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Abstract
In growing Software industry, whenever engineers developed new software, they want to make sure that it is failure free

and reliable. With the increasing reliability of hardware and growing complexity of software, the software reliability is a

rising concern for both developer and users. Software reliability is the key part of quality and customer satisfaction. For the

last three decades, many software reliability models have been successfully utilized in practical software reliability

engineering. However, no single model can obtain the accurate prediction for all cases. This paper proposed the software

reliability model with the increased number of training data set and neural networks. The back propagation algorithm has

been chosen and applied for a learning process. The obtained results show that the proposed model increases the accuracy

of the software reliability prediction.
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1 Introduction

The software has been increasingly used in our daily life

and has become a crucial part of critical and non-critical

applications [1]. Because of this increasing use and

importance, the assurance of software quality becomes an

issue of critical concern. Software quality can be expressed

by quality requirements or attributes such as reliability,

availability, safety, security, and performance [2]. Among

these software quality attributes, software reliability is

generally considered as the most important factor. It

quantifies software faults and failures, which can lead to

serious consequences in safety–critical systems as well as

in normal business. Therefore, assessing, estimating, and

predicting software reliability have been increasingly

demanded in projects in order to achieve highly reliable

software systems [3].

Software reliability is a process of providing failure-free

solutions until the lifetime of the software. Software

reliability Modelling has the benefits of increasing the

profit of the organization in many ways which include

Reduction in time to deliver, Reduction in total lifecycle

cost, Improvement in levels of quality, Improvements on

customer satisfaction ratings, an improvement on the sup-

plier relationships and delivery of complete specified

functionality [4]. This software reliability measurement is a

set of mathematical techniques that can be used to estimate

and predict the reliability behaviour of software during its

development and operation.

Software reliability growth models refer to those models

that try to predict software reliability from test data. These

models try to show a relationship between fault detection

data (i.e. test data) and known mathematical functions such

as logarithmic or exponential functions. The goodness of fit

of these models depends on the degree of correlation

between the test data and the mathematical function [5].

Typically two broad categories of software reliability

growth models (SRGMs) include parametric models and

nonparametric models. Most of the parametric models are

based on non-homogeneous Poisson process (NHPP) that

has been widely used successfully in practical software

reliability engineering [6].

In the past few years, a large number of software reli-

ability models/statistical models have been developed.

Jelinski–Moranda Model, Shooman Model, Musa Model,

geometric models of Moranda and Ramamoorthy–Bastani

& K. Kumaresan

kumaresankstu@outlook.com

1 Department of Computer Science & Engineering, Study

World College of Engineering, Coimbatore, India

2 Department of Information Technology, Anna University

Regional Campus, Coimbatore, India

123

Cluster Computing (2019) 22:S3095–S3102
https://doi.org/10.1007/s10586-018-1942-4(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-1942-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-1942-4&amp;domain=pdf
https://doi.org/10.1007/s10586-018-1942-4


and Schick–Wolverton model are some example for sta-

tistical models [7]. Every model is based on certain

assumptions. So the predictive capability of different

models is different for different datasets. There exist no

single models that can best suit in all cases. The statistical

models are also influenced by different external parameters

[8]. To overcome these problems, non-parametric models

like neural network and support vector machines have been

used for last few years [9]. The non-parametric models are

not influenced by any external parameter and also not

based on assumptions which are unrealistic in real

situations.

Traditional modelling approaches are provides solution,

if failure and repair data were always available [10]. This is

not a very realistic assumption and although it might be

possible to use parameter estimates from the many hand-

books for different models. The Bayesian approach might

help the researchers to solve this issue and provides better

estimation with help of available additional data [11].

Gathering the failure data is not very easy because many

different industries practising very poor route cause failure

analysis. At that time, the failure modes are not clearly

identifiable from the databases, from a more practical view,

does not provide the information needed to accurately fit

statistical models for reliability analyses [12].

Soft computing techniques emerged from the studies of

natural systems. In the past, soft computing methods were

difficult to be implemented because of computational

power limitations. Examples of bio-inspired techniques are

Artificial Immune systems (AIS), Fuzzy systems (FS),

Artificial Neural Networks (ANN), Swarm Intelligence (SI)

and Evolutionary Computing (EC). These techniques are

also known as Computational Intelligence (CI) techniques

and are part of Artificial Intelligence (AI) research area

[13]. Sometimes one or more models combined among

themselves and with stochastic methods in order to develop

a solution for solving complex engineering problems.

The Neural network is the techniques, which is inspired

from the behaviour of human brain. It is a collection of the

number of artificial neurons. It can be customized

according to the needs and problems. As each artificial

neuron takes a number of inputs and provides the single

output [14]. An artificial neuron performed the complex

calculation on input on the basis of a used transfer function

to produce the desired output. As the size of the neural

network increases the complexity of the system also

increases. Therefore there is need to use the number of

layers, the number of neurons, transfer function as less as

possible. The Neural network is capable to perform a

complex function in many fields like in pattern recognition,

classification, speech recognition, vision and control

system.

