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Abstract
The imbalanced datasets are common in real-world application and the problem of imbalanced dataset affect classification
performance of many standard learning approaches. To address imbalanced datasets, a weighted extreme learning machine
(WELM) solving the L2-regularized weighted least squares problem is presented to avoid the generation of an over-fitting
model and obtain better generalization ability compared with ELM. However, the weight generated according to class dis-
tribution of training data leads to lack of finding optimal weight with good generalization performance and the randomness
of input weight and hidden biases of network makes the algorithm produce suboptimal classification model. In this paper, a
weighted extreme learning machine based on hybrid artificial bee colony (HABC) is proposed to obtain better performance
than WELM, in which input weights and hidden bias of WELM and the weight assigned to training samples are optimized by
the hybrid artificial bee colony algorithm. HABC combines the diversities of the perturbed parameter vectors of differential
evolution with the best solution information of the artificial bee colony effectively. In the empirical study, different class
imbalance data handling methods including four WELM-based methods, weighted support vector machine, four ensemble
methods which combine data sampling and the Bagging or Boosting are compared with our method. The experimental results
on 15 imbalanced datasets show that the proposed method outperforms most methods, which indicates its superiority.

Keywords Artificial bee colony algorithm · Weighted extreme learning machine · Imbalanced data learning · Single hidden
layer feed-forward networks

1 Introduction

Extreme learning machine (ELM) [1,2] is a single layer
feed-forward neural network (SLFN)with important features
such as elimination of the needed parameter tuning during
the training phase, united solutions for regression, binary,
and multi-class classification [3,4]. The overall efficiency of
ELM has been proved in many areas like specific proteins
detection in bioinformatics [5–8], drug discovery problem
[9], air pollutant detection [10], medical diagnosis[11,12],
corporate life cycle prediction [13], face recognition [14,15],
abnormal activity recognition [16], and so on. Although the
ELM can classify balanced datasets effectively, it causes bias
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towards the majority classes and results in a lower sensitivity
in detecting the minority class when dealing with imbalance
class [17].

The class imbalance problem are common in real-word
domains, such as detecting oil spills from satellite images,
anomaly detection, image annotation, software defect pre-
diction, spam filtering [10,16,17]. To deal with imbalance
class, fuzzy extreme learningmachine (FELM) andweighted
extreme learning machine (WELM) have been proposed.
According to the results of kernel-based possibilistic fuzzy c-
Means clustering, FELM assigns different misclassification
cost to the positive samples and negative samples for imbal-
anced datasets with noise and outliers [18]. WELM assigns
different weight values for the training samples of differ-
ent classes to reflect their importance in respective classes
and solves the L2−regularized weighted least squares prob-
lem to obtain better generalization performance compared
with ELM [19] Similar to traditional ELM, WELM obtains
its extremely fast learning speed due to random assignment
of input weights and hidden neuron biases. However, this
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also causes the WELM to produce suboptimal classification
model [20,21]. The effect of random parameters in ELM
imposed on the generalization performance can be quite sig-
nificant, particularly for imbalanced data. In addition, the
weight generated according to class distribution of training
samples dependson input data,which leads to the lackoffind-
ing optimal weight with good generalization performance
[22–25].

In order to reduce the effect of random parameters of
ELM, evolutionary extreme learningmachine (DE-ELM)has
been proposed. DE-ELM adopt the differential evolution-
ary algorithm (DE) to select the input weights and ELM to
calculate the output weight. Experimental results show that
the proposed algorithm is able to achieve good generaliza-
tion performance with much more compact networks [26].
However, this approach developed to reducing the effect of
random parameters of the ELM is accuracy-oriented, this
causes bias towards themajority classes and results in a lower
sensitivity in detecting the minority class, whereas classify-
ing the minority class accurately can be more important than
classifying the majority ones accurately in some scenarios as
the minority ones often represents the main class of interest.
In addition, although the existing external approaches pro-
posed to dealwith imbalanced data classification [27–33] can
diminish the effect caused by class imbalance by preprocess-
ing the datasets, when it comes to some real applications such
as in bioinformatics and medical diagnosis, it is significant
that the predictor is evaluated on the distribution of natural
samples instead of balanced distribution under artificial con-
struction, since the external approaches artificially modify
the background frequencies of different classes [34]. There-
fore, it is meaningful to discuss the internal approaches of
imbalance learning that can be applied for theWELMmodel
[35].

Artificial bee colony (ABC) has been used increasingly
for global optimization problems [36–38]. Compared with
existing state-of-the-art population-based approaches, ABC
has simple evolutionary operators and fewer parameters need
to adjust.Moreover, ABCalgorithm is applied to find optimal
weight set of the neural network through minimizing output
error In the literature [39]. However, Individual position is
modified by moving towards a randomly selected solution,
which is no guaranty that new candidate position will be
better than the last one. So the solution search of ABC algo-
rithm is good at exploration but poor at exploitation [37,38].
It is observed that DE is good at exploring the search space
and locating the region of global minimum but it is slow
at exploitation of the solution [40]. Combining ABC with
DE algorithm can improve the performance of basic ABC.
Therefore, the hybrids of ABC and DE should be promising
for training feed-forward neural networks [41,42].

