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Abstract
The aim of this paper is to solve the problem of unsupervised manifold regularization being used under supervised

classification circumstance. This paper not only considers that the manifold information of data can provide useful

information but also proposes a supervised method to compute the Laplacian graph by using the label information and the

Hellinger distance for a comprehensive evaluation of the similarity of data samples. Meanwhile, multi-source or complex

data is increasing nowadays. It is desirable to learn from several kernels that are adaptable and flexible to deal with this

type of data. Therefore, our classifier is based on multiple kernel learning, and the proposed approach to supervised

classification is a multiple kernel model with manifold regularization to incorporate intrinsic geometrical information.

Finally, a classifier that minimizes the testing error and considers the geometrical structure of data is put forward. The

results of experiments with other methods show the effectiveness of the proposed model and computing the inner potential

geometrical information is useful for classification.

Keywords Multiple kernel learning � Manifold regularization � Hellinger distance

1 Introduction

For classification tasks, there are mainly three types:

supervised, unsupervised and semi-supervised. Supervised

learning has both input and output data, of which the output

data are labels of corresponding input data; while, unsu-

pervised learning has only input data. Intuitively, semi-

supervised learning has full input data but has partial out-

put data. In the field of supervised classification, many

types of classifiers have been proposed. These classifiers

are the Bayesian methods, least square linear or non-linear

models [1], neural networks [2], decision trees [3], hier-

archical methods [4] and so on [5–7]. Most of them are

based solely on the values or relations of the training data

and are solved by learning parameters or a linear system,

and a method to estimate the potential geometry within

data has not yet been fully developed. In this study, we

consider the geometry aspect of data as important infor-

mation, introducing it into a learning classifier to obtain a

more appropriate classifier. As the manifold theory shows,

any data assume an intrinsic geometrical structure and,

particularly, when xi; yið Þf gni¼12 X � R, we assume that the

marginal probability distribution PX is supported on the

manifold M � X. Although we may not know the distri-

bution information, the manifold structure can be learned

to estimate PX . In order to consider the inner geometrical

structure in the classifier, we adopt the manifold regular-

ization technique, one of the important works is proposed

by [8], in that work a geometrical framework for solving

semi-supervised problem was proposed. Manifold regu-

larization is a geometrically motivated penalty; which

considers the classifier f restricted to M and forces f to be

smooth along M. The computation of manifold regular-

ization is based on a graph. The graph is an important tool

to represent the similarity of pair-wise data samples and

facilitate to extract the geometrical structure within data.

When we build a graph, the traditional methods used are

unsupervised methods and the relation between vertices is

kNN or the Euclidean distance. In supervised classification
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scenario, the label information is given to the classifier;

therefore, we propose a supervised graph method that uses

labels. To evaluate the similarity of pair-wise vertices in a

graph, we use the Hellinger distance instead of the Eucli-

dean distance as the Hellinger distance can represent dis-

tance from four aspects, such as similarity, density,

dimension, and orientation [9] and thus provide a com-

prehensive consideration of data relations. After obtaining

the graph, we need to choose the classifier f . Nowadays

many datasets are from multiple sources and, have multiple

attributes that differ in features and correlate with each

other. Therefore, two points should be considered while

selecting a classifier: One is that the classifier should be

suitable for manifold regularization, and the other is that it

should be flexible in dealing with a complicated dataset.

Therefore, multiple kernel learning (MKL) is a good

option. Unlike a support vector machine (SVM) or a

logistic model, MKL searches for a linear combination of

the base kernel functions by optimizing the generalized

performance evaluation. Given a series of base kernel

functions, MKL displays good adaptability and interpre-

tation [10, 11], and thus far, many algorithms for MKL

have been developed [12–16]. Moreover we know that

regularization techniques are often used in kernel-based

methods [5].

In this study, under the assumption that the inner geo-

metrical structure of data improves the performance of a

learning machine, we present a classifier based on MKL

with the manifold regularization, expecting the regularizer

can extract the inner geometrical structure. In the super-

vised scenario, we propose a supervised graph construction

method. This classifier makes use of an intrinsic geomet-

rical structure obtained by using a graph and has the ability

to deal with a multiple feature dataset via advanced MKL.

The related work is referred to [17], in which a manifold

regularization is also added to multiple kernels classifier.

