.

These workloads, called middle workloads in this paper,

have lower priorities than production workload. Gratis

workloads, like test tasks and free beta applications, are

& Haiou Jiang

seagullwill@foxmail.com

Haihong E

ehaihong@bupt.edu.cn

Meina Song

mnsong@bupt.edu.cn

1 Beijing University of Posts and Telecommunications,

Beijing 100876, China

123

Cluster Computing (2018) 21:1607–1622
https://doi.org/10.1007/s10586-018-2265-1(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-6747-6447
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2265-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-2265-1&domain=pdf
https://doi.org/10.1007/s10586-018-2265-1

charged substantially less or even not at all. They have the

lowest priorities, and can be evicted by tasks with higher

priorities or killed once the host is detected overloaded.

Various resource management systems like YARN [4],

Mesos [5], and Kubernetes [6] have emerged to manage

resource allocation and scheduling, deploy and monitor

multiple diverse applications across the entire data center

and cloud environment. Typical scheduling algorithms,

like Fair Scheduler [7] and Capacity Scheduler [8], are

used in these resource management systems based on

instantaneous resource availability at the scheduling time.

In the cloud data center with hybrid workloads, the task

scheduling mechanism brings two challenges. First, when

the host resources are fully allocated, the production load

increase causes host overload. During the period from

detecting the host overload to killing some tasks and

releasing resources, the performance of the tasks on the

host, especially the production tasks, is already affected.

Second, tasks are killed due to the host overload, and tasks

with lower priorities are evicted by new tasks with higher

priorities if the available resources are not sufficient. These

failed tasks waste CPU cycles, and the rescheduling,

eviction and killing operations also create overhead.

The Google cluster [9] shows the features of such data

center with hybrid workloads. Tasks are typically divided

into three priority groups, namely, production, middle, and

gratis [10], reflecting the importance of the tasks [11] and

the latency requirements [12]. Figure 1 shows a seven-day

period of the proportions of the used CPU spent on each

event in Google cluster. ‘‘Evict’’ in Google task event

table means ‘‘a task was descheduled because of a higher

priority task, or because the scheduler overcommitted and

the actual demand exceeded the machine capacity’’, the

same as the eviction and the killing we used in our work.

The maximum and average proportion of the used CPU

spent on Google ‘‘evict’’ is 28.9% and 11.7%, respectively.

Meanwhile, ‘‘kill’’ in Google task event table means ‘‘a

task was cancelled by the user or a driver program, or

because another task on which this task was dependent

died’’ [9]. This means that the CPU wasted by evicted and

killed task is even higher. Part of Google ‘‘fail’’ and ‘‘kill’’

are caused by user’s cancel, which is beyond our consid-

eration. If we exclude the event caused by user’s cancel,

approximately half of the used CPU is spent on the evicted

and killed tasks, and the other half is spent on the suc-

cessful tasks. As a result, resource waste on the evicted and

killed tasks is worthy of consideration.

The scheduling policy must consider load changes to

respond gracefully to production workload demand surges.

One way to solve this is to estimate the current as well as

the future resource availability before scheduling a task.

Production, middle and gratis workloads have quite dif-

ferent load patterns. Figure 2 shows a one-day period of the

CPU usage of production, middle and gratis tasks of

Google cluster measured in each 300-s slot. Production

CPU usage is usually stable, making time series of the

production workload a stationary process. We use an off-

line-trained Auto-Regressive and Moving Average

(ARMA) model [13, 14] to predict the production load.

CPU usage of middle and gratis tasks is much more

irregular and has a much larger peak-to-mean ratio than the

production workloads. We use a feedback based online

Auto-Regressive (AR) [13, 14] model to predict the host

load, which is the sum of CPU usage of the production and

the middle and gratis workloads.

In this paper, we present a Multi-Prediction based

scheduler for Hybrid Workloads (MPHW) in the cloud data

center, so that the task failures and resource waste due to

host overload and task eviction is reduced, effective

resource utilization of the data center is increased, and the

performance of the production tasks is guaranteed. We first

construct discrete time series of the production and the host

Fig. 1 Proportions of the used CPU spent on each event Fig. 2 One-day CPU usage of Google cluster

1608 Cluster Computing (2018) 21:1607–1622

123

load. Then, use the offline-trained ARMA model to predict

the stationary process of the production load and the

feedback based online AR model to predict the time-

varying host load. When scheduling a middle task, enough

resources should be reserved for future increase of pro-

duction load. If the available resources are sufficient, the

task can be scheduled immediately. Otherwise, it will evict

gratis tasks and scheduled. If there is no gratis task, the

middle task will be queued and rescheduled until some

tasks complete and release resources. When scheduling a

gratis task, enough resources should be reserved for future

requests of all the pre-scheduled tasks and new tasks with

higher priorities during its execution. If available resources

are sufficient, the gratis task can be scheduled immediately.

Otherwise, it will wait until there are sufficient resources

for it. In the experiments, we analyze MPHW by simulat-

ing real workload traces from Google cluster. We show that

the proposed solution is capable of significantly reducing

host overload, task failure, and the CPU waste, complying

with SLAs in terms of task scheduling delay and task

response time. MPHW fits current resource management

systems and schedulers. The multi-prediction model deci-

des how many available resources can be provided to new

tasks for diverse workloads. It uses ARMA model for

stable load, feedback based online AR model for irregular

load, and multi-prediction model for hybrid workloads. It

is, thus, a practical scheduler for hybrid workloads with

priorities.

This paper is a substantially extended version of our

previous short conference paper [15] and improves exper-

iments in several ways. The key improvement, which

makes the experiment result more convincing and signifi-

cantly improves the quality of the work, is extending the

scale of the data center and the input workloads. In addi-

tion, we add the offline trained ARMA model and the

Feedback based Online trained AR (FOAR) model for

comparison. Moreover, we add more results analysis, like

success rate and MAPE (Mean Absolute Percent Error) for

prediction accuracy analysis and effective resource uti-

lization of the data center for performance analysis.

2 Related work

Various resource management systems have emerged to

manage hybrid applications in the cloud data center.

Apache YARN [4] and Shark [16] used Fair Scheduler [7]

and Capacity Scheduler [8], and used priorities as weights

to determine the fraction of total resources that each

application can get. Mesos [5] used Dominant Resource

Fairness (DRF) [17] and guaranteed resources for work-

loads with higher priorities by restricting dynamic resource

sharing and potentially starving other workloads with lower

priorities. Google Omega [18] granted each application full

access to the entire cluster. Each application can lay claim

to the resources using the resilient master copy of the entire

state of the cluster in an atomic commit. In Google

Kubernetes [6], groups of applications are scheduled in the

unit called pod in two steps. The first step is to filter all the

nodes under certain requirements of the pod including ‘‘No

Disk Conflict’’, ‘‘No Volume Zone Conflict’’, ‘‘Host

Name’’, ‘‘Max Elastic Block Store Volume’’, ‘‘Check Node

Memory Pressure’’, and ‘‘Check Node Disk Pressure’’ etc.