In this paper, an imbalance learning algorithm applied
for the ELM model, named hybrid artificial bee colony

optimization-based weighted extreme learning machine
(HABC-WELM) is proposed, in which, input weights and
hidden bias of network and the weight assigned to train-
ing samples are optimized by the hybrid artificial bee
colony algorithm, whose exploitation and convergence rate
is improved by combining DE operator with the ABC
operation, and the network output weights are calculated
using WELM. The hybrid ABC mainly focused on restrict-
ing the input weights and hidden biases to a reasonable
range and assigning optimal weight to training data to
achieve good generalization performance. In order to make
results comparable, we implement five internal approaches
WELM, ensemble weighted extreme learning machine (EN-
WELM),evolutionary weighted extreme learning machine
(DE-WELM), artificial bee colony optimization-based
weighted extreme learning machine (ABC-WELM) and
weighted support vector machine (WSVM) which is similar
to WELM based on cost-sensitive learning [43]. In addition,
we also implement four popular external approaches based
ensemble methods RUSBoost, EsayEnsemble, OverBag-
ging, UnderBagging and consider SVM as base classifier
since it has been the powerful tools for supervised learning
and widely used in classification in a variety of real-world
problems. The classification performance and stabilization
of the above nine algorithms is also analyzed. In this paper,
we focus on imbalanced binary classification datasets, refer-
ring to the minority class with positive label and the majority
class with negative label.

The rest of paper is organized as follows. In Sect. 2 we
review the weighted extreme learning machine and the arti-
ficial bee colony algorithm. The details of the proposed
HABC-WELM algorithm are described in Sect. 3. In Sect.
4, we carry out the comparison of our method with the state-
of-the-art methods. The conclusion and future works are
provided in Sect. 5.

2 Preliminaries

This section provides brief reviews of weighted ELM and
artificial bee colony algorithm.

2.1 Weighted extreme learningmachine

According to statistical learning theory [44], Deng et al pro-
posed a regularized extreme learningmachine (RELM)based
on L2 penalty which incorporates the structural risk mini-
mization theory and the weighted least squares method into
the ELM [45].

Given N distinct samples (xi , ti ), where xi = [xi,1, xi,2,
. . . , xi,m]T ∈ Rm and ti = [

ti,1, ti,2, . . . , ti,c
]T ∈ Rc. i =

1, 2, . . . , N . j = 1, 2, . . . , L . m represents the number of
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feature. c represents the number of class. The mathematical
model of RELMwith L hidden nodes and activation function
g(x) can be expressed as

Minimize : 1
2
‖β‖2 + γ

2

N∑

i=1

‖εi‖2 (1)

Subject to : β j g
(
a j xi + b j

) − ti = εi

where a j = [
a j,1, a j,2, . . . , a j,m

]
is the weight vector

between the j-th hidden node and the input nodes, β j =
[
β j,1, β j,2, . . . , β j,c

]T is the weight vector between the j-th
hidden node and the output nodes, b j is threshold of the j-th
hiddennodes, εi = [εi,1, . . . , εi,m] is the training error vector
of the m output nodes with respect to the training sample xi ,
γ represents the trade-off between the minimization of train-
ing errors and the maximization of the marginal distance,
The parameters

(
a j , b j

)
in the hidden layer nodes function

h (xi ) = g(a j , b j , xi ) are randomly generated according to
any continuous probability distribution.

The regularized extreme learning machine avoids the
generation of an over-fitting model, provides more robust
estimates and owns better generalization ability than ELM.
But it can leave ELM algorithms with a performance bias,
when using a dataset with imbalanced class distribution in
the learning process. In order to alleviate the bias in per-
formance caused by imbalanced class distribution, an extra

weight Wi i = 1
#(ti )

or Wii =
{

0.618
#(ti )

, i f ti > AVG(ti )
1
#ti

, i f ti ≤ AVG(ti )
is

assigned to each sample to strengthen the impact of minority
class while weaken the relative impact of majority class in
literature [19], where #(ti ) is the number of samples belong-
ing to class c, c ∈ 1, 2, So the weighted extreme learning
machine(WELM) is mathematically modeled as

Minimize : 1
2
‖β‖2 + γ

2
W

N∑

i=1

‖εi‖2 (2)

Subject to : β j g
(
a j xi + b j

) − ti = εi

Substituting the constraints to the objective function yields,
the Lagrangian for (2) can be written as follows

L (β, ε, α) = 1

2
‖β‖2 + γ

2
W

N∑

i=1

ε2i

−
N∑

i=1

αi

⎛

⎝
L∑

j=1

β j g
(
a j xi + b j

) − ti − εi

⎞

⎠ (3)

Where αi ∈ R(i = 1, 2, . . . , N ) is the Lagrangianmultiplier
with the equality constraints of (2). Furthermore, by making
the partial derivatives with respect to variables (β,ε,α) all

equal to zero, we can have theKKT corresponding optimality
conditions as follows:

