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Abstract
This paper proposed a novel fusion scheme for muti-modal medical images that utilizes both the features of the multi-scale

transformation and deep convolutional neural network. Firstly, the source images are decomposed by the Gauss-Laplace

filter and Gaussian filter into several sub-images in the first layer of network. Then, HeK-based method is used to initialize

the convolution kernel of the rest layers, construct the basic unit, and use the back propagation algorithm to train the basic

unit; Train multiple basic units that are sacked with the thought of SAE to get the deep stacked neural network; the

proposed network is adopted to decompose the input images to obtain their own high frequency and low frequency images,

and combine the our fusion rule to fuse the two high frequency and low frequency images, and put them back to the last

layer of the network to get the final fusion images. The performance of our proposed fusion method is evaluated by

conducting several experiments on the different medical image datasets. Experimental results demonstrate that our pro-

posed method does not only produce better results by successfully fusing the different images, but also ensures an

improvement in the various quantitative parameters as compared to other existing methods. In addition, the speed of our

improved CNN method is much faster than that of comparison algorithms which have good fusion quality.

Keywords Image fusion � Multi-scale transformation � Deep learning � Fusion rules � Auto encoder � CNN modal

1 Introduction

Medical imaging has been playing a very important role in

the field of medical diagnosis since many years, which is a

major source for the doctors to diagnose the diseases.

Whatsoever the medical imaging has its own kinds of

Imaging techniques like X-ray, computed tomography

(CT), magnetic resonance imaging (MRI). However, the

characteristics and results of each of these medical imaging

techniques are unique. For instance, CT can provide ima-

ges as dense like structure with which the physiological

changes could not be detected whereas in MRI images even

the soft pathological tissues can be visualized better. As a

result the anatomical and functional medical images are

needed to be combined for better visualization and for

accurate diagnosis [1–3].

Three different levels of image fusion are pixel level,

feature level and decision level. The lowest level of fusion

is pixel level in which fusion process is carried out on

pixels. Images are segmented into regions and features like

pixel intensities, edges or texture are used for fusion in

feature level fusion. Assimilating information at a higher

level of abstraction is seen in decision level fusion [4, 5].

Pixel-level fusion can retain as much raw detail informa-

tion as possible, and provide the subtle information that

other fusion methods cannot provide. The current image

fusion research mainly focuses on the pixel level, where

multi-scale transform fusion is the most active research

field. From the early Discrete Wavelet Transform(DWT) to

a series of improvements on the wavelet such as double-

tree complex wavelet transform, up to the recent Non-

subsampled Contourlet Transform(NSCT) [6–8] and Non-

Subsampled Shearlet Transform (NSST), etc., the com-

mon thread of these methods is the Multi-scale
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decomposition for source image, which can firstly obtain

high-frequency and low-frequency components, and then

respectively high and low frequency coefficients based on

different fusion rules were combined, and finally the

inverse transform of the combined high and low frequency

components is achieved to obtain the final fusion results. In

other words, these multi-modal images are decom-

posed on different frequency bands, then data compres-

sion and data decompositions are performed respectively

[9]. Overall, the multi-scale transformation fusion mainly

focuses on the following factors: (1) In order to prevent the

loss of information, the original downsampling strategy is

improved to non-subsampling. (2) In order to obtain the

good local information such as the edge contour, the fil-

tering direction is increased from the early three directions

to the infinite directions. These improvements solve the

ringing effect and shift-variant of wavelet transform, which

causes the performance for image fusion has been signifi-

cantly improved [10–15].

However, it has limited number of directions and large

computational complexity, whenever it is used in image

fusion scheme. To represent more edges, efficiently, Labate

et al. introduced a new multiscale geometric analysis tool

called shearlet which has all properties like other tools as

multiscale, localization, anisotropy and directionality [16],

but still it is not able to overcome the problem of shift

invariance. Later, Easley et al. [17] proposed nonsubsam-

pled shearlet transform (NSST) that is realized by non-

subsampled Laplacian pyramid (NSLP) and several

shearing filters. The NSST provides the variable directional

selectivity and shift invariance. In the recent years, various

medical image fusion algorithms based on all these trans-

formation techniques have been reported. In many cases,

the acquisition of prior knowledge is difficult, and the

essence of this problem is that the fixed model is difficult to

adapt the fusion requirements of different fusion image. In

view of the deep Learning has successfully broken the

constraints in many fields. The literature [8] uses the deep

support value to learn the network fusion for remote

sensing images and achieves good results. However, the

number of high-frequency images depends on the number

of network layers, In addition, research also combine

wavelet transform with low-frequency Auto Encoder, but it

did not break the shortcoming of wavelet transform itself.

Therefore, there is still some exploratory work for deep

learning in medicine image fusion.

