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Abstract
In recent years, the revolution of cloud computing has taken the IT business to greater heights with the rapid sharing of vast
web resources over the internet. Proficient task scheduling and balanced task distribution is still exists as a major challenging
issue in cloud computing system due to dynamic heterogeneous nature of resources and tasks. It is a NP-hard problem where
the scheduler needs to find the best optimal virtual machines with minimum makespan and proper resource utilization. The
major part of this problem is to design an efficient intelligent searching pattern to schedule the tasks in best virtual available
machines. In this paper we propose a meta heuristic algorithm called chaotic social spider algorithm inspired by social spider
to tackle the problem of task scheduling in various heterogeneous virtual machines. This paper focus on minimizing overall
makespan with effective load balancing by modelling the swarm intelligence of social spider with chaotic inertia weight based
random selection. The proposed algorithm prevents the local convergence and explores the global intelligent searching in
finding the best optimized virtual machine for the user task among the set of virtual machines with minimum makespan and
balanced resource utilization. We have made the simulation and performance evaluation using cloudsim toolkit and compared
the results with other swarm intelligent based algorithms such as GA, PSO and ABC. The evaluation results show that there
is a major improvement in minimizing the makespan with balanced task distribution.

Keywords Cloud computing · Task scheduling · Load balancing · Virtual machine · Social spider

1 Introduction

Cloud computing is pretty bigger, and it’s going bigger
every day where high computation intensive tasks can be
computed on demand basis [1]. Currently, most of the Infor-
mation Technology (IT) industries have been migrated on
to cloud computing based frameworks to serve their clients
[2]. It delivers the services via three different layers namely,
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“Infrastructure”, “Platform” and “Application” to support the
instant on-demand needs of the consumers such as data stor-
age, computing power, high bandwidth [3]. Corporate and
individual can use these services based on how they offer via
Virtualization. There are numerous trending cloud providers
exists such as Amazon EC2, Google, HP and IBM [4] where
the resources are virtualized as per the client requirements
and delivered as ‘pay-per usage’ service level agreement
(SLA) [5]. Cloud computing has some good features such
as flexible resource repository, scalable and dynamic, on-
demand services, pricing based on consumption with quality
of service (QoS) [6]

Cloud based services are provisioned to consumer in
different levels whereas resource management plays an
important role, which deals with resource pooling, config-
uration, and task allocation handled by services provider.
The major part of resource management in cloud computing
system is a task scheduler where optimization algorithms
can be used to allocate the user tasks in a provisioned logi-
cal resource called as ‘virtual machines (VM)’ [7,8]. There
are many research works were presented to enhance the per-
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formance of the task scheduling process which reveals good
results, inwhich nature inspiredmeta heuristic algorithms are
considered as most suitable solution for the task scheduling
problem [9]. The task scheduling problem is a very crucial
issue in cloud computing where intelligent searching and
decisions were involved to find the best optimal VM for
each user tasks [10]. There are several performance param-
eters which affect the overall scheduling process such as
makespan, cost, delay, reliability, scalability, deadline and
the resource utilization [9].

We consider the makespan as the major parameter which
is the overall completion time of all the tasks that is being
scheduled in the VMs. We have also considered few con-
straints such as cost, and resource utilization since both cloud
providers and the consumers must be benefited with respect
their requirements [7]. For example, for the cloud providers
there is a need for resource utilizationwith considerable profit
whereas the consumers the taskmust be completed withmin-
imum expenses [11]. In this regard, we focuses on intelligent
searching of best fit VMwhichminimizes themakespan, cost
and at the same time it must utilize all the available VMswith
balanced load.

This paper presents chaotic social spider algorithm
(CSSA) for scheduling the user tasks in VMs of cloud with
balanced task distribution. We have designed this scheduling
model basedon the foragingbehavior of social spider species.
Social spider is a special kind of species where the foraging
behavior creates a social community based searching model
in which each spider communicates with other spiders via
vibration. This vibration notifies the food location and qual-
ity of the food. This information helps other spiders to change
their location correlated with best optimum and continue the
searching [12]. We have mimics this natural behaviour into
cloud where spiders are modelled as software based search-
ing agent (SA) randomly located in different VMs and notify
the fitness and its location to other SAs, so that searching
process can properly guided to reach the global best loca-
tion. This process will be repeated for each user tasks until
it reaches the best optimum schedule or maximum number
of iteration. During this searching process we have designed
a constraint handling phase where the load balancing issue
were taken to improve the performance of the whole cloud
computing system by considering both cloud providers and
consumers.