⎧
⎪⎨

⎪⎩

∂L
∂β

= 0 → β = HTα (4.1)
∂L
∂εi

= 0 → αi = γWεi (4.2)
∂L
∂αi

= 0 → h (xi ) β − ti + εi = 0, i = 1, 2, . . . , N (4.3)

By substituting (4.1) and (4.2) into (4.3), we obtain the closed
form solution to β

β

⎧
⎨

⎩

= ( I
γ

+ HTWH
)−1

HTWT , N ≥ L

= HT
(
1
γ

+ WHHT
)
WT , N < L

(5)

where I is identity matrix and T = [t1, t2, . . . , tN ]. L is
the number of hidden nodes and N represents the number of
features of input samples. For binary classification problems,
WELMneedsonlyoneoutput node, and thedecision function
is

f (x) = sign(h (x) β)

= sign

({
h(x)

( I
γ

+ HTWH
)−1

HTWT

h(x)HT
(
1/γ + WHHT

)
WT

)

(6)

Similar to traditional ELM, the regularizedweighted extreme
learning machine produce suboptimal classification model
due to random assignment of input weights and hidden neu-
ron biases.

2.2 Artificial bee colony (ABC) algorithm

Artificial bee colony algorithm, proposed by Karaboga for
numeric function optimization [36,37], is inspired by the for-
aging behavior of bee swarms, which is a competitive and
the latest swarm intelligence algorithm. Artificial bee colony
consists of three groups: employed bees, onlooker bees and
scout bees, in which the first two are of equal amount. To be
specific, employed bees exploit the nectar sources in the hive
and give information about the quality of the food source to
the onlooker bees. Onlooker bees, according to the informa-
tion shared by the employed bees, decide on a food source to
exploit. Scout bees randomly search the environment in order
to find a new food sourcewhen any food source is abandoned.
After initialization phase, the search process of the employed
bee phase, the onlooker bee phase and the scout bee phase is
repeated until the goal is met or the iteration times are over
maximum generation (MaxGen). In ABC algorithm, a possi-
ble solution to the optimization problem is expressed by the
position of a food source.

ABCworks by randomly initializing the positions of food
sources searched by the employed bee or its corresponding
onlooker bee. Each employed bee is associated with only
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one food source position. Food source xi is generated using
a uniform distribution as:

xi, j = xmin
j + rand(0, 1) · (

xmax
j − xmin

j

)
(7)

where i ∈ (1, 2 . . . , SN ) and j ∈ (1, 2, . . . D). SN rep-
resents the number of food source and D represents the
dimension of optimization parameters. xmin

j and xmax
j denote

boundaries of jth dimension and rand(0,1) is a uniformly dis-
tributed random number in the range [0,1].

At first, all employed bees are set out to explore the
food source positions. According to local information in its
memory, an employed bee updates the position at vi of a
neighboring food source using following equation

vi, j = xi, j + ∅i, j (xi, j − xk, j ) (8)

k ∈ {1, 2 . . . , SN } and j ∈{1, 2, . . . D} are randomly cho-
sen index that has to be different from i .∅i, j is a uniformly
distributed random number in the range [–1, 1].

Afterwards, a greedy selection strategy is applied. If the
quality of the food source at vi is superior to that of xi , the
employedbeewillmemorize the newpositionvi and abandon
the old one xi , or the employed bee remains at the previ-
ous position. According to the information about the quality
of the food source positions shared by the employed bees,
onlooker bees either randomly decide on a food source to
exploit or ignore according to probability(roulette selection
strategy) defined as follows

pi = 0.9 ∗ f i tnessi
f i tnessbest

+ 0.1 (9)

where f i tnessi represents the quality of the food source at
positionsvi (the objective functionof solution) andfitnessbest
represents the best quality of all food source. It is obvious that
higher f i tnessi enjoys higher probability of being selected
by the corresponding onlooker bee.

These onlooker bees update the food source position
around corresponding employed bees by Eq. (8) and ran-
domly decide on a food source to exploit by Eq. (9). The
number of inefficient searching iterations in the process
of iterative optimization is written into the control param-
eter tr ial (i) {i ∈ (1, 2 . . . , SN )} before better position of
the each employed bee and corresponding onlooker bee is
derived. If thei-th position of employed bee or onlooker bee
is updated, tr ial (i) is set to zero; otherwise, it is added by
one. The food source is abandoned and the corresponding
bee becomes a scout bee if a food source is not updated for a
fixed number limit. The abandoned food source is replaced
by a randomly chosen food source by the Eq. (7).

3 Hybrid artificial bee colony
optimization-based weighted extreme
learningmachine

An important paradigm of parameter optimizations for single
layer feed-forward neural networks (SLFN) is evolution-
ary computation [46–49]. The representative methods using
evolutionary computation to optimize ELM parameter is E-
ELM [26], which adopts differential evolutionary method
to select the hidden node parameters and uses ELM to cal-
culate the output weights. However, E-ELM relies on the
error function between the network approximate output and
the expected output to evaluate all the populations. For bal-
anced class distribution, these approacheswork verywell, but
when faced with imbalanced data, error can cause the evo-
lution of solutions biased toward the majority class. Yet, it
is the performance on the minority class data that is usually
of utmost importance. Moreover, while the WELM solves
the L ∧ 2-regularized weighted least squares problem and
assigns more weight to minority class and less weight to
majority to obtain better generalization performance, the
randomly-chosen input weights and hidden neuron biases
remain unchanged during the training phase and many non-
optimal nodes may exist and contribute less to minimizing
the cost function and the weight generated according to class
distribution of training samples depends on input samples.

