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Abstract
This paper is concernedwith the delay-dependent robust resilient H∞ control problem for uncertain singular time-delay system
with Markovian jumping parameters. First, a delay-dependent bounded real lemma in terms of linear matrix inequalities is
established, which guarantees the nominal Markovian jump singular system to be regular, impulse free and stochastically
stable. Then, based on this condition, sufficient conditions in terms of LMIs are given to ensure the existence of the desired
robust resilient H∞ controllers. The uncertainties of the controllers are considered in two cases, that is the additive controller
gain uncertainties and the multiplicative controller gain uncertainties. Finally, numerical examples illustrate the applicability
of the results proposed in this paper.
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1 Introduction

Singular systems contain three kinds of modes: finite
dynamic modes, non-dynamic modes and impulsive modes.
So, the singular systems can describe the actual systemmore
appropriate when modeling in many practical systems, such
as chemical systems, aerospace engineering systems, elec-
trical networks, social economic systems, power systems,
circuit systems [1–5]. In addition, when the physical systems
appear abrupt variations, Markovian jump systems, as a spe-
cial class of stochastic hybrid systems, can better describe the
actual physical process. Many applications of such systems
can be found in [6–9] and the references therein. Recently,
many scholars dedicate to the study of the stability analysis
and controller synthesis for Markovian jump systems and a
lot of relevant conclusion are reported, please see [10–15].
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On the other hand, time-delay is also a factor that can not
be ignored in the actual process of modeling. It commonly
encounters in various engineering systems and frequently
leads to the instability and poor performance. In general, the
results of time-delay system are divided into two categories,
namely, delay-dependent conditions and delay-independent
ones [16–21]. Since the stability of systems depends explic-
itly on the time-delay, a delay-independent condition is more
conservative than the delay-dependent ones, especially for
small delays. Very recently, much attention has been paid to
the study on the singular time-delay systems withMarkovian
jumping parameters.Many important results on such systems
have been reported, see [22–32] and the references therein. In
spite of the recent developments on delay-dependent meth-
ods, only few results about the singular Markovian jump
systems with time delay and the theory is far from being
completed. Firstly, the above reports are all using memory-
less feedback controllers. Memory state feedback controllers
with the feedback provisions on both the current state and
the past history of the state may lead to an improved perfor-
mance. On the other hand, it is worth noting that an implicit
assumption inherent in these above design techniques is that
the controller is precise, and exactly implemented. But in
practice, controllers do have a certain degree of errors due
to finite word length in any digital systems, the imprecision
inherent in analog systems and need for additional tuning
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of parameters in the final controller implementation [29,30].
These two cases inspire the present work.

In this paper, we deal with the delay-dependent robust
resilient H∞ control problem for uncertain singular Marko-
vian jump time-delay systems. First, a new delay-dependent
bounded real lemma (BRL) is provided to guarantee the
considered system to be regular, impulse free and stochas-
tically stable with H∞ performance γ . Then based on
this lemma, robust resilient H∞ controllers are respectively
designed to guarantee the resultant closed-loop system is
delay-dependent stochastically admissible and satisfies a
given H∞ performance in terms of a set of strict LMIs.
Finally numerical examples illustrate the effectiveness and
less conservative of the results obtained in this note than the
existing approaches.

Notations Rn denotes the n-dimensional Euclidean space;
Rn×m is the set of all n × m real matrices; X ≥ 0(X > 0)
means that the symmetrical matrix X is positive semidefinite
(positive definite); The superscript T stands for transpose of
a matrix; Cn,d = C([− d, 0], Rn) denotes the Banach space
of continuous vector functions mapping the interval [− d, 0]
into Rn . And xt := x(t + θ), θ ∈ [− d, 0] denotes the func-
tion family on [− d, 0], which is generated by n-dimensional
real valued continuous function x(t), t ∈ [− d,+∞). Obvi-
ously xt ∈ Cn,d . The following norms will be used: ‖ · ‖
refers to Euclidean vector norm or spectral matrix norm.
‖φ‖c := sup−d≤t≤0 ‖φ(t)‖ stands for the norm of a function
φ ∈ Cn,d .L2[0,∞) stands for the space of square integrable
functions on [0,∞). (�,F ,P) is a probability space, � is
the sample space,F is the algebra of events andP is the prob-
ability measure defined on F . E{·} denotes the expectation
operator with respect to some probability measure P .

2 Problem formulation and preliminaries

Given a probability space (�,F ,P), where � is the sample
space, F is the algebra of events and P is the probability
measure defined on F , the singular time-delay Markovian
jump system considered in this paper is described by the
following dynamics:

Eẋ(t) = (A(rt ) + �A(rt ))x(t) + (Ad(rt )

+�Ad(rt ))x(t − d)

+ B(rt )u(t) + (Bw(rt ) + �Bw(rt ))w(t)

z(t) = (C(rt ) + �C(rt ))x(t) + (Cd(rt )

+�Cd(rt ))x(t − d)

+ D(rt )u(t) + (Dw(rt ) + �Dw(rt ))w(t)

x(t) = φ(t), t ∈ [−d̄, 0] (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is
the control input,w(t) ∈ Rp is the disturbance input and

w(t) ∈ L2[0,∞]. z(t) ∈ Rq is the controlled output. d is
an unknown constant delay and satisfies 0 < d ≤ d̄ . φ(t) ∈
Cn,d̄ is a compatible initial function. {rt , t ≥ 0} is a homoge-
neous finite-state Markovian process with right continuous
trajectories and taking values in a finite set S = {1, . . . , s}
with transition probability matrix � = {πi j } given by

Pr{rt+h = j |rt = i} =
{

πi j h + o(h), j �= i
1 + πi i h + o(h), j = i

where h > 0, limh→0
o(h)
h = 0 and πi j ≥ 0, for j �=

i , is the transition rate from the mode i at time t to
the mode j at time t + h and πi i = − ∑s

j=1, j �=i πi j .