The differences between previous study and this study are

that previous study adopted an approximated formula-tion

while this study is accurate, previous study adopted origi-

nal manifold regularization while this study applied an

improved manifold regularization with Hellinger distance,

especially fit for the supervised classification. The main

contributions of this paper can be outlined as follows:

(1) We propose the supervised manifold regularization

using the Hellinger distance, where the Hellinger

distance can describe data relationships in details, to

address the problem of the supervised classification

scenario. The proposed supervised manifold regu-

larization is applied to MKL to construct a reason-

able classifier, which can deal with large ranges of

datasets.

(2) We conduct experiments on several public datasets;

the results show that the proposed classifier can

achieve competent performances as compared to

other methods, leading to results related to the

effectiveness and efficiency of the proposed method.

The rest of this paper is organized as follows. In Sect. 2,

we present the manifold regularization MKL, and introduce

the supervised graph method using the Hellinger distance.

In Sect. 3, the classifier is solved, along with a preliminary

analysis on complexity; some concerns are also presented

in this section. Experimental results are described in

Sect. 4. Finally, we present the conclusion and future

research directions in Sect. 5.

2 Methodology

2.1 Classifier formulation

Given a supervised dataset xi; yið Þf gni¼12 X � R, xi 2 Rd,

yi ¼ �1, our task is to find a classifier function f with the

ability to make generalizations. Assume that x; yð Þ are

drawn from a probability distribution P, and the marginal

distribution PX is supported on a compact manifold M;

thus, the conditional distribution PY jX varies smoothly

along the geodesics in the geometry of M, which implies

that similar P yijxið Þ and P yjjxj
� �

correspond to a close

relation between xi and xj. Therefore, an additional regu-

larization term is needed to control the classification

function f alongM. This additional regularization is called

manifold regularization and we use fk k2I to note it. In

practice, PX is usually unknown; therefore, fk k2I is esti-

mated by using a graph [18]. Now, as we use multiple

kernel machine to develop f , we first introduce the repro-

ducing kernel Hilbert space (RKHS) [19]. For a Mercer

kernel K x; yð Þ : X � X ! R, there is an RKHS H of func-

tions f : X ! R with the corresponding norm �k k2H. In H,

we have the following property,

f xð Þ ¼ f �ð Þ;K �; xð Þð Þ ð1Þ

where f 2 H and �; �ð Þ denotes the inner product defined in

H. In order to introduce MKL, we use the idea proposed by

[13] in SimpleMKL; i.e., any function f in the multiple

kernel spaceH is a sum of functions fm;m ¼ 1; . . .;M, each

belonging to Hm. The space Hm is also an RKHS endowed

with an inner product �; �ð Þm and a positive definite kernel

Km; finally, a classical result on RKHS [19] reveals that H
is an RKHS, with the following form:
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K x; yð Þ ¼
XM

i¼1
dmKm x; yð Þ

XM

i¼1
dm ¼ 1; dm � 0; 8m

ð2Þ

where we consider the ‘1 norm constraint to the weights

dmf gMm¼1. For MKL only, given the data

xi; yið Þf gni¼12 X � R, the following form is considered in

the classification task:

f � ¼ argmin
f2H

C
Xn

i¼1
V xi; yi; fð Þ þ c fk k2H ð3Þ

where V denotes a loss function, such as yi � f xið Þð Þ2 for a
least-square model or the hinge loss function for a SVM; C

represents the penalty parameter; and, the RKHS norm

�k k2H forces smoothness conditions on the possible solu-

tions to obtain a better generalization and avoid over-fit-

ting. According to the Representer The-orem [20, 21] and

multiple kernels, the optimal function of problem (3) is

given by:

f � xð Þ ¼
Xn

i¼1
aiK xi; xð Þ ¼

Xn

i¼1
aidmKm xi; xð Þ ð4Þ

where
PM

i¼1 dm ¼ 1; dm � 0; 8m and ai 2 R, 8i.
As mentioned earlier, the intrinsic geometrical infor-

mation is introduced by a regularization form, which is as

follows:

f � ¼ argmin
f2H

C
Xn

i¼1
V xi; yi; fð Þ þ ch fk k2HþcI fk k2I ð5Þ

where ch controls the function complexity in the space H
and cI controls the manifold penalty.

We also noted that in (5), the optimal f � lies in the linear
space S ¼ span K �; xð Þjx 2 M � Xf g, and for any f 2 H,

f ¼ fS þ f?S , where fS denotes the projection of f to S and

f?S represents its orthogonal complement.