As mentioned above, combining ABC with DE algorithm
can improve the performance of basic ABC. This paper aims
to propose the HABC-WELM approach that can: (1) use
HABC to train WELM to find optimal input weight, hidden
bias and the weight assigned to training samples. (2) evolve
classifiers in an imbalanced environment without relying on
error (the hybrid artificial bee colony is driven by maximiz-
ing AUC rather than minimizing overall classification error
rate during the training phase), (3) obtain better classifica-
tion performance than WELM and (4) based on commonly
used classification benchmark datasets, present a quantitative
performance comparison with WELM, EN-WELM, DE-
WELM, ABC-WELM, WSVM, RUSBoost, EsayEnsemble,
OverBagging and UnderBagging.

DE algorithm relies on mutation operation constructing
better solutions. After generating all the mutant vectors, a
crossover operator is used to increase the diversities of the
perturbed parameter vectors. Themutation operation ofDE is
based on the weighted difference of randomly sampled pairs
of solutions in the population, andDEalgorithmmight lead to
better perturbation than the strategies with only oneweighted
difference vector when two weighted difference vectors are
added to the base vector. In addition, it is observed that the
exploitation capability of ABC can be improved by com-
pelling less fit solutions to follow the best ever found solution
[47,48]. We get the solution search equation of hybrid artifi-
cial bee colony (HABC) by combining crossover operation
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of DE with the best ever found solution of ABC.

v′
i j =

⎧
⎨

⎩

xi, j + F
(
xbest, j − xi, j

)

+F
(
xk, j −xm, j

)
i f (rand < CR) or( j= jrand)

vi, j otherwise

(10)

where i, k,m is distinct integers randomly selected from the
range [1, SN].xbest, j is the best solution in the current swarm.
F is positive amplification factor andCR is the crossover rate.
jrand is a randomly chosen integer from [1,D].
The hybrid artificial bee colony(HABC) described above

is now applied to optimize input weights, hidden bias of
network and the weight assigned to training samples in
WELM. HABC is directly adapted as a training method for
feed-forward networks where input weights, hidden bias of
network and the weight assigned to training samples are
encoded into position vector of food source. The detailed
steps of the proposed method are as follow:

Firstly, food sources are randomly generated and com-
posed of a set of NP vectors:

Fq = [a11, a12, . . . , a1N , a21, a22, . . . , a2N . . . , aL1, aL2,

. . . , aLN , b1, b2, . . . , bL , w11, w22, w33, . . . , wNN ]
(11)

where a j and b( j = 1, . . . , L) are input weights vector and
biases vector generated randomly from the uniform distribu-
tionwithin the range of [–1, 1] and [0, 1] respectively.wi i (i =
1, . . . , N ) are the diagonal element of weight matrix gener-
ated according to class distribution of training samples. L
denotes the number of hidden neurons and N denotes the
number of samples, q is integer within the range of [1, NP].

Secondly, for each food source, the corresponding out-
put weights of SLFN are computed according to Eq. (5).
All employed bees are set out to explore the food source
positions. According to local information in its memory, an
employed bee updates the position at vi of a neighboring
food source according to Eq. (10). The quality of the food
source is evaluated by a greedy selection strategy. In order to
evaluate the fitness of each food source, it requires to select
an appropriate evaluation metric as fitness function. G-mean
is a measure of the ability of a classifier to balance sensitivity
and specificity. Due to this symmetric nature of the distribu-
tion of the G-man over sensitivity and specificity, it’s hard
to contrast different models in accordance with their preci-
sion on each class [49]. F-measure is the weighted harmonic
mean of the sensitivity and precision. So the G-mean and
F-measure criterion can lead to the selection of sub-optimal
models. AUC is defined as a plot of a model’s true positive
rate on the y-axis against its false positive rate on the x-axis,
offering an overall measure of model performance, regard-
less of the different thresholds used. When class distribution

is imbalanced, the area under the curve (AUC) is the better
metric to measure performance of fitness function [50], So
the AUC on the validation set is used as the fitness function
to evaluate all the population and thenWELM is used to tune
better the candidate parameters obtained byHABCandmove
forward to the optimum.

