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Abstract
The popularity of Big Data applications places pressures on storage systems to efficiently scale to meet the demand. At the

same time, new developments like solid-state drives have changed to traditional storage hierarchy. Cloud storage systems

are transitioning towards a hybrid architecture consisting of large amounts of memory, solid-state disks (SSDs), and

traditional magnetic hard disks (HD). This paper presents elasticity aware deduplication (EAD), a data deduplication

framework designed for multi-tier cloud storage architectures consisting of SSD and HD. EAD dynamically adjusts the

deduplication parameters at runtime in order to improve performance. Experimental results indicate that EAD is able to

detect more than 98% of all duplicate data, but it only consumes less than 5% of expected memory space. Additionally,

EAD saves approximately 74% of overall IO access cost compared to the traditional design.

Keywords Deduplication estimation � Scalability � Migration � Cloud storage systems � Fusion disk � Adaptive dynamical

sampling keyword � Cluster computing � Cloud computing

1 Introduction

Big Data applications require efficient storage systems to

support them. The ever increasing amount of data gener-

ated (we are expecting data to reach 35 zettabytes by the

year 2020), places stress on existing storage solutions [1].

The storage research community has responded by devel-

oping new techniques in both storage system design and

hardware design.

Data deduplication has emerged as an important tech-

nique to manage this increase in data [2, 3]. This technique

is based on the observation that a lot of the data is not

unique, and proposes efficient ways of identifying and

eliminating duplicate data. Data deduplication has been

shown as an essential and critical component in cloud

backup, synchronization and archiving storage systems. It

not only reduces the storage space requirements, but also

improves the throughput of the backup and archiving sys-

tems by eliminating the network transmission of redundant

data, as well as reduces the energy consumption by

deploying fewer disks.

This paper focuses on inline deduplication, a type of

deduplication system where the objectives are to minimize

the data transfer between the client and server, as well as

minimize the storage utilized at the backend server. This is

done by having the client transmit metadata to the server to

detect duplications and only the new data is going to be

sent to the server. One of the challenges in inline dedu-

plication is the need to maintain a large index of existing

data fragments, or chunks, to avoid sending duplicated data

over. Maintaining this type of index in magnetic hard disk

(HD) is slow, because of the long disk IO time. Keeping

the index in RAM is much faster, but the size of RAM in
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existing systems limits the number of index entries we can

keep in memory. This is especially true when these systems

have to handle tens of terabytes to petabytes of data.

In this paper, we present an elasticity aware deduplica-

tion (EAD) system to address this problem. EAD is

designed for cloud based storage systems. EAD improves

the performance of the deduplication cache system by

taking advantage of multi-tier storage architecture that is

increasingly becoming popular [4, 5]. A multi-tier storage

architecture has an extra tier between RAM and HD. This

extra tier is faster than HD, but cheaper than RAM. This

middle tier is commonly implemented using solid-state

disks (SSDs) made from NAND flash memory. We make

the following contributions.

1. Elasticity aware deduplication includes an adaptive

sampling algorithm to decide the allocation of data

chunks in each of the three tiers. Our adaptive

algorithm is compatible with existing deduplication

systems that use sampling to take advantage of

locality [6, 7], as well as systems that use content-

based chunking techniques [8–10].

2. Elasticity aware deduplication takes advantage of the

rapid scalability property of cloud computing systems

to dynamically adjust the amount of RAM and SSD

resources as needed to detect sufficient amount of

duplicate data. The EAD algorithm will determine

when to trigger the scaling up operation, and how

many new resources to request. This avoids paying for

additional resources that do not contribute to the

performance of the system. The EAD algorithm can

detect duplicated datasets from different VMs.

3. We present extensive theoretical analysis and exper-

imental results to evaluate EAD. Results show that

EAD can detect over 98% of the duplicated data with

only 25% of existing approach’s IO access cost.

The rest of the paper is organized as follows: Sect. 2

explores the background of the deduplication system.

Section 3 describes the design of our EAD system, and

Sect. 4 evaluates our solution. We discuss the related work

in Sects. 5 and 6 concludes this paper.

2 Background

A cloud-based storage system that uses data deduplication

has three main components, the Client, the Dedup

Server, and the Storage Pool. The interaction of

these three components is illustrated in Fig. 1. The client

that wants to upload data to the cloud will first split the data

into smaller chunks. These chunks can either have a pre-

defined fixed size, or a variable size divided using known

metric such as Rabin fingerprinting [11]. A group of

chunks that exhibit locality is known as a segment.

2.1 Measuring deduplication performance

Key metrics for deduplication performance are the dedu-

plication ratio (DR, i.e., removed redundancy data ratio)

and unique data ratio (UR, i.e., unique data ratio) [12, 13].

These are combined together as:

DR ¼ 1� SDep

SOrg
� 1� SUnq

SOrg
¼ 1� UR; ð1Þ

where SOrg, SDep and SUnq are the size of the original

dataset, the size of the dataset after deduplication, and the

size of the actual unique dataset of the workload, respec-

tively. UR is determined by the workload’s redundancy and

also caps the upper bound of the deduplication perfor-

mance, while DR reflects the deduplication performance of

the system. In general, the higher DR is, the less bandwidth

and storage will be consumed, and thus the better the

performance.

2.2 Impact of storage resources

As more data is stored in the storage pool, the size of the

IndexTable will also increase. Since storing the IndexTable

in disk incurs a bottleneck during the lookup process, parts

of the IndexTable need to be cached in RAM, as illustrated

in left-top corner in Fig. 1. While it may appear that the

solution to improving performance is to maximize the

amount of RAM, this is not always correct.

To illustrate this, we conducted an experiment to show

the relationship between RAM size and deduplication

performance. We used two virtual machine images as our

workload, a common workload used in deduplication

Client 1

Dedup Server Clients

Storage Pool

Memory

Disk

Client 2

Client 3

Hot Metadata Library

Entire Metadata Library

Entire Dataset Library

Fig. 1 A typical cloud-based deduplication system
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research [7, 14]. The first virtual machine image, VM1,

contains majority of text files, mimicking an operating

system in office use. The second virtual machine image,

VM2, contains majority video data, representing an oper-

ating system for home use.

Figure 2 shows the results. We see that the number of

index entry slots indicates how much information of

already stored data the system can provide for duplicate

detection. We set fixed number of index entries for dupli-

cate detection and gradually increase it. We see that when

index entry slots number increases to 270 thousand, both

VMs exhibit the same amount of duplicate data. As we

increase the index size, VM1 shows limited improvement,

while VM2 shows much better performance. If we simply

use VM1 to estimate memory demand, then it will lead to

much less bandwidth savings, since buying too much

memory is wasteful if most of the data resemble VM1.

3 Elasticity aware deduplication (EAD)

Our EAD system comprises of four components: (1) EAD

Client runs on the client side and is responsible for file

chunking, fingerprint computation and sampling; (2) EAD

Server is executed by the cloud provider and controls the

index management; (3) Network Layer connects a cen-

tralized EAD Server and multiple EAD Clients; and (4)

Storage Pool stores all the data (D). Each chunk that is

detected as new unique data will be transmitted and stored

within D. Figure 3 illustrates how these components work

together. To better represent our algorithm, we summarize

some frequently used notations in Table 1.

Elasticity aware deduplication is designed for a multi-tier

storage architecture consisting of RAM, SSD, and HD. We

store three types of data in the RAM of EAD Sever. The first

type of data is the ‘‘Hot Metadata Library’’ (TM), which is

the hot cache of TD. TM will be shrinked and refined during

downsampling, thus may not necessarily cover the entire D.