The matrix E ∈ Rn×n is singular and 0 < rankE =
r ≤ n. A(rt ), Ad(rt ), B(rt ), Bw(rt ),C(rt ),Cd(rt ), D(rt )
and Dw(rt ) are known real constant matrices with appro-
priate dimensions. And it is assumed that the uncertainties
�A(rt ),�Ad(rt ),�Bw(rt ),�C(rt ),�Cd(rt ) and�Dw(rt )
are norm-bounded and for each i ∈ S can be described as

[�Ai (t) �Adi (t) ∗ �Bwi (t)
�Ci (t) �Cdi (t) ∗ �Dwi (t)

]

=
[
M1i

M2i

]
F1i (t)

[
N1i N2i ∗ N3i

]

FT
1i (t)F1i (t) ≤ I ,∀i ∈ S (2)

where M1i , M2i , N1i , N2i and N3i are known real constant
matrices with appropriate dimensions for each i ∈ S, and
F1i (t) are unknown matrix functions.

The objective of this note is to develop resilient memory
state feedback controllers:

u(t) = (K (rt ) + �K (rt ))x(t)

+ (Kd(rt ) + �Kd(rt ))x(t − d) (3)

such that the closed-loop system constructed by (1)–(3) is
robustly and stochastically admissible with H∞ performance
γ for any constant time-delay d satisfying 0 ≤ d ≤ d̄ . In this
case, the controller (3) is called a robust resilient controller
of the system (1).

For the controller gain uncertainties�K (rt ),�Kd(rt ), for
each possible i ∈ S, the following two forms will be consid-
ered:

(a) Additive controller gain uncertainties:

[�Ki (t) �Kdi (t)
]

= M+i F2i (t)
[
N+i N+di

]
,

FT
2i (t)F2i (t) ≤ I ,∀i ∈ S (4)
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(b) Multiplicative controller gain uncertainties:

[�Ki (t) �Kdi (t)
]

= M×i F3i (t)
[
N×i Ki (t) N×di Kdi (t)

]
,

FT
3i (t)F3i (t) ≤ I ,∀i ∈ S (5)

where M+i , M×i , N+i , N×i , N+di and N×di are known
real constant matrices with appropriate dimensions for
each i ∈ S, and F2i (t), F3i (t) are unknown matrix func-
tions.

�A(rt ),�Ad(rt ),�Bw(rt ),�C(rt ),�Cd(rt ),�Dw(rt ),
�K (rt ) and �Kd(rt ) are said to be admissible if (2), (4) and
(5) are satisfied.

For notational simplicity, in the sequel, for each possible
i ∈ S, matrices A(rt ), Ad(rt ), B(rt ), Bw(rt ), C(rt ), Cd(rt ),
D(rt ), Dw(rt ), K (rt ) and Kd(rt )will be respectively denoted
by Ai , Adi , Bi , Bwi , Ci , Cdi , Di , Dwi , Ki and Kdi .

About the definition of the robustly and stochastically
admissible with H∞ performance, it can be referred to fol-
lowing definitions:

Definition 2.1 [7]

1. For a given scalar d̄ > 0, the singular Markovain jump
time-delay system

Eẋ(t) = Ai x(t) + Adi x(t − d)

x(t) = φ(t), t ∈ [−d̄, 0] (6)

is said to be regular and impulse free for any constant d
satisfying 0 ≤ d ≤ d̄ , if the pairs (E, Ai ) and (E, Ai +
Adi ) are regular and impulse free for any i ∈ S;

2. The singular Markovian jump time-delay system (6) is
said to be stochastically stable, if there exists a scalar
M(r0, φ(·)) such that

limt→∞E
{ ∫ t

0
‖x(s)‖2ds|r0, x(s)

= φ(s), s ∈ [− d̄, 0]
}

≤ M(r0, φ(·))

3. The singular Markovian jump time-delay system (6)
is said to be stochastically admissible, if it is regular,
impulse free and stochastically stable.

Definition 2.2 [7] The singular Markovian jump time-delay
system (1) is said to be stochastically admissible with H∞
performance γ , if the system with Fi (t) = 0, u(t) = 0 and
w(t) = 0 is stochastically admissible and under zero initial
condition, the output vector z(t) satisfies

E
{∫ ∞

0
zT (t)z(t)dt

}
≤ γ 2

∫ ∞

0
wT (t)w(t)dt

for any non-zero w(t) ∈ L2[0,∞].
3 Main results

In this section, we shall solve the delay-dependent robust
resilient H∞ control problem for the singular time-delay
Markovian jump system (1) in terms of LMIs approach.
Initially, we give a sufficient condition of stochastic admis-
sibility for the singular Markovian jump time-delay system
(1) with u(t) ≡ 0 and Fi (t) = 0, that is

Eẋ(t) = Ai x(t) + Adi x(t − d) + Bwiw(t)

z(t) = Ci x(t) + Cdi x(t − d) + Dwiw(t)

x(t) = φ(t), t ∈ [−d̄, 0] (7)

which will play a key role in solving the problem.

Lemma 3.1 For given a scalar d̄ > 0, γ > 0, the singular
Markovian jump time-delay system (7) is regular, impulse
free and stochastically stable with H∞ performance under
zero initial conditions for any d satisfying 0 ≤ d ≤ d̄ , if
there exist matrices Q2i > 0, Q2 > 0, R1 > 0, R2 > 0,

Q1i =
[
Q1i11 Q1i12

� Q1i22

]
> 0, Q1 =

[
Q111 Q112

� Q122

]
> 0, and

matrices Fi ,Gi , Hi , Ji and nonsingular matrices Pi such
that for every i ∈ S,

ET Pi = PT
i E ≥ 0 (8)

	̄i =

⎡
⎢⎢⎢⎢⎢⎢⎣

	i11 	i12 	i13 	i14 FT
i Bwi CT

i
� 	i22 −Hi 	i24 GT

i Bwi 0
� � 	i33 	i34 HT

i Bwi 0
� � � 	i44 J Ti Bwi CT

di
� � � � − γ 2 I DT

wi
� � � � � − I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (9)

Q1i < Q1, Q2i < Q2 (10)

where μ = max{|πi i |, i ∈ S} and

	i11 =
s∑

j=1

πi j E
T Pj + Q1i11

+ d̄

2
μ(Q111 + Q2) + FT

i Ai + AT
i Fi ,	i22

= R1 + R2 − GT
i − Gi ,

	i33 = Q1i22 − Q1i11 + d̄

2
μQ122 + Q2i ,	i13

= Q1i12 + d̄

2
μQ112 + AT

i Hi ,

	i12 = PT
i − FT

i + AT
i Gi ,	i44

= − Q1i22 − Q2i + J Ti Adi + AT
di Ji ,

	i14 = FT
i Adi + AT

i Ji ,	i24 = GT
i Adi − Ji ,	i34

= − Q1i12 + HT
i Adi .