Thirdly, with the fitness value of the i-th food source, the
fitness of new position v′

i, j corresponding to the current posi-
tion xi, j was computed according to Eq. (10). Based on the
knowledge that smaller norm of output weights could lead to
better generalization ability for ELMs [21,51], the norm of
output weights along with the AUC on the validation set are
used as one more criterion evaluating food source. The work
mainly focused on restricting the input weights and hidden
biases to a reasonable range and assigning optimal weight
to training data to improve the classification performance of
WELM, thus the greedy selection operation can be expressed
as Eq. (12).

v′
i, j =

⎧
⎪⎪⎨

⎪⎪⎩

v′
i, j , i f

(
f
(
v′
i, j

)
− f

(
xi, j

))
>∈ · f (

xi, j
)
,

v′
i, j , i f

∣
∣∣ f

(
v′
i, j

)
− f

(
xi, j

)∣∣∣ <∈ · f (
xi, j

)
and‖βv′

i, j
‖ < ‖βxi, j ‖,

xi, j , otherwise.

(12)

where f
(
v′
i, j

)
and f

(
xi, j

)
are the corresponding fitness

values for new position v′
i, j and the current position xi, j

respectively. ‖βv′
i, j

‖ and ‖βxi, j ‖ are the norm of the corre-
sponding output weights obtained by ABC-WELMwhen the
input weights are set as the i-th food source, ∈> 0 is a toler-
ance rate.

Finally, the above optimization process is repeated and
parameters are progressively updated until the convergence
criterion is reached or the maximum learning iterations are
completed. Thus, theWELM network with the optimal input
weights, hidden biases and the weight assigned to each class
sample are obtained, and then the optimal WELM is applied
to the test data.

4 Experiments

In this section, we observe the variance of AUC and norm of
output weights during the training phase of proposedHABC-
WELM approach. Afterwards, we present details of the
comparison with WELM, EN-WELM, DE-WELM, ABC-
WELM, WSVM, RUSBoost, EsayEnsemble, OverBagging
and UnderBagging for 15 imbalanced datasets.

4.1 AUC and norm of output weights during the
training process

In this subsection, different from the evaluation approaches
adopted bymostmethods, where randompermutation is used

123



S6942 Cluster Computing (2019) 22:S6937–S6952

Table 1 Specification of
imbalanced datasets

Datasets #Ex. #Atts. Minority class IR #Training #Test #Validating

Glass0 214 9 Building windows 0.4861 111 58 55

Glass2 214 9 Vehicle windows 0.0862 107 50 57

Glass6 214 9 Headlamps 0.1567 103 54 57

Ionosphere 351 34 Bad 0.5600 164 92 95

Ecoli0 336 7 cp 0.7409 168 83 85

Ecoli1 336 7 im 0.2972 166 81 89

Ecoli3 336 7 imU 0.1162 170 86 80

Vehicle0 846 18 Van 0.3075 448 179 219

Wisconsin 683 9 Malignant 0.5382 328 170 185

Yeast1 1484 8 nuc 0.4066 747 311 366

Yeast3 1484 8 ME3 0.1233 741 370 373

Pima 768 8 Class0 0.5360 379 189 200

Abalone9vs18 731 8 Class9 0.0609 356 196 179

Abalone19 4174 8 Class19 0.0077 2117 1013 1044

Pageblock1 5473 10 Horiz. line 0.0639 2767 1337 1369

for each run, we use the same training, testing and validation
data set in order to solely analyze the norm of output weights
and AUC of four approaches where AUC is used as the fit-
ness function in this subsection to better observe the variance
of AUC and norm of output weights. 15 benchmark datasets
[52–54] used in imbalanced problem are selected. Table 1
gives the characteristics of these datasets. The imbalance
ratio(IR, defined as the number of minority class examples
divided by the number ofmajority class examples) of datasets
varies from 0.0077 to 0.7409. 10 runs are done to study the
stability of three approaches with data unchanged, thus elim-
inating the performance fluctuation caused by different data
partition.

All simulations are carried out by Matlab R2013b on a
windows 10 with an Intel Core i7 CPU 4510U @ 2.80GHz
an 8G RAM. The performance of the proposed HABC-
WELM is evaluated in details with comparison to three
WELM-based methods, namely the WELM, ABC-WELM
and DE-WELM. The input weights, hidden bias and the
weight assigned to training samples of DE-WELM are
optimized by differential evolution algorithm. The input
weights, hidden bias and the weight assigned to training
samples of ABC-WELM are optimized by basic artificial
bee colony algorithm. All WELM-based approaches were
implemented with sigmoid activation function. There are
two parameters to tune for WELM-based approaches, the
trade-off constant γ and the number of hidden nodes L. γ

and L are searched in a wide range
{
2−50, 2−11 · · · , 250

}

and {10, 20, · · · , 500} respectively in seek of the optimal
result. For DE-WELM, F(stepsize) and CR(crossover prob-
ability) are set to 1 and 0.8. Size of population is 50, and
the maximum number of cycles is 100. For ABC-WELM
and HABC-WELM, SN(the number of food sources) is

20, limit is 100 and the maximum number of cycles is
100.

We use G-mean as the evaluation metric to compare mod-
els in our case because of its balanced nature and usage
in previous works [18]. In addition, G-mean is the trade-
off between sensitivity and specificity, whereas the minority
ones often represent themain class of interest in some scenar-
ios. Therefore, to evaluate the effectiveness of the competing
methods,we also give the results of sensitivity and specificity.
The best average classification results in terms ofG-mean and
corresponding AUC, SN, SP are given in Table 2. For each
evaluation metric, the standard deviation is also given after
the ± sign.