The study of image fusion has lasted for more than

30 years, during which hundreds of related scientific

papers have been published. In recent years, deep learning

(DL) has gained many breakthroughs in various computer

vision and image processing problems. In the field of image

fusion, the study based on deep learning has also become

an active topic in the last three years. A variety of DL-

based image fusion methods have been proposed for digital

photography (e.g., multi-focus image fusion, multi-expo-

sure image fusion), multi-modality imaging (e.g., medical

image fusion). Currently, the deep learning models that are

widely recognized mainly include Auto encoder (AE),

Deep Belief Network (DBN) and Convolutional Neural

Network (CNN). AE is an unsupervised learning network,

which encodes and decodes the signal within a certain

error. Multiple AEs are stacked to make up a Stacked Auto

Encoder (SAE). This kind of deep network makes it pos-

sible to learn the hierarchical expression of the input signal

and realizes the compression and dimensionality reduction

of the signal. DBN is a probabilistic generating model,

consisting of multiple Restricted Boltzmann Machines

(RBMs) that has been successfully used in speech recog-

nition and computer vision. However, while DBN pro-

cessing the input data, it does not consider the spatial

structure of two-dimensional signal, which is not con-

ducive to the processing of images and video signals. In

CNN, convolution is used instead of the full connection of

traditional neural network, combined with the sub-sam-

pling of time or space, significantly reducing the number of

free parameters in the network, thereby reducing the

training complexity, gaining an outstanding effect for

image recognition. Among the three methods, CNN

extracts and abstracts the features on the images, through a

series of convolution and downsampling, which is consis-

tent with the idea of multi-scale decomposition of images

by convolution and downsampling. The difference lies in

that the filter requires defining manually in the multi-scale

decomposition. Therefore, the bank of filters gained from

deep convolutional neural network learning can solve ser-

ies of problems resulting from relative fixity of the bank of

filters in the multi-scale decomposition.

However, the following problems still exist for CNN:

(1) For CNN, the eventually output feature through con-

volution and downsampling has lower dimensional degree,

so using the model directly in image decomposing will lose

information, leading to poor integration; (2)For the tradi-

tional CNN, the extracted features are not the features of

high or low frequency for the image, which are not con-

ducive to the specific formulation of fusion rules; (3) On

the one hand, deep CNN is difficult to train; on the other

hand, the learning ability of shallow CNN cannot guarantee

the accuracy of image decomposing (4) Stacking CNNs

through operations similar to stacking SAE, can resolve the

problem referred in (3),but a small number of stacked units

can not guarantee the accuracy, while a large number of

units can lead to Network convergence difficulties; (5) If

every type image is trained to get a DSCNN alone, the

generalization ability of the network can be improved, but

the reconstruction of fused images of high and low fre-

quency is difficult to realize. Therefore, in this paper, the
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down sampling layer of CNN is removed; a network is

constructed only by using convolution layer based on Auto

Encoder (AE), to realize that the output image is the same

as the input image in the network, resolving the problem of

losing information. Gauss Laplacian filter and Gaussian

filter are used as the initial convolution kernels of the first

layer network for the high-frequency sub-net and the low-

frequency subnet respectively, after passing through the

high-frequency sub-network and low-frequency sub-net-

work, the high frequency image and low frequency image

of the input image can be obtained; Deep Stacked Con-

volutional Neural Network (DSCNN), which takes CNN as

its basic stacked unit, is used to improve the network

learning ability; End-to-End training can improve the

accuracy, stability and convergence of the network; Using

different types of images to train the same DSCNN, can not

only ensure the generalization ability of the network, but

also facilitate to obtain the final fusion result.

The rest of the paper is organized as follows. Section 2

illustrates the related methodologies which are used to

present the proposed fusion method. Section 3 presents the

implementation of the proposed image fusion method that

is based on the CNN. In Sect. 4, various experimental

results are discussed and compared with the existing fusion

methods on the basis of different performance measures.

Section 5 depicts the final conclusions.

2 Related work

The following section of this article provides a brief

introduction to multi-scale transformation and deep neural

network before describing our architecture in more detail.

2.1 Deep stacked neural network

2.1.1 SAE model

AE is constituted by the input layer, the hidden layer and

the output layer, and multiple AEs are stacked into a SAE,

whose basic structure is shown in Fig. 1. Input x 2 Rm0 is

encoded through the first layer, and the first-order feature

of the data can be obtained, represented as h1 2 Rm1 , and

then input the first-order feature representation to the sec-

ond layer automatic encoder to obtain the second-order

feature, represented as h2 2 Rm2 . Repeat the operation, and

the representation of nth order feature hn 2 Rmn can be got.

Different levels of feature after encoding constitute the

hierarchical description of the original data. While training

SAE, it only needs to be trained layer by layer in the way

where it is trained by the single automatic encoder, and

fine-tune the whole network with the error between the last

layer output and expectation.

2.1.2 CNN model

CNN consists of input layer, hidden layer and output layer.