We organized the paper as follows; Sect. 2 describes
the various kinds of related works on task scheduling and
load balancing techniques. Section3 deals with our pro-
posedmethodologywith detailed search procedure. Section4
shows the simulation setup and results discussion on perfor-
mance evaluation in comparison with existing algorithms.
Finally we conclude by highlighting the features of our work
and future scope in Sect. 5.

2 Related works

Scheduling the tasks in cloud computing deals with binding
the user tasks to connected resources based on the scheduling
decisions taken by the task scheduler according to various
metrics. There are several algorithms were presented for
scheduling user tasks in grid and cloud computing systems.
Since, the task scheduling in cloud computing is a kind ofNP-
complete problem [13], the previous research works shows
that the heuristics based algorithms were more suitable than
the traditional algorithms.

Agarwal and Srivastava [3] has proposed a task schedul-
ing algorithm inspired by genetic algorithm which focused
on reducing response time and shows few positive results but
it fails in dynamic environments where there is a need for
global optimization. Vidhya et al. [14] has proposed a task
scheduling algorithm using parallel particle swarm optimiza-
tion (PPSO) tominimize the average execution time.Tawfeek
et al. [5] proposed ant colony optimization (ACO) based task
scheduling technique and showed few improvements over
FCFS and Round Robin in terms of minimization makespan
and degree of imbalance. Pradhan et al. [15] has introduced
the task scheduling technique called Modified Round Robin
Algorithm for Resource Allocation strategy in cloud com-
puting to reduce the total turnaround time and waiting time
and the evaluation results shown few improvements but gives
poor throughput.

Hamad and Omara [16] proposed a genetic-based task
scheduling approach (TS-GA) for allocation of application’s
task. The aim is to minimize makespan and cost of executing
the tasks, and maximize the resource utilization. The results
shows that the cost, completion time, and resource utilization
of the algorithm is minimized compared to default GA and
RR algorithms. Tsai et al. [6] has introduced a new strategy
called improved differential evolution algorithm (IDEA) for
task scheduling and resource allocation in cloud, where they
combined the techniques of DEA and Taguchi method, to
tackle the problem of exploration and exploitation and shown
minor improvements in convergence ratio.

Keshanchi et al. [17] proposed an improved genetic algo-
rithm (N-GA) to minimize makespan and execution time.
This algorithm combined the features of evolutionary genetic
algorithm and behavioralmodeling approach based onmodel
checking. The results shows that, this proposed algorithm
reduces themakespan and execution timewhen there is small
size tasks but it likely to be failswhen there is a need for global
optimization. Abdi et al. [18] proposed a modified PSO algo-
rithm for task scheduling to minimize makespan where jobs
are assigned based on one-to-one mapping and the shortest
job was assigned to fastest processor then merged into stan-
dard PSO to improve behaviour of PSO. PSO and genetic
algorithm are compared with proposed algorithm and it was
seen that proposed algorithm has better makespan.
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Abdullahi and Ngadi [7] presents a discrete symbiotic
organism search algorithm (DSOS) for optimal scheduling
the user tasks in cloud environment. It uses the mutual-
ism, commensalism and parasitic relationship to acheive
the objective function. Makespan, degree of imbalance and
response time were found to be better than self adaptive
particle swarm optimization (SAPSO). Jeyakrishnan and
Sengottuvelan [19], has presented A hybrid strategy based
bacterial swarm optimization (BSO) for resource allocation
which address the problem of local convergence and intro-
duce a solution to avoid the local converge while attain the
global searching the whole search space and the results good
improvements in global optimization.

Babu and Venkata Krishna [20] has introduced the Honey
Bee foraging behavior based approach to balance the load on
VMs of cloud environment. Their results show that make-
span got reduced and the overall throughput was improved.
Awada et al. [21] has presented enhanced particle swarm
optimization based task scheduling where load balancing
mutation process was introduced. The results were shown
few improvements in minimizing the makespan, trip time
and also they have address the reliability issues.