123



S6286 Cluster Computing (2019) 22:S6283–S6294

Proof Now we firstly prove the system (7) is stochastically
admissible. FromDefinition 2.2, it is to prove that the system
(6) is stochastically admissible. Considering the system (6)
and from (9), we can easily deduce that for every i ∈ S,
I1	̄iI1 < 0. Then

ẼT P̃ = P̃T Ẽ ≥ 0 (11)[
πi i Ẽ T P̃i + Q̃1 + P̃T

i Ãi + ÃT
i P̃i Q̃2 + P̃T

i Ãdi + ÃT
i J̃i

� Q̃3 + J̃ Ti Ãdi + ÃT
di J̃i

]
< 0

(12)

where

Ẽ =
[
E 0
0 0

]
, Ãi =

[
0 In
Ai −In

]
, Ãdi =

[
0 0
Adi 0

]
,

P̃i =
[
Pi 0
Fi Gi

]
, P̄i =

[
Pi 0

Fi + Ji Gi + Hi

]
,

Q̃1 =
[
Q1i11 + d̄

2μ(Q111 + Q2) 0
0 R1 + R2

]
,

Q̃2 =
[
0 Q1i12 + d̄

2μQ112

0 0

]
, J̃i =

[
0 0
Ji Hi

]
,

Q̃3 =
[

−Q1i22 − Q2i −QT
1i12

� Q1i22 − Q1i11 + d̄
2μQ122 + Q2i

]
,

R̃ =
[

d̄
2μQ2 0
0 R1 + R2

]
,

I1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 I 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Obviously, the following inequality is true:

πi i Ẽ
T P̃i + P̃T

i Ãi + ÃT
i P̃i < 0 (13)

Since rank Ẽ = rank E = r ≤ n, there exist nonsingular
matrices Ḡ and H̄ , such that

Ē = Ḡ Ẽ H̄ =
[
Ir 0
0 0

]
(14)

Then, for every i ∈ S, we denote: Āi � Ḡ Ãi H̄ , Ādi �
Ḡ Ãdi H̄ , P̄i � Ḡ−T P̃i H̄

Āi �
[
Ai11 Ai12

Ai21 Ai22

]
, Ādi �

[
Adi11 Adi12

Adi21 Adi22

]
,

P̄i �
[
Pi11 Pi12
Pi21 Pi22

]
.

From (11), it is clear that Pi12 = 0, for every i ∈ S.
Pre-multiplying and post-multiplying (13) by H̄ T and H̄ ,
respectively, we can deduce

AT
i22Pi22 + PT

i22Ai22 < 0

which implies that Ai22 and Pi22 are nonsingular for every
i ∈ S. This implies the pair (Ẽ, Ãi ) is regular and impulse
free and P̃i is nonsingular, that is Gi is nonsingular for every
i ∈ S. Note that det(s Ẽ − Ãi ) = det(sE − Ai ), we can
easily get that the pair (E, Ai ) is regular and impulse free for
every i ∈ S.

Now, pre-multiplying and post-multiplying (12) by
[
In In

In In
]
and

[
In In In In

]T
, respectively, we can obtain

πi i E
T Pi + FT

i Ai + AT
i Fi + AT

i Gi + GT
i Ai

+ Pi + PT
i − Fi − FT

i − Gi − GT
i + FT

i Adi

+ AT
di Fi + GT

i Adi + AT
diGi + AT

i Ji

+ J Ti Ai − Ji − J Ti + J Ti Adi + AT
di Ji + AT

i Hi

+ HT
i Ai − Hi − HT

i + HT
i Adi + AT

di Hi + d̄

2
μ(Q111

+ Q112 + QT
112 + Q122 + Q2) + R1 + R2 < 0

that is

[
In In

] [πi i Ẽ
T P̄i + P̄T

i ( Ãi + Ãdi ) + ( Ãi

+ Ãdi )
T P̄i + d̄

2
μQ1 + R̃] [

In In
]T

< 0

which implies that

πi i Ẽ
T P̄i + P̄T

i ( Ãi + Ãdi ) + ( Ãi + Ãdi )
T P̄i

+ d̄

2
μQ1 + R̃ < 0.

Note that Q1 > 0, R̃ ≥ 0 and similar to the above analysis,
it is true that the pair(E, Ai + Adi ) is regular and impulse
free for every i ∈ S. So, according to Definition 2.1, the
singular Markovian jump time-delay system (6) is regular
and impulse free for any constant time delay d satisfying
0 ≤ d ≤ d̄.

Next we are in the position to prove that the system (6) is
stochastically stable. Choose a Lyapunov–Krasovskii func-
tional candidate as

V (xt , rt , t) = V1(xt , rt , t) + V2(xt , rt , t) + V3(xt , rt , t)

(15)
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where

V1(xt , rt , t) = xT (t)ET P(rt )x(t)

V2(xt , rt , t) =
∫ t

t− d
2

ξ T (α)Q1(rt )ξ(α)dα

+μ

∫ 0

− d
2

∫ t

t+θ

ξ T (α)Q1ξ(α)dαdθ

+ 2

d̄

∫ 0

− d
2

∫ t

t+θ

ẋ T (α)ET R1Eẋ(α)dαdθ

V3(xt , rt , t) =
∫ t− d

2

t−d
xT (α)Q2(rt )x(α)dα

+μ

∫ − d
2

−d

∫ t

t+θ

xT (α)Q2x(α)dαdθ

+ 2

d̄

∫ − d
2

−d

∫ t

t+θ

ẋ T (α)ET R2Eẋ(α)dαdθ

here ξ T (t) = [
xT (t) xT (t − d

2 )
]
. Let L[·] be the weak

infinitesimal operator of the stochastic process {xt , rt }, then
for each i ∈ S, we have

LV (xt , i, t) ≤ ẋ T (t)ET Pi x(t) + xT (t)ET Pi ẋ(t)