The hidden layer is mostly constituted by convolution

layers and down-sampling layers alternately, where the

convolution layer is used to extract the features of the

image and the down-sampling layer is used to simplify the

information. A simple structure of CNN is shown as Fig. 2,

where an image is processed by three operations: convo-

lution kernel, activation function and bias so as to generate

the 3 features mapping images in C1 layer; through down-

sampling, each features mapping image can get its feature

mapping in S2 layer; S2 layer feature mapping is operated

by convolution and downsampling, the feature mapping of

C3 layer and S4 layer can be get; finally, in the last layer,

all pixels are rasterized into a column of vector, which is

input to the traditional Neural Network (NN) to get the

output result. The network usually adopts the back propa-

gation algorithm to train, including the forward propaga-

tion phase and the error back propagation phase. In the

forward propagation, the samples are input from the input

layer, passing through network layers one by one; then, the

output is compared with the expected output to obtain the

error, and then, the error is transmitted into the back-

Fig. 1 SAE structure

Fig. 2 Diagram of CNN structure
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propagation phase. In the back-propagation phase, the error

is passed forward from the output layer to the input layer

one layer by one layer. For each layer, a current error

should be obtained, which can be used as a basis for

modifying the weight of each unit. Repeat the operation

until the network reaches a certain precision, or the pre-

scribed training time is expired.

2.2 Multi-scale transform

As described above, there are many methods for multi-

scale image transformation, where DTCWT, NSCT and

NSST are widely more adorable. The following section

will provides a brief introduction to multi-scale

transformation.

2.2.1 DTCWT

DTCWT is a commonly used signal processing method. It

calculates the complex transform of a signal using two

separate DWT decompositions (tree a and tree b). If the

filters used in one are specifically designed different from

those in the other, it is possible for one DWT to produce

the real coefficients and the other the imaginary. DTCWT

can provide useful characterization of image structure,

multiresolution, sparse representation and a high degree of

shift-invariance in its magnitude, which make DTCWT

superior to DWT in preserving details. DTCWT can also

give phase information which plays an important role in

medicine image. In addition, there is exactly an interval

delay for sampling between the two trees, which makes the

sample extracted by b-tree is exactly the sample value that

a-tree discards, so the number of decomposition directions

can be increased while ensuring translation shift-

invariance.

2.2.2 NSCT

Since the two-dimensional wavelet transform can only

capture the information in the directions of 0�, 45� and 90�,
and can not represent the curve optimally, it can only

approximately represent it by points. Do et al. proposed

contourlet transformation which can fit a smooth curve

with coefficients less than wavelets. However, this trans-

form still uses downsampling and has shift-variant. NSCT

is a redundant transform which is shift invariant in nature

and provides rich directional information. This direction-

ality is useful in the reconstruction of images. NSCT also

gives a number of subbands on decomposition; therefore, it

provides flexibility in image fusion. Two shift invariant

filter banks, namely, nonsubsampled pyramid (NSP) and

nonsubsampled directional filter banks (NSDFB) have been

used in the construction of NSCT. Multiscale property has

been provided by NSP whereas directional information is

obtained by NSDFB. The NSCT filer bank structure is

shown in Fig. 3. The input image is first decomposed by

NSDFB to obtain different frequency sub-bands, and then

decomposed by NSDFB to obtain different direction sub-

bands. After K levels of decomposition, K ? 1 sub-band

images with the same size as the source image are gener-

ated, namely, a low-frequency image and K high-frequency

images are generated. In this way, the problem of shift-

variant is well solved, but the algorithm has considerable

computation complexity.

2.2.3 NSST

The NSST is an extension of the NSCT in multidimen-

sional and multidirectional case that combines the multi-

scale and direction analysis, separately. Firstly, the NSLP

is used to decompose an image into low and high-fre-

quency components, and then direction filtering is

employed to get the different subbands and different

direction shear let coefficients. The direction filtering is

achieved using the shear matrix, which provides various

directions. Once different frequency sub-bands are gener-

ated by decomposing, shearing filters is used for direction

decomposition instead of the contourlet filter. The advan-

tage is that there is no limit to the number of directions and

size of the support base, but the computational efficiency is

very high.

Fig. 3 Multi-scale image transformation. a Decoruposition frarue-

work of CT. b Decoruposition fraruework of NSCT
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3 Our proposed fusion algorithm

3.1 General idea

In order to analyze our proposed fusion algorithm based on

improved Deep Convolutional Neural Network (DSNN),

the general idea is shown in Fig. 4. Now let’s briefly in-

troduce each module.

(1) The back propagation algorithm is adopted as basic

training unit.

(2) Multiple well-trained basic units are stacked to form

DSCNN, and the parameters of the whole network

are adjusted finely by means of end-to-end.

(3) Image A and B that are ready for fusion, are

respectively decomposed into their own high-fre-

quency and low-frequency images through the same

DSCNN.