The second is to rank the remaining nodes and find a best

fit for the pod. The scheduling algorithms used in these

resource management systems are based on instantaneous

resource availability at the scheduling time, whereas our

scheduler is based on the future resource availability.

Meanwhile, priorities are used to determine the upper

bound of resources, whereas priorities in our system is used

for adopting different scheduling strategies when the

resources are not available. Microsoft Apollo [19] sched-

uled online production services consisting interdependent

tasks. It considered the history and the probability of task

failure, then schedules tasks to the server minimizing the

task completion time based on future resource availability.

The purpose of Apollo is to reduce latency of online

workflows, whereas our purpose is to reduce resource

waste for hybrid workloads consisting independent tasks.

Quasar [20] used collaborative filtering techniques to

determine the least amount of the resources to meet per-

formance constraints specified by users based on the cur-

rent state of the cluster. Quasar predicts the resource

requirement to increase resource utilization instead of

relying on resource reservation, while our work predict

future load for hybrid workloads before scheduling.

In the research on hybrid workloads scheduling in the

data center, existing studies focus on ensuring the QoS and

SLA requirements of each workload. Carrera et al. [21, 22]

developed a technique to fairly manage mixed workloads

in terms of both batch jobs and transactional applications.

Their aim is toward a fairness goal while also trying to

maximize individual workload performance, and our aim is

to efficiently utilize the data center resources while insur-

ing the performance of tasks with the production workload.

Garg et al. [23, 24] considered transactional workloads and

non-interactive batch jobs, and used admission control and

Virtual Machine (VM) rescheduling to maximize resource

utilization and ensure different SLAs of hybrid workloads.

The work treats transactional and batch workloads equally,

while our paper treats hybrid workloads with different

priorities. Garg et al. used Artificial Neural Network

(ANN) to predict the future resource availability and the

expected resource demand of each application. The ANN

forecasting model works well in the context of Grids [25],

where the workload shows the feature of a stationary

Cluster Computing (2018) 21:1607–1622 1609

123

process, but it can not fit well in an irregular host load in

the cloud data center. Curinom et al. [26] introduced

reservation-based scheduling for production jobs and best-

effort jobs in big-data frameworks, trying to guarantee

stringent SLAs for production jobs and minimize latency

for best-effort jobs. They formalized planning of current

and future cluster resources as a Mixed Integer Linear

Programming (MILP) problem and proposed scalable

heuristics to balance resource allocation between produc-

tion jobs and best-effort jobs. While our paper prioritizes

production tasks to guarantee their SLAs at the expense of

other tasks’ latency. Sharma et al. [27] proposed a

heterogeneous data center with both interactive and batch

workloads, as well as both virtual and native machines in

the data center. They utilize available unused resources by

consolidating middle jobs with over-provisioned fore-

ground applications to improve application performance

and energy efficiency. They used an interference preven-

tion system to monitor interference and killed tasks after

the occurrence of interference. The afterward correction

only works after problems happen and cannot effectively

prevent serious performance degradation. We predict the

host load before making scheduling strategies so that it can

detect potential risks caused by scheduling new tasks to the

host and prevent performance degradation.

Studies on host load prediction usually attempt to pro-

vide benchmarks for virtual machine migration, server

consolidation and energy management. Farahat et al. [28]

used a Curve Fitting Prediction (CFP) technique combined

with Genetic Algorithms (GAs) to obtain the optimum

parameters of a Gaussian prediction model. It provides

very accurate hourly load forecast, but the overhead of the

prediction is too high for real-time task scheduling. Khan

et al. [29] grouped VM first, and then designed a model to

capture the CPU load of different groups by leveraging the

Hidden Markov Model (HMM). Yang et al. [30] combined

the Phase Space Reconstruction (PSR) method and the

Group Method of Data Handling (GMDH) based on the

Evolutionary Algorithm (EA) to predict not only the mean

load in consecutive future time intervals but also the actual

load in each consecutive future time interval. Yang et al.

[31] proposed a new multi-step-ahead prediction approach

for CPU load that is more accurate than repeating the one-

step-ahead prediction approach in four steps: finding a fit

function for the change range sequence, predicting the

change pattern, composing the change range, and changing

the pattern prediction. Di et al. [32, 33] used a Bayes model

to change the prediction process into a classification

problem, identified novel predictive features of the host

load, and predicted the mean load over a long-term time

interval. The problem with the Bayes model is that the

length of the prediction time interval increases exponen-

tially. With the growth of the segment length, the mean

load could not fully reflect the fluctuation of the host.

Zhang et al. [34] used the offline-trained ARIMA model to

predict the load over a time window and achieved multi-

step prediction by iterating the one-step prediction to

minimize the total energy cost while meeting the perfor-

mance objective in terms of task scheduling delay. The

above methods can either achieve good accuracy or multi-

step prediction. However, the prediction methods are based

on offline training and parameters or patterns of the model

are all static and fixed in the prediction process. They work

well for workload that shows features of a stationary pro-

cess or has a fixed change pattern, but they cannot fit well

for rapidly changing workloads with irregular patterns. In

our work, we combine the offline-trained ARMA model to

predict the stationary production load for simplicity and the

feedback based online AR model to predict the irregular

host load for accuracy.

3 Hybrid workloads scheduling strategy
and system architecture

In this paper, we present a cloud data center containing

hybrid workloads. The scheduler estimates future as well as

the current resource availability. For simplicity, the

scheduler is based on the static task placement, and does

not save the task progress, neither consider live migration.

It terminates the task to release resources immediately and

reschedules it later. This simple killing and eviction policy

is widely used by Apache Hadoop [35], Yarn [7], Google

Borg [36], Omega [18], and Quasar [20]. Tasks are sup-

posed independent so that killing and eviction of tasks does

not impact the communication partners.

Hybrid workloads are typically divided into three cate-

gories according to their priorities. Scheduling strategy is

made according task priorities and prediction is made

according to load patterns.

Production workloads are the original tasks and jobs

hosted on the servers and have the highest priorities. They

are latency sensitive and have the highest QoS and SLA

requirements. A new production task should be scheduled

as soon as it comes into the data center, and it will evict

middle or gratis tasks if the available resources are not

sufficient.

Middle workloads, such as batch jobs and enterprise

management transactional applications, have middle pri-

orities. If available resources is sufficient for a new middle

task, the task can be scheduled immediately. Otherwise, it

will evict gratis tasks and scheduled, or queued if there is

no gratis task. During the execution of the middle task, if

the production workload requires more resources and there

are not sufficient resources, performance of the production

workload will be affected and some tasks will be killed.