Mondal et al. [22] presented a strategy for balanced the
load distribution in cloud using stochastic hill climbing algo-
rithm to guide the balanced task distribution among the
virtual machines and gives good results in local search but
fails in global optimization. Zhan et al. [23] presented load
balance aware genetic algorithm for task scheduling in cloud
with time load balance (TLB)model to reduce themakespan.
Guo-Ning et al. [24] has proposed a novel strategy called
genetic simulated annealing algorithm. They have utilized
simulated annealing process after the selection, crossover and
mutation, to achieve better performance in local search, but
fails when the user tasks increases in size.

Meta-heuristic is a kind of swarm intelligence based
searching technique has been widely accepted methodol-
ogy formany optimization problems. Social spider algorithm
(SSA) is one of the most recent methodology inspired by the
foraging behavior of social spider was proposed by Yu and
Li [25] for global optimization. Generally social spider is a
kind of bio species whose individuals form relatively long
lasting social spider web. Each spider has a unique location
in the social spider web from which its starts searching food
sources. This foraging leads by random movement among
the spider web for the food sources. Each spider makes a
random walk towards the food sources [12].

The decision for the next movement will be predicted
through the intelligent behavior of spider called vibration
[12]. Vibration is a very prominent behavior of spider which
makes notification to the other spiders about the food sources.
Each vibration holds two parameters the location and inten-
sity. Quality of the food sources will be predicted based the
vibrations generated by spider. The intensity of the vibration

is used by the spider to identify the quality and location of the
food sources. Based on the intensity level spider can identify
the best spider location with good quality of food. Spiders
takes the next move based the best vibration location during
foraging [12]. This process is repeated until spider finds the
best feasible food locations in the spider web.

3 Proposedmethodology

3.1 The systemmodel

The cloud computing provides on-demand high performance
computing services over the internet as self-service access.
The infrastructure basically provides the low level services
such as cloud servers, data storage, and middleware as pay-
per-use basis [3]. The internal working principles of cloud
model is depicted as shown in Fig. 1, which consists of
cloud users, online cloud web portal, resource scheduler,
and resources [26]. The resources include one or more host
machines with one or more virtual machines (VMs). Each
VM shares the computing power (CPU), Memory, Storage
Places from the hosted machines. Every user requests is
mapped to proper VM based on the resource requirement
such as CPU, Memory, Storage and Network Bandwidth
[26].

The working flow of this model is as follows

• Every user interactswith the cloud infrastructure and tries
to access the resources through cloud web portal which
ensures the authentication and authorization.

Fig. 1 Cloud computing model
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• The Resource Scheduler is major component, which act
as a middleware between clients and resource manager
to process the client request. It further takes all the infor-
mation regarding the Task requirements posted by the
clients and proceeds further for resource allocation using
the inbuilt scheduling algorithm.

• Finally, the resource manager plays an important role
which acts as a resource information system and provides
services to resource scheduler in order to allocate the user
tasks in best possible VM. In order to balance the load
of each host machines, resource manager has an in built
resource monitor which keeps tracks of the entire loads
and tackles the unbalanced condition.

3.2 The scheduling problem

In cloud computing environment, tasks are dynamically sub-
mitted by various users. It is the responsibility of the cloud
scheduler to find the optimal resource i.e. cloud virtual
machines (VMs) for the submitted tasks. Also, it is impor-
tant tomanage the load of each resource, since scheduling the
tasks in overloaded resources may degrade the performance
of the overall cloud computing providers [27].

In our work, the task scheduling problem is considered
as a major issue, since it affects the overall performance of
the cloud computing provider’s in terms of quality of service
(QoS). There aremany factors which represent theQoS, such
as execution time, transmission time, latency, resource uti-
lization and makespan [28]. At the same time, clients needs
better performance with low cost. Hence, we consider two
QoS parameters named asmakespan and cost as a major con-
cern which must be optimized with proper load balancing in
order to provide better performance for the cloud providers
and clients.