(4) The high-frequency and low-frequency images of A

and B are fused by corresponding fusion rules to

obtain the fused high-frequency and low-frequency

images.

(5) The results in (4) are put back into DSCNN to

reconstruct and get the final fusion image.

3.2 Construction and training for improved CNN

3.2.1 The structure of our CNN

Our improved CNN is stacked by many basic units, where

the basic unit is composed of high frequency and low

frequency subnets. The high frequency and low frequency

subnets are respectively composed of three convolution

layers, wherein the first layer limits the input information;

the second Layer is to combine the information; the third

layer is to merge this information into an image of high-

frequency and low-frequency. The structure and the con-

struction method is as follows:

(1) Feature mapping of H1 layer is obtained as follows:

IiHI ¼ f xi � xþ hið Þ ð1Þ

where � represents the convolution operation, f is

the activation function, xi is the ith convolution

kernel, i = {1, 2,…, n1}, n1 is the number of feature

mappings of H1 layer, and hi indicates the bias.

Similarly, the feature mapping IL1 of L1 layer, can be

obtained.

(2) The feature mapping of H2 layer is obtained as

follows:

I
j
H2 ¼ f

Xn1

i

x� IiH1 þ hj

 !
ð2Þ

where I
j
H2

is the j(j = {1, 2,…, n2})th result for IH2
.

n2 is the number of feature maps in H2 layer, hj
represents the jth bias. Similarly, the feature map-

ping IL2 of layer L2 can be obtained.

(3) IH2 is used to replace IH1 in Eq. (2), the high-

frequency image IH3 can be obtained. Similarly, the

low-frequency image IL3 can be obtained.

(4) The high frequency image IH3 and the low frequency

image IL3 are convoluted to obtain the reconstructed

image y.

3.2.2 The training process of our CNN

DSCNN training includes the basic unit training and the

stacked network training, whose detail is shown as follows:

3.2.2.1 Basic unit training The convolution kernel from

layer X to layer H1 is initialized into a Gaussian Laplace

filter; and the convolution kernel from layer X to layer L1

is initialized to a Gaussian filter. The rest of the convolu-

tion kernels are initialized by The K method proposed in

[18]. All the network biases are initialized to 0.

The unsupervised training is used to train the basic unit.

Enter the training data {xs, ys}s=1
N , where ys = xs. Suppose

the output of the network is zs, the loss calculation result

Training DataSetTraining Basic 
Unit

Training 
NetworksTesting DataSet

Image A

Image B

DSCNN 
Decomposition

DSCNN 
Decomposition

High Frequency 
Image A

Low Frequency 
Image A

High Frequency 
Image B

Low Frequency 
Image B

Fusion Rule for 
High Frequency 

Fusion Rule for 
Low Frequency 

Fusion Image 
for HF

Fusion Image 
for LF

DSCNN 
Reconstruction

Fusion Image

Fig. 4 General idea and diagram
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will be too large when the common square error is used as

the objective function, which will affect the stability of the

network. Therefore, we define the objective function as

follows [19]:

H W ; hð Þ ¼ 1

Nmn

XN

s¼1

Xm�

u¼1

Xn

t¼1

ziut � xiutð Þ2 ð3Þ

where W is the convolution kernel, h is the bias, N is the

size of the training set, S is the current training sample, m

and n are the size of a single image, ziut represents the

value of a point of output results of the current sample. In

this formula, the total error is averaged to each pixel, and

the obtained value is small, which is convenient for train-

ing. Then the network is trained by back propagation

algorithm.

3.2.2.2 Stacked network training Multiple trained basic

units are connected by end-to-end way to form a stacked

network. Then use the data set and objective function that

are the same as the basic unit to adjust the whole network

by means of End-to-End at the same time. Finally, get the

stacked convolution neural network.

After the above training, our proposed model can

decompose the image into high frequency and low fre-

quency images, and realize the reconstruction within the

range of error expected. It can show the process of our

model when the number of stacks is 3, where the actual

size of convolution kernel is 5 9 5. For the convenience of

observation, 4 convolution kernels in the first layers of the

high-frequency subnets and low-frequency subnets are

magnified by 10 times, and the visualization result is shown

in experimental section. The first image shows the con-

volution kernel initial state (4 convolution kernels are the

same), and the remaining four images show the convolu-

tion kernel state after training [20, 21].

3.3 Fusion image with proposed model

The network structure of the proposed CNN-based fused

image is shown as follows:

1. Source images A and B are input into the well-trained

CNN model, and get high frequency images AH3 and

BH3 and low frequency images AL3 and BL3.

2. The high-frequency information mainly corresponds to

the gray abrupt change region such as the edge

contour. In order to select brighter pixels to form the

edge, most researches adopt the high-frequency fusion

rule that the selected corresponding coefficient should

be larger. Human eyes are sensitive to local informa-

tion, so using local parameters to determine the fusion

rules is more in line with human visual characteristics.