1610 Cluster Computing (2018) 21:1607–1622

123

Enough resources should be reserved for future requests

from the production workload during the execution of the

middle task. We predict the production workload, and the

available resources are the current spare resources sub-

tracting the future resource request from the production

workload.

Gratis workloads, such as test tasks and free beta

applications, have the lowest priorities. They can be evic-

ted by tasks with higher priorities or killed once the host is

detected overloaded. If the available resources are not

sufficient for a new gratis task, it will be queued until the

resources are released by other tasks. During the execution

of the gratis task, if the spare resources are not sufficient,

the increase of resource usage increase from the pre-

scheduled tasks will cause performance degradation, and

the new task submission with higher priorities will evict

some gratis tasks. Sufficient resources should be reserved

for future resource requests from both the production

workload and new middle tasks during the execution of the

gratis task. We predict the total host load, and the available

resources are the current spare resources subtracting the

future host load increase.

The proposed hybrid workloads scheduling system

architecture is depicted in Fig. 3. It consists of the fol-

lowing components:

– Task classifier identifies the category of the input task

and imports different predictors for it. For a middle

task, an offline predictor is used. For a gratis task, an

online predictor is used.

– Offline predictor uses the ARMA model with static

parameters obtained from offline training. It predicts

the maximum resource request of the production

workloads in the next prediction window. Then, it

suggests the maximum amount of resources that can be

safely allocated to the new task.

– Online predictor uses the feedback based online AR

model with parameters dynamically updated. It predicts

the maximum host load in the next prediction window.

Then, it suggests the maximum amount of resources

that can be safely allocated to the new task.

– Scheduler decides the scheduling operation for the new

task according to its priority and the suggested

available resources given by the predictors. If the

suggested available resources are not sufficient for the

task, a middle task will evict gratis tasks and be

scheduled, or queued if there is no gratis task; a gratis

task will be queued and rescheduled until some tasks

complete and release sufficient resources.

– Monitor and management module is a background

program running periodically to check total resource

utilization of each host. Once a host is overloaded, the

module will kill some tasks to release resources for

production applications.

– Task waiting Queue contains killed and evicted tasks.

These tasks are sorted based on deadlines up to which

the tasks must be scheduled and executed successfully.

The deadline is calculated as the latest task finish time

subtracting the task completion time. If the available

resources are enough for the tasks in the queue, they

will be submitted and scheduled. Tasks that reach the

deadlines can be scheduled to other data centers if

available resources are still not sufficient. In this paper,

we focus on task scheduling in one data center and do

not discuss the operations of scheduling tasks to other

data centers. We assume that all of the tasks do not

have deadlines and can be scheduled and finished

eventually at spare time.

The proposed MPHW scheduler is depicted in Algo-

rithm 1. When a task arrives, it first identifies the category

and imports different predictors for the task. For a middle

task, the ARMA model is used to predict the production

load and available amount of resources of each host (Line

4). Then chooses the host hj with the maximum available

resources aj (Line 6). If hj provides all the resources ri
required by ti, schedules ti to hj (Line 7–8). Otherwise, it

chooses one host hk that can provide enough resources to ti
by evicting tasks with lower priorities on the host. hk has

the potential resources pk larger than ri, where pk is the sum

of ak and resource requests of tasks with lower priorities

than ti on hk. In this paper, the target host hk is chosen

randomly for simplicity (Line 12). Then, chooses victim

tasks with lower priorities until the new available resources

a0k is equal to or larger than ri, where a
0
k is the sum of ak and

the resource requests of the victim tasks (Line 13). Then,

evicts the victim tasks and schedules ti to hk (Line 14).

Tasks with the lowest priority should be chosen first.

Strategies to choose victim tasks with the same priorities

are the following: (1) least fit, evicting tasks with the

smallest resource requests; (2) best fit, evicting tasks to get

the minimum a0k while a0k[ri; (3) worst fit, evicting tasks

with the largest resource requests; (4) least execution

process first, evicting tasks with the least execution pro-

cess; (5) maximum finish time first, evicting tasks with the

longest finish time; (6) latest start time first, evicting tasks
Fig. 3 Hybrid workloads scheduling system architecture

Cluster Computing (2018) 21:1607–1622 1611

123

with the latest start time, etc. For simplicity, the victim

tasks are chosen randomly (Line 13) in this paper. If there

is no host with pk larger than ri, the task is placed into the

waiting queue (Line 28) and rescheduled when some tasks

finish and release sufficient resources. For a gratis task, the

scheduler first recalculates the parameters of the AR(p)

model (Line 21), then predicts the total workload and the

available resource of each host using the AR(p) model

(Line 22), then chooses the host with maximum available

resources aj (Line 24). If hj provides all the resources ri
required by ti, schedules ti to hj (Line 25–26). Otherwise,

the task is placed into the waiting queue (Line 28) and

rescheduled when some tasks finish and release sufficient

resources. There is also a monitor program running peri-

odically to detect host overload. Once a host is overloaded,

the monitor chooses and evicts victim tasks until overload

is eliminated.

Algorithm 1

Pseudo code of the multi-prediction based scheduling algorithm
for hybrid tasks

Input: T = {t1, t2, · · · , tn}: Queue of incoming tasks
WQ = {tw1, tw2, · · · , twn}: Queue of waiting tasks
H = {h1, h2, · · · , hn}: Set of hosts in the data center

1: for Each task ti in T and WQ do
2: if ti is middle task do
3: for Each host hj in H
4: Use ARMA model to predict available resources aj

5: end for
6: Choose the host hj with maximum aj

7: if aj > ri do
8: Schedule ti to hj

9: end if
10: else do
11: if There is at least one target host do
12: Choose a target host hk randomly
13: Choose victim tasks in hk randomly until ak > ri
14: Evict the victim tasks and schedule ti to hk

15: end if
16: else Put ti into waiting queue WQ
17: end else
18: end if
19: if ti is gratis task do
20: for Each host hj in H
21: Update parameters of AR(p) model
22: Use AR(p) model to predict available resources aj

23: end for
24: Choose the host hj with maximum aj

25: if aj > ri do
26: Schedule ti to hj

27: end if
28: else Put ti into waiting queue WQ
29: end if
30: end for

4 Multi-prediction of hybrid workloads

Load is a continuous function of time. We divide contin-

uous time into discrete time slots. The maximum value of

the load in the time slot is the value of time series. Then,

we obtain the time series fXng of the load. We use the

ARMA model to predict the stationary process of the

production load. Parameters are trained off line.

For the host load, the sum of the resource usage of the

production, middle and gratis workload, the time series of

the load shows evidence of non-stationarity. The parame-

ters of the AR model are updated dynamically based on

feedback to meet the continuously changing pattern of

time-varying load series.