This is inevitable and will lead to re-send and re-storage the

existing data in the Storage Pool (i.e., false negative error).

The second type of data is the Estimation Base (B), which is

for downsampling and performance analysis. Each entry slot

in B includes a fingerprint and two counters, hSmp and hSeg,

where counter hSmp records the number of fingerprint hits in

B from the sample set, and hSeg records the number of fin-

gerprint hits in B from all chunks uploaded during the

current deduplication epoch. The third type of data is the

Chunk Cache (C), which is a dedicated loading area for

comparing the segments prefetching from TD with the

incoming fingerprints (FPs). This loading area will be

emptied after each epoch. We mark C as ‘‘volatile’’ and

mark others as ‘‘persistent’’ in Fig. 3.

We consider a high-speed SSD and a large-capacity HD

that resemble a ‘‘fusion disk’’ [15] (TD) in EAD Server side

to improve the access speed of the metadata library. The

server does not store dataset content but only metadata.
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The ‘‘Entire Metadata Library’’ (TH , and we have

TD ¼ TS þ TH) is maintained and stored in the HD, which

maps the relationship between chunks and segments, and

chunk’s fingerprints with their physical addresses in the

Storage Pool. Meanwhile, as a write-back cache of the HD,

SSD stores the Warm Metadata Library (TS). Different

caching replacement policies can be adopted in this fusion

disk.

Notice that although we focus on a centralized EAD

server cluster, it also supports multiple servers-clients

cluster. In this case, EAD servers periodically sync updates

of libraries to each other. Moreover, load balancing

mechanisms are also adopted to balance the load.

3.1 EAD deduplication algorithm

Elasticity aware deduplication first applies the down-

sampling algorithms until the deduplication performance

becomes unsatisfactory, and then triggers the scaling up

process to obtain more RAM for better performance.

Algorithms 1, 2 and 3 describe the main procedure of EAD

algorithm. There are three phases: phase 1 and 2 are as

generic inline deduplication systems, and phase 3 is

responsible for adjusting the sampling rate and triggering

the scaling process.

[Phase 1.1] Client sends FPs to server The first dedu-

plication phase is to identify duplicate chunks. For each

new segment Sin, the client first randomly selects j samples

from it and groups them into a sample set SSmp. The client

then sends all FPs of Sin together with SSmp information to

the server (Alg. 1 line 3 and 4). This integrates our esti-

mation for downsampling process into the regular dedu-

plication operations, so as to avoid the separate sampling

and scanning phases as done by [16]. Thus, there is no

extra overhead for our estimation purpose. Notice that in

order to ensure the atomicity under concurrent accesses, a

buffer is built to queue and sequentialize these incoming

accesses in the centralized EAD server.

[Phase 1.2] Deduplication prefetch process Once

received Sin and SSmp, the EAD server searches for each FP

of Sin in the hot metadata library in RAM (TM). If found,

then it prefetches the entire segment(s) stored in TD from

the disk to the chunk cache C (Alg. 1 line 5–8) in the RAM

for later comparison. The purpose of prefetch is to take

advantage of the spatial and temporal locality, although it

may be possible that the prefetched segment(s) is(are) not

as same as the incoming segment that contains the current

FP. Meanwhile, to reduce overhead, we limit the max

number (CMax) of segments to be loaded since it is possible

that more than one segment are found in TD (an FP may

appear in different segments during runtime). If the FP is

not found, then EAD records this new FP in TM (line 9–

10). Finally, EAD adds the information of the current

iterated fingerprint ‘‘FPxi 2 Sin’’ to TD, regardless of

whether it is found or not in TM (Alg. 1 line 11).

[Phase 1.3] Sampling and estimation process After the

prefetching process, EAD uses the sample chunks in SSmp to

update the estimation base B and downsampling counter

hSmpi . Specifically, EAD searches each received sample FP in

SSmp for each estimation base B. If the FP is found in B, the

counter hSmpi of that FP stored in the B will be increased by

one, otherwise this FP will be added toBwith hSmpi and hSegi
counters being initialized to zero (Alg. 2 line 1–6).

[Phase 1.4] Duplication detection process EAD then

compares each fingerprint xi 2 Sin with the prefetched

segments in C during the current epoch, and marks them as

‘‘dup’’ or ‘‘unq’’ (indicating it is a duplicate or an unique

chunk). Meanwhile, EAD updates B again—incrementing

the counter hSegi by one every time its correspondent

Table 1 Summary of frequently used notations

Notation Description

DR, UR Deduplication ratio and unique data ratios

C Chunk cache

B Estimation base

TM , TS, TH Hot, warm and entire metadata libraries

TD TS [ TH , metadata library stored in fusion disk

D Entire dataset library persisted in storage pool

EDR Esteemed deduplication ratio

DRmr Measured accumulated data stream deduplication ratio

DRer Deduplication ratio of entire dataset

MNew, MCur New and current memory sizes

hSmp # of fingerprint hits in B from a sample hits in B

hSeg # of fingerprint hits in B from all the chunks

uploaded during current deduplicaiton epoch

R Current sample rate

D Scaling up multiplier

/ðdÞ Adjust function of downsampling operation counter d
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fingerprint appears (Alg. 2 line 7–18). Once EAD finishes

this process, it empties the C (Alg. 2 line 19).

[Phase 2] Data transmission

The second deduplication phase is that EAD Client only

transmits unique data chunks along with metadata of

duplicate chunks to EAD Server (Alg. 3 line 1–3), which

saves both bandwidth and storage space.

[Phase 3] Downsampling and scaling

The last deduplication phase (Alg. 3 line 4–14) is

adaptively adjusting the sampling rate and triggering RAM

scaling up process. We will discuss them in detail in

Sect. 3.2.

3.2 Dynamically adjust sampling rate

As one of the key features, EAD determines whether it is

beneficial from scaling operation, by first investigating

what causes current poor deduplication performance once

the RAM limitation is reached (Alg. 3 line 4). In order to

distinguish whether poor deduplication performance is due

to overly aggressive downsampling or inherent within the

dataset (e.g. data in multimedia or encrypted files), EAD

needs to know the DR of the entire dataset (denoted as

‘‘DRer’’). If the RAM reaches the limitation and DRer\C,
then one needs to trigger the sampling rate or scaling up

adjustment. In fact, the same methodology can be applied

to SSD scaling, but in this paper we only focus on RAM

scaling.

Unfortunately, obtaining the actual DRer of the entire

dataset is impractical, since it requires performing the

entire deduplication process. Prior work from [16] pro-

vided an estimation algorithm to estimate the deduplication

performance for static, fixed-size data sets. Their algorithm

requires the actual data to be available in order to perform

random sampling and comparisons. However, in our case,

the dataset can be viewed as a stream of data, thus there is

no prior knowledge of the size or characteristics of the data

to be stored in advance. One more bad news is that it is not

possible to perform back and forth scanning of the com-

plete dataset for estimation. Therefore, we need to find a

way to estimate the DRer. One straightforward way to

measure the deduplication ratio of stream accumulated

from the beginning, note as DRmr:

DRmr ¼
SmrDup

ScurTtl
; ð2Þ

where SmrDup stands for the detected duplicated data size

until current moment. ScurTtl is the total data size so far. The

measured DRmr may not accurately reflect the real dupli-

cation ratio of the workload since it is highly affected by

the prefetching process. That is to say, a low SmrDup may

due to aggressive low sampling rate and low hit ratio in the

prefetched set ðCÞ, rather than the workload’s actual

characteristics.