The common indicators to measure the abundance of

local information include local variance, local entropy,

local roughness, etc. The larger the value is, the more

abundant the local information is. In addition, the local

variance is the simplest and the most commonly used,

and the larger the value is, the more abundant the

information of the target edge and the details of the

region. Therefore, the fusion rule is to choose the

largest local variance [22]:

FH3 x; yð Þ ¼ AH3 x; yð Þ; rAH3
x; yð Þ[ rBH3

x; yð Þ
BH3 x; yð Þ; else

�
ð4Þ

where r(x, y) represents the local variance of the

point(x, y).

3. The common low-frequency fusion rule is based on the

weighted average of the gray value or local parameters,

or to select the greater value, etc. Considering that the

local energy can reflect saliency of the target locality,

the larger the value is, the more prominent the target is;

and the local matching degree can be used to measure

the similarity of the locality of the images to be fused.

Therefore, combining these two parameters can be

adaptive to determine the weight coefficient. The

specific method is as follows:

(1) The local energy of low-frequency image AL3

(x�y) is defined as:

EAL3 x; yð Þ ¼
XQ

q¼�Q

XP

p¼�P

AL3 xþ p; yþ qð Þ½ �2 ð5Þ

where P and Q represent the size of the local

window of the control point (x, y), AL3

(x ? p, y ? q)indicates the value AL3 of the

point (x ? p, y ? q). Similarly, the local energy

of BL3 can be obtained as EBL3 x; yð Þ.
(2) The matching degree of low-frequency images

AL3(x, y) and BL3(x, y) with the corresponding

areas:

MAB x; yð Þ ¼

PQ

q¼�Q

PP

M¼�P

AL3 xþ p; yþ qð ÞBL3 xþ p; yþ qð Þ

EAL3 x; yð Þ þ EBL3 x; yð Þ
ð6Þ

The matching degree reflects the correlation

between AL3 and BL3, if AL3 = BL3 in the cor-

responding area, then MAB(x, y) = 1, the

information matching degree in this area is the

highest.

(3) Low frequency images fusion based on saliency

metrics and matching degree [23, 24].

Suppose a to be the threshold of matching

degree, MAB(x, y)\ a indicating that there is

significant difference between the corresponding

regions, a consolidation rule to select the larger
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value should be adopted, as shown in Eq. (7).

Otherwise, if MAB(x, y) B a, indicating a little

difference between the two images, the adaptive

weighted averaging method is adopted [25]. The

method is shown in Eq. (8).

FL3 x; yð Þ ¼ AL3 x; yð Þ;EAL3 x; yð Þ[EBL3 x; yð Þ
BL3 x; yð Þ; else

�

ð7Þ

FL3 x; yð Þ ¼ xLAL3 x; yð Þ þ xSBL3 x; yð Þ;EAL3 x; yð Þ[EBL3 x; yð Þ
xSAL3 x; yð Þ þ xLBL3 x; yð Þ; else

�

ð8Þ

where xL and xS represent the larger weight and

the smaller weight, respectively, and

xL ¼
1

2
þ 1

2

1�MAB x; yð Þ
1� a

� �
ð9Þ

xs ¼ 1� xL ð10Þ

(4) FH3 and FL3 are input into the network, get the

fusion result F.

4 Experimental results and analysis

4.1 Parameters setup and selection

The simulations are all implemented by MATLAB

(R2010a) on a personal computer with 2-GB memory,

2.94-GHz Intel Core i5-7500 processor, GPU is

NVIDIATeslaV10. Training environment is Lasagne0.2;

Python version is 2.8. All experimental data is from Public

Hospital, which is real and reliable, and is approved by the

medical experts.

There are two main factors that affect the effect of

image fusion: learning ability and the fusion rule, where

learning ability is mainly affected by the dataset used in

training, the initialization of convolution kernel, the num-

ber of convolution kernels of each layer in each basic unit

(n1, n2), the learning rate, the number of stacked basic

units, and the activation function f. The parameters of the

fusion rule include the window size when the largest high-

frequency variance is selected, the matching threshold a,

and the window size for calculating the local energy.

4.1.1 Impact and selection of data sets

The fusing image objects include multi-band images,

multi-modal images, etc. In order to facilitate the training,

all images are cut and scaled and normalized. In addition,

extract another 200 images for validation set, and the

proportion of each image type is the same as that of the

training set.

4.1.2 Influence and selection of convolution kernel
initialization

Applying He K method to initialize the convolution kernel

can improve the stability and generalization ability of the

network. However, the network initialized only by this

method cannot classify and decompose the image. There-

fore, in order to ensure that the network can obtain the

high-frequency information and the low-frequency infor-

mation respectively, Gaussian Laplacian filter and Gaus-

sian filter are used to initialize the first-layer filters for the

high-frequency subnet and the low-frequency subnet. Fig-

ure 8 shows the different effect of two initializations on

network training.