2 Literature survey

Kaswan et al. [15] presented neural network based model

to predict the failures of the system. They used execution

time as the input of the neural network. They used different

networks like Feed Forward neural networks, recurrent

neural networks like Jordan neural network and Elman

neural network in their approach. They used two different

training regimes like Prediction and Generalization in their

study. They compared their results with some statistical

models and found better prediction than those models.

Cai et al. [16] also used connectionist models for soft-

ware reliability prediction. They applied the Falman’s

cascade Correlation algorithm to find out the architecture

of the neural network. They considered the minimum

number of training points as three and calculated the

average error (AE) for both endpoint and next-step pre-

diction. Their results concluded that the connectionist

approach is better for endpoint prediction.

Lakshmanan et al. [17] provided the model to improve

the accuracy of software reliability prediction combine the

software reliability models with the neural networks (NN).

Particle swarm optimization (PSO) algorithm has been

chosen and applied for learning process to select the best

architecture of the neural network. Neural networks trained

by particle swarm optimization (PSO) has shown to be an

effective nonparametric technique for software reliability

prediction by optimizing the mean squared error, Selecting

the best architecture of the network are also concerned for

enhancing the performance of the model.

Roy et al. [18] developed ensemble models to forecast

software failure. One non-linear and three linear ensembles

are implemented. Various statistical and intelligent tech-

niques are investigated against the ensembles. They are

multivariate adaptive regression splines, TreeNet, multiple

linear regression, dynamic evolving neuro–fuzzy inference

system and back propagation neural network. Finally

concluded the non-linear ensemble technique provided

better performance compared to other ensemble

techniques.

Provided approach is regarded as an extension of sepa-

rate ANN model under the same modeling framework and

is a complement to analytical models which only describe

the influence of FDP on FCP as a time delay. With prac-

tical software testing data, this approach shows its advan-

tage in incorporating more information than the separate

ANN model and paired analytical model. Also, within the

combined ANN models, both feed forward and recurrent

frameworks perform well with the given dataset. The

combined ANN models are beneficial in incorporating the

correlation between FDP and FCP. They model the
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software debugging process more realistically, with more

accurate predictions.

Proposed Artificial Feed Forward network with expo-

nential and logarithmic functions. The result of encoding

and various parameters have been analysed. The effect of

changing hidden node size has also noted. The experi-

mental result highlights the proposed approach gives

acceptable results for various data sets using the same

neural network architecture.

Proposed a neural network based method for software

reliability prediction. They used back propagation algo-

rithm for training. They used multiple recent 50 failure

times as input to predict the next-failure time as output.

They evaluated the performance of the approach by vary-

ing the number of input nodes and hidden nodes. They

concluded that the effectiveness of the approach generally

depends upon the nature of the handled data sets.

3 Research methods

In this section, we present the proposed system for software

reliability prediction based on the recurrent neural network

with subdivided intervals.

3.1 Software reliability data

Sixteen software failure data sets from (Table 1) Musa

Data collections are used to check the performance and

validity of the proposed method.

Figures 1 and 2 show the intervals of DS1 and DS6. The

software failure data arranged in the pair of (Eti,Iti,Cfi)

where Eti, the execution time for ith software failure.

Iti = E ti _E ti_1 is the time interval between the (i-1)th

and ith software failures. Cfi is the Cumulative failure. The

goal of software reliability prediction model is to predict

the number of failures in future execution time with help of

software failure dataset. The failure datasets are normal-

ized in the range of [0, 1] on their maximum values before

feeding into the ANN to maintain the large variation of

prediction and forecasting.

3.2 Neural network architecture

Figure 3 shows the architecture of an artificial neural net-

work. It is designed with an input layer, output layer and

one or more hidden layers. Every single node from input

layer is interconnected to a node from hidden layer and

each node from the hidden layer is interconnected to a node

in the output layer. Usually every connection is associated

with some weights. Input layer represents input data that is

fed into the network. This part of the network is never

changing its values. Every single input node value is sends

to the nodes in the hidden layer. Hidden Layer accepts

value from the input layer and modifies them using some

weight value, this new value is then send to the output layer

but it will also be modified by some weight from the

connection between hidden layer and the output layer.