Lemma 1. [8] All functions f?S in H vanish on M.

By using lemma 1, we have f xið Þ ¼ fS xið Þ; on the other

hand, fk k2H¼ fSk k2Hþ f?S
�� ��2

H. Therefore, fk k2H¼ fSk k2H
and the minimizer f � is in S. And f � admits the Representer

Theorem in (4). This is helpful in reducing the problem and

optimizing over the results over a finite dimensional space.

2.2 Supervised graph

Initially, fk k2I is estimated using a graph. Define a graph

G ¼ V;Eð Þ, where V denotes vertices on all samples, i.e.,

vi ¼ xi; E represents the edges linking the adjacency pair,

i.e., eij : vi 	 vj; and ‘	 0 implies that two vertices are

adjacent. Two vertices are considered adjacent on the basis

of kNN or the Euclidean distance if xi � xj
�� ��
 e. Further,

the edges are weighted by a weight matrix W , whose ele-

ments are as follows:

wij ¼
1

0

�
vi 	 vj

otherwise

or wij ¼
exp �r2 xi � xj

�� ��2
� �

0

(
vi 	 vj

otherwise

ð6Þ

The natural way to compute manifold regularization is:

fk k2I¼
P

ij f ðxiÞ � f ðxjÞ
� �2

wij; this implies that the outputs

of f maintain adjacent relations. By using a Laplacian

graph, we obtain the following computations:

fk k2I¼ fTLf

L ¼ D�W
ð7Þ

where D denotes a diagonal matrix with the entries

Dii ¼
P

j wij, and fT ¼ f ðx1Þ; . . .; f ðxnÞð Þ. L represents a

Laplacian graph. This method is unsupervised, and in a

supervised setting, it is insufficient from two aspects. One

is the loss of useful information, i.e., labels, and the other is

the fact that the weights are biased if the adjacent vertices

are decided solely on the basis of distance, particularly a

scenario where two points are close but they bear different

labels.

We propose a graph that uses label information for

showing more relations between samples. As we have

already seen, the edges on the graph are based on the

similarity of vertices; therefore, the more we consider the

similarity, the more accurate would be the sample relations.

Here, we adopt the Hellinger distance to depict a similarity.

As we mentioned above, Hellinger distance can represent

data from four aspects: similarity, density, dimension, and

orientation. This distance describes data based on the

probability where the data is generated from, different from

Euclidean distance or Manhattan Distance or Chebyshev

distance or Minkowski distance, all of which are based on

the coordinate or computation of absolute value, and

Mahalanobis distance which emphasizes the distance of

covariance. As for manifold assumption, the probability-

based measure is proper; therefore, the Hellinger distance

is adopted. We notice that the Bhattacharyya distance is

also the probability-based distance but it fits for discreet

random variables. Kullback–Leibler divergence measures

two probabilities but it is not symmetric and mainly for

entropy variations.

After the kNN method, we can obtain the neighbors of

each sample, for instance, for a point x, N xð Þ is to be a

neighbor around x. Define the local sample covariance

matrix Dx:

Dx ¼
X

x2N x0ð Þ
x0 � lxð Þ x0 � lxð ÞT

NðxÞj j � 1ð Þ ð8Þ

where lx is defined as the neighborhood mean and, NðxÞj j
denotes the cardinality, which is a quantity that captures
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the local geometry feature. We know that initially, the

Hellinger distance quantifies the similarity between two

probability distributions [22]; therefore, we define two

Gaussian distributions, namely p xið Þ ¼ N 0;Dxið Þ,
p xj
� �

¼ N 0;Dxj

� �
, with zero mean and covariance Dxi , Dxj .

We can get the Hellinger distance of xi, xj using the

following:

H2
ij ¼

1

2

Z
p1=2ðxiÞ � p1=2ðxjÞ

� �2

dx ð9Þ

After obtaining the Hellinger distance matrix H, we

need to construct the graph G, which would con-sider the

label information. Therefore, G is split into two graphs Gw

and Gb; Gw denotes a within-class graph, Gb represents a

between-class graph. Let ‘ yið Þ be the class label of yi, and

N be the notation of neighbors. Therefore, for each point yi,

we define the following:

Nw1 ¼ yjj‘ yj
� �

¼ ‘ yið Þ;H Dxi ;Dxj

� �

 k1

� 	

Nw2 ¼ yjj‘ yj
� �

¼ ‘ yið Þ;H Dxi ;Dxj

� �
[ k1

� 	

(

Nb1 ¼ yjj‘ yj
� �

6¼ ‘ yið Þ;H Dxi ;Dxj

� �

 k2

� 	

Nb2 ¼ yjj‘ yj
� �

6¼ ‘ yið Þ;H Dxi ;Dxj

� �
[ k2

� 	

( ð10Þ

It is noted that Nw1 denotes within-class neighbors with

a low Hellinger distance and, Nw2 denotes within-class

neighbors with a high Hellinger distance; thus, Nb1, Nb2

represent between-class neighbors with low and high

Hellinger distances. Here, we treat the Hellinger distance

differently, i.e., k1 
 k2 implying that in a same label

occasion we would tighten the bound; otherwise, we would

relax the bound. This is done to avoid a bias. Thus, we can

adapt the set of neighbors according to the class informa-

tion and the local geometry similarity between samples.

Let Ww and Wb be the weight matrices of Gw and Gb,

defined them as follows:

Gw :
if yi 2 Nw1 yj

� �
;ww;ij ¼ 1

if yi 2 Nw2 yj
� �

;ww;ij ¼ exp � xi � xj
�� ��2

� �

8
<

:

Gb :
if yi 2 Nb1 yj

� �
;wb;ij ¼ exp �rij xi � xj

�� ��2
� �

if yi 2 Nb2 yj
� �

;wb;ij ¼ 0

8
<

:

ð11Þ

where rij ¼ maxRadius Nb1ðyiÞ;Nb1ðyjÞ
� 	

for the weight

between different classes; here, a relatively high similarity

needs to be treated as non-zero. Finally, it is easy to show

that the global weight matrix W can be written as

W ¼ Ww þWb. In terms of manifold regularization, the

Laplacian graph is computed in the same way, i.e.,

L ¼ D�W . To use a different notation, here we denote the

Laplacian graph as LH . In the experiment, we use both

unsupervised L and supervised LH for the manifold

regularized MKL classification, to determine their perfor-

mances. Then, we use only L for the following formulas to

simplify the notation. As shown in (5), by taking the

Representer Theorem and (7), we transform (5) into the

following:

min
f2H

C
Xn

i¼1
V xi; yi; fð Þ þ cha

TKaþ cIa
TKLKa ð12Þ

where K ¼
PM

m¼1 dmKm and Km denotes the Gram-matrix

with entry Km xi; xj
� �

. Here, (12) extends the model in [8]

by using multiple kernels; therefore, (12) has the advan-

tages of both multiple kernels and a manifold

regularization.

3 Algorithm and discussion

3.1 Optimization analysis

Using the hinge loss function, we can rewrite (12) as

follows:

min
a;n

C
Xn

i¼1
ni þ cha

TKaþ cIa
TKLKa

s:t: yi
Xn

i¼1
ajK xj; xi

� �
þ b

� �
� 1� ni; ni � 0; 8i

K ¼
XM

m¼1
dmKm;

XM

m¼1
dm ¼ 1; dm � 0; 8m

ð13Þ

Here, aTKa ¼ ak k2K and aTKLKa ¼ Kak k2L. Thus, by

adding Lagrangian multipliers to (13), we obtain the

following:

min
d;a;n;b

J dð Þ

s:t:
XM

m¼1
dm ¼ 1; dm � 0; 8m

J dð Þ ¼ max
b;k

Cnþ ch ak k2KþcI Kak k2Lþ

bT 1� n� Y Kaþ bð Þð Þ � kTn

ð14Þ

where b, k denote the multiplier vectors, 1 represents a

column vector with 1, n denotes a column vector with the

entry ni, and Y refers to a diagonal matrix with the entry

Yii ¼ yi.