It can be seen from Fig. 5 that HeK algorithm is used for

initialization both in the proposed method and all layers.

No matter whether the network is stacked or not, the errors

of these two are decreased steadily. Although the final error

of the proposed method is slightly larger than He K ini-

tialization method, the proposed method can decompose

the image information, which is more conducive to the

subsequent fusion process.

4.1.3 The influence and selection of the number of basic
unit convolution kernels

Generally, the larger the number of convolution kernels is,

the stronger the adaptability of the network is, and the

easier for the image feature to be extracted. However, the

downsampling layer is removed in our CNN model. The

size of each convolution kernel is the same as output. An

excessive number of convolution kernels results in

increased memory space and computational complexity,

therefore, on the premise to ensure the accuracy of feature

Fig. 5 Influence for different initialization networks
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extraction, the number of convolution kernels should be as

little as possible.

Figure 6 shows the training results for basic unit with

different numbers of convolution kernels. The two Arabic

numerals in the figure respectively denote the values of n1

and n2. It can be seen from the figure that when n1 = n2,

the overall network error decreases more steadily and the

final error is the smallest when n1 = n2 = 4. Therefore,

the scale of the network is selected as: n1 = n2 = 4.

4.1.4 Impact and selection of learning factor

The learning factor also has a great influence on the speed

and stability of network training. Excessive learning rate

will make the network difficult to converge; if the learning

rate is too low, the speed of training will be declined.

While training the basic unit, the network error is large, and

the layers are shallow. Taking a larger learning rate helps

to improve network training speed, the learning rate is set

to 0. 01; when the error is stable, well-trained basic units

are stacked up to train the entire stacking network. With the

increase of the number of stacks, the difficulty of training

gradually Increases. Therefore, the learning rate needs to

be reduced so as to obtain an ideal training result. Figure 7

shows the influence of different learning rates on training

when the number of stacks is 3. Apparently, the greater and

more unstable the learning rate is 0.01, the larger is the

final error, therefore, in this article, the learning rate is

selected to 0. 001 (Fig. 8).

4.1.5 Impact and selection of the number of stacks

Stacked network is to improve the accuracy of image

decomposition. It is generally considered that, with the

same error, the larger the number of stacks, the more

detailed the network image decomposition is simulation

testing shows the network error when the network has

different numbers of stacks. Obviously, when the number

of stacks increases to 6, the network error decreases more

steadily. However, experiments also show that with the

increase of the number of stacks, the reconstructing ability

of our model to the detailed information like the edge

information worsens, and false edges appear in some

details. The experiments show the network with 1 stack, 3

stacks and 6 stacks, respectively, the high-frequency ima-

ges, low-frequency images and reconstructed images when

our proposed improved CNN are trained to be with a

stable error. It can be seen that in the high frequency

image, the corresponding area to the upper right corner

rectangle is the clearest with 6 stacks, but is the most

obscure with 1 stack. However, as for the correspondingFig. 6 Influence form the number of convolution kernels. a n1 = 2,

b n1 = 4, c n1 = 6, d n1 = 8

Fig. 7 Influence of our modal form different learning factor

Fig. 8 Influence of our network form the number of basic units
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position to the dashed line of the reconstructed image,

when the number of stacks is 6, false edges appear in the

areas like the vessel area. Overall, when the number of

stacks is 3, both the reconstruction effect and the training

time of the images are ideal. Therefore, the number of

stacks is set to 3.

4.1.6 The influence and selection of activation function

Activation function is another important factor affecting

network learning ability and the training speed. The com-

monly used activation functions include Sigmoid, Tanh-

ReLu, etc. Although ReLu function has proved to be more

conducive to network training, but its output is unlimited.

When the output is converted to images, there will be error.

The outputs of Sigmoid and Tanh are closed, however,

compared to Sigmoid, Tanh function is difficult to saturate,

and more conducive to training. Therefore, in this network,

Tanh is selected as the activation function.

4.1.7 Influence and selection of other parameters

Other parameters include the local variance window size in

the high frequency fusion, the local energy window size

and the matching degree of the low frequency fusion. The

size of local window is usually selected to 3 9 3, 5 9 5,

etc. The larger the window is, the more difficult for the

local information to be described. Too small window is

difficult to reflect the local features. Therefore, in order to

compromise it, the size of the local window is selected to

be 5 9 5. The larger the matching threshold, the lower the

probability that the information is classified as a match, the

more results that will be determined by the degree of sal-

ience, according to the test, the matching degree is selected

as a = 0.85.

4.2 Experimental results and analysis

A number of illustrative examples are presented to assess

the effectiveness of the proposed image fusion method. The

fusion results obtained by the proposed method on the

different datasets of the CT and MR images are presented.