4.1 ARMA prediction model

In the statistical analysis of time series, the ARMA model

provides a parsimonious description of a weakly stationary

stochastic process consisting of the AR process and the

Moving Average (MA) process [37]. Given that the time

series fXng satisfies the ARMA(p, q) [13, 14] model and

the previous n� 1 values fXn�1g are known, the expected

value Xn at time n is formulated as follows:

Xn � u1Xn�1 � � � � � upXn�p ¼ en � h1en�1 � � � �
� hqen�q; ð1Þ

where Xt, t ¼ n� p; n� pþ 1; . . .; n is the value of time

series at time t. p is the order of AR process and q is the

order of the MA process. ui, i ¼ 1; 2; � � � ; p and hj, j ¼
1; 2; . . .; q are parameters estimated from the previous n�
1 values fXn�1g. ek, k ¼ n� q; n� qþ 1; . . .; n are error

terms that are generally assumed to be white Gaussian

noise, namely,

EðenÞ ¼ 0; EðenenþkÞ ¼
r2e k ¼ 0

0 k 6¼ 0:

�
ð2Þ

It is generally considered good practice to find the smallest

values of p and q that provide an acceptable fit to the data.

Finding the appropriate values of p and q in the ARMA(p,

q) model can be facilitated using Akaike Information Cri-

terion (AIC) and Bayesian Information Criterion (BIC)

[13]. AIC and BIC are based on information theory and

provide scores of the quality of a model with regard to the

parameters that are selected by the maximum likelihood

method. By definition, AIC can be described as the

following:

AIC ¼ 2� ðnumber of parametersÞ � 2

� ln ðmaximum likelihoodÞ; ð3Þ

and BIC can be described as the following:

BIC ¼ 2 ln ðnumber of data itemÞ
� ðnumber of parametersÞ � 2

� ln ðmaximum likelihoodÞ: ð4Þ

A lower value of AIC and BIC indicates a better model.

ARMA models in general can, after choosing p and q, be

fitted by least squares regression to find the values of the

parameters that minimize the error term. For the training

set of the time series satisfying the ARMA(p,q) model, the

1612 Cluster Computing (2018) 21:1607–1622

123

vector of the parameters is donated as

�u ¼ ðu1; . . .;up; h1; . . .; hqÞ
T
. The estimated value of en is

donated as ên. It is calculated recursively as follows:

ên ¼
0; n� p

xn �
Pp
i¼1

uixn�i þ
Pq
i¼1

hiên�i; n ¼ pþ 1; . . .;N:

8<
:

ð5Þ

We define the quadratic sum of ên as Sð �uÞ, which is formed

as

Sð �uÞ ¼
XN
n¼pþ1

ê2n: ð6Þ

The value �̂uL ¼ ðûL
1 ; . . .; û

L
p ; ĥ

L
1 ; . . .; ĥ

L
qÞ that allows Sð �uÞ to

obtain the minimum is the approximate value of the

parameters of the ARMA(p,q) model.

4.2 Feedback based online AR prediction model

The ARMA(p,q) model consists of an AR(p) model and a

MA(q) model, where the AR(p) model is in the following

form:

Xn ¼ u1Xn�1 þ u2Xn�2 þ � � � þ upXn�p þ en; ð7Þ

meaning that Xn is calculated by the linear combination of

previous p values. The MA(q) model is in the following

form:

Xn ¼ en � h1en�1 � h2en�2 � � � � � hqen�q; ð8Þ

meaning that Xn is calculated by the linear combination of

previous q prediction errors.

The host load is irregular and the prediction accuracy

will decrease, meaning that the error term ek, k ¼
1; 2; . . .; n� 1 in the MA(q) model will be large. This

makes the ARMA model even less accurate. Thus, we only

use the AR(p) model for the host load prediction. In the

meantime, fixed parameters do not satisfy the continuously

changing pattern of the time series. We recalculate

parameters dynamically based on the real load feedback

each time before using the AR prediction model.

There are many ways to estimate the parameters, such as

the ordinary least squares procedure, method of moments

through Yule-Walker equations, and Markov chain Monte

Carlo methods [13]. We use Yule-Walker equations as

follows:

q1 ¼ u1 þ u2q1 þ � � � þ upqp�1

q2 ¼ u1q1 þ u2 þ � � � þ upqp�2

..

.

qp ¼ u1qp�1 þ u2qp�2 þ � � � þ up;

8>>><
>>>:

ð9Þ

where qk is the auto-correlative function and calculated as

follows:

qk ¼ q�k ¼
ck
c0

; k� 0; ð10Þ

where ck is the auto-covariance and calculated as follows:

ck ¼ c�k ¼ E½ðXn � lÞðXn�k � lÞ�; k� 0: ð11Þ

In particular,

c0 ¼ E½XnXn� � E½Xn�E½Xn� ¼ r2 � l2: ð12Þ

According to AIC and BIC, the order p equals 2, meaning

that the AR(2) model in this paper is simple and accurate.

From the Yule–Walker equation, we have the following:

u1 ¼
q1ð1� q2Þ
1� q21

¼ r0r1 � r1r2

r20 � r21
;

u2 ¼
q2 � q21
1� q21

¼ r0r2 � r21
r20 � r21

:

ð13Þ

The time series of the host total workload show evidence of

non-stationarity. An initial differencing step is applied to

remove the non-stationarity. The first-order differenced

time series fDXng of the AR(p) model is in the following

form:

DXn ¼ u1DXn�1 þ u2DXn�2 þ � � � þ upDXn�p þ en:

ð14Þ

For the first order differenced AR(2) model,

Xn � Xn�1 ¼ u1ðXn�1 � Xn�2Þ þ u2ðXn�2 � Xn�3Þ þ en:

ð15Þ

Thus, we obtain the following equation for the host total

workload prediction:

Xn ¼ ð1þ u1ÞXn�1 þ ðu2 � u1ÞXn�2 � u2Xn�3 þ en:

ð16Þ

Each time we obtain a new workload record Xn, we

recalculate parameters u1 and u2 to make the prediction

model constantly adjust to the changing pattern of

workload.

Cluster Computing (2018) 21:1607–1622 1613

123

5 Experimental evaluation

In this section, we conduct trace-driven simulations to

realistically evaluate the performance improvement by

using multi-prediction based scheduling for hybrid tasks.

The experiments include prediction accuracy analysis, task

scheduling performance analysis and comparisons of dif-

ferent slot sizes.

5.1 Experimental settings

We use the real-world workload traces of Google cluster

[9] to construct the hybrid workloads. Submission time,

priorities, and CPU, memory, and disk request of tasks are

recorded in the Google task event table. Tasks with prior-

ities larger than 8 are the production tasks, tasks with

priorities smaller than 2 are the gratis tasks, and the others

are the middle tasks [10]. The CPU, memory, and disk

request are normalized to 1. The slot as the prediction time

window and the measurement unit is set to 300 s consistent

with the measurement period of Google cluster [38]. All

the tasks submitted in the first seven days (around 2100

slots) in the Google cluster are used in the experiment.