To design the problem, we consider N number of user
tasks i.e. Tn = {T1, T2,T3, . . . , Tn} submitted to the cloud,
which needs to be allocated toM number ofVirtualMachines
(VMs) i.e. V Mm= {V M1, V M2, V M3, . . . , V Mm} with
minimummakespan, cost andmaximum resource utilization.
Each VM is configured with different resource parameters
such as CPU capability in millions instruction per second
(MIPS), storage and network bandwidth as per the availabil-
ity of hosted physical machines. Tasks are generated by users
with different characteristics such as task_length, deadline,
and cost and so on.

To formulate the objective function of our proposed algo-
rithm, we consider Ci j is the completion time of a Task Ti ,
i ∈ {1, 2, 3, ..N } on resource VMj, j ∈ {1, 2, 3, ..M} which
can be calculated initially for all the tasks using Eq. (1) by
considering the expected time to complete (ETCi j ) of i th task
onVMj and thewaiting timeWi i th task forVMj .. Hence, the
completion time Ci j of each task in VM is calculated using

Eq. (1).

Ci j = ETCi j + Wi (1)

Moreover the cost Ecosti, j for executing the task i th on VMj

is calculated by considering the ETCi j and the cost per VM
for unit time which denoted as V Mcostwhich is defined in
Eq.2.

T Ecost =
∑

ETCi j × V Mcost (2)

Themakespan of all the submitted tasks is the total execution
time of entire tasks which can be expressed as the maximum
completion time of all the tasks scheduled in all VMs is cal-
culated as Eq. (3).

Cmax =
∑

Ci j (3)

The aim of our proposed methodology is to make the cloud
scheduler to provide optimal resource allocation for all the
user taskswithminimummakespan andminimum cost as per
the requirements of cloud providers and clients respectively.
With the above considerations the objective function of our
proposed methodology is defined as Eq.4.

f i tness = min (Cmax ) + min (T Ecost ) (4)

Also, we consider the load balancing problem in this work, in
this regard the following mathematical model is considered.
Load balancing is also another important issue needs to be
addressed in order to provide optimal allocation. During the
schedule, the VMs may be quickly overloaded as the user
tasks are allocated more and more.

For balanced task distribution, the load on all the VMs
needs to be monitored continuously; if it is overloaded the
concern VMs needs to be avoided in order to maximize the
resource utilization with the balanced VMs. To take better
load balancing decision, we calculated load factor (LF) σ ,
which is the standard deviation of all load as per the following
Eq. (5).

σ =
√

1

m

m∑

i=1

(ETi − ET )2 (5)

where ETi , is the execution time of i th VM, which can be
calculated as given in Eq.6, where as ET is a total execution
time of all tasks, which can be defined by Eq.7

ETi = Lvmi

C Pi
(6)

ET =
m∑

i=0

ETi (7)
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where Lvmi is the load of VMiandCPi is the capacity of VMi

Lvmi = Total number of tasks on V Mi

T otal number of tasks executed in V Mi
(8)

CPi = CENi ∗ CPUmipsi ∗ V Mbandwidthi ∗ RAMsizei (9)

The capacity if i th VM is calculated via Eq. (9), whereCENi

is the total number of computing elements (CE) in VM,
CPUmipsi is the CPU usage in terms ofMIPS, V Mbandwidthi
is the required communication network bandwidth of VM,
and the required memory usage of a VM is expressed as
RAMsizei .

3.3 Chaotic social spider algorithm (CSSA) for load
balance aware task scheduling

We propose an efficient approach inspired by the social spi-
der’s pray foraging process to schedule the user tasks with
balanced load called CSSA. Our approach proceeds with ini-
tial system model based on the 3.2. We have considered the
spider web as cloud computing environments, where each
resources i.e. VM is represented as a feasible solution (food
source) in the spider web. Each spider in the spider web is
considered as search agent (SA) which moves freely in the
solution space to find the best VM for the user tasks.

In [25] Yu and Li proposed SSA with fixed parameter
scheme to solve global optimization problems. Since, cloud
computing is heterogeneous and dynamic environment, we
have modified the SSA in order to comply with the environ-
ment. Each SA holds memory which stores the location of
the feasible solution and the fitness value of VM in a form of
Broadcast Message (BM). Moreover, each SA is configured
as dynamic in nature and having capability to broadcast and
move to otherVM location randomly anytime. The algorithm
proceeds with four phases as follows.