First, we consider the problem with a temporary fixed d,

then take the derivative of J dð Þ w.r.t. primal variables:

oJ=oa ¼ 0 ! 2chK þ 2cIKLKð Þa ¼ KYb

oJ=oni ¼ 0 ! 0
 bi 
C

oJ=ob ¼ 0 !
X

i
biyi ¼0

ð15Þ

By inserting the derivative results back into (14), we

obtain the following:
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J dð Þ ¼ min
d

max
b

Xn

i¼1
bi �

1

2
bTYKQYb

s:t:
Xn

i¼1
biyi ¼ 0; 0
 bi 
C

ð16Þ

where Q ¼ 2chI þ 2cILKð Þ�1
and I denotes an identity

matrix. (16) can be solved by using a classical SVM solver

with fixed d. After getting an intermediate optimal b�, we
go back to update each dm; this two-layer problem con-

tinues until the stop criterion is met. To update each dm, we

develop the gradient oJ=odm :¼ gm to update d as follows:

gm ¼ �b�TY KmQ=2� cIKQLKm Yb� 8m ð17Þ

It is certain that the minus sign on the right side of (17)

denotes the descent direction. Meanwhile, we pay attention

to the constraints on d in order to estimate a feasible des-

cent direction. Therefore, we use the Reduced Gradient

Method [23]. Suppose that dv denotes the maximum ele-

ment in d and v represents the index, then according to the

constraint
P

dm ¼ 1, the reduced gradient is as follows:

greducedm ¼ gm � gv
0

�
m 6¼ v

m ¼ v
ð18Þ

Therefore, the feasible descent direction can be com-

puted as follows:

p ¼ pm ¼ �greducedm

�dmg
reduced
m

greducedm 
 0

greducedm [ 0

�

pv ¼ �
P

m 6¼v pm

8
<

:
ð19Þ

After obtaining direction p, we perform a one-dimen-

sional search, and hence, the constraints on d have to be

considered here. Suppose that the update of dtþ1 ¼ dt þ kp
and, the step length k is in the range 0; kmax½ �. Then, we
need to pay attention to the maximum admissible step kmax

to avoid the violation of the feasible field:

kmax ¼
min �dm=pmf g

k0

�
pm\0; dm [ 0

pm\0; dm [ 0f g ¼ /
ð20Þ

where k0 denotes a pre-defined maximum step.

For (16), we consider the KKT conditions; i.e., we

assume that J dð Þ denotes the objective and
P

m dm ¼ 1

represents the constraints. Then, the first-order optimality

conditions can be expressed as follows:

gm þ d� gm ¼ 0 8m
gm � dm ¼ 0 8m

ð21Þ

where d and gm denote the Lagrange multipliers for the

equality and inequality constraints, respectively. The KKT

conditions tell us that for active dm [ 0, we have gm ¼ d,
and for inactive dm ¼ 0, we have gm � d. Therefore, we
define a tolerance e away from d, and the necessary opti-

mality conditions could be the following:

min
dm [ 0

gm � max
dm [ 0

gm












 e

gl � max
dm [ 0

gm; dl ¼ 0
ð22Þ

Note that for vanishing dm, we put the gradient outside

the tolerance tube. Therefore, the stop criterion is decided

by (22), and the other way is the norm of the feasible

descent direction; i.e., when pk k2 
 e, the iteration can be

terminated.

3.2 Bound

As for the problem of error bounds, we often take two

aspects into consideration: one is the sample-based classi-

fication accuracy, and the other is the measurement of

model complexity. According to [24], the Rademacher

complexity is suitable for the case of MKL.

Theorem 1 Let P be the probability distribution on

X � �1f g, let H be �1f g-valued functions defined on X,

and T ¼ xi; yið Þf gni¼1 be the training samples drawn from

P. With a probability of at least 1� d, every function f in

H satisfies the following:

P Y 6¼ f xð Þð Þ
Pn Y 6¼ f xð Þð Þ þ Rn Hð Þ
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=dÞ

2n

r

ð23Þ

where Pn denotes the average output of an indicator

function, and Rn Hð Þ represents the Rademacher complex-

ity of H [25]. Let fk k2H 
 a2 and the manifold regular-

ization fk k2I 
 b2. Thus, by using the Representer

Theorem, we obtain aTKa
 a2 and aTKLKa
 b2. We use

set A to denote them. Here, K denotes the Gram matrix

over T and the multiple kernel weight d is still under ‘1
norm constraints. For T , the Rademacher complexity can

be expressed as follows:

Rn Hð Þ ¼ 1

n
Er sup

f2 Hð Þ

Xn

i¼1

rif ðxiÞ
" #

¼ 1

n
Er sup

d;a2A
rTKa

" #

Here, we take k; l� 0 as the Lagrangian multipliers to

the inequalities in A and obtain the relation

r ¼ kI þ lKLð Þa. Thus, we obtain the following:

Rn Hð Þ ¼ 1

n
Er sup

d

rTK kI þ lKLð Þ�1r

� 

ð24Þ

Note that lmr ¼ rTKm kI þ lKLð Þ�1r and the dual norm

sup uk k1 
 1 u � v ¼ vk k1. Therefore, for any integer r� 1,

we have the following:

Rn Hð Þ ¼ 1

n
Er sup

d

XM

m¼1

dmu
m
r

" #


 1

n
Er urk kr

� �
ð25Þ

Cluster Computing (2019) 22:S13843–S13851 S13847

123



The algorithm computes the inverse of a Gram matrix

which has O n3ð Þ complexity; this is not practical for large

data sets. For high-dimensional data, we may use the

Laplacian Eigenmap (LE) method for the dimensionality

reduction. In this process, we would obtain the Laplacian

matrix L; this matrix is just usable in manifold regular-

ization again, which should help to improve the time effi-

ciency. Further, with respect to the algorithm itself, our

future work would be to design an efficient algorithm to

implement the update of multiple kernel weights d and the

computation of an inverse matrix.

4 Algorithm and discussion

In this section, we will present experimental results on a

number of benchmark datasets, which are the UCI dataset

[26], USPS dataset [27], Spoken letter dataset and a syn-

thetic dataset.

4.1 Experimental setting

In practice, we fix the value of the hyper-parameter

C C ¼ 100ð Þ and the Hellinger distance parameter

k k1 ¼ 0:4; k2 ¼ 0:6ð Þ. Further, the value of ch is taken

from [10-5,…,10-2] and cI from [10-6,…,10-2] on the

basis of a five-fold cross validation. For multiple kernels,

the candidate kernels are divided into two parts: One part is

composed of ten Gaussian kernels with 10 different

bandwidths [2-4,…,25] and each kernel is set on all vari-

ables and on each variable. The other part is composed of

three polynomial kernels of degree [1–3] on all variables

and on each variable. All kernel matrices are a normalized

to unit trace. Our algorithm programming refers to Sim-

pleMKL. The neighboring graph vertices are found using

the kNN method, where the parameter k is chosen from

[6–8] with cross-validation along with ch and cI ; a large

value of k is not suitable and a small value may correspond

to a sparse graph. In an unsupervised Laplacian graph, the

weights on the edges are determined by a binary function,

and in a supervised Laplacian graph, the weights are

decided by using (11). We will use a SVM, the method of

[8], i.e., LapSVM, and generic MKL for the sake of

comparison. In the case of the SVM, we select two kernels:

one is the Gaussian kernel, and the other is the polynomial

kernel. The parameters are tuned by using LIBSVM [28],

in LapSVM, kernel function is Gaussian, the parameter k in

kNN is 7, and in generic MKL, multiple kernels are set in

the same way as described above.

4.2 Results

We selected 12 groups of the UCI dataset, and the ‘‘g50c’’

was generated from two unit-covariance normal distribu-

tions with equal probabilities. For each group, the experi-

ments were run 30 times with 50% training data and 50%

test data each time; the data were randomly chosen. The

training data were normalized to zero mean and unit

variance, and the test data were normalized using the mean

and variance of the training data. The results are shown in

Table 1.

From Table 1, we can see that MKL with manifold

regularization could have competent or better accuracy

rates. This proves that the potential geometrical informa-

tion obtained using regularization favors a supervised

classification. In the process, we have found that the kernel

numbers in the first two methods are more than in the case

of generic MKL. We believe that it is implicitly implied

that the kernels preserve more information and may be fit

for highly relevant data. In the case of the SVM, we

elaborate on parameter tuning and obtain good results, but

the SVM lacks a mixture of kernels and does not provide

much information on sample geometry. Therefore, we

expect MKL with the regularization technique to become a

useful tool in the case of relatively complicated and multi-

source data.

We reported our results of the handwritten digits in the

USPS dataset for 3 situations, namely 2 versus 6, 4 versus

9, 5 versus 8 of classification accuracy. Each gray-scale

image is scaled 16*16, and we vectorize it into a 256-di-

mensional sample with normalization. In the first three

groups, we select 100 images and set the number of

training samples varying between 5 and 20; the rest are

considered test data. Further, we run each test 30 times and

calculate the average of the results. Lastly, we calculated

the average of the final results. When the number of

training samples was 5, we assumed tr = 5 and set the kNN

neighbor k = 2. Similarly, for tr = 10, we set k = 5, and

for tr = 15, 20, 25, we set k = 7. In the case of the SVM,

we used a Gaussian kernel with parameter tuning. Tables 2

presents the classification accuracy rates.