+ xT (t)
s∑

j=1

πi j E
T Pj x(t) + xT (t)Q1i11x(t)

+ 2xT (t)Q1i12x

(
t − d

2

)

+ xT
(
t − d

2

)
Q1i22x

(
t − d

2

)

− xT
(
t − d

2

)
Q1i11x

(
t − d

2

)

− 2xT
(
t − d

2

)
Q1i12x(t − d)

− xT (t − d)Q1i22x(t − d)

+ 2 · d̄
2
μxT (t)Q112x

(
t − d

2

)

+ d̄

2
μxT (t)Q111x(t) +

∫ t

t− d
2

ξ T (α)

s∑
j=1

πi j Q1 jξ(α)dα

+ d̄

2
μxT

(
t − d

2

)
Q122x

(
t − d

2

)

−μ

∫ t

t− d
2

ξ T (α)Q1ξ(α)dα + ẋ T (t)ET R1Eẋ(t)

− 2

d̄

∫ t

t− d
2

ẋ T (α)ET R1Eẋ(α)dα

+ xT
(
t − d

2

)
Q2i x

(
t − d

2

)
− xT (t − d)Q2i x(t − d)

+
∫ t− d

2

t−d
xT (α)

s∑
j=1

πi j Q2 j x(α)dα

+ d̄

2
μxT (t)Q2x(t)

−μ

∫ t− d
2

t−d
xT (α)Q2x(α)dα + ẋ T (t)ET R2Eẋ(t)

− 2

d̄

∫ t− d
2

t−d
ẋT (α)ET R2Eẋ(α)dα + [− Eẋ(t)

+ Ai x(t) + Adi x(t − d)]T
[
Fi x(t) + Gi E ẋ(t)

+ Ji x(t − d) + Hi x

(
t − d

2

) ]

+[Fi x(t) + Gi E ẋ(t) + Ji x(t − d)

+ Hi x

(
t − d

2

)
]T [−Eẋ(t) + Ai x(t) + Adi x(t − d)]

(16)

According to Jesen integral inequality, the following in equa-
tion is true

− 2

d̄

∫ t

t− d
2

ẋ T (α)ET R1Eẋ(α)dα

≤ −
∫ t

t− d
2

2

d̄
ẋ T (α)ET dαR1

∫ t

t− d
2

2

d̄
E ẋ(α)dα

− 2

d̄

∫ t− d
2

t−d
ẋT (α)ET R2Eẋ(α)dα

≤ −
∫ t− d

2

t−d

2

d̄
ẋ T (α)ET dαR2

∫ t− d
2

t−d

2

d̄
E ẋ(α)dα (17)

Noting πi j > 0, for i �= j and −μ ≤ πi i < 0, and from
(10), we can get

∫ t

t− d
2

ξ T (α)

s∑
j=1

πi j Q1 jξ(α)dα ≤
∫ t

t− d
2

ξ T (α)

s∑
j=1, j �=i

πi j Q1 jξ(α)dα ≤ μ

∫ t

t− d
2

ξ T (α)Q1ξ(α)dα (18)

∫ t− d
2

t−d
xT (α)

s∑
j=1

πi j Q2 j x(α)dα ≤
∫ t− d

2

t−d
xT (α)

s∑
j=1, j �=i

πi j Q2 j x(α)dα ≤ μ

∫ t− d
2

t−d
xT (α)Q2x(α)dα

(19)

Then from (16)–(19), we can obtain that, for every i ∈ S,

LV (xt , i, t) ≤ ηT (t)	iη(t) (20)
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where

η(t)T = [
xT (t) (Eẋ(t))T xT (t − d

2 ) xT (t − d)]T ]
,

	i =

⎡
⎢⎢⎣

	i11 	i12 	i13 	i14

� 	i22 −Hi 	i24

� � 	i33 	i34

� � � 	i44

⎤
⎥⎥⎦

Note that R1 > 0, R2 > 0 and from (9), it is easy to get that
for every i ∈ S,

LV (xt , i, t) ≤ λmax (	i ) ‖ x(t) ‖2 .

Therefore, using Dynkin’s formula, for any t ≥ d̄,

EV (xt , i, t) − EV (xd̄ , rd̄ , d̄)

≤ −λmax (	i )E
∫ t

d̄
‖ x(s) ‖2 ds.

So the following in equation is true

E
∫ t

d
‖ x(s) ‖2 ds ≤ λ−1

max (	i )EV (xd̄ , rd̄ , d̄). (21)

From the above analysis, we know that for every i ∈ S,
the pair(E, Ai ) is regular and impulse free. Then there exist
nonsingular matrices M̄, N̄ such that (E, Ai ) for every i ∈ S
is r.s.e. to the Weierstrass standard form Ē = M̄ E N̄ , Āi =
M̄ Ai N̄ ,

Ē =
[
Ir 0
0 0

]
, Āi =

[
Ai1 0
0 In−r

]
, Ādi =

[
Adi11 Adi12

Adi21 Adi22

]
.

Then, for every i ∈ S, system (6) can be equivalently trans-
formed into

ẏ1(t) = Ai1y1(t) + Adi11y1(t − d) + Adi12y2(t − d),

− y2(t) = Adi21y1(t − d) + Adi22y2(t − d),

ψ(t) = N̄−1φ(t), t ∈ [−d̄, 0], (22)

where y(t) =
[
y1(t)
y2(t)

]
= N̄−1x(t), y1(t) ∈ Rr , y2(t) ∈

Rn−r . Then for any t ∈ [0, d̄],

‖ y1(t) ‖≤‖ eAi1t y1(0)‖ + ‖
∫ t

0
eAi1(t−s)[Adi11y1(s − d)

+ Adi12y2(s − d)]ds ‖≤ k1 ‖ ψ ‖d̄
where k1 = max

i∈S
{[1+d̄(‖Adi11‖+‖Adi12‖)] max

t∈[0,d̄]
‖eAi1t‖} ≥

0.
Similarly, we can get

‖ y2(t) ‖≤ k2 ‖ ψ ‖d̄

where k2 = maxi∈S{‖ Adi21 ‖ + ‖ Adi22 ‖} ≥ 0.
It is clear that

sup0≤s≤d̄ ‖ y1(s) ‖2 ≤ k21 ‖ ψ ‖2
d̄
, sup0≤s≤d̄ ‖ y2(s) ‖2

≤ k22 ‖ ψ ‖2
d̄

. (23)

Obviously, there exists a scalar k3 > 0 such that

sup
0≤s≤d̄

‖ x(s) ‖2≤ k3 ‖ φ ‖2
d̄

.