Moreover, the results produced by the proposed method are

also compared with the several existing fusion methods in

the qualitative and quantitative manner. The essential

requirement of this algorithm is that the input images

should be preregistered. All images used for testing were of

size 256 9 256 and downloaded from the Harvard

University site (http://www.med.harvard.edu/ AANLIB/

home.html). Any fusion algorithm in addition to subjective

analysis should validate the system using some objective

metrics.

The proposed fusion method is compared with six rep-

resentative multi-focus image fusion methods, which are

the NSST [5], NSCT [4] and DTCWT [3]. Due to fusion

rules have obvious effects on the fusion results, literature

[6] compared the fusion results of the NSCT and DTCWT

under the condition of different decomposition levels and

different fusion rules: big absolute for high-frequency,

average for low-frequency. Therefore, we give the results

for the fusion rules in this paper, denoted as ACNN. At the

same time, in order to compare the influence of the con-

volution kernels in different initialization, the fusion rule is

set as the big local variance for high-frequency and the

regional matching degree-merge for low-frequency, so our

proposed method and deep stack network adopt He K

initialization method to get fusion result, denoted as

HCNN.

The decomposition layers of NSST and NSCT are set up

as 4, whose decomposition direction are

{6,10,10,18},{4,8,8,16},respectively. The filters are ‘max-

flat’ and ‘pyrexc’ respectively; The DTCWT decomposi-

tion layer is also 4, and the decomposition filter in the first

layer selects ‘5–3’ and the filter for remaining layers are

selected ‘q-6’. Each group images are followed by two

source images, NSST-maxflat (NSSTM) fusion result,

NSST-pyrexc (NSSTP) fusion result, NSCT-maxflat

(NSCTm) fusion results, NSCT-pyrexc fusion (NSCTP)}

DTCWT fusion results, ACNN fusion result, HCNN fusion

results, the fusion result.

In general, the six methods preferably colligate the

difference information of source image. Compared with the

multi-scale transform method, our proposed algorithm has

clearer result, such as the vessel region in brain image

within bigger contrast and clearer edge. In order to make it

clear and clean, it is easier to identify the target. In Fig. 9,

there is a halo on the edges, such as NSCT, NSST and

DTCWT. The boundary of the fusion result is clearer. In

Fig. 10, There is no artifact in our result, and the texture is

sharper. ACNN is superior to the multi-scale method

because it uses more filters and after extensive sample

learning make the filter can seem to be adaptive. While

compared with the fusion results of HCNN and ACNN, our

fusion results have higher contrast and clarity.

Because difference of subjective observation exists

among different people, the following objective indicators

that are commonly used in the literature are selected to

measure the fusion method. Considering the purpose of

image fusion is mainly in three aspects of integrating dif-

ferent information of source image, improving the sharp-

ness and visual perception quality, and the fact that there is

no uniform standard to measure the image quality, the

following three types of indicators are selected to evaluate

the fusion results: The first category which describes the

abundance degree of the image includes Standard

123

Cluster Computing (2019) 22:S1515–S1527 S1523

http://www.med.harvard.edu/


Deviation (SD), Entropy (E) and Mutual Information (MI);

the second category which is to measure the sharpness of

the image include Contrast (C), Average Uradient (AU)

and Spatial Frequency (SF); the third category which

reflects the visual quality includes Uniform Image Quality

Indicators (UIQI).As for all these indexes, the larger the

value is, the better the fusion effect will be. It should be

noted that the universal image quality indicators need to be

compared with the ideal reference image, but the ideal

reference image is difficult to acquire, therefore, in the

proposed method in this article, two source images are

compared first and then obtain the average. In addition, the

time to fuse is given in the algorithm, the specific results

shown in Table 1. It can be seen from Table 1 that, among

8 groups of indicators, 8 optimal items are the fusion

results of NSCT-P; 3 optimal items are the fusion results of

DTCWT; but the number of optimal items of our fusion

results is up to 27. In the automatic target recognition, the

fusion speed is another important indicator, DTCWT has

the shortest running time, followed by the proposed

method, and the slowest is NSCT.