Figures 1 and 2 shows the effectiveness of the evaluation
metric (AUC) and the variance of norm inDE-WELM,ABC-
WELM and HABC-WELM during the training process. As
the differential evolution algorithm, artificial bee colony
algorithm and hybrid artificial bee colony algorithm are
stochastic learning algorithms, each experiment is repeated
ten runs using a different random seed. Therefore, Figs. 1 and
2 report the average AUC and norm of the fittest solution in
the population over the 100 generations. The best results in
terms of the G-mean, and corresponding AUC, SN, SP and
standard deviation (STD) respectively.

Figure 1 shows that the AUC of three approaches increase
smoothly over all datasets except for Ecoli0, which suggests
that training is not an issue for most datasets. As can been
seen from Fig. 1 and Table 2, the G-mean of these three
methods are higher than those of WELM despite the fact
that there is no variance for AUC of Ecoli0 over 100 gen-
erations in HABC-WELM, ABC-WELM and DE-WELM,
which illustrates that the evaluation metric (AUC) evolves
classifiers with best solution at the first generation. Although
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Fig. 1 Average AUC during the fittest evolved solution with DE-
WELM (magenta line), ABC-WELM (blue line) and HABC-WELM
(cyan line) over 100 independent runs. a Glass0, b Glass2, c Glass6,

d Ionosphere, e Ecoli0, f Ecoli1, g Ecoli3, h Vehicle0, i Wisconsin,
j Yeast1, k Yeast3, l Pima, m Abalone9vs18, n Abalone19, o Page-
block1 (Color figure online)
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Fig. 2 Average norm of output weights with DE-WELM (magenta
line), ABC-WELM (blue line) and HABC-WELM (cyan line) over 100
independent runs. aGlass0, bGlass2, cGlass6, d Ionosphere, e Ecoli0,

f Ecoli1, g Ecoli3, h Vehicle0, iWisconsin, j Yeast1, k Yeast3, l Pima,
m Abalone9vs18, n Abalone19, o Pageblock1 (Color figure online)
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there are some fluctuations, a trend can still be observed from
the curves in Fig 2, i.e., the norm of the output weights
of the SLFN are decreasing in HABC-WELM and ABC-
WELM for all datasets as well as in DE-WELM for seven
datasets during the training process, which is consistent with
the theory that the neural networks tend to have a better gener-
alization performance with smaller norm of output weights.
Besides, the norm of the output weights of the SLFN are
increasing over 8 datasets in DE-WELM, but the testing G-
mean are higher than those of the WELM over all datasets
from Table 2, which suggests that the optimization of the
network hidden node parameters is determined not only by

the area under curve(AUC) but also by the norm of the output
weights.

From Table 2, the HABC-WELM shows the best per-
formance in terms of G-mean over 15 datasets. the testing
G-mean and SN of the DE-WELM are higher than those
of the ABC-WELM over glass0, yeast1, pageblock1. How-
ever, the testing G-mean and SN of the HABC-WELM are
higher than those of the ABC-WELM and DE-WELM over
all data sets. It can be seen that the HABC-WELM offers
very competitive results compared with the original WELM,
DE-WELM and ABC-WELM in terms of producing higher
testing AUC, G-mean and SN as well as lower STD over