Noticing (15) and system (22), we can get that there exists
a scalar σ > 0 such that

V (xd , i, d) ≤ σ ‖ φ ‖2
d̄

From the above analysis, together with (21), there exist a
scalar ρ > 0 such that

E
∫ t

0
‖ x(s) ‖2 ds ≤ E

∫ d̄

0
‖ x(s) ‖2 ds

+ E
∫ t

d̄
‖ x(s) ‖2 ds ≤ ρ ‖ φ ‖2

d̄
(24)

Then from Definition 2.1, system (6) is stochastically stable
for any constant time delay d satisfying 0 ≤ d ≤ d̄.

Secondly we prove that the output vector z(t), under zero
initial condition, satisfies

E
{∫ ∞

0
zT (t)z(t)dt

}
≤ γ 2

∫ ∞

0
wT (t)w(t)dt (25)

for any non-zero w(t) ∈ L2[0,∞].
Now we quote the following index:

Jzw(t) � E
{∫ t

0
[zT (s)z(s) − γ 2wT (s)w(s)]ds

}

Under zero initial conditions, we can easily obtain that

Jzw(t) ≤ E
{∫ t

0
[zT (s)z(s) − γ 2wT (s)w(s) + LV (xs , i, s)]ds

}

≤ E
{∫ t

0
ζ T (s)(�i + �T

i �i )ζ(s)ds

}

where

�i =

⎡
⎢⎢⎢⎢⎣

	i11 	i12 	i13 	i14 FT
i Bwi

� 	i22 −Hi 	i24 GT
i Bwi

� � 	i33 	i34 HT
i Bwi

� � � 	i44 J Ti Bwi

� � � � −γ 2 I

⎤
⎥⎥⎥⎥⎦ ,

ζ T (t) = [
xT (t) (Eẋ(t))T xT (t − d

2 ) xT (t − d) wT (t)
]
,

�i = [
Ci 0 0 Cdi Dwi

]
.
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By using the Schur’s complement lemma, it is easy from (9)
to get that for any t > 0,

Jzw(t) < 0

To this end,weget (25) for anynon-zerow(t) ∈ L2[0,∞].
This completes the proof. 
�
Remark 3.1 This result is similar to the conclusion of the
author’s earlier work in [22]. But here in this note, when
dealing with the Lypunov function LV (xt , i, t), we quote
new matrices Hi , i ∈ S in order to take the time-delay
state x

(
t − d

2

)
into account in the conditions. This makes

the results here more freedom.

Now, we will try to talk about the sufficient conditions for
the existence of the robust resilient controllers of the systems
(1). Applying the memory state feedback controllers (3) to
the systems (1), the closed-loop system can be obtained as
the following

Eẋ(t) = (Aki + �Aki )x(t) + (Akdi + �Akdi )x(t − d)

+ (Bwi + �Bwi )w(t)

z(t) = (Cki + �Cki )x(t) + (Ckdi + �Ckdi )x(t − d)

+ (Dwi + �Dwi )w(t)

x(t) = φ(t), t ∈ [−d̄, 0] (26)

where Aki = Ai + Bi Ki ,�Aki = �Ai + Bi � Ki , Akdi =
Adi + Bi Kdi ,�Akdi = �Adi + Bi � Kdi ,Cki = Ci +
Di Ki ,�Cki = �Ci+Di�Ki ,Ckdi = Cdi+Di Kdi ,�Ckdi

= �Cdi + Di � Kdi .
From Lemma 3.1, we know that for given scalars d̄ >

0, γ > 0,the sufficient conditions to guarantee that the
closed systems (26) is regular, impulse free and stochastically
stable with H∞ performance under zero initial conditions

for any d satisfying 0 ≤ d ≤ d̄ are the following: there
exist matrices Q2i > 0, Q2 > 0, R1 > 0, R2 > 0,

Q1i =
[
Q1i11 Q1i12

� Q1i22

]
> 0, Q1 =

[
Q111 Q112

� Q122

]
> 0,

and matrices Fi ,Gi , Hi , Ji and nonsingular matrices Pi sat-
isfying (8), (10) for every i ∈ S and

	̄ki =

⎡
⎢⎢⎢⎢⎢⎢⎣

	ki11 	ki12 	ki13 	ki14 FT
i (Bwi + �Bwi ) (Cki + �Cki )

T

� 	i22 − Hi 	ki24 GT
i (Bwi + �Bwi ) 0

� � 	i33 	ki34 HT
i (Bwi + �Bwi ) 0

� � � 	ki44 J Ti (Bwi + �Bwi ) (Ckdi + �Ckdi )
T

� � � � − γ 2 I (Dwi + �Dwi )
T

� � � � � − I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0

(27)

where

	ki11 =
s∑

j=1

πi j E
T Pj + Q1i11 + d̄

2
μ(Q111 + Q2)

+ FT
i (Aki + �Aki ) + (Aki + �Aki )

T Fi ,

	ki44 = − Q1i22 − Q2i + J Ti (Akdi + �Akdi ) + (Akdi

+ � Akdi )
T Ji ,	ki24 = GT

i (Akdi + �Akdi ) − Ji ,

	ki12 = PT
i − FT

i + (Aki + �Aki )
T Gi ,	ki13 = Q1i12

+ d̄

2
μQ112 + (Aki + �Aki )

T Hi ,

	ki14 = FT
i (Akdi + �Akdi ) + (Aki + �Aki )

T Ji ,	ki34

= − Q1i12 + HT
i (Akdi + �Akdi ).