3.3.1 Initialization phase

During this phase, the initial solution space is created with
population of VMs {popV Ms} were generated. During the
schedule, each SA propagates its location and the fitness of
VM via broadcast messages (BMs). In our model, we con-
figured SA as a computing agent with broadcasting facility
to notify the location and the capability of VMs. Also, we
use parameters such as target BM quality(BMtar

q ), location
(Lvm), and the initial broadcast message quality (BMq) are
initialized to zero and initial fitness is calculated and stored
for each VM location using Eq.4.

Every BMq of each VM comprises of its location and
its quality based on the fitness of its location. For exam-
ple, Let Li (t) be the location of a i th VM at time t in the
solution space, the BMq generated in every iteration when
the SA to a new location. In this scenario, the general func-
tion to represent the BMq of each SA can be denoted by
BMq(t) and the same is calculated using Eq. (4) which is
consider as the objective function for the fitness f (vm) of a
each SA locations.Since we are considering the spider web
as a cloud web framework, the best feasible solution in the
solution space is the VM which has the suitable process-
ing requirements of user tasks. Hence, BMq(t) is computed
using Eq. (10).

BMq(t) = log

(
1

f (vm) − C
+ 1

)
(10)

where c is a user controlled parameter to find out the feasible
fitness value, in our model we kept as very small c ∈ {0, 1}
in order to achieve the minimized makespan. The value of
‘c’ is taken as a minimization constant parameter to fine tune
the performance of the scheduling objective.

In social spider foraging, the vibration is a kind of energy,
so the intensity of the vibration may be attenuated over dis-
tance; But in cloud computing environments, due to high
bandwidth of communication the quality of BM generated
by each SA will be received by other SA without any modi-
fication.

3.3.2 Iteration phase

Once the initialization phase is completed, the algorithm
further proceeds to iteration phase which comprise of sub-
phases; fitness evaluation, broadcast message propagation,
mask changing, random walk, and constraints handling.

In iteration phase, for each user tasks, Ti , i ∈
{1, 2, 3, . . . , N }, the algorithm proceeds to find the best suit-
able V Mi j , j ∈ {1, 2, 3, . . . , M} in the solution space. In,
iteration phase we have started with computation of, where
the BMq(t) of each SA in the {pop} is computed and the
f i tness is evaluated using Eq. (4). Then the broadcast mes-
sages from each SA location is generated and propagated
over the solution space using Eq. (10).

After receiving the broadcast messages from all the SA’s,
each SA proceeds to find the best quality BMbest

q among all
the received BM and get stored. Then BMbest

q is compared
with the current value of BMtar

q , if it is greater than BMtar
q it

will be assigned as the new BMtar
q .Sg is introduced to check

whether the BMtar
q is updated or not, which is initially set as

123



S292 Cluster Computing (2019) 22:S287–S297

zero and it may take 0 or 1 based the updation in BMtar
q . Sg

is set as one if the BMtar
q is not updated and set as 0 if

BMtar
q is changed.

3.3.3 Random VM location prediction using chaotic inertia
weight

The value of Sg helps to guide the searching process that
is correlated towards BMtar

q , during the iteration each SA
can change its location inorder to reach BMtar

q , in a prob-
ability of 1 − PSg where P is an user controlled parameter
from ∈ {0, 1}. Hence, each SA gets the ‘New following’ VM
location(Ln f

vm) based on Eq.11.

Ln f
vm =

{
LBMtar

q
, Sg = 1

LR, Sg = 0
(11)

where R is the random VM location which is generated from
the set ofVMpopulation as follows.Here,we introduce a new
random VM selection factor based on chaotic inertia weight
sequences, which have been used in most of the optimization
process of swarm intelligent algorithms [29,30]. In this work,
we have utilized the chaotic inertia weight to formulate the
randomVMselection process in order reach the better fitness
VM location as given below.

Xn+1 = γ Xn(1 − Xn) (12)

where γ the user is controlled parameter, which is used as
4 in our work and Xn is a random number generated for
every iteration. During this process SA may falls into the
previously visited VM location. In order to avoid that, we
introduce a new weight factor ‘β’, called as chaotic inertia
weight to guide the randomVMselection process. Hence, the
new random VM selection process is formulated as given in
Eq.13.