There are about 11.5 million tasks used in the experiment.

The load is the sum of CPU request of the tasks executed

at the same time and load in one slot is the maximum value

in the slot. Figure 4 shows the load of the input production

tasks and the middle and gratis tasks in the cloud data

center of the 2100 slots. Most of the time, load pattern of

production workload is stable and large spikes happen from

slot = 600 to slot = 700, and at slot = 900. Load pattern of

batch and gratis tasks is much irregular and large spikes

happen from slot = 650 to slot = 700, with the sum of CPU

request even larger than 1000. A spike means that a lot of

tasks are submitted to the data center concurrently. This

may cause resource contention, leading to task eviction and

delay scheduling. Meanwhile, performance of production

workload may be affected.

We use CloudSim 3.0 [39] to simulate the cloud data

center. The data center consists of 1000 hosts, with CPU,

memory, and disk capacity normalized to 1. A background

program monitors each host periodically. Once a host is

overloaded, tasks with the lowest priorities are killed and

the occupied CPU resources are released.

We compare the task scheduling performance of four

different scheduling methods:

– Original method does not distinguish task priorities and

different load patterns of the hybrid workloads. It

makes scheduling decisions based on the current

available resources.

– ARMA does not distinguish task priorities and different

load patterns of the hybrid workloads. It uses the

ARMA model to predict the host load and available

resources before scheduling any type of task.

– FOAR does not distinguish task priorities and different

load patterns of the hybrid workloads either. It uses the

Feedback based Online AR model to predict the host

load and available resources before scheduling any type

of task.

– MPHW is the Multi-Prediction based scheduling for

Hybrid Workloads, which considers both task priorities

and different load patterns of hybrid workloads.

5.2 Prediction accuracy analysis

One of the challenging issues of the scheduler is to deter-

mine the suitable amount of available resources for a new

task. Multiple prediction models are used for hybrid

workloads with different load patterns. The first experiment

is to evaluate the prediction accuracy.

The predictive study uses the production and the host

load trace generated by the original scheduler. The ARMA

model is used to predict the production load and the host

load separately. For the ARMA model, we split the 7-day

trace data into two durations, a training period, the first 300

slots, and a validation period, the last 1800 slots. The

training period is used to fit the model and the validation

period is used to validate the prediction accuracy. We use

the IBM SPSS Statistics [40] toolkit to analyze the training

set and validate that the production load satisfies the sta-

tionary process, then obtain parameters p ¼ 1, q ¼ 1, and

coefficients u1 and h1. The online AR model is used to

predict the host load. Coefficients u1, u2 are updated

online based on feedback data. The model does not have an

offline-training step, we use the data of the last 1800 slots

as the validation set consistent with the ARMA model.

We use Success Rate and Mean Absolute Percent Error

(MAPE) to evaluate the prediction accuracy. The SuccessFig. 4 Load of the input hybrid workloads in the cloud data center

1614 Cluster Computing (2018) 21:1607–1622

123

Rate is the ratio of the number of successful predictions to

the total number of predictions. Di et al. [32, 33] defined

that the prediction is a success if it falls within 10% of the

real value. The predicted value lower than the real value

means that the predicted amount of available resources is

larger than the real amount. This may cause resource over

provision. Therefore, the situation that the predicted value

is lower than the real value is defined as a failure. We

define the prediction as a success if it is within 10% larger

than the real value, which means,

X̂i � Xi

Xi

� 100%� 10%: ð17Þ

MAPE is calculated as follows:

MAPE ¼ 1

N

XN
i¼1

X̂i � Xi

Xi

����
����� 100%: ð18Þ

In Eqs. (17) and (18), Xi is the real value, X̂i is the pre-

dicted value, N is the number of predicted values. In gen-

eral, a higher Success Rate and lower MAPE means a

better the prediction.

We randomly choose one host and draw plots of the real

and the predicted load in Fig. 5. The Cumulative Distri-

bution Function (CDF) of the Success Rate and MAPE of

the predicted load of the 1000 hosts in the 1800 slots are

shown in Fig. 6.

Figure 5a shows the real and the predicted production

load using the ARMA model. The predicted values are

quite close to the actual values. The average success rate is

71.8%, and MAPE is 1.81%. It shows that the offline

trained ARMA model is accurate enough for the stationary

process of the production load.

Figure 5b shows the real and the predicted host load

using the ARMA model and the feedback based online AR

model separately. The reason why the resource usage

(a) ARMA prediction of the production load.

(b) ARMA and AR prediction of the host load.

Fig. 5 Real and predicted load

Cluster Computing (2018) 21:1607–1622 1615

123

exceeds 100% is because the host is overloaded by

resource over provision. The prediction plots show that the

feedback based online AR model is closer to the real val-

ues. The Success Rate and MAPE in Fig. 6 shows that the

feedback based online AR model performs better than the

ARMA model. The average Success Rates are 17.22% of

the ARMA model and 58.3% of the AR model. The

MAPEs are 15.14% of the ARMA model and 2.63% of the

AR model. The feedback based online AR model is

accurate for the time-varying host load.

5.3 Data center performance improvement

In this section, we compare the performance improvement

of the cloud data center using the four methods.

5.3.1 Task failure and scheduling decrease

The number of instances of host overload, task killing and

task eviction in the data center of the four methods is

shown in Fig. 7. The instances of host overload decrease

from 3.03% to 2.40% of ARMA, 1.19% of FOAR and

1.38% of MPHW, showing an improvement of 20.0%,

60.3%, and 54.85%, respectively. When the host is over-

loaded, all the tasks running on the host are slowed down

and the performance is impacted. The MPHW has the

highest performance insurance.

The fraction of task failures, including killed tasks and

evicted tasks, has also decreased, from 19.11% to 8.94% of

ARMA, 7.21% of FOAR and 5.74% of MPHW, which is

about 53.2%, 62.3%, and 69.92% decrease, respectively. A

task is resubmitted to the data center when it becomes

runnable after failure, including killing and eviction, and

(a) Success Rate of prediction.

(b) MAPE of prediction.

Fig. 6 CDF for different prediction methods Fig. 7 Number of host overload, task killing, task eviction in the data

center

Fig. 8 Task reschedule comparison

1616 Cluster Computing (2018) 21:1607–1622

123

rescheduled when there are available resources. With the

fraction of task failure decreased greatly, tasks resubmis-

sion are reduced as well. Figure 8 shows the number of the

overall scheduled tasks, including first submitted tasks and

rescheduled tasks, measured in each hour. The original

method has large spikes in the task scheduling, while

ARMA, FOAR, and MPHW method have smooth task

scheduling. ARMA has 8.55% fewer scheduled tasks than

the original method, and FOAR has 10.01% fewer sched-

uled tasks than the original method. MPHW has 11.22%,

2.92%, and 1.34% fewer scheduled tasks than the original

method, ARMA, and FOAR, respectively. Large spikes of

scheduling means that many tasks are scheduled at the

same time. This may cause resource contention and task

eviction.