Now pre-multiplying and post-multiplying 	̄ki by I2 and
IT
2 , respectively. The following in equation can be obtained

I2	̄kiIT
2 = �T

i (�i + ��i ) + (�i + ��i )
T�i + �i < 0

(28)

where

I2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0
0 0 0 I 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

, �i=

⎡
⎢⎢⎢⎢⎢⎢⎣

Pi 0 0 0 0 0
0 Pi 0 0 0 0
Fi Ji Gi Hi 0 0
0 0 0 Pi 0 0
0 0 0 0 In 0
0 0 0 0 0 In

⎤
⎥⎥⎥⎥⎥⎥⎦

,�i=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 In 0 0 0
0 0 0 0 0 0
Aki Akdi −In 0 Bwi 0
0 0 0 0 0 0
0 0 0 0 0 0
Cki Ckdi 0 0 Dwi 0

⎤
⎥⎥⎥⎥⎥⎥⎦

��i=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0

�Aki �Akdi 0 0 �Bwi 0
0 0 0 0 0 0
0 0 0 0 0 0

�Cki �Ckdi 0 0 �Dwi 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑s
j=1 πi j ET Pj + Q1i11

+ d̄
2μ(Q111 + Q2)

0 0 Q1i12 + d̄
2μQ112 0 0

0 −Q1i22 − Q2i 0 −QT
1i12 0 0

0 0 R1 + R2 0 0 0

QT
1i12 + d̄

2μQT
112 −Q1i12 0 	i33 0 0

0 0 0 0 −γ 2 In 0
0 0 0 0 0 −In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Now considering the controllers with the additive gain uncer-
tainties (4), we have

I2	̄kiIT
2 = �T

i �i + �T
i �i + �i + �T

i

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
M1i Bi M+i

0 0
0 0
M2i Di M+i

⎤
⎥⎥⎥⎥⎥⎥⎦

[
F1i 0
0 F2i

]

⎡
⎢⎢⎢⎢⎢⎢⎣

(N1i Li )
T (N+i Li )

T

(N2i Li )
T (N+di Li )

T

0 0
0 0
NT
3i 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

T

⎡
⎢⎢⎢⎢⎢⎢⎣

(N1i Li )
T (N+i Li )

T

(N2i Li )
T (N+di Li )

T

0 0
0 0
NT
3i 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

[
FT
1i 0
0 FT

2i

]

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
M1i Bi M+i

0 0
0 0
M2i Di M+i

⎤
⎥⎥⎥⎥⎥⎥⎦

T

�i < 0 (29)

From Lemma 3.1, we know that Pi ,Gi are nonsingular for
every i ∈ S. Then we define

�−1
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Pi 0 0 0 0 0
0 Pi 0 0 0 0
Fi Ji Gi Hi 0 0
0 0 0 Pi 0 0
0 0 0 0 In 0
0 0 0 0 0 In

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

�

⎡
⎢⎢⎢⎢⎢⎢⎣

Li 0 0 0 0 0
0 Li 0 0 0 0
Mi Ti Ni Wi 0 0
0 0 0 Li 0 0
0 0 0 0 In 0
0 0 0 0 0 In

⎤
⎥⎥⎥⎥⎥⎥⎦

.

And set

Q̄1i = diag{LT
i , LT

i } · Q1i · diag{Li , Li } =
[
Q̄1i11 Q̄1i12

� Q̄1i22

]
,

Q̄1 = diag{LT
i , LT

i } · Q1 · diag{Li , Li } =
[
Q̄111 Q̄112

� Q̄122

]
,

Q̄2i = LT
i Q2i Li , Q̄2 = LT

i Q2Li , Si = Ki Li , Sdi = Kdi Li .

Then pre-multiplying and post-multiplying (8) by LT
i and

Li , respectively, we can have

LT
i E

T = ELi ≥ 0 (30)

Pre-multiplying and post-multiplying Q1i < Q1 by
diag{LT

i , LT
i } and diag{Li , Li }, respectively, and pre-

multiplying and post-multiplying Q2i < Q2 by LT
i and Li ,

respectively, following in equations can be obtained

Q̄1i < Q̄1, Q̄2i < Q̄2 (31)

Pre-multiply and post-multiply (29) by�−T
i and�−1

i . It is
worthy to notice that there appears the term

∑s
j=1, j �=i πi j LT

i

ET L−1
j Li . Now without loss of generality, in the follow-

ing we assume that E =
[
Ir 0
0 0

]
. From Lemma 3.1, Li =[

Li11 0
Li21 Li22

]
and Li11 > 0. It is easy to get that

s∑
j=1, j �=i

πi j L
T
i E

T L−1
j Li =

s∑
j=1, j �=i

πi j

[
Li11

0

]
L−1
j11

[
Li11 0

]

Then by Schur complement lemma, the following condi-
tion can be obtained

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϒi11 Ti ϒi13 ϒi14 0 ϒi16 MT
i MT

i Xi 0 0 N̄1 �+
� ϒi22 ϒi23 −Q̄T

1i12 0 ϒi26 T T
i T T

i 0 0 0 N̄2 �+d

� � ϒi33 −Wi Bwi 0 NT
i NT

i 0 αi M1i αi Bi M+i 0 0
� � � ϒi44 0 0 WT

i WT
i 0 0 0 0 0

� � � � −γ 2 I DT
wi 0 0 0 0 0 NT

3i 0
� � � � � −I 0 0 0 αi M2i αi Di M+i 0 0
� � � � � � −R−1

1 0 0 0 0 0 0
� � � � � � � −R−1

2 0 0 0 0 0
� � � � � � � � −Zi 0 0 0 0
� � � � � � � � � −αi I 0 0 0
� � � � � � � � � � −αi I 0 0
� � � � � � � � � � � −αi I 0
� � � � � � � � � � � � −αi I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (32)
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where

�+ = (N+i Li )
T ,�+d = (N+di Li )

T , N̄1 = (N1i Li )
T ,

N̄2 = (N2i Li )
T ,

ϒi11 = πi i L
T
i E

T + Mi + MT
i + Q̄1i11 + d̄

2
μ(Q̄111 + Q̄2),

ϒi22 = −Q̄1i22 − Q̄2i ,

ϒi16 = LT
i C

T
i + STi DT

i , ϒi26 = LT
i C

T
di + STdi D

T
i ,

ϒi14 = Q̄1i12 + d̄

2
μQ̄112 + Wi

ϒi13 = Ni − MT
i + LT

i A
T
i + STi BT

i , ϒi23 = LT
i A

T
di

+ STdi B
T
i − T T

i , ϒi33 = −Ni − NT
i

ϒi44 = Q̄1i22 − Q̄1i11 + d̄

2
μQ̄122 + Q̄2i , Zi

= diag{L111, . . . , L(i−1)11, L(i+1)11, . . . , Ls11}
Xi =

[√
πi1

[
Li11

0

]
· · · √πi(i−1)

[
Li11

0

]

√
πi(i+1)

[
Li11

0

]
· · · √πis

[
Li11

0

]]

Now, from the above analysis, we can get the following
results.