Output layer process the value received from the hidden

layer and produces an output. This value is then trans-

forming the activation level of a value into an output signal

using activation function.
Table 1 Musa data collection

Data sets Number of failure Software type

DS1 136 Real time command & control

DS2 54 Real time command & control

DS3 38 Real time command & control

DS4 53 Real time command & control

DS5 831 Real time commercial

DS6 73 Commercial subsystem

DS7 36 Real Time

DS8 38 Military

DS9 41 Military

DS10 101 Military

DS11 112 Operating system

DS12 375 Operating system

DS13 277 Operating system

DS14 192 Time sharing system

DS15 278 Word processing system

DS16 196 Operating system
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Fig. 1 DS1 failure intervals
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3.2.1 Number of nodes and layers

Selecting the number of nodes for each layer is depends

upon the problems and its environment parameters like

types of the data networks are dealing with, quality of data

and some other parameters. Finding the number of nodes in

hidden layer could be a tricky task. If the hidden layer

nodes are increased, the number of possible computations

that algorithm has to deal with increases. Picking just a few

nodes in hidden layer can prevent the algorithm of its

learning ability. Right balance needs to be picked. It is very

important to monitor the progress of NN during its training,

if results are not improving, some modification to the

model might be needed.

3.2.2 Setting weights

The way to control NN is by setting and adjusting weights

between nodes. Initial weights are usually set at some

random numbers and then they are adjusted during NN

training. The Focus should not be at changing one weight

at the time, changing all the weights should be attempted

simultaneously. Some NN are dealing with thousands, even

millions of nodes so changing one or two at the time would

not help in adjusting NN to get desired results in a timely

manner. The Logic behind weight updates is quite simple.

During the NN training weights are updated after iterations.

If results of NN after weights updates are better than the

previous set of weights, the new values of weights are kept

and iteration goes on. Finding the combination of weights

that will help us minimize error should be main aim when

setting weights. This will become bit more clear once the

learning rate; momentum and training set are explained.

3.2.3 Training neural network

When training neural network, the network is feeding with

the set of examples that have inputs and desired outputs.

Choosing the learning rate and momentum will help with

weight adjustment. Setting right learning rate could be a

difficult task, if learning rate is too small, the algorithm

might take a long time to converge. On the other hand,

choosing large learning rate could have opposite effect, the

algorithm could diverge. Sometimes in NN, every weight

has its own learning rate. Learning rate of 0.35 proved to be

popular choice when training NN. This proposed work uses

Learning rate of 0.45 but this value is used because of

simple architecture of NN used in example. Large values of

momentum term will influence the adjustment in the cur-

rent weight to move in same direction as previous

adjustment.

3.2.4 Activation function

In Fig. 4 activations function is needed for the hidden layer

of the NN to introduce nonlinearity. Without them, NN

would be same as plain perceptions. If the linear function

were used, NN would not be as powerful as they are.

Activation function can be linear, threshold or sigmoid

function. The Sigmoid activation function is usually used

for hidden layer because it combines nearly linear beha-

viour, curvilinear behaviour and nearly constant behaviour

depending on the input value.

Here x1, x2, x3,……xn are n inputs to the artificial

neuron. w1x1, w2x2, ….wnxn are the weights attached to

the input links. The initial bias assigned to the neural

network hidden layer and output layer is zero. The output

of the Neural Network calculation process is defined as

follows.

y ¼ f sð Þ and s ¼
Xn

i¼0

wixi ð1Þ
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Fig. 2 DS6 failure intervals

Fig. 3 Architecture of a neural network
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where

y = output of the network

f() = activation functionP
= collection of the output nodes from hidden layer

that have been multiplied by connection weights, added to

get single number and put through sigmoid function

n = input elements

wi = w1,w2,w3,…wn are weight of respective inputs

Input to sigmoid is any value between negative infinity

and positive infinity number while the output can only be a

number between 0 and 1.

3.2.5 Back propagation (BP) algorithm

One of the most popular NN algorithms is backpropagation

algorithm. Back Propagation algorithm could be broken

down into four main steps. After choosing the weights of

the network randomly, the backpropagation algorithm is

used to compute the necessary corrections. The algorithm

can be decomposed in the following steps:

Algorithm:

i) Feed-forward computation

ii) Backpropagation to the output layer

iii) Backpropagation to the hidden layer

iv) Weight updates

4 Implementation and result

In this work, used Software Reliability Dataset was com-

piled by John Musa of Bell Telephone Laboratories. His

objective was to gather failure interval dataset to help the

software engineers in monitoring test status and assist the

software researchers in validating software reliability

models. Execution time was reported in terms of wall-clock

seconds except DS6 and faults in terms of cumulative

faults.DS6 Executive time was reported in CPU seconds.

The failures are not raised at the particular time rather it

already starts at the end of the previous failure. This fact

leads to sub divide the both cumulative failure interval and

cumulative fault due to this the Neural network get more

data set. The increased number of data sets improves the

training performance of the Neural Network. Cumulative

execution time and cumulative faults are normalized

between 0.1 and 0.9.