Table 2 Performance of four methods on 15 imbalanced classification problem

Datasets Methods AUC G-mean SN SP γ L

Glass0 WELM 83.18 ± 1. 48 81.06 ± 1.68 88.78 ± 1.32 74.02 ± 2.33 23 270

DE-WELM 85.27 ± 1. 57 84.90 ± 1.52 93.78 ± 1.24 76.92 ± 2.17 23 270

ABC-WELM 84.21 ± 1. 40 83.37 ± 1.51 91.62 ± 1.15 76.92 ± 1.85 23 250

HABC-WELM 86.06 ± 1. 40 85.32 ± 1.53 94.33 ± 1.11 75.98 ± 1.97 23 260

Glass2 WELM 73.67 ± 1.44 79.61 ± 1.23 80.00 ± 3.56 79.35 ± 1.93 24 180

DE-WELM 73.97 ± 1.11 79.88 ± 1.10 80.29 ± 3.32 79.77 ± 1.77 24 180

ABC-WELM 74.04 ± 1.20 80.07 ± 1.15 80.43 ± 3.05 79.90 ± 1.64 24 160

HABC-WELM 74.18 ± 1.15 80.42 ± 0. 88 80.80 ± 2.41 79.97 ± 1.57 24 190

Glass6 WELM 98.23 ± 0.76 98.21 ± 0.75 99.87 ± 1.51 96.59 ± 2.10 2−2 280

DE-WELM 99.00 ± 0.69 98.99 ± 0.70 100 ± 0 97.98 ± 1.52 2−2 260

ABC-WELM 99.04 ± 0.65 99.01 ± 0.92 100 ± 1.35 98.02 ± 1.35 2−2 250

HABC-WELM 99.10 ± 0.59 99.36 ± 0.61 100 ± 0 98.90 ± 1.18 2−2 230

Ionosphere WELM 93.86 ± 1.64 88.32 ± 2.26 83.29 ± 3.62 93.72 ± 1.90 20 300

DE-WELM 94.10 ± 1.47 88.62 ± 2.12 84.32 ± 3.25 93.11 ± 1.77 20 280

ABC-WELM 94.21 ± 1.51 88.99 ± 2.03 84.72 ± 3.05 93.79 ± 1.39 20 260

HABC-WELM 94.34 ± 1.37 89.27 ± 1.70 84.52 ± 3.00 93.96 ± 1.24 20 260

Ecoli0 WELM 99.94 ± 6.3075e–4 97.19 ± 0.75 98.66 ± 1.51 95.74 ± 6.1093e–15 22 180

DE-WELM 99.97 ± 5.7455e–4 97.56 ± 0.69 99.33 ± 1.30 95.74 ± 3.2363e–15 22 160

ABC-WELM 99.98 ± 5.3341e–4 97.59 ± 0.60 99.37 ± 1.27 95.47 ± 3.2363e–16 22 180

HABC-WELM 99.99 ± 5.0402e–4 97.78 ± 0.58 99.64 ± 1.18 95.74 ± 3.2363e–16 22 160

Ecoli1 WELM 88.74 ± 0.99 88.72 ± 1.96 90.42 ± 2.03 87.06 ± 0.23 21 180

DE-WELM 88.87 ± 0.90 89.21 ± 1.89 92.10 ± 1.85 87.12 ± 0.20 21 160

ABC-WELM 88.92 ± 0.92 89.53 ± 1.87 91.91 ± 1.90 87.19 ± 0.25 21 180

HABC-WELM 88.94 ± 0.87 89.77 ± 1.69 92.15 ± 1.88 87.08 ± 0.20 21 160

Ecoli3 WELM 85.71 ± 3.07 90.25 ± 2.50 92.82 ± 5.37 87.25 ± 2.03 25 150

DE-WELM 86.69 ± 2.57 91.11 ± 2.27 95.60 ± 4.92 87.31 ± 1.70 25 120

ABC-WELM 86.87 ± 2.62 91.24 ± 1.99 95.79 ± 5.13 86.98 ± 1.83 25 120

HABC-WELM 86.94 ± 2.52 91.21 ± 2.14 96.03 ± 4.86 86.99 ± 1.78 25 230

Vehicle0 WELM 98.08 ± 0.54 98.06 ± 1.50 99.95 ± 1.25 96.17 ± 0.94 24 360

DE-WELM 98.17 ± 0.41 98.43 ± 1.40 99.97 ± 1.31 96.30 ± 0.81 24 360

ABC-WELM 98.29 ± 0.43 98.54 ± 1.35 99.98 ± 1.20 96.23 ± 0.74 24 340

HABC-WELM 98.37 ± 0.37 98.71 ± 0.37 100 ± 0.26 97.26 ± 0.72 24 320
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Table 2 continued