Theorem 3.1 Consider the Markovian jump singular time-
delay system (1). For given scalars d̄ > 0 and γ > 0, if
there exist matrices Q̄1i > 0, Q̄2i > 0, Q̄1 > 0, Q̄2 >

0, R1 > 0, R2 > 0,and matrices Li , Mi , Ti , Ni , Wi , Si , Sdi
and a scalar αi > 0, for every i ∈ S satisfying (30), (31)
and (32) then there exist controllers with the additive uncer-
tainties u(t) = (Si L

−1
i + M+i F2i N+i )x(t) + (Sdi L

−1
i +

M+i F2i N+di )x(t − d), i ∈ S such that the closed-loop sys-

tems (26) is stochastically admissible with H∞ performance
γ under zero initial conditions for any constant time delay d
satisfying 0 ≤ d ≤ d̄ .

As to the case of the controllers with the multiplicative
gain uncertainties, similar to the above analysis we can get
the following theorem.

Theorem 3.2 Consider the Markovian jump singular time-
delay system (1). For given scalars d̄ > 0 and γ > 0, if
there exist matrices Q̄1i > 0, Q̄2i > 0, Q̄1 > 0, Q̄2 >

0, R1 > 0, R2 > 0,and matrices Li , Mi , Ti , Ni , Wi , Si ,
Sdi and a scalar αi > 0, for every i ∈ S satisfying (30),
(31) and (33) then there exist controllers with the multiplica-
tive uncertainties u(t) = (I + M×i F3i N×i )Si L

−1
i x(t) +

(I + M×i F3i N×di )Sdi L
−1
i x(t − d), i ∈ S such that the

closed-loop systems (26) is stochastically admissible with
H∞ performance γ under zero initial conditions for any con-
stant time delay d satisfying 0 ≤ d ≤ d̄.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϒi11 Ti ϒi13 ϒi14 0 ϒi16 MT
i MT

i Xi 0 0 N̄1 �×
� ϒi22 ϒi23 −Q̄T

1i12 0 ϒi26 T T
i T T

i 0 0 0 N̄2 �×d

� � ϒi33 −Wi Bwi 0 NT
i NT

i 0 αi M1i αi Bi M×i 0 0
� � � ϒi44 0 0 WT

i WT
i 0 0 0 0 0

� � � � −γ 2 I DT
wi 0 0 0 0 0 NT

3i 0
� � � � � −I 0 0 0 αi M2i αi Di M×i 0 0
� � � � � � −R−1

1 0 0 0 0 0 0
� � � � � � � −R−1

2 0 0 0 0 0
� � � � � � � � −Zi 0 0 0 0
� � � � � � � � � −αi I 0 0 0
� � � � � � � � � � −αi I 0 0
� � � � � � � � � � � −αi I 0
� � � � � � � � � � � � −αi I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (33)

where

�× = (N×i Si )
T ,�×d = (N×di Sdi )

T .

Remark 3.2 Theorems 3.1 and 3.2 provide the delay-
dependent sufficient conditions for the design of the robust
resilient H∞ controllers of the Markovian jump singular
time-delay systems (1) in terms ofLMIs. The controllers con-
sidered in these results are u(t) = (K (rt ) + �K (rt ))x(t) +
(Kd(rt ) + �Kd(rt ))x(t − d).
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The state feedback controllers u(t) cover not only the cur-
rent state x(t) but also the state of t ∈ [t − d, t]. This leads
to that the results are more general. To the contrary, if we
take the Kd(rt )+�Kd(rt ) = 0 in Theorems 3.1 and 3.2, the
results can be deduced into the well-known LMI conditions
for memoryless controller synthesis similarly to references
[14–17].

Remark 3.3 The gains the controllers include two parts:
K (rt ), Kd(rt ) and �K (rt ),�Kd(rt ). The existence of the
controller gain perturbations ensures that the controllers
themselves have certain robustness. This means that the con-
trollers needn’t to be precise and exactly implemented. And
the results allow the controllers gains have a certain degree
of perturbations, which is more advantageous to the actual
situation of the realization of the controllers.

4 Numerical examples

Example 4.1 Consider the singular Markovian jump time-
delay system (7) with two modes, that is S = {1, 2}. The
mode switching is governedby the ratematrix

[− 0.5 0.5
0.3 − 0.3

]
.

And the system parameters are as follows:

E =
[
1 0
0 0

]
, A1 =

[− 2 1
− 1 − 2

]
, A2 =

[− 2 0.5
0.5 − 1

]
,

Ad1 =
[− 1 0.5

2 0.3

]
, Ad2 =

[
0.2 0.1
0.5 0.2

]
,

Bw1 =
[

0.4
− 0.5

]
, Bw2 =

[
0.5

− 0.5

]
,

Dw1 = 0.2, Dw2 = 0.1,C1 = [− 0.1 0.3
]
,

C2 = [− 0.1 0.3
]
,

Cd1 = [− 1 0.2
]
,Cd2 = [− 2 0.2

]
.

Tables 1 and2provide the comparison results, respectively
via the method provided in [26] and Lemma 3.1 in this paper.

Table 1 shows that for a given H∞ performance level γ ,
the conditions in Lemma 3.1 allow a bigger delay constant d
than the results gotten in reference [26]. So the conditions of
Lemma 3.1 for singular Markovian jump time-delay systems
is less conservative than those obtained in [26].

Table 2 illustrates that for a given delay constant d, the
conditions in Lemma 3.1 allow a smaller H∞ performance
γ . This means that the results here can allow greater energy
external perturbation than the results obtained in [26].