From Table 2, we find that manifold regularized MKL

classifiers associated with either an unsupervised Laplacian

graph or a supervised one remain on the top accuracy level

in most of the cases. The results presented in Table 2 imply

that the unsupervised Laplacian graph is accurate. This

could be attributed to the facts that pairwise digits are

almost separable in space and, the weights in the graph are

sufficient to define the relations between data.

Isolet database is the letters of English alphabet spoken

in isolation from UCI machine learning repository. There

are 26 classes containing the utterances of 150 subjects
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who spoke each alphabet twice. In experiment, we selected

20 samples from each class. The number of training data is

from 30 to 70% of all samples. For computation, we

adopted Laplacian Eigenmap to reduce the dimension of

Isolet from original 618–3 and the loss of information is

inevitable, therefore we omitted the method of SVM

because of poor performance. We reported the classifica-

tion accuracy on all the data in Fig. 1.

Figure 1 shows that the proposed model obtained top

classification accuracy. MKL with original manifold reg-

ularization also performed good classification ability.

Through the above experimental results, the proposed

model benefits from the application of manifold

regularization, which introduces the inner geometrical

structures within data into the kernel-based classifier.

While, the traditional SVM and MKL model do not con-

sider that structure information, losing possible useful

information in classifying data. The more detailed formula

differences can be seen from formula (3) and (12).

4.3 Time complexity

Assuming there are n data samples with dimension d. We

use M different kernels in classifier. First, as for the graph

computation, the distances of all samples take time com-

plexity O(nd) and Laplacian graph L has the time

Table 1 The classification

accuracy (mean ± std. %) in

UCI dataset

Dataset #n;#d MKL with LH MKL with L MKL LapSVM SVM1 SVM2

Breast 277; 9 73.3 ± 1.0 73.6 ± 1.2 71.8 ± 1.1 70.8 ± 0.4 72.2 ± 2.2 72.3 ± 2.5

German 500; 24 75.6 ± 1.2 74.6 ± 1.6 73.4 ± 1.3 72.8 ± 0.1 74.3 ± 0.8 71.9 ± 2.2

Heart 300; 13 82.4 ± 1.3 82.5 ± 3.0 83.7 ± 1.9 76.8 ± 3.3 82.1 ± 1.9 78.5 ± 2.4

Iono 351; 33 92.8 ± 1.5 91.7 ± 0.5 91.3 ± 1.4 65.4 ± 0.7 92.3 ± 0.7 89.9 ± 0.9

Liver 345; 6 70.1 ± 1.8 66.9 ± 2.0 63.1 ± 2.7 65.3 ± 0.4 67.2 ± 1.2 68.3 ± 2.2

Pima 200; 8 74.1 ± 1.8 73.4 ± 3.6 70.9 ± 2.4 72.2 ± 1.6 71.8 ± 2.6 74.8 ± 0.6

Sonar 208; 60 73.4 ± 1.7 78.9 ± 2.8 79.2 ± 2.3 63.9 ± 2.7 79.5 ± 2.1 79.9 ± 1.0

Spambase 200; 57 94.7 ± 1.9 94.3 ± 2.5 93.7 ± 1.2 88.1 ± 2.1 87.6 ± 1.3 91.8 ± 2.6

Vote 435; 16 95.6 ± 1.1 95.9 ± 1.0 94.5 ± 1.3 93.4 ± 1.3 93.5 ± 1.7 94.3 ± 1.1

Wine 178; 13 98.0 ± 0.7 97.1 ± 2.4 96.8 ± 2.4 94.7 ± 1.2 97.7 ± 0.8 97.1 ± 2.8

Wpbc 198; 33 77.4 ± 2.1 76.4 ± 0.8 75.6 ± 2.1 76.5 ± 0.1 76.5 ± 0.6 74.9 ± 2.8

Wdbc 569; 14 97.4 ± 0.8 96.8 ± 1.1 94.7 ± 0.9 92.5 ± 1.2 95.1 ± 0.8 83.4 ± 2.1

g50c 550; 50 95.0 ± 1.3 91.6 ± 1.1 90.5 ± 1.0 90.7 ± 1.9 94.7 ± 1.2 94.0 ± 1.1

Bold values indicate the best accuracy

#n number of data samples, #d dimension of data samples, SVM1 is used with a Gaussian kernel, SVM2 is