We develop a more accurate method to estimate the

DRer, called Expectation of dataset’s Duplication Ratio

(‘‘EDR’’). The design goal is to directly conduct statistical

analysis on the accumulated incoming stream and try best

to be independent from the prefetching process and the

cache system, so that EDR has higher chance to reflect and

predict the entire DRer. To achieve this goal, EDR uses the

counters stored in B:

EDR ¼ 1� 1

j � ns
X

i2B

hSmpi
hSegi

: ð3Þ

The intuition and correctness proof of EDR will be pro-

vided in next two sections. The computation of EDR

happens while the index size is approaching the memory

limit (the first threshold as shown in Alg. 3 line 4). EAD

has a second threshold (Alg. 3 line 5) which is based on

user-acceptable deduplication performance level
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C 2 ð0; 1Þ. This qualify of service (QoS) related parameter

indicates that the lower the cost a user is willing to pay, the

worse deduplication performance (a lower C) the user

needs to tolerate as an exchange. Only if both these

thresholds are reached, EAD enlargers RAM size, and

adjusts the current sampling rate R (Alg. 3 line 9–12).

Otherwise, EAD will not scale up and only apply down-

sampling on the index (Alg. 3 line 14). This is based on the

fact that given a dataset that inherently exhibits poor

deduplication characteristics [17], adding more RAM will

incur some overhead with slight or even no improvement

on deduplication performance.

3.3 EAD parameters and scaling procedures

Our EAD algorithm has several parameters that can be

adjusted by taking advantage of runtime observations to

improve the overall performance. Here we discuss the key

paramters and their adjustments.

� Adjusting C
The parameter C is specified by the user, and indicates

the user’s desired level of deduplication performance.

However, the user may sometimes be unaware of the

underlying potential deduplication performance of the data,

and set an excessively high C value, resulting in unnec-

essary scaling over time. We first need to adjust (calibrate)

the user’s C value to DRmr

EDR
, in the case that DRmr has not

reached the acceptable performance, even if the sampling

rate is one (fully sampled). In fact, when the current sample

rate R ¼ 1, DRmr

EDR
represents the current system’s maximum

deduplication ability. Later, EAD will tune down the

sample rate if DRmr is larger than
DRmr

EDR
. Scaling up the RAM

will be finally triggered if (1) R ¼ 1, after several down-

sampling operations; and (2) DRmr is worse than the DRmr

EDR
.

In this way, EAD is able to elastically adapt variations on

incoming data.

� Adjusting amount of RAM to scale up (D)
A simple way to compute the amount of RAM is using a

fixed scaling up multiplier D, as:

MNew ¼ MCur � D ð4Þ

For example, we double the RAM each time (D ¼ 2) and

reset the sampling rate back to 1, and start all downsam-

pling process over again. However, workloads may not use

up all exponentially scaled-up RAM space. Moreover, cost

of adding RAM and overhead of corresponding migration

are expensive. Therefore, we need to adaptively turn down

the D, while satisfying the performance requirement and

trying best to trigger the scaling up operation as less as

possible.

Our solution considers both scaling RAM and the

sample rate. For scaling RAM, we gradually decrease the

value of D to slow down the exponentially scaling speed.

For the sampling rate, instead of directly setting it back to

R ¼ 1 which will quickly occupy the RAM again, we

adjust the sampling rate (Alg. 3 line 11) to the same sample

rate before the latest downsampling operation (Alg. 3 line

14). Because this sampling rate is able to support a satis-

fying performance.

We propose the detail of conservative RAM incremen-

tation policy. We introduce a parameter d (initialized as

zero) to record occurrences of downsampling, every time

the downsampling happens, d increases by one. We set the

new RAM (MNew), after scaling up as a function of the

current RAM size (MCur , refer Alg. 3 line 10):

MNew ¼ MCur � D � /ðdÞ; ð5Þ

where the (conservative) step D � /ðdÞ 2 ½1;D� (i.e.,

/ðdÞ 2 ½1D ; 1�) and incremental step of each scaling up

epoch should be less. Under this constraint, we design

/ðdÞ, as a monotonous decreasing function of downsam-

pling operation counter d, as:

/ðdÞ ¼
Dd�1;; d\2

1�
Pd

i¼2

1

Di
; d� 2

8
<

: : ð6Þ

Thus, the RAM size can be calculated as (Alg. 3 line 10):

MNew ¼
M0 � Dd; d\2

MCur � D � 1�
Pd

i¼2

1

Di

� �
; d� 2

8
<

: ; ð7Þ

where M0 is the original RAM size. We next prove the

value space of /ðdÞ is in ½1D ; 1�. When d\2, it obviously

holds, as

/ðdÞ ¼ Dd�1 2 ½1;D�: ð8Þ

When d� 2, we compare /ðdÞ with the upper bound 1:

/ðdÞ � 1 ¼ 1�
Xd

i¼2

1

Di
� 1 ¼ �

Xd

i¼2

1

Di
\0; ð9Þ

so it holds. For the lower bound 1
D, we also have:

/ðdÞ � 1

D
¼ 1�

Xd

i¼2

1

Di
� 1

D
¼ 2�

Xd

i¼0

1

Di
: ð10Þ

Equation 10 is a monotone decreasing function with the

minimum value:

min½/ðdÞ � 1

D
� ¼ lim

D¼1

�
2�

Xd

i¼0

1

Di

�
ð11Þ

¼ lim
D¼1

2�
1½1� ð1DÞ

n�
1� 1

D

( )
¼ D� 2

D� 1
� 0: ð12Þ
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Therefore, our /ðdÞ satisfies the design constrains. Notice

that when D ¼ 2, the RAM size will finally converge,

while RAM sizes in all other cases are divergence. As the

times of downsampling operation increase, EAD requires

less amount of RAM for index table after scaling up.

Comparing such optimization with always requiring D
times of original RAM, such optimized approach is able to

claim higher memory utilization efficiency.

� Managing size of B

One concern with our estimation scheme is that the size

of B may become too large. If we need a large amount of

RAM to store B, we will be wasting RAM resources that

could be used in caching the hot index TM . In practice, the

size of B is relatively modest. Each entry in B consists of a

fingerprint and two counters. Using SHA-1 to compute the

fingerprint results in a 20 byte fingerprint. Additional four

bytes are used for each counter. Thus, each B entry is 28

bytes, indicating that approximately the total size of B

would be at most 33.38 MB to support 1 TB of data. In our

experiment, it only requires 4.32 MB for estimating 163.2

GB dataset.

� Refining of TM andTD

Elasticity aware deduplication removes certain amount

of entries from the hot index TM according to the new

sample rate R during downsampling. After the scaling up

operation is finished, we are left with the original index TM

and new RAM space for extending TM . EAD will do two

things: (1) refining the original index by removing low hit

ratio entries, and (2) adding new entries that are predicted

to have better deduplication-detection ability than removed

ones from TD to TM . This adding operation is with new

sample rate which is higher than original one. Here we

partition TM into two virtual zones: the original index as

IndexOrg, and the extension part which consists of new

appending entries as IndexExt. EAD compensates the poor

deduplication performance due to previously too sparse

sampling rate by index refining, which has two steps:

1. Re-detect duplication Search through the IndexOrg, re-

detect duplication chunks from already stored seg-

ments. Since extra IO operations may bring unex-

pected cost, EAD is only processing limited number of

segments which are able to claim duplicate chunks.

2. Evict duplication It is possible that not all index entries

in the old index are useful, meaning that some entries

contain FPs for chunks that are unlikely to be

encountered again. Therefore, after duplication re-

detection, these entries are removed from the

IndexOrg.