5.3.2 Effective resource utilization increase

The failed tasks waste CPU cycles, and the rescheduling,

eviction and killing operation also create overhead. In this

section, we will show the increase of effective resource

utilization due to the resource waste decrease.

We use the Resource Usage (RU) percentage to compare

the resources used by the evicted, killed and finished tasks

in the data center. In the slotj, resource usage RUj of certain

type of task (evicted, killed, finish) is computed as the sum

of task CPU usage of the type in the slotj, as shown in

Eq. (19), where CPUi is the CPU request of taski. We first

compute the total RU of the evicted, killed and finished

tasks in the data center. Then, compute the percentage of

the RU of each type.

RUj ¼
X

i 2 fi j taski excute in slotjg
CPUi: ð19Þ

Figure 9 shows the RU percentage of the four methods.

The average RU percentage of failed tasks, including killed

and evicted tasks, decreases from 59.17% of the original

method to 45.24% of ARMA, 38.19% of FOAR, and

29.99% of MPHW. Average RU percentage of tasks fin-

ished successfully increases from 40.83% of the original

method to 54.76% of ARMA, 61.61% of FOAR, and

70.01% of MPHW. The traditional resource utilization is

the CPU usage of the host. However, CPU used for failed

tasks are wasted. In this paper, we define the effective

resource utilization, measuring how the resources are used

effectively. It is the RU percentage of the tasks finished

successfully multiplying the total CPU usage. Decrease of

killed and evicted tasks saves a great deal of CPU. Fig-

ure 10 presents the boxplots showing the minimum, 25%,

mean, 75%, and maximum values of the overall CPU used

effectively each day. Average effective resource utiliza-

tions are 29.10% of the original method, 36.49% of

ARMA, 40.57% of FOAR, and 49.12% of MPHW. MPHW

(a) RU percentage of the original method.

(b) RU percentage of ARMA.

(c) RU percentage of FOAR.

(d) RU percentage of MPHW.

Fig. 9 RU percentage of the evicted, killed and finished tasks

Cluster Computing (2018) 21:1607–1622 1617

123

increases effective resource utilization by over 65% than

the original method.

5.3.3 Scheduling delay discussion

In the prediction based task scheduling, enough resources

should be reserved for future resource usage increase from

tasks with higher priorities. A task with a lower priority

will be delayed with amount of resource request larger than

future available resources, instead of scheduled immedi-

ately even if the current amount of available resources is

larger than requested. This will bring extra scheduling

delay. The traditional scheduling delay of a task is the time

span from submitted to scheduled. It can not describe the

schedule performance correctly if the task is killed or

evicted before finished. In this paper, we calculate the task

scheduling delay as the time span from the first submitted

to the last scheduled before finished successfully. We also

calculate the task response time as the time span from the

first submitted to the last finished.

Figure 11 shows CDF of scheduling delay and response

time. The fraction of tasks scheduled without delay

decreases from 79.81% of the original method to 74.74%

of ARMA, 76.65% of FOAR, and 77.56% of MPHW.

Average scheduling delay increases by 139.78% of

ARMA, 101.0% of FOAR, and 75.38% of MPHW. The

average response time increases by 122.25% of ARMA,

83.38% of FOAR, and 65.62% of MPHW. An increase of

the delay and response time is acceptable because the

middle and gratis tasks are insensitive to delay, while the

performance of production applications is guaranteed with

the peak of the load is diminished, and resource waste is

reduced.

The comparison of the original method to the three

prediction based methods shows that predicting the amount

of available resources before scheduling can improve the

data center performance by reducing task failure, host

overload and resource waste. Extra task scheduling delay

of the middle and the gratis tasks is acceptable because

they have a lower level of QoS and SLA requirements. The

comparison of ARMA, FOAR, and MPHW shows that

taking into consideration of task priorities and load patterns

and using a multi-prediction model leads to greater per-

formance improvement, and smaller task scheduling delay.

The comparison of ARMA and FOAR shows that the

accuracy of the prediction model impacts the performance

of the scheduler.

5.4 Comparison of different slot sizes

HPHW predicts load before scheduling a new task to check

whether there are enough resources during its execution

time. Thus, the best length of prediction time, referred to

Fig. 10 Effective resource utilization in the data center
(a) CDF of task scheduling delay.

(b) CDF of task response time.

Fig. 11 Task time performance in the cloud data center

1618 Cluster Computing (2018) 21:1607–1622

123

slot in this paper, is approximate to the task execution time.

The exact completion time of a new task is difficult to

estimate, we use a statistical method. Figure 12 shows the

CDF of task completion time. Less than 15% of tasks are

finished in 100 s, approximately 60% of tasks are finished

in 300 s, approximately 89% of tasks are finished in 600 s,

and more than 98% of tasks are finished in 900 s. In this

experiment, we compare scheduling performance of dif-

ferent slot sizes to find the relationship between perfor-

mances and the slot size. The slot size is set to 100 s, 300 s,

600 s, and 900 s separately.

Time is divided into discrete time slots, and the maxi-

mum value of load in each slot is selected. With the

increase of the slot size, the maximum value increases,

making the predicted value larger and the load series less

fluctuant. Then, the new task has less possibility of being

scheduled, leading to lower host usage and fewer failed

tasks. The number of failed tasks, including killed tasks

and evicted tasks, of slot = 300 s is 25.57% less than slot =

100 s, and 8.25% and 22.33% more than slot = 600 s, 900

s, respectively. Figure 13 shows the number of the overall

scheduled tasks of different slot sizes. With the increase of

the slot size, spikes of task submission are smoothing.

With the number of failed tasks decreases, CPU waste

also decreases. Effective resource utilization increases, as

shown in Fig. 14, from 41.16% of slot = 100 s to 51.87%

of slot = 600 s and 58.33% of slot = 900 s.

Figure 15 shows the CDF of task scheduling delay and

the response time of different slot sizes. Task time per-

formances of the original method and slot = 100 s are

almost the same. With the increase of the slot size, the

fraction of delayed tasks decreases from 81.36% of slot =

100 s to 72.04% of slot = 900 s, and the average

scheduling delay increases from 2023.84 s of slot = 100 to

3308.30 s of slot = 300 and 7066.61 s of slot = 900 s; the

average task response time increases from 2302.74 s of slot

= 100 to 3589.31 s of slot = 300 and 7381.74 s of slot =

900 s. The average scheduling delay and response time of

slot = 900 s is more than twice as much as slot = 300 s.