Neural network cannot predict future faults without

learning the software’s failure history. Any prediction

without training is equivalent to making a random guess.

Most training algorithms sets the neural network weights

with random values at the starting state of training, which

bring about the network to converge to different weight at

the end of each training.In Proposed technique, used dif-

ferent hidden layer size for analysing the performance. The

same set of hidden layer size used both increased training

data set model and without increasing dataset model.

Trainlm training function is used to updates weight and

bias values according to Levenberg–Marquardt

optimization.

4.1 Performance measures

In Tables 2 and 3 variable-term prediction has been used in

the proposed approach, which is commonly used in the

software reliability research community. Only part of the

failure data is used to train the model and the trained model

(Figs. 5 and 6) is used to predict for the rest of the failure

data available in the data set. For a given execution time ti,

if the predicted number of failure is Ni’, then Ni’ is com-

pared with the actual number of failures i.e. Ni to calculate

three performance measures such as Average relative Error

(AE) and RMSE which are defined as follows:

AE ¼ 1

k

Xk

i¼1

abs
N

0
i � Ni

Ni

� �
� 100 ð2Þ

RMSE ¼
ffiffiffi
1

k

r Xk

i¼0

Ni � N 0
i

� �2 ð3Þ

where k is the number of observation for evaluation.

It is shown that no single parametric model can fit well

to both two datasets. Among the four parametric models,

(Tables 4, 5 and 6) Duane model has the best performance

for DS1 but the worst performance for DS6. The best

parametric model for DS6 is G–O model. It also can be

observed that the proposed system has lower prediction

error than the other model system for both datasets, which

confirms our initial intention that the neural network with

subdivided failure intervals shows dataset can be a better

software reliability predictor than other Models.

Fig. 4 Activation process
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Table 2 DS1 performance before increasing training data size

S. No Hidden layer Epoch Performance Training performance Validation performance Test performance

1 12 23 0.000047802 0.000036715 0.000047560 0.000101260

2 15 17 0.000048165 0.000043085 0.000083487 0.000037230

3 20 14 0.000192470 0.000036550 0.001100000 0.000080215

4 30 10 0.000151640 0.000034955 0.000812740 0.000050615

5 40 16 0.000123760 0.000021526 0.000465160 0.000273050

Fig. 5 Performance of DS1

Fig. 6 Performance of DS6
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5 Conclusion

Software reliability prediction is a significant factor for

increasing software quality and getting better customer

satisfaction. This Proposed work highlights the software

failure prediction technique based on increased failure

interval Dataset with ANN back propagation learning

algorithm. The experimental results show that the proposed

system achieves significantly lower prediction error com-

pared with the traditional Software Reliability Prediction

Models, which proves that the neural network back prop-

agation algorithm and sub divided failure intervals are

providing better software reliability prediction. On the

other hand, it exposed the Neural Network method pro-

posed in this paper using back propagation algorithm

provides good fit for different types of datasets while

changing hidden layer size and activation function. Nev-

ertheless, the result of the method is differs according to

the failure datasets, network architecture and simulation

tools.

Table 3 DS1 performance after increasing training data size

S. No Hidden layer Epoch Performance Training performance Validation performance Test performance

1 12 95 0.000032365 0.000032357 0.000035889 0.000028880

2 15 124 0.000028650 0.000027107 0.000028516 0.000035985

3 20 27 0.000029749 0.000029879 0.000028076 0.000030816

4 30 20 0.000021964 0.000022387 0.000019013 0.000022937

5 40 283 0.000009291 0.000008815 0.000011581 0.000009226

Table 4 DS6 performance before increasing training data size

S. No Hidden layer Epoch Performance Training performance Validation performance Test performance

1 12 26 0.000121310 0.000116430 0.000109040 0.000156180

2 15 18 0.000165250 0.000129100 0.000236220 0.000261910

3 20 8 0.001700000 0.000299410 0.009000000 0.001200000

4 30 10 0.002800000 0.000056605 0.000773330 0.017300000

5 40 8 0.036400000 0.000254400 0.160800000 0.079500000

Table 5 DS6 performance after increasing training data size

S. No hidden layer Epoch Performance Training performance Validation performance Test performance

1 12 14 0.000106160 0.000104440 0.000108520 0.000111800

2 15 69 0.000081161 0.000077475 0.000086973 0.000092439

3 20 70 0.000060078 0.000058856 0.000053318 0.000072502

4 30 44 0.000051543 0.000052655 0.000056224 0.000041707

5 40 71 0.000469530 0.000035602 0.001500000 0.001400000

Table 6 Results of the training

and testing dataset obtained

using the proposed model

Dataset Proposed method G–O model Duane model S-shaped model

DS1 1.21 11.1551 2.8431 18.0817

DS6 1.06 97.135 121.8711 9.8745
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