Instead of reprocessing all the segments on the storage,

EAD is able to select only part of them for detecting

majority duplicate for evictions. We first introduce the

additional information into index table to help estimating

the expected number of entries to be evicted: a counter

(countFP, initialized as zero for new added entries) is used

for each index entry to record its hit time in vector T,

which we call hit rate. Every time when an entry has been

found a match, this counter increments by 1. Therefore the

larger the counter is, the more duplicate chunks this entry

can detect. Among those segments hooked by FPs with low

hit rate, there exists ‘‘evictable’’ duplicate chunks. This

conclusion is derived based on the following analysis of

FPs in the index:

1. Entries with high hit rate These FPs in the index

indicate that segments have found matches and lots of

chunks near the sampled chunks are identical, which is

the natural result of chunk locality. Theoretically, more

entries having high hit rate imply that more space can

be saved.

2. Entries with low hit rate Some segments themselves

share few chunks with stored ones, naturally resulting

in lower index matching rate. However, we also claim

that low hit rate does not always imply that there is no

chunk locality. For example, some segments share lots

of chunks with stored segments, however they are not

hooked by right FPs due to the sparse sampling rate.

Thus not enough or even no matches from their

sampled chunks’ FPs are found in the index.

This index refining function is called in Alg. 3 line 12, and

the detail of the refining function is illustrated in Alg. 4.

The main idea is:

1. Refine TM To solve the ‘‘low hit rate entries cannot

represent hooked segment’’ problem, we give segments

of those selected low hit rate entries one more chance.

Specifically, we re-sample new entries from these
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segments and put them into the IndexExt (i.e., Alg. 4

line 9), and remove those low hit rate entries.

2. Refine TD Those low hit rate entries whose segments

have also been sampled by other entries in TM with

high hit rate will be deleted. Duplicated entries in their

hooked segments in TD will also be removed (i.e.,

Alg. 4 line 10-13).

Furthermore, to avoid adding them back to the index table,

a Bloom Filter (BL) [18] (Alg. 4 line 14) is used to record

hash information of removed FPs. By doing so, entries in

IndexOrg will not be entirely kept and valuable space will

be released for future use. When scaling up finishes, EAD

will merge IndexOrg and IndexExt, and calculate the

updated Deduplication Ratio. If the new Deduplication

Ratio is still lower than C � EDR after duplication re-de-

tection, EAD will reset the value of C, and make C � EDR
to be equal to the value of current Deduplication Ratio.

Therefore, the requirement on deduplication performance

will not surpass the system ability. In order to select as few

chunks as possible to conduct this expensive refining

operation, we also propose a method to estimate, how

many entries need to go through the duplication re-detec-

tion and then be removed from IndexOrg to release the

space. We use entries with low hit rate to track their cor-

respondent segments and detect evicted duplicate chunks.

The threshold for labeling hit rate as high or low is not

arbitrary. Suppose that we have n chunks come in for a

backup process, the measured Deduplication Ratio is DRmr

(DRmr\C � EDR). At the meantime, we have the value of

hit counters as f0; 1; . . .; c; . . .;mg (c and m are two posi-

tions that will be used later), and their correspondent

amount of entries are fn0; n1; . . .; nc; � � � nmg (i.e., there are

n0 entries whose counter values are zero, etc.). Assume that

the sampling rate before the latest downsampling operation

is R0, thus we claim that the minimum number of index

entries to be selected is:

nevt ¼ R0 � ðC � EDR� DRmrÞ �
Xm

i¼0

ni: ð13Þ

To evict this amount of chunks, based on above calcula-

tion, EAD starts picking index entries with counter value as

zero (n0), if n0\R0 � nevt, EAD picks entries with hit rate as

one and vice versa, until it satisfies (at cth counter position,

0� c�m):

Xc

i¼0

ni � nevt: ð14Þ

The intuition is that the system should perform as close to

the real deduplication ratio of the workload C � EDR (QoS

adjusted) as possible, but it can only detect DRmr . It is

highly possible that the missing part of the detection is due

to no enough space for right sample entries in the index.

Therefore, we need to remove space of this part of ‘‘junk’’

or ‘‘duplicated’’ entries for other more useful entries.

Lastly, since the sample rate before last downsampling (R0)

is able to handle the current workload, we use this sample

rate to pick entries in the ðC � EDR� DRmrÞ �
Pm

i¼0 ni to

help decrease the overhead.

4 Analytical analysis of EAD

In this section, we focus on the design intuition of the core

technique of EAD: how to estimate the expectation of

dataset’s duplication ratio (EDR). Notice that more detailed

proof is presented in ‘‘Appendix’’. If we randomly pick one

sample from a segment, then the number of chunks that are

same with the picked sample in the segment can somehow

reflect the duplication ratio of segment. Our EDR is

inspired by this idea and further extends to the case that

randomly picking multiple samples from multiple seg-

ments. In detail, EDR uses the repeating time of sampled

chunks in the stream to estimate the duplication data

amount, and uses the repeating time of samples in the

estimation base to get the unique sample number. The

fraction of them reflects the duplication ratio as well as the

expected deduplication ratio of the stream received so far

(DRCur). This process is independent of the prefetching and

is purely relying on the workload, so it would be more

accurate than the measured system-performed deduplica-

tion ratio DRmr.

To further explain this intuition, we model the problem

in Fig. 4. The incoming stream can be divided into multiple

same size (T chunks) segments. We introduce the concept

of ‘‘dupSet’’ which is a group of duplicated chunks with

same FP in each segment. It is a virtual ‘‘group’’ for

analysis purpose, and same-FP chunks do not need to come

continuously as long as they are in the same segment. Let T

be the total size of a segment, and di be the ith dupSet (we

also use di to refer to as dupSeti for convenience). Since

segments consist of these duplicated dupSets, jdij 2 ½1; T�
and

Pn
i¼1 jdij ¼ T . jdj ¼ 1 means this dupSet is a non-

duplicated chunk in the segment, and jdj ¼ T means the

entire segment is fulfilled by chunks with same FP. We

then show how EDR is equal or close to the actual DRCur in

three levels. Notice that all the analysis below are after the

warming up period (i.e., ‘‘first time’’ indexing).

[Level 1] DupSet Denote the number of samples from

each dupSet as ji (2 ½0; di�). When ji ¼ 0, this dupSet is

not sampled, and when j ¼ di all chunks in this dupSet are

sampled. We also have
Pn

i¼1 ji ¼ j, where j is the sample

number of each segment. The exact deduplication ratio of

di can be calculated as:
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DRðdiÞ ¼ 1� URðdiÞ ¼ 1� 1

di
: ð15Þ

Since EAD is based on the sampling counters, it cannot

estimate and will ignore those non-sampled dupSet. EDR

of a sampled dupSet is calculated as:

EDRðdiÞ ¼ 1� 1

ji

X

j2BðdiÞ

hSmpj

hSegj

0
@

1
A ð16Þ

¼ 1� 1

ji
� ji
di

¼ 1� 1

di
¼ DRðdiÞ; ð17Þ

where BðdiÞ means chunks in B that belong to di. Specif-

ically, Eq. 17 holds due to the following facts: (1) all

chunks in di are exactly same, thus the sample counter hSmpj
is equal to sample size ji; and (2) the total hit-in-sample

counter hSegj in a dupSet should be the same as the total

chunk number of the dupSet (di). Notice that if there are

more than one sample from this dupSet, only one of them

will be stored in BðdiÞ (Alg. 2 line 2 and 3). To sum up, in

level 1, DRi ¼ EDRi stands, which means EDRi can

accurately reflect the actual DRi. For further comparison,

we can accurately calculate the URi by using these two

counters, as:

URðdiÞ ¼
1

ji

X

j2BðdiÞ

hSmpj

hSegj

0

@

1

A: ð18Þ

[Level 2] Segment Segment s has T chunks and is assem-

bled by n dupSets. Its DRðSegsÞ can be exactly calculated

as:

DRðSegsÞ ¼ 1� URðSegsÞ ¼ 1� n

T
¼ 1� 1

�d
: ð19Þ

We can calculate EDR of Segs (can contain some non-

sampled dupSets) as:

EDRðSegsÞ ¼ 1� 1

j

X

i2BðSegsÞ

hSmpi
hSegi

0
@

1
A ð20Þ

¼ 1� 1

j

X

BðdiÞ2BðSegsÞ

X

j2BðdiÞ

hSmpj

hSegj

0
@

1
A

2
4

3
5 ð21Þ

¼ 1� 1

j

X

BðdiÞ2BðSegsÞ

"
ji � URðdiÞ

#8
<

:

9
=

; ð22Þ

¼ 1�
X

BðdiÞ2BðSegsÞ

� ji
j
� 1
di

�
; ð23Þ

where BðSegsÞ is the estimation base B of Segs. Eq. 21

divides the sum in Eq. 20 into multiple subsums from each

sampled dupSet. We then use Eqs. 18 and 17 to calculate

those subsums, and finally get Eq. 23. To solve Eq. 23, we

hereby introduce the following approximation based on the

assumption that sampled dupSet can reflect the entire

segment:

X

BðdiÞ2BðSegÞ

� ji
j
� 1
di

�
� URðSegsÞ ¼

1
�d
: ð24Þ

Thus, Eq. 23 can be calculated as:

EDRðSegsÞ � 1� 1
�d
¼ 1� URðSegsÞ ¼ DRðSegsÞ: ð25Þ

This approximation has two error sources: (1) EDR may

not accurately reflect duplication status of those dupSets

with zero samples (ji ¼ 0); and (2) Different dupSets may

have different sizes. EDR ignores this and assigns them

same weights in Eq. 24. We provide more detailed analysis

on them later.

[Level 3] Stream Since the stream is assembled by

multiple (even unlimited) segments, we can accurately

calculate DRStream at moment TCur as:

DRCurðStreamÞ ¼ 1�
Pns

s¼1 T � URðSegsÞ
T � ns

¼ 1�
Pns

s¼1 URðSegsÞ
ns

;

ð26Þ

where ns is number of segments in the stream. We further

calculate EDR as:

1 1 1 1

| dupSet i |=di

| seg s |=T

1 1 1 1 2 2 3 3 3 3 3 3 4 4 4 4

| dupSet i |=di dn

n dupSets

| seg s |=T

1 1 1 1 2 2 3 3 3 3 3 3 4 4 4 4

| dupSet i |=di dn

ns  segments

5 5 6 6 6 6 7 7 8 8 8 9 9 10 10 10

Level 1. DupSets Level 2. Segment 

Level 3. Stream 

Fig. 4 Example of dupSet, segment and stream
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lhs ¼ 1� 1

ns � j
X

i2BðnsSegÞ

hSmpi
hSegi

0
@

1
A

¼ 1� 1

ns � j
X

BðSegÞ2BðnsSegÞ

X

i2BðSegÞ

hSmpi
hSegi

0

@

1

A

2

4

3

5

¼ 1� 1

ns

X

BðSegÞ2BðnsSegÞ

1

j

X

i2BðSegÞ

hSmpi
hSegi

0
@

1
A

2
4

3
5

¼ 1� 1

ns

X

BðSegÞ2BðnsSegÞ

"
1� EDRðSegsÞ

#8
<

:

9
=

;:

ð27Þ

Here we use the ‘‘average’’ segment’s URðSegsÞ (Eq. 25) to
regress ‘‘1� EDRðSegsÞ’’ in Eq. 27 with a slight regression
error, as:

lhs � 1� 1

ns

X

BðSegÞ2BðnsSegÞ
URðSegsÞ

2
4

3
5 ð28Þ

¼ 1�
Pns

s¼1 URðSegsÞ
ns

¼ DRCurðStreamÞ: ð29Þ

5 Evaluation

We created a realistic dataset to evaluate our solution. The

dataset comprises of virtual machine images. These images

have different types of programs installed, as well as dif-

ferent types of data drawn from Wikimedia Archives [19]

and OpenfMRI [20]. For the following results, we denote

our EAD solution as Elastic, and compare against two

alternatives. The first alternative, denoted as FullIndex,

represents an ideal situation where there is unlimited RAM

available. This will serve as an upper bound on the total

amount of space savings. The other alternative is denoted

as DownSample, which is a recent approach [7] that

dynamically adjusts the sampling rate to deal with insuf-

ficient RAM. Table 2 summarizes the configuration of our

testbed.

5.1 Performance of EAD

� Deduplication ratio Deduplication ratio is the standard

metric used to evaluate deduplication systems [13, 21].

Here, we use the normalized deduplication ratio as our

metric for evaluation (normalized by the full index as the

theoretical upper bound). The normalized deduplication

ratio is defined as the ratio of measured Deduplication

Ratio to Deduplication Ratio of FullIndex

deduplication.

As shown in Figs. 5 and 6, although EAD does not

claim equally high ratio compared to FullIndex and

Downsample, the performance of Elastic is always

higher than 98% and the gap between it and the other two

is less than 2%. When about 5% of data has been pro-

cessed, Elastic has a thriving performance. Because of

trivial size of initial index size, Elastic cannot detect

enough duplicate chunks, leading to a poor performance.

Figures 7 and 8 further show how sampling rate and

number of index slots used vary above cases. Both

DownSample and Elastic have comparatively very

low memory cost, which shows that EAD is able to use less

RAM space to achieve a satisfying deduplication ratio.

�Deduplication efficiency Another metric we use is the

deduplication efficiency. The deduplication efficiency is

the ratio of the duplicat data detected to the number of

index entry slots, which reflects a deduplication algo-

rithm’s ability to cache most valuable index entry slots.

By using this criterion, we make more fairly compar-

isons among EAD and the other two solutions, as shown in

Fig. 6. It shows that Elastic outperforms both Down-

sample and FullIndex on efficiency. Notice that

Table 2 Testbed configuration

Component Specifications

Processor Intel i3-2120T at 2.60GHz

Processor cores 4 cores

Memory capacity 8GB

RAID Controller LSI SAS 2008

Network 10 Gigabit ethernet NIC

Operating system Ubuntu 12.04.5

Linux kernel 3.14 mainline

SSD made Intel and Samsung NVMe SSDs

SSD capacity 500 GB–4 TB

HDD made Western digital

HDD capacity 2–8 TB
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Elastic always yields a higher efficiency, almost 4 times

of that from Downsample and 30 times of that from

FullIndex. This is because that its elastic feature

enables it to utilize as little memory space as possible to

detect enough duplicate data as required, avoiding memory

waste as the other two do.

5.2 Monitoring accuracy

Elasticity aware deduplication can work properly only

when it is able to accurately monitor the real time dedu-

plication efficiency. As the criteria of judging deduplica-

tion performance, estimated duplication rate is supposed to

be as accurate as possible. Otherwise, elasticity might bring

unexpected effect on the performance if it makes an

inappropriate decision for index scaling up. Figure 9 shows

the accuracy of monitored deduplication ratios during the

backup process. 500 independent tests were conducted on

the dataset. We consider the ratio of estimated deduplica-

tion ratio in EAD to that in FullIndex as error deviation,

which indicates the real time accuracy of monitoring. We

can see that initially the error deviation is at most 10% , but

as more data comes in, the deviation reduces to 2%, which

offers a reliable criterion for evaluation on system

performance.

5.3 Performance of different EAD parameters

We also conducted experiments to determine the impact of

different parameters on our EAD algorithm under multiple

clients running heterogeneous workloads such as video

streaming, file backup, big data processing applications,

and etc.