Our proposed fusion method obviously outperforms the

other fusion methods. The proposed fusion

scheme achieves 62.76%, 28.56% higher entropy than

Fig. 9 Fusion results for different algorithms. a CT, b PET, c NSSTM, d NSSTP, e NSCTM, f NSCTP, g DTCWT, h ACNN, i HCNN,
j proposed

Fig. 10 Fusion results for different algorithms. a CT, b MRI, c NSSTM, d NSSTP, e NSCTM, f NSCTP, g DTCWT, h ACNN, i HCNN,
j proposed
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source CT and MR images, respectively. Moreover, the

proposed method gains approximately 6.62, 6.07, 5.1, 4.56,

3.74, 2.08, 1.16 and 3.14% higher entropy than others

methods, respectively. These results ensure that the more

information lies in the fused images obtained by the pro-

duced method than others. The larger value of the MI and

SF metric of the fused images produced by the proposed

method assures the more information preservation and

more activity and clarity level in the fused images. It gains

approx 11.73, 7–11 and 4–5% higher SF values than the

DTCWT, NSCT and NSST based fusion method, respec-

tively. Moreover, it has 26.9% and 1.44–26.21% larger MI

values than the HCNN and ACNN based fusion method,

respectively. Hence, on the basis of quantitative and visual

analysis of results, it is observed that the proposed fusion

algorithm outperforms the others by producing good

quality of fused images with more details and edge infor-

mation present in the source image.

5 Conclusion

The deep stacked neural network fusion method proposed

in this paper consists of three parts: remove the down-

sampled layer of the traditional convolutional neural net-

work, initialize the first layer network convolution kernel

with Gauss-Laplace filter and Gaussian filter, then use

HeK-based method to initialize the convolution kernel of

the rest layers, construct the basic unit, and use the back

propagation algorithm to train the basic unit; (2) Train

multiple basic units that are sacked with the thought of

SAE to get the deep stacking neural network; (3) Use this

stacking network to decompose the input images to obtain

their own high frequency and low frequency images, and

combine the rule of selecting the largest local variance and

the rule of regional matching to fuse the two high fre-

quency and low frequency images, and put the fused high

frequency and low frequency images back to the last layer

of the network to get the final fusion images. The proposed

method can adaptively decompose and reconstruct the

image in the fusion, only one high frequency and one low

frequency image are needed, there is no need to define the

Table 1 Quantitative analysis for different algorithms

No Modal Size Methods SD E MI C AG SF UIQI Time (s)

1 CT and MRI (abdomen) 256 9 256 NSSTM 46.565 7.165 6.148 33.676 5.354 12.202 0.609 9.773

NSSTP 46.670 7.165 6.116 33.982 5.335 12.465 0.608 9.893

NSSCM 46.568 7.199 6.052 33.767 5.361 12.207 0.609 26.692

NSSCP 46.674 7.167 6.119 33.763 5.341 12.172 0.611 27.835

DTCWT 46.323 7.170 6.062 33.564 5.192 11.955 0.610 0.076

ACNN 45.806 7.168 5.183 33.856 7.084 13.864 0.624 0.366

HCNN 45.818 7.214 6.076 33.779 5.193 11.321 0.624 3.101

Proposed 45.907 7.176 5.147 33.973 7.112 13.640 0.611 3.115

2 CT and PET 464 9 464 NSSTM 69.889 7.612 7.261 61.221 4.697 8.469 0.644 25.045

NSSTP 69.904 7.645 7.284 61.395 4.635 8.358 0.651 24.163

NSSCM 69.903 7.560 7.230 60.699 4.680 8.433 0.611 25.116

NSSCP 69.947 7.599 7.299 60.682 4.627 8.340 0.654 71.369

DTCWT 71.499 7.589 7.223 60.694 4.220 7.918 0.694 0.6982

ACNN 69.823 7.587 6.335 62.126 6.764 11.268 0.643 1.222

HCNN 69.824 7.538 7.331 61.367 5.699 6.954 0.647 9.009

Proposed 75.422 7.622 6.344 64.426 6.545 11.354 0.632 8.763

3 CT and MRI (Brain) 512 9 512 NSSTM 21.963 6.271 3.545 12.554 2.961 8.916 0.846 32.264

NSSTP 22.091 6.274 3.648 12.443 2.959 8.932 0.832 34.025

NSSCM 22.034 6.298 3.557 12.468 2.991 8.906 0.846 91.365

NSSCP 22.201 6.265 3.469 12.484 2.968 8.658 0846 84.261

DTCWT 21.658 6.187 3.477 12.567 2.854 8.958 8.841 1.269

ACNN 20.374 6.298 3.532 11.586 3.156 8.813 0.850 1.438

HCNN 20.943 6.287 3.721 12.819 2.278 6.930 0.951 11.125

Proposed 21.386 6.188 3.464 11.503 3.395 8.031 0.832 11.046
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number of filters and the filter type manually, and there is

no need to select the number of decomposition layers and

the number of filtering directions, which can greatly solve

the problem that the fusion algorithm depends greatly on

the prior knowledge. The results show, overall, the pro-

posed method has better effect than DTCWT, NSCT and

NSST that have excellent fusion performance; although the

fusion speed cannot surpass DTCWT, the speed of the

proposed method is much faster than that of NSCT and

NSST which have good fusion quality. It should be noted

that although this method can decompose and reconstruct

the image adaptively, the fusion rule still need to be defined

manually. Therefore, the next step we will focus on

improving the fusion rule so as to realize the adaptive

multi-modal image fusion.
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