used with a polynomial kernel

Table 2 Classification accuracy

(mean ± std. %) of 2 versus 6,

4 versus 9 and 5 versus 8 data

MKL with LH MKL with L MKL LapSVM SVM

2 versus 6 tr = 5 77.6 ± 2.8 75.9 ± 5.9 74.6 ± 6.2 76.8 ± 10.4 74.7 ± 10.8

10 83.3 ± 2.6 84.6 ± 2.3 81.5 ± 4.2 85.2 ± 9.2 82.6 ± 10.6

15 90 ± 2.5 87.1 ± 2.9 84.8 ± 2.8 87.6 ± 5.8 86.5 ± 3.7

20 90.5 ± 2.3 90.6 ± 2.7 89.2 ± 2.7 88.3 ± 5.3 88.6 ± 3.5

25 92.5 ± 2.3 81.8 ± 3.1 90.2 ± 2.3 90.7 ± 4.4 90.6 ± 3.4

4 versus 9 tr = 5 81.1 ± 7.8 81.7 ± 10.1 78.1 ± 11.0 67.5 ± 12.2 69.6 ± 11.3

10 86.5 ± 6.5 84.9 ± 8.4 83.5 ± 8.4 69.6 ± 10.6 76.3 ± 6.2

15 90.3 ± 5.3 89.8 ± 6.7 87.8 ± 5.5 72.7 ± 7.6 81.6 ± 3.4

20 92.5 ± 5.5 92.5 ± 7.5 90.7 ± 4.7 79.0 ± 4.9 84.7 ± 3.8

25 93.8 ± 2.9 93.6 ± 4.9 91.7 ± 3.9 81.1 ± 4.9 86.4 ± 4.0

5 versus 8 tr = 5 74.1 ± 10.0 78.1 ± 12.7 72.3 ± 10.2 72.1 ± 8.2 71.7 ± 10.5

10 79.8 ± 2.1 79.5 ± 4.2 73.9 ± 4.1 76.2 ± 7.7 78.6 ± 9.1

15 85.7 ± 1.8 85.2 ± 2.3 84.2 ± 2.5 83.2 ± 5.5 84.1 ± 5.6

20 85.8 ± 1.5 86.3 ± 1.6 85.1 ± 1.7 85.5 ± 5.1 85.6 ± 4.2

25 89.1 ± 0.8 88.9 ± 1.7 88.3 ± 1.6 87.4 ± 4.3 88.7 ± 4.3

Bold values indicate the best accuracy
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complexity O(n2). The hellinger distance of all samples has

approximate time complexity O(n2). The combined kernel

takes time complexity O(Mnd). In formula (16), there is a

dense inverse matrix Q for O(2n3) and calculating the

intermediate b would have O(n3). The update of d has

O(Mn3) time complexity.

The entire time complexity is

Oð M þ 1ð Þdnþ 2n2 þ 3þMð Þn3ð Þ � TÞ, where T is the

number of iterations in optimization process.

5 Conclusion and future

5.1 Conclusion

In this study, we added manifold regularization to a mul-

tiple kernel machine for supervised classification; the reg-

ularization was computed using a Laplacian graph, which

can exploit the potential geometrical distribution of data

samples. Further, in the case of a supervised classification,

we proposed a supervised Laplacian graph to take the label

information into account in order to obtain a good repre-

sentation of the true data structure, relying on the measures

obtained using the Hellinger distance, which help define

data relations from the aspects of similarity, density,

dimension and orientation. The base classifier that we

selected was based on multiple kernels, which showed

good adaptability and interpretability. The proposed model

is expected to have minimum error as well as maintain the

geometrical properties, represented by the assumed mani-

fold. As shown in the experiments, the proposed classifier

could achieve competent results. Further, we found that

manifold regularization could be applied to supervised and

semi-supervised data, particularly to datasets that show an

obvious manifold when combined with MKL.

5.2 Future work and application

There are several research directions worthy of being

explored further: Choices of parameters in the model and

sensitivity analysis; selection of Gaussian widths in MKL;

and development of an efficient algorithm to solve the

entire optimal problem.

In addition to above works relevant to the model itself,

the proposed classifier can be possibly develop to other

kernel-based methods, such as signal processing frame-

works based on kernel learning [29–31]. Moreover, the

manifold regularization techniques are useful in analysing

data especially for those like covariance features, shape

variations and other data with specific structures.
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