� Impact of C The parameter C represents the system’s

tolerance to missing duplicate data. The higher the C is,

more sensitive it will be to trigger the RAM scaling up, and

vice versa. However, an inappropriately large C will also

lead to a high scale-up frequency due to workload bursties

[22]. Thus, in order to investigate how to balance the

performance and sensitivity, we conduct sensitivity anal-

ysis on different values of C, as shown in Fig. 10, where

the initial index entry slots are 100 K and D ¼ 2. We see

that a higher C has a higher deduplication ratio, though

C ¼ 0:95 case also yields the highest overall efficiency.

This implies that EAD is able to achieve both good

deduplication ratio and efficiency (Fig. 11). This can be

0 20 40 60 80 100
0

20

40

60

80

100

Amount of data processed (%)

D
ed

up
lic

at
io

n 
E

ffi
ci

en
cy

 (
M

B
/S

lo
t)

FullIndex
DownSample
Elastic

Fig. 6 Dedup efficiency

0

2

4
FullIndex
DownSample
Elastic

# 
of

 In
de

x 
S

lo
ts FullIndex

DownSample
Elastic

 0       20      40      60       80     100

4

3

2

1

0

x 104

Amount of data processed (%)

Fig. 7 Index usage comparison

0

5

 
FullIndex
DownSample
Elastic

S
am

pl
in

g 
R

at
e FullIndex

DownSample
Elastic

 0           20         40          60          80        100

1

0.75

0.5

0.25

0

Amount of data processed (%)

S
am

pl
in

g 
R

at
e

Fig. 8 Sampling rate comparison

20 40 60 80 100
1

1.02

1.04

1.06

1.08

1.1

Percentage of data processed(%)

E
rr

or
 D

ev
ia

tio
n

Fig. 9 Estimation accuracy

Cluster Computing (2018) 21:1561–1579 1571

123



seen from Fig. 10, where there is a nearly 30% of differ-

ence on deduplication ratio between the case of trigger

value as 60 and 90%.

� Impact of D The D parameter indicates the magnitude

of both sampling rate and RAM incrementation. A D value

of two, for example, means that the sampling rate doubles

during the scaling operation. Figure 12 shows the

improvement on deduplication ratio under different scaling

parameter policies. In general, a higher D will aggressively

expand RAM space during scaling up and will also help to

explore more duplicate data after scaling up as shown in

Fig. 12. This is because of its higher sampling rate after

resampling.

� Impact of MI The MI parameter is the initial size of

the memory for the index. Figure 13 shows the Dedupli-

cation Efficiency of EAD with different initial memory

sizes, which indicates that the most conservative RAM

initialization case claims the highest deduplication effi-

ciency. Thus, EAD provides well balance between RAM

and storage savings.

� Impact of SSD and RAM sizes To evaluate the

effectiveness of assignment of SSDs into the EAD storage

system, the RAM size is fixed to hold 10 k index entries,

and the SSD size is varying from 125 to 4000 GB. Dif-

ferent caching algorithms (e.g., LRU [23], CLOCK [24],

ARC [25], CAR and CART [26]) are used to manage

pages in SSDs. Figure 14 shows IO hit ratios under dif-

ferent SSD sizes when RAM is set to store at most 10k

index entries. Figure 15 shows the corresponding normal-

ized IO operation costs under different SSD sizes, where

the cost under our RAM-HD design is used as the baseline.

We first observe that advanced algorithms like ARC,

CAR and CART have higher hit ratio and lower IO cost

than naive algorithms like LRU and CLOCK. We can see

that our design is able to save almost 75% of IO operation

costs compared to our RAM-HD design. This is because of

their enhanced methods to avoid being flushed by IO

spikes.

We also observe that, although in general, the larger the

SSD is, high hit ratio and low IO cost it will obtain (i.e., the

red rectangle in Figs. 14 and 15). However, the perfor-

mance improvement brought by larger SSD size is not a

linear function of SSD size and price. This implies that in

real implementation, it is necessary to find a sweet spot,
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where EAD has sufficient capacity to hold active working

sets of all traces.

We further investigate the impact of both RAM and SSD

sizes during the scaling up process under more than 120

virtual machines. Figures 16 and 17 show IO hit ratios and

normalized IO operation costs (i.e., RAM-HD design is

used as the baseline) under different amounts of RAMs and

SSDs during a real scaling up progress, respectively. We

see that increasing RAM and SSD size can dramatically

improve IO hit ratios. We also observe that the IO cost is

more sensitive to the change of RAM size than SSD. In the

future, this observation can be used to develop a metics

(e.g., a weight function of performance improvement and

scaling up cost), such that EAD can use that to dynamically

make decisions to add more RAMs or SSDs during

runtime.

6 Related work

Numerous research has been done to improve the perfor-

mance of finding duplicate data. Work by [27] focused

on techniques to speed up the deduplication process.

Researchers have also proposed different chunking algo-

rithms to improve the accuracy of detecting dupli-

cates [28–32]. Other research considers the problem of

deduplication of multiple datatypes [12, 33].

These of researches are complementary to our work, can

be easily incorporated into our solution. ChunkStash [34]

also attempted to speedup inline storage deduplication by

indexing a small fraction of chunks per container in the

Flash memory. However, it does not consider the adaptive

sampling rate to help to absorb bursties from large-scale

datacenter I/O streams. [35] further explored the effec-

tiveness of deduplication for large host-side caches in

virtualized datacenter environments running dynamic

workloads. Nitro [36] is an SSD cache design with

adjustable deduplication, compression, and large replace-

ment units. It evaluates the trade-offs between data

reduction, RAM requirements, SSD writes, and storage

performance. Our previous work [37] presented a basic

model of centralized data deduplication using elasticity

feature of cloud computing, however we did not utilize

Flash resources in that work to improve the I/O perfor-

mance. In this paper, we present a deduplication frame-

work that takes advantage of a multi-tier storage

architecture consisting of RAM, SSD and HD. We further

provide mathematical proof of our algorithm.

The ever increasing amounts of data coupled with the

performance gap between in-memory searching and disk

lookups, mean that increasingly, disk IO has become the

performance bottleneck. Recent deduplication researches

have focused on addressing the problem of limited mem-

ory. Work by [38] proposed integrated solutions which can

avoid disk IOs on close to 99% of the index lookups.

However, [38] still puts index data on the disk, instead of

memory. Estimation algorithms like [39] can be used to

improve the performance by reducing total number of

chunks, but the fundamental problem remains as the

amount of data increases. Other existing research in this

area have proposed different sampling algorithms to index

more data using less memory: [6] introduced a solution by

only keeping part of chunks’ information in the index; and

[7] proposed a more advanced method based on the work

in [6] by deleting chunks’ fingerprints (FPs) from the index

when it’s approaching fullness.

Many research works have been done to investigate the

problem about how to best utilize the SSD resources as a

cache-based secondary-level storage system or integrated

with HDD as a hybrid storage system. Some conventional

caching policies [23, 40–42] such as LRU and its variants

maintain the most recent accessed data for future reuse

while some other works intended to design a better cache
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replacement algorithm by considering frequency in addi-

tion to recency [25, 43]. Guerra et al. [44] presented a

SSD-based multi-tier solutions to perform dynamic extent

placement using tiering and consolidation algorithms. Tai

et al. [45] presented a new VMware Flash Resource

Manager, named, which considers of both performance and

incurred cost for managing Flash resources, and updates

the content of SSDs in a lazy and asynchronous mode.