LRvm (t + 1) = Lvm(t) + (Lvm(t) − Lvm(t − 1))

×β +
(
Ln f

vm − Lvm(t)
)

· δ (13)

where the value for δ is the random number generated from
the range (0, 1). In our work, the value ‘β’ is considered as
weight factor and defined as given in Eq.14.

β (t) =
(
wintial − w f inal

)
×

(
I termax − I ter

I termax

)

+w f inal × Xn+1 (14)

where wintial and w f inal is the initial and final intertia
weights which are user controlled values. Similarly the
I termax is a maximum number of iteration, where as I ter is
a current iteration count. Once LRvm (t + 1) is generated for
each SA location the algorithm proceeds to handle the load
balancing constraint in cloud.

3.3.4 Load balancing constraint handling

After the random VM process, every SA will be getting a
new VM location LRvm (t + 1), then proceeds to address the
constraints employed in the cloud. Here we consider the load
balancing as the major constraint, since while allocating VM
to user tasks, sometimes someVMsmay falls into overloaded
so the overall performance may be affected. Hence we tackle
this issue by introducing Load Factor (LF)σ , for each pro-
visioned VMs as a boundary condition which is calculated
based on Eq.5, then the new VM location is generated as
given in Eq.14.

Lvm (t + 1)

=
{ ¯(σ − Lvm (t)) × R i f LF

(
LRvm (t + 1)

) ≥ σ̄(
Lvm (t) − σ

) × R i f LF
(
LRvm (t + 1)

) ≤ σ

(15)

Here we assume, σ̄andσ as over-loaded VM and under-
loaded VM respectively, and defined as if the value of σ

low means σ̄ and the value is high means σ . R is a random
number generated as a user controlled parameter from (0, 1).

After the constraintswere addressed, eachSAgets the new
VM location Lvm (t + 1) as given in Eq.11 and migrated to
the specified location and the algorithm further proceeds to
the next iteration and repeat above mentioned steps until the
stopping criteria are met. We consider the stopping criteria
as maximum iteration reached with no improvement in best
BMbest

q . Then the algorithm outputs the best VM for each
task in the task list. We have also designed the above steps
mentioned above (a, b, c, d) as algorithm as follows.
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4 Simulation setup and results

To evaluate the performance of our proposed technique, we
have used CloudSim framework through which we have
modelled the real cloud infrastructure and simulate task
scheduling process. We have evaluated the performance via
several parameters such as makespan, cost, execution time,
degree of imbalance, waiting time and compared with exist-

ing techniques such as Genetic Algorithm (GA), Artificial
Colony Optimization (ACO), Particle Swarm Optimization
(PSO), Hybrid Fuzzy K-Means++ with Clonal Selection
(HFKCS) [31]. Moreover, we have used tasks distribution
in a combination of small, medium, and large with speci-
fied number of tasks such as 200, 400, 600, 800, 1000. Our
experiment setup parameters are shown in Table1.
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Table 1 Simulation parameters

Number virtual machines 100

Number of tasks 1000

Bandwidth 600–1200kbps

Cost per VM 1$

MIPS 1000–2000ms

RAM 4–8GB

Number of physical machines 1–5

γ 4

δ 0.4

C 0.2

R 0.3

P 0.8

I termax 500

wintial 0.9

w f inal 0.4

Figure2 shows the comparison of generated by the pro-
posed algorithm with other popular algorithms such as GA,
PSO, ABC, HFKCS and it clearly shows that our algorithm
outperforms the other algorithms.Moreover, the above Fig. 2
shows the variation inmakespan for different tasks group and
an average of 14.8% improvements in our approach com-
pared with other algorithms.

Computational cost is a overall cost involved in comple-
tion of user cost, which affects the overall performance. In
Fig. 3 shows the comparative analysis of operational cost
involved in the proposed algorithm with other algorithms.
The projected results reveal that, when the no.of tasks are
200 the CSSA have reduced the overall cost to in an average
of 33.66% thanGA,PSO,ABC,HFKCS.Aswe increased the
no.of tasks, it can be observed that there is a slight improve-
ment in minimization of cost, when compared to ABC and
HFKCS and there are huge improvements between CSSA
with GA and PSO. When the no.of tasks, reaches to 1000,
CSSA shows an average of 13.5% improvements than other
algorithms.