The experiments show that the slot size is determined by

the completion time of most tasks in the data center, and

affects task performance and the resource usage of the data

center. If the slot size is too small to cover the completion

time of most tasks, the predicted available resources will

not reflect real values in the whole execution period of the

task. If the slot size can cover completion time of most

tasks, with the slot size increasing, task failure decreases

and the host effective CPU usage increases. However,

scheduling delay performance degrades as new tasks are

delayed too long.

Fig. 12 CDF of task completion time

Fig. 13 Task reschedule comparison of different slot sizes

Fig. 14 Comparison of effective resource utilization of different slot

sizes

Cluster Computing (2018) 21:1607–1622 1619

123

6 Conclusion

Resources over-provision to production applications in

traditional data center causes a waste of resources. Cloud

computing can help consolidate middle and gratis tasks

with production applications effectively. In this paper, we

tackle the challenges of scheduling hybrid workloads by

predicting resource availability before scheduling a new

task and make different scheduling decisions according to

the task priorities. The amount of resources apportioned to

a task is subtracted by the future potential load increase

during the execution of the new task instead of all the

current spare resources to avoid causing host overload and

task eviction. We first divide continuous time into discrete

slots to construct the time series of the load. Then, we use

the ARMA model to predict the stationary process of the

production load and the feedback based online AR model

to meet the dramatic fluctuations of the host load. For a

middle task, if the amount of available resources is not

sufficient, it will randomly evict some gratis tasks and be

scheduled. For a gratis task, if the amount of available

resources is not sufficient, it will be queued until some

tasks finish and release sufficient resources. Evaluations

show that our multi-prediction based task scheduling pol-

icy can reduce the number of instances of host overload

and failed tasks by nearly 70% and increase effective

resource utilization by more than 65%. Task delay per-

formance degradation is acceptable because the middle and

gratis tasks are insensitive to delay. The multi-prediction

based scheduling for hybrid workloads can maintain per-

formance of production applications and save computing

resources effectively. The multi-prediction model fits cur-

rent resource management systems and schedulers by using

ARMA model for stable workloads, feedback based online

AR model for irregular workloads, and multi-prediction

model for hybrid workloads. It is, thus, a practical choice

for a scheduler for hybrid workloads with priorities.

For the future work, we plan to investigate the inter-

ference between hybrid tasks in the same host and find the

upper limit of available resources for new tasks while

avoiding interference. In this paper, the scheduler is based

on the static task placement and uses simple termination,

wait, and reschedule policy, live migration will be con-

sidered when the available resources are not sufficient in

the future work.

Acknowledgements This work is supported by the National Key

project of Scientific and Technical Supporting Programs of China

(Grant No. 2014BAK15B01); the Cosponsored Project of Beijing

Committee of Education; Engineering Research Center of Informa-

tion Networks, Ministry of Education.

References

1. Beloglazov, A., Buyya, R.: Optimal online deterministic algo-

rithms and adaptive heuristics for energy and performance effi-

cient dynamic consolidation of virtual machines in cloud data

centers. Concurr. Comput. 24, 1397–1420 (2012)

2. Guenter, B., Jain, N., Williams, C.: Managing cost, performance,

and reliability tradeoffs for energy-aware server provisioning. In:

IEEE INFOCOM, pp. 702–710 (2011)

3. Bhattacharya, A.A., Culler, D., Friedman, E., Ghodsi, A., Shen-

ker, S., Stoica, I.: Hierarchical scheduling for diverse datacenter

workloads. In: Proceedings of the 4th Annual Symposium on

Cloud Computing, pp. 1–15 (2013)

4. Apache: Yarn. https://hadoop.apache.org/docs/r2.4.1/hadoop-

yarn/hadoop-yarn-site/index.html (2013)

5. Apache: Mesos. http://mesos.apache.org/ (2011)

6. Google: Kubernetes. http://kubernetes.io/ (2015)

7. Apache: Fair Scheduler. http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/FairScheduler.html (2016)

8. Apache: Capacity Scheduler. https://hadoop.apache.org/docs/r2.

7.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

(2016)

9. Google: Google Cluster Data. http://code.google.com/p/google

clusterdata/wiki/ClusterData2011_1 (2011)

(a) Comparison of task scheduling delay.

(b) Comparison of task response time.

Fig. 15 Task time performance comparison of different slot sizes

1620 Cluster Computing (2018) 21:1607–1622

123

https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/index.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/index.html
http://mesos.apache.org/
http://kubernetes.io/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.7.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1

10. Reiss, C., Tumanov, A.: Heterogeneity and dynamicity of clouds

at scale: Google trace analysis. In: Proceedings of the Third ACM

Symposium on Cloud Computing, p. 7 (2012)

11. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.:

Towards understanding heterogeneous clouds at scale: Google

trace analysis. http://www.pdl.cmu.edu/PDL-FTP/CloudComput

ing/ISTC-CC-TR-12-101.pdf (2012)

12. Abdul-Rahman, O.A., Aida, K.: Towards understanding the usage

behavior of Google cloud users: the mice and elephants phe-

nomenon. In: 2014 IEEE 6th International Conference on Cloud

Computing Technology and Science, pp. 272–277 (2014)

13. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time series analysis:

forecasting and control, 4th edn, pp. 56–81. China Machine Press,

Beijing (2011)

14. Hua, L., Qiying, H.: Forecasting and Decision Making,

pp. 131–168. China Machine Press, Beijing (2012)

15. Jiang, H., E, H., Song, M.: Hierarchical prediction based task

scheduling in hybrid data center. In: 2014 20th IEEE Interna-

tional Conference on Parallel and Distributed Systems (ICPADS),

pp. 17–24 (2014)

16. Apache: Spark. http://spark.apache.org/docs/latest/index.html

(2013)

17. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker,

S., Stoica, I.: Dominant resource fairness: fair allocation of

multiple resource types. In: Proceedings of the 8th USENIX

Conference on Networked Systems Design and Implementation

(NSDI), pp. 323–336 (2011)

18. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.:

Omega: flexible, scalable schedulers for large compute clusters.

In: European Conference on Computer Systems (EuroSys),

pp. 351–364 (2013)

19. Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J.: Apollo:

scalable and coordinated scheduling for cloud-scale computing.