Studies [46–50] investigated SSD and NVMe storage-re-

lated resource management problems, such as how to

reduce the total cost of ownership and how to increase the

Flash device utilization. Recently, [51] proposed a hybrid

elasticity approach that takes into account both the appli-

cation performance and the resource utilization to leverage

the benefits of both approaches. Study [52] designed a

secure ciphertext deduplication scheme based on a classical

CP-ABE scheme by modifying the construction with a

recursive algorithm, eliminating the duplicated secrets and

adding additional randomness to some certain ciphertext.

Study [53] investigated the difference between inline and

offline deduplication algorithms, and proposed a collective

inline memory contents deduplication proposal algorithm.

7 Conclusions

This paper presents a deduplication framework that takes

advantage of a multi-tier storage architecture consisting of

RAM, SSD, and HD, and the rapid scalability capabilities

of a virtualized cloud environment. Our EAD solution

balances both deduplication performance and memory size

allocation to ensure effective use of cloud resources. We

evaluated EAD using real trace driven experiments, and the

results indicate that EAD save at least 74% of overall IO

access cost compared to the traditional design. Meanwhile,

our EAD is able to detect more than 98% of all duplicate

data, but it only consumes less than 5% of expected

memory space. In the further, we plan to implement EAD

to a larger cluster with multiple deduplication servers. We

also plan to improve EAD by adding one more NVMe

disks tier in the future.
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Appendix: Proof and error analysis
of expectation of duplication ratio (EDR)

Real-world workloads in enterprise environments have

different I/O behaviors, but their pattern can be regresses to

some long-term predicable streams. This can be regarded

as a super set of number of ns homogeneous T-size seg-

ments. This stream can be modeled by an average segment

(Seg), such that any results which holds on this average

segment also holds for the entire stream, i.e.,

EDRCurðStreamÞ � DRCurðStreamÞ
lim
ns!1

DRCurðStreamÞ ¼ DRðSegÞ: ð1Þ

Therefore, we can reduce the problem from ‘‘level 3’’ to

‘‘level 2’’. In this section, we demonstrate how EDR(Seg) is

close to DRðSegÞ during runtime. We first make the fol-

lowing definitions:

Definition 1 dupSet We first define duplicated set (‘‘dup-

Set’’) as the set of same-value chunks in a segment. For

example, in Fig. 18 case 2, there are four dupSets, i.e.,

dupSet1 ¼ f1; 1; g; dupSet2 ¼ f2; 2; 2; 2; 2; 2g;
dupSet3 ¼ f3; 3; 3g; dupSet4 ¼ f4; 4; 4; 4; 4g:

ð2Þ

Definition 2 Fully and partial sampled segments For each

dupSet di among T chunks in a segment, if at least one

chunk per dupSet is sampled in B, then this segment is

considered fully sampled; otherwise it is partially sampled.

Note that the worst case of the partially sampled segment is

non-samples, which will happen if j[ 0. Based on this

definition, we can divide the problem into four cases as

shown in Table 3. Fig. 18 also shows examples for each

case. Later we prove that Case 1 and 3 are accurate, while

Case 2 and 4 are with known estimation errors. Here we

also show the probabilities of each cases. Given the size of

each segment T, size of each dupSet di, sample number

jð� nÞ, and total number of dupSets n, the probability that

a segment is fully sampled is:

PFullSmp ¼
Qn

i¼1 ðC
di
1 Þ

CT
j

¼ ðCd
1Þ

n

CT
j

¼ dn

CT
j

; ð3Þ

and the probability that a segment is partial sampled is:

PPartSmp ¼ 1� dn

CT
j

: ð4Þ

Definition 3 Estimation error To evaluate the estimation

accuracy, we define the estimation error d which is the

distance between EDR and DR:

|seg j |=T=16

1 1 1 1 2 2 2 2 3 3 3 4 4 4 4

|dupSet 1 |=d1 =4 d4=4

n=4 dupSets, k=5 samples

Case 1. Fully Sampled, Equal DupSetSize

|seg j |=T=16

1 2 2 3 33 4 4 4

|dupSet 1 |=d1=2 d4=5

n=4 dupSets, k=5 samples

Case 2. Fully Sampled, Non-Equal DupSetSize

1 2 2 2 2

3

4 4

|seg j |=T=16

1 1 1 1 2 2 2 2 3 3 3 4 4 4

|dupSet 1 |=d1 =4 d4=4,non-sampled

n=4 dupSets, k=4 samples

Case 3. Partially Sampled, Equal DupSetSize

|seg j |=T=16

1 2 2 3 33 4 4

|dupSet 1 |=d1=2 d4=4,non-sampled

n=4 dupSets, k=4 samples

Case 4. Partially Sampled, Non-Equal DupSetSize

1 2 2 2 2

3

4 4

4

4

1 2 3 4B
1 1 2 4hSmg

4 4 4 4hSeg

1 2 3 4B
1 1 2 4hSmg

2 6 3 5hSeg

1 2 3B
1 1 2hSmg

4 4 4hSeg

1 2 3B
1 1 2hSmg

2 6 3hSeg

Estimation Base

Estimation Base

Estimation Base

Estimation Base

Fig. 18 Examples of different sampling scenarios
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d ¼ EDRðSegÞ � DRðSegÞj j; ð5Þ

where d 2 ½0;þ1Þ, and the less d the more accuracy EDR

is. When d ¼ 0, the estimation is fully accurate. Based on

these assumption and definitions, we now calculate the d of

each case:

[Case 1] Fully sampled, equal DupSet size

We first calculate the actual DRCur of a segment:

DRðSegÞ ¼ 1� n

T
¼ 1� 1

d
: ð6Þ

We then investiage the EDR. Since the ‘‘fully sampled’’

case ensures there is at least one sample per dupSet, we can

denote j ¼ nþ e, where e (2 ½0; T � n�Þ is the redundant

samples that are duplicated with existing one sample per

dupSet. We further let each dupSet di being assigned ji ¼
1þ ei samples, where ei is the number of redundant sam-

ples of di, and
P

i2B ei ¼ e. Fig. 18 Case 1 illustrates an

example, where j3 ¼ 1þ e3 ¼ 1þ 1 ¼ 2. Therefore,

EDR(Seg) can be calculated as:

EDRðSegÞ ¼ 1� 1

j

X

i2B

hSmpi
hSegi

� �
¼ 1� 1

j

X

i2B

1

di
þ
X

i2B

ei
di

 !
:

ð7Þ

Since in Case 1 all dupSets have the same size (di ¼ d),

Eq. 7 can be simplified as:

lhs ¼ 1� 1

j
1

d
� nþ 1

d
� e

� �
¼ 1� 1

jd
ðnþ eÞ ¼ 1� j

jd
¼ 1� 1

d
:

ð8Þ

d = 0, which proves that our EDR can reflect the duplica-

tion ratio of the accumulated workload with 100% accu-

racy in Case 1.

[Case 2] Fully sampled, non-equal DupSetSize

It is straightforward to get the real DRðSegÞ of one

segment as:

DRðSegÞ ¼ 1� n

T
¼ 1� 1

�d
: ð9Þ

However, to calculate EDR, we need to divide the ‘‘fully

sampled’’ case into two sub cases: (2.1) Exact fully sam-

pled: each dupSet has exactly one sample in B, and j ¼ n;

and (2.2) Redundantly fully sampled: at least one dupSet

has more than one samples in B, i.e., 8ji � 1; i 2 ½1; n�
and j[ n, where ji is the sample number of di.