Figure4 shows the comparison of resource utilization in
CSSAwith other algorithms, which is the overall usage of all
resources for the user tasks; The graph experimental that, our
proposed algorithm gives slight improvements in resource
utilization when compared to ABC and HFKCS. Also it is
observed that there is a huge improvement when it is com-
pared with GA and PSO. Hence, CSSA is more suitable to
revenue growth of cloud service providers.

Figure5 shows that the average response time of CSSA
for the user tasks and it is compared with other algorithms.
Response time is a kind of metric to evaluate the time taken
to give the response to the user. It is indicated that, there
is much improvements in minimizing the response times as

Fig. 2 Makespan

Fig. 3 Computational cost

Fig. 4 Resource utilization

Fig. 5 Response time
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Fig. 6 Degree of imbalance

Fig. 7 Scheduling efficiency

we increased the number of tasks. Particularly there is huge
improvements produced by CSSA when compared with GA
and PSO and also it indicates slight improvements with ABC
and HFKCS as well.

In Fig. 6 we have analyzed the degrees of imbalance, since
during the schedule VM likely gets overloaded when the user
tasks are scheduled in cloud resources.Adegree of imbalance
is a kind of metric to evaluate the load of virtual machines.
In graph we can observe that, our algorithm produces very
minimal degree imbalance when compared to other algo-
rithms. As the numbers of tasks are increased, CSSA gives
the reduced degree of imbalance thereby tasks are uniformly
distributedwithout affecting the performance of the resource.

Finally, the above Fig. 7, it can be observed that more
improvements in overall efficiency in CSSA than GA, PSO,

ABC, and HFKCS. It clearly shows that, the CSSA produces
97% of efficiency whereas other algorithms produce 79, 83,
86, and 91% respectively. Table2 shows the overall perfor-
mance comparisons of our proposed approach with existing
algorithms.

With the evaluation of results, it can be observed that
CSSA produces more benefits in terms of makespan opti-
mization and other associated parameters. Moreover, it
clearly addresses the load balancing issues with minimal
degree of imbalance than other algorithms. Moreover, this
method provides better cost optimization, which will be ben-
efited for the consumer who wants to use the cloud services.

5 Conclusions

In this paper, we have proposed CSSA for load balance aware
task scheduling in cloud computing environments. This algo-
rithmwas inspired by the foraging behaviour of social spider
species and its relationships. We have modelled the pro-
cess of foraging suitable to cloud computing environments
with modifications to find best optimized virtual machine
for the user tasks. The proposed algorithm was simulated via
cloudsim and the various performance parameters were eval-
uated. The main objective was minimizing the makespan of
the cloud scheduling process thereby improving the through-
put of the cloud system. In this regard, we have measured
various parameters such as makespan, computational cost,
response time, average response time, degree of imbalance
among various VMs. Our experiments result shows that, the
CSSA produce the makespan minimization to 14.8% when
compared to GA, PSO, ABC and HFKCS for 100–1000
numbers of tasks. Moreover, GA and PSO more likely to
local convergence, but the CSSA more suitable for global
search and it prevents local convergence. In our we have
also addressed the load balancing while mapping the tasks to
VM, the degree of imbalance results shows that CSSA out-
performs the other algorithms. Also CSSA more suitable for
consumer since it reduces the overall cost of computation. In
overall, the scheduling efficiency was improved with CSSA
when compared to other algorithms.

Table 2 Performance improvements of CSSA

Makespan (%) Cost (%) Utilization (%) Response time (%) Imbalance (%) Efficiency (%)

GA 2.01 1.02 10.09 12.04 2.04 79

PSO 6.05 9.03 12.22 14.05 4.05 83

ABC 8.88 12.88 17.33 19.04 4.66 86

HFKCS 11.22 15.22 18.01 22.04 5.01 91

CSSA 14.05 18.55 19.09 24.55 5.99 97
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In future work, other performance parameters such as
security, reliability may be included so that security threats
and trust nodes can be identified. Moreover, we further
extending this work so as to compatible with independent
tasks.
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