In: 11th USENIX Symposium on Operating Systems Design and

Implementation (OSDI), pp. 285–300 (2014)

20. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and

QoS-aware cluster management. In: Proceedings of the 19th

International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), pp. 127–144

(2014)

21. Carrera, D., Steinder, M., Whalley, I., Torres, J., Ayguad, E.:

Enabling resource sharing between transactional and batch

workloads using dynamic application placement. In: Middle-

ware’08, Proceedings of the 9th ACM/IFIP/USENIX Interna-

tional Conference on Middleware archive, pp. 203–222 (2008)

22. Carrera, D., Steinder, M., Whalley, I., Torres, J., Ayguad, E.:

Managing SLAs of heterogeneous workloads using dynamic

application placement. In: HPDC’08 2008, Proceedings of the

17th International Symposium on High Performance Distributed

Computing, pp. 217–218 (2008)

23. Garg, S.K., Gopalaiyengar, S.K., Buyya, R.: SLA-based resource

provisioning for heterogeneous workloads in a virtualized cloud

datacenter. In: 11th International Conference on Algorithms and

Architectures for Parallel Processing, ICA3PP 2011, pp. 371–384

(2011)

24. Garg, S.K., Toosi, A.N., Gopalaiyengar, S.K., Buyya, R.: SLA-

based virtual machine management for heterogeneous workloads

in a cloud datacenter. J. Netw. Comput. Appl. 45, 108–120 (2014)

25. Dodonov, E., Mello, R.F.: A novel approach for distributed

application scheduling based on prediction of communication

events. Future Gener. Comput. Syst. 26, 740–752 (2010)

26. Curinom, C., Difallahu, D.E., Douglasm, C., Krishnanm, S.,

Ramakrishnanm, R., Raom, S.: Reservation-based scheduling: if

you’re late don’t blame us! In: SOCC ’14 Proceedings of the

ACM Symposium on Cloud Computing, pp. 1–14 (2014)

27. Sharma, B., Wood, T., Das, C.R.: HybridMR: a hierarchical

MapReduce scheduler for hybrid data centers. In: IEEE 33rd

International Conference on Distributed Computing Systems,

pp. 102–111 (2013)

28. Farahat, M.A., Talaat, M.: Short-term load forecasting using

curve fitting prediction optimized by genetic algorithms. Int.

J. Enegry Eng. 2, 23–38 (2012)

29. Khan, A., Yan, X., Tao, S., Nikos, A.: Workload characterization

and prediction in the cloud: a multiple time series approach. In:

IEEE Network Operations and Management Symposium

(NOMS), pp. 1287–1294 (2012)

30. Yang, Q., Peng, C., Yu, Y., Zhao, H., Zhou, Y., Wang, Z., Du, S.:

Host load prediction based on PSR and EA-GMDH for cloud

computing system. In: IEEE Third International Conference on

Cloud and Green Computing, pp. 9–15 (2013)

31. Yang, D., Cao, J., Yu, C., Xiao, J.: A multi-step-ahead CPU load

prediction approach in distributed system. In: Second Interna-

tional Conference on Cloud and Green Computing, pp. 206–213

(2012)

32. Di, S., Kondo, D., Cirne, W.: Host load prediction in a Google

compute cloud with a Bayesian model. In: Proceedings of the

IEEE/ACM Conference on High Performance Computing Net-

working, Storage and Analysis, SC, pp. 1–11 (2012)

33. Di, S., Kondo, D., Cirne, W.: Google hostload prediction based

on bayesian model with optimized feature combincation. J. Par-

allel Distrib. Comput. 74, 1820–1832 (2014)

34. Zhang, Q., Zhani, M.F., Zhang, S., Zhu, Q., Boutaba, R.,

Hellerstein, J.L.: Dynamic energy-aware capacity provisioning

for cloud computing environments. In: ICAC’12 Proceedings of

the 9th International Conference on Autonomic Computing,

pp. 145–154 (2012)

35. Cheng, L., Zhang, Q., Boutaba, R.: Mitigating the negative

impact of preemption on heterogeneous mapreduce workloads.

In: CNSM ’11, Proceedings of the 7th International Conference

on Network and Services Management, pp. 189–197 (2011)

36. Verma, A., Pedrosa, L., Korupolu, M.: Large-scale cluster man-

agement at Google with Borg. In: Proceedings of the Tenth

European Conference on Computer (Systems EuroSys), p. 18

(2015)

37. ARMA: Auto-Regressive and Moving Average. https://en.wiki

pedia.org/wiki/Autoregressive%E2%80%93moving-average_model

(2015)

38. Reiss, C., Wilkes, J.: Google cluster-usage traces: format ?

schema (version of 2011.10.27, for trace version 2). http://code.

google.com/p/googleclusterdata/wiki/ClusterData2011_1 (2011)

39. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.,

Buyya, R.: CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of resource pro-

visioning algorithms. Softw. Pract. Exp. 41, 23–50 (2011)

40. IBM: IBM SPSS Statistics. http://www.spss.co.in/ (2014)

Cluster Computing (2018) 21:1607–1622 1621

123

http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/ISTC-CC-TR-12-101.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/ISTC-CC-TR-12-101.pdf
http://spark.apache.org/docs/latest/index.html
https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
http://www.spss.co.in/

Haiou Jiang is currently pursuing

Ph.D. in College of Computer

Science at Beijing University of

Posts and Telecommunications.

She holds a B.E. and a M.E.

degree from College of Computer

Science at Beijing University of

Posts and Telecommunications.

She is interested in cloudcom-

puting technology, cloud data

center management, service

computing.

Haihong E is currently an associ-

ate professor in College of

Computer Science at Beijing

University of Posts and Telecom-

munications. She holds a B.E. and

a M.E. degree from College of

Electronic Engineering, a Ph.D.

from College of Computer Sci-

ence at BeijingUniversity of Posts

and Telecommunications. She is

now working in PCN&CAD cen-

ter of Beijing University of Posts

and Telecommunications. Her

research interests are distributed

system, SSME (service science,

management and engineering), internet of things, wireless city applica-

tions, and mobile internet applications.

Meina Song is currently a pro-

fessor in College of Computer

Science at Beijing University of

Posts and Telecommunications.

She holds a M.E. and a Ph.D.

degree fromCollege of Electronic

Engineering at Beijing University

of Posts and Telecommunica-

tions. She is now the chairman of

PCN&CAD center of Beijing

University of Posts and Telecom-

munications, vice president of

mobile internet application and

terminal technology work com-

mittee of China communications

standards association, member of technical committee of service com-

puting in China computer federation, member of technical committee of

network and data communications in China computer federation. Her

main research areas include distributed system, P2P technology, service

computing, big data technology etc.

1622 Cluster Computing (2018) 21:1607–1622

123

	Multi-prediction based scheduling for hybrid workloads in the cloud data center
	Abstract
	Introduction
	Related work
	Hybrid workloads scheduling strategy and system architecture
	Multi-prediction of hybrid workloads
	ARMA prediction model
	Feedback based online AR prediction model

	Experimental evaluation
	Experimental settings
	Prediction accuracy analysis
	Data center performance improvement
	Task failure and scheduling decrease
	Effective resource utilization increase
	Scheduling delay discussion

	Comparison of different slot sizes

	Conclusion
	Acknowledgements
	References