[Case 2.1] Exact fully sampled

Since j ¼ n and ji ¼ 1, we have:

EDRðSegÞ ¼ 1� 1

j

X

i2B

hSmpi
hSegi

� �
¼ 1� 1

n

Xn

i¼1

1

di

 !
:

ð10Þ

Based on Eqs. 9 and 10, the estimation error is:

d ¼ EDRðSegÞ � DRðSegÞj j ¼ 1
�d
� 1

n

Xn

i¼1

1

di

 !�����

�����

¼ 1

AðDÞ �
1

HðDÞ

����

���� ¼
1

HðDÞ �
1

AðDÞ :
ð11Þ

In Eq. 11, we use notation A(D) and H(D) to represent the

arithmetic mean and harmonic mean of sample set D ¼
fdijdi 2 Segg respectively. It is always true that

0�AðDÞ�HðDÞ, so we remove the absolute value sign.

Aiming for better performance, we further investigate

under what case d can be minimized. We conduct several

experiments tuning dupSet’s sizes under the ‘‘exact fully

sampled in non-equal dupSet’’ case.

Figure 19 shows seven representative d curves with

different size of one subSet (subSet A). There are three

dupSets A,B,C in the segment with size of T. For each

curve, we iterate the size of dupSet B. Obviously dupSet

C’s size is ðT � jAj � jBjÞ. We observe that (1) when the

remaining two dupSets (B and C) have exactly same sizes,

the d will be the lowest of that curve; and (2) when all of

three dupSets have the same sizes, the d is the global

lowest among all curves. That is to say, the more equa-

likely of size of each dupSet is, the lower estimation error

will be.

[Case 2.2] Redundantly fully sampled

All dupSets are sampled and some of them have more

than one sample, i.e., j ¼ nþ e. We have:

Table 3 Four cases with different sampling degrees and dupSet sizes

dupSet size Fully sampled Partially sampled

Equal size (1) Accurate (3) Accurate

Non-equal size (2) Approximate (4) Approximate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

A=12 A=25 A=38 A=50 A=63 A=75 A=87 Size of dupSet B
(% of T)Size of dupSet A (% of T)

Fig. 19 d of a three-dupSet segment with different dupSet sizes
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EDRðSegÞ ¼ 1� 1

j

X

i2B

hSmpi
hSegi

� �
¼ 1� 1

nþ e

X

i2B

1þ ei
di

 !
:

ð12Þ

The estimation error is:

d ¼ EDRðSegÞ � DRðSegÞj j ¼ 1
�d
� 1

nþ e

X

i2B

1þ ei
di

 !�����

�����:

ð13Þ

Here we introduce a super set DSup, which is extension of

D, i.e., DSup ¼ fdijxj 2 B; xj 2 dig. For example, in Fig. 18

Case 2, D ¼ f1; 2; 3; 4g and DSup ¼ f1; 2; 3; 3; 4g. There-
fore, we can use the harmonic mean of DSup to help to

represent the second part of Eq. 13. We further use

DðDSupÞ ¼
P

i2B ðei � diÞ, to represent the total size of

dupSets that those redundant samples are associated with,

where ei is the number of redundant samples from di. For

example, in Fig. 18 Case 2, we have DðDSupÞ ¼ 1� 3 ¼ 3.

Therefore, Eq. 13 equals to:

d ¼ 1

AðDÞ �
1

HðDSupÞ

����

����

¼ 1

AðDSupÞ
� 1

HðDSupÞ

� �
þ 1

AðDÞ �
1

AðDSupÞ

� �����

����

¼ 1

AðDSupÞ
� 1

HðDSupÞ

� �
þ n

T
� nþ e
T þ DðDSupÞ

� �����

����:
ð14Þ

As shown in Eq. 14, the non-equal case estimation error

comes from two parts: (1) the difference between arith-

metic and harmonic mean (same as Eq. 11); and (2) the

number of picked samples which are not necessarily pro-

portional to each corresponding dupSets’ sizes (i.e., dup-

Sets’ weights in the segment). To further investigate d,
Fig. 20 shows the relationship between d and different

number and distribution of redundant samples in a three-

non-equal-dupSet segment example. In this experiment,

jdupSetAj ¼ 10%T , jdupSetBj ¼ 30,and jdupSetCj ¼
60%T . We increase the number of samples from each

dupSet in different orders. For example, curve with ‘‘10,

30, 60’’ means that firstly each dupSet has one sample, and

then we keep adding one more sample of 10%T dupSet

until it is fully indexed. Later we repeat it for 30%T and

60%T dupSets until the entire segment is fully indexed. We

observe that, if we pick lots of samples from 10%T dupSet

at beginning, the error will reach the worst. More the

samples from one dupSet, more the weight of that dupSet

will be in the final estimation. It will be more accurate if

the number of picked samples are proportional to each

dupSet, or from a dupSet who shares a relatively big

fraction of the segment. Notice that, we also conduct

experiments where picking samples with random or some

distributions, and consecutively we end up with the same

conclusion. Thus, we show part of results to demonstrate

the bounds of d.
[Case 3] Partially sampled, equal DupSetSize

Let TS be the sampled part of a segment, n0 be the

number of sampled dupSets, and e0 be the total redundant

samples from those sampled dupSets. We have n0 þ e0 ¼ j.
Then EDR of the segment is:

EDRðSegÞ ¼ 1� 1

j

X

i2B

hSmpi
hSegi

� �

¼ 1� 1

n0 þ e0
X

i2BðTSÞ

1

di
þ
X

i2BðTSÞ

e0i
di

0
@

1
A ð15Þ

¼ 1� 1

n0 þ e0
n0

d
þ e0

d

� �
¼ 1� 1

d
¼ DRðSegÞ: ð16Þ

Therefore, like Case 1, EDR can 100% reflect the DR(Seg)

in Case 3.

d ¼ EDRðSegÞ � DRðSegÞj j ¼ 0: ð17Þ

[Case 4] Partially sampled, non-equal DupSetSize
Similar to Case 2, the d can be calculated as:

d ¼ EDRðSegÞ � DRðSegÞj j ¼ 1
�d
� 1

n0 þ e0
X

i2B

1þ e0i
di

 !�����

�����:

ð18Þ

Also, Eq. 18 can further be divided into two sub cases:

[Case 4.1] Exact partially sampled

To differentiate with fully sampled case, we use the

notation BðTSÞ to represent the estimation base that has

partial samples of all dupSets (TS of segment T and TS is a

subset of T). Similar to Case 2.1, we let DTS ¼ fdiji 2
BðTSÞg be the sampled dupSet’s set. Since each sampled

dupSet has only one sample, so e0 ¼ 0, and:

d ¼ 1

AðDÞ �
1

HðDTSÞ

����

����

¼ 1

AðDTSÞ �
1

HðDTSÞ

� �
þ 1

AðDÞ �
1

AðDTSÞ

� �����

����: ð19Þ

0

0.01

0.02
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0.04

0.05

0.06
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0
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Fig. 20 d of three-dupSet segment with different redundant samples
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[Case 4.2] Redundantly partially sampled

Similar to Case 2.2, let DTS
Sup ¼ fdijxj 2 BðTSÞ; xj 2 dig

represent the super set of DTS . For those sampled dupSets,

there exist redundant samples, i.e., e0 6¼ 0, as a result we

have:

d ¼ 1

AðDÞ �
1

HðDTS
SupÞ

�����

�����

¼ 1

AðDTS
SupÞ

� 1

HðDTS
SupÞ

" #
þ 1

AðDÞ �
1

AðDTS
SupÞ

" #�����

�����: ð20Þ

We can see from Eqs. 19 and 20, the estimation error of

partially sampled case comes from two source: arithmetic

and harmonic means difference, and using partial dupSets

to estimate the entire segment. The former has already been

explained in Case 2, and the latter is simply based on the

coverage of BðTSÞ over the entire segment.
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