Example 4.2 Consider singular Markovian jumping system
(1) with two modes and the system parameters are described

as follows:

E =
⎡
⎣ 1 0 0
0 1 0
0 0 0

⎤
⎦ , A1 =

⎡
⎣ 2 − 1.5 1

− 1.2 1 2
1 2 − 1.5

⎤
⎦ ,

A2 =
⎡
⎣ 1.5 − 1.5 0

− 1 − 2 0.5
1 1.2 − 1

⎤
⎦ , Ad1 =

⎡
⎣ 0.5 1.5 0

− 1 − 2 0.5
1 1.2 − 1

⎤
⎦ ,

Ad2 =
⎡
⎣ 1 1.2 0.5
1.5 − 0.2 1
− 1 2 1

⎤
⎦ , B1 =

⎡
⎣1.5 − 2

1 − 1
1 2

⎤
⎦ ,

B2 =
⎡
⎣0.5 1

1 0.5
1 1.5

⎤
⎦ , Bw2 =

⎡
⎣ 0.5

− 1
0.1

⎤
⎦ , Bw1 =

⎡
⎣− 0.02

− 0.1
0.2

⎤
⎦ ,

C1 = [− 0.1 − 0.3 0.1
]
,C2 = [

0.2 − 0.2 − 0.01
]
,

Cd1 = [− 1 0.5 0.1
]
,

Cd2 = [− 2 0.2 0.1
]
, D1 = [− 0.2 0.2

]
,

D2 = [− 0.3 0.1
]
, Dw1 = 0, Dw2 = 0,

N11 = [
0.1 0.1 0.1

]
, N12 = [

0.1 0.1 0.1
]
,

N21 = [
0.1 0.1 0.1

]
, N22 = [

0.1 0.1 0.1
]
,

N31 = 0.1, N32 = 0.1, M21 = 0.1, N+1 = [
0.1 0.1 0.1

]
,

M22 = 0.1, N+2 = [
0.1 0.1 0.1

]
,

N+d1 = [
0.1 0.1 0.1

]
, N+d2 = [

0.1 0.1 0.1
]
,

N×1 = [
0.1 0.1

]
,

M11 =
⎡
⎣0.1
0.1
0.1

⎤
⎦ , M12 =

⎡
⎣0.1
0.1
0.1

⎤
⎦ ,

M+1 =
[
0.1
0.1

]
, M+2 =

[
0.1
0.1

]
,

M×1 =
[
0.1
0.1

]
, M×2 =

[
0.1
0.1

]
,

N×2 = [
0.1 0.1

]
, N×d1 = [

0.1 0.1
]
,

N×d2 = [
0.1 0.1

]
,

F11(t) = F12(t) = F21(t) = F22(t) = F31(t) = F32(t) =
sin(t). The transition probability matrix is given by

π =
[− 0.3 0.3

1 − 1

]

When d = 0.5 and γ = 1.0, using Theorems 3.1 and 3.2,
we can find feasible solutions for a set of LMIs (30)–(32)
and LMIs (30)–(33) respectively by using MATLAB LMI
Control Toolbox. Then we can get the robust resilient H∞
controllers. The controllers with the additive uncertainties

u(t) = (Ki + M+i sin(t)N+i )x(t) + (Kdi

+M+i sin(t)N+di )x(t − d), i ∈ S
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Table 1 Comparison results of
maximum allowed time-delay d
for different γ

γ 1.8 1.6 1.4 1.2 1.0 0.8

[26] 4.0413 3.8917 3.7005 3.4504 3.1141 2.6495

Lemma 3.1 4.5749 4.4817 4.3386 4.1107 3.7235 3.0515

Table 2 Comparison results of
minimum allowed γ for
different d̄

d̄ 4.5 4.0 3.5 3.0 2.5 2.0

[26] 2.9473 1.7400 1.2354 0.9443 0.7481 0.6204

Lemma 3.1 1.6328 1.1308 0.9207 0.7884 0.6915 0.6169

which has the following gains:

K1 =
[
30.4737 − 37.7166 − 2.7148
30.7386 − 23.6282 − 0.8215

]
,

K2 =
[ − 0.3769 − 0.4568 0.2871

− 902.5297 258.6746 − 4.7776

]

Kd1 =
[− 0.2264 − 0.4239 0.2648

− 0.1221 − 0.1459 0.2952

]
,

Kd2 =
[− 10.2761 2.6463 − 0.5260

7.4781 − 3.0840 − 0.3604

]
.

The controllers with the multiplicative uncertainties

u(t) = (I + M×i sin(t)N×i )Ki x(t)

+ (I + M×i sin(t)N×di )Kdi x(t − d), i ∈ S

which has the following gains:

K1 =
[
34.4338 − 40.4507 − 2.7959
40.0444 − 27.6446 − 0.8795

]
,

K2 =
[

188.4577 − 56.1672 − 1.7445
− 806.2580 231.4064 − 8.4865

]

Kd1 =
[− 0.4225 − 0.4238 0.2914

− 0.0369 − 0.2756 0.2931

]
,

Kd2 =
[− 7.3369 1.5352 − 0.3566
5.4625s − 2.3023 − 0.4821

]
.

These controllers can guarantee that the closed-loop sys-
tems are stochastically stable with H∞ performance γ , for
all admissible uncertainties. It is worth noting both the addi-
tive controller gain variance and the multiplicative controller
gain variance appear the function sin(t), which means that
the controllers needn’t be precise and exactly implemented.
That is the controller gain changes in a certain range, the
corresponding closed systems can all be regular, impulse
free and stochastically stable. In addition the correspond-
ing given H∞ performance can be satisfied. So the controller
algorithms presented here are more conducive to the realiza-
tion.

5 Conclusions

The problem of delay-dependent robust resilient H∞ control
for singular Markovian jump time-delay systems has been
discussed. In terms of the Lyapunov technique and linear
matrix inequalities, a new delay-dependent BRL is estab-
lished such that the system is stochastically admissible with
a given H∞ performance γ . Then, delay-dependent design
algorithms for the desired state feedback robust resilient con-
trollers are proposed in terms of a set of strict linear matrix
inequalities (LMIs) to guarantee that the closed-loop systems
are not only regular, impulse free and stochastically stable,
but also satisfy a prescribed H∞ performance level. Finally,
numerical examples illustrate that the results proposed in this
paper is valid.
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