Datasets Methods AUC G-mean SN SP γ L

Winsconsin WELM 97.81 ± 0. 33 95.53 ± 0. 85 93.54 ± 1.50 97.56 ± 0. 46 2−2 170

DE-WELM 97.91 ± 0. 30 95.77 ± 0.80 93.69 ± 1.20 97.97 ± 0. 46 2−2 170

ABC-WELM 97.96 ± 0. 32 96.05 ± 0. 83 94.15 ± 1.30 97.99 ± 0. 40 2−2 170

HABC-WELM 97.99 ± 0. 27 96.21 ± 0. 80 94.15 ± 1.11 97.62 ± 0. 40 2−2 160

Yeast1 WELM 73.50 ± 0. 44 75.02 ± 0. 45 78.73 ± 0. 63 71.49 ± 0. 69 23 220

DE-WELM 73.98 ± 0. 36 75.62 ± 0. 35 79.61 ± 0. 54 71.96 ± 0. 46 23 170

ABC-WELM 73.69 ± 0. 42 75.33 ± 0. 40 78.98 ± 0. 62 71.65 ± 0. 60 23 170

HABC-WELM 74.11 ± 0. 37 75.41 ± 0. 34 79.79 ± 0. 54 71.15 ± 0. 56 23 190

Yeast3 WELM 89.07 ± 0.74 89.47 ± 0.77 85.96 ± 1.48 93.18 ± 0.24 26 170

DE-WELM 89.18 ± 0.65 89.59 ± 0.68 86.30 ± 1.27 93.18 ± 0.24 26 140

ABC-WELM 89.29 ± 1.0 89.81 ± 0.62 86.49 ± 1.17 93.23 ± 0.24 26 140

HABC-WELM 89.80 ± 0.60 89.94 ± 0.58 86.51 ± 1.12 93.10 ± 0.27 26 150

Pima WELM 74.30 ± 0. 81 69.88 ± 1.16 57.10 ± 1.67 85.54 ± 1.01 20 280

DE-WELM 74.73 ± 0. 69 70.25 ± 0. 95 57.66 ± 1.25 85.29 ± 0. 92 20 290

ABC-WELM 74.80 ± 0. 61 70.37 ± 0. 79 57.69 ± 1.29 84.84 ± 0. 91 20 240

HABC-WELM 74.90 ± 0. 60 70.58 ± 0. 70 59.07 ± 1.31 85.44 ± 0.92 20 250

Abalone9vs18 WELM 88.54 ± 2.70 88.54 ± 2.82 87.20 ± 5.33 90.06 ± 0.54 213 150

DE-WELM 88.61 ± 2.52 88.47 ± 2.51 87.64 ± 4.77 90.11 ± 0.50 213 130

ABC-WELM 88.66 ± 2.61 88.57 ± 2.59 86.90 ± 4.69 90.32 ± 0.53 213 210

HABC-WELM 88.91 ± 2.58 88.95 ± 2.50 87.80 ± 4.56 90.41 ± 0.50 213 230

Abalone19 WELM 77.92 ± 2.90 63.38 ± 3.65 51.44 ± 6.27 78.44 ± 2.07 21 150

DE-WELM 78.14 ± 2.69 64.33 ± 3.40 51.65 ± 5.95 80.96 ± 1.39 21 150

ABC-WELM 78.29 ± 2.70 65.71 ± 3.49 53.08 ± 6.00 81.29 ± 1.41 21 160

HABC-WELM 78.80 ± 2.58 65.90 ± 3.41 54.22 ± 5.76 80.34 ± 1.12 21 180

Pageblock1 WELM 93.64 ± 0.54 93.97 ± 0.31 91.86 ± 0.58 96.13 ± 0.18 25 170

DE-WELM 94.16 ± 0.43 94.59 ± 0.26 92.96 ± 0.50 96.50 ± 0.12 25 200

ABC-WELM 93.93 ± 0.45 94.24 ± 0.30 92.51 ± 0.52 96.34 ± 0.15 25 160

HABC-WELM 94.97 ± 0.30 95.25 ± 0.27 93.15 ± 0.50 96.08 ± 0.13 25 170

most datasets. Particularly, the HABC-WELM outperforms
the ABC-WELM in all tests.

According to the experimental results on all data sets, there
is the same value of γ and no much difference in the value
of L when WELM, DE-WELM and HABC-WELM obtain
the best results in term of G-mean. Therefore, one can fix γ

as the best value and tune L when selecting the parameter of
model, thus the time for parameter selection has been largely
shortened.

Since this simulation is solely aimed to analyze the vari-
ance of norm and AUC of three approaches in which AUC
is used as the fitness function, only one training, testing
and validation datasets are randomly generated at each trial
of simulations according to Table 1. Therefore, the value
in Table 2 may not be a true reflection of performance.
More thorough tests are done in the subsection simulation
later.

4.2 Performance evaluation of proposed
HABC-WELM

Hereafter, once we have shown and selected our better pro-
posal, we analyze whether the classification performance
of our proposed method is better than that of previous
methods. To thoroughly evaluate the performance of HABC-
WELM, four WELM-based methods, WSVM and four
popular ensemble learning based on SVM base classifier,
such as RUSBoost, EsayEnsemble, overBagging, underBag-
ging are tested synchronously.We use 15 data sets in Table 1.
For above nine methods, the evaluation procedure consists
of two cycles in order to avoid over-fitting for final generated
classifier. In the inner cycle, the five-fold cross-validation
approach(80% samples are extracted into original training
set and the rest ones are used for testing each time. The orig-
inal training set is randomly divided into two groups: training
set(2/3) andvalidation set(1/3)) is used.Each algorithmbased
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Table 4 Average ranks of the comparison between HABC-WELM and the other methods

p-value WSVM OverBagging UnderBagging RUSBoost EasyEnsemble WELM EN-WELM E-WELM ABC-WELM HABC-WELM

1.78e–14 8.50 7.60 8.40 6.60 6.33 5.53 3.86 4.06 2.83 1.33

Fig. 3 Results of the pairwise comparisons of the ten methods using Nemenyi post hoc test with α = 0.05

on WELM run 10 times considering that the sampling of
subsets and input parameters of hidden nodes introduces ran-
domness. The result is averaged over the five-fold. The outer
cycle consists of 10 runs and the final result is averaged over
10 runs. In this way, the performance variance of all tests
caused by different initial parameters and random partition
of datasets can be both analyzed and the number of hidden
neurons L and the trade-off constant γ in the WELM-based
are chosen to ensure the use of optimal models. When gradu-
ally increasing the number of hidden nodes in preset region,
the onewith the highest testG-mean is selected as the suitable
number of hidden nodes.The number of base classifier of EN-
WELM is 10. SVM is implemented in LIBSVM.Resampling
rate is set 5% in RUSBoost and EsayEnsemble. The number
of iteration is set 10 in overBagging, underBagging, RUS-
Boost and EsayEnsemble. All other parameters for SVM is
selected from the set

{
10−10, · · · , 1010

}
. The best average

classification results in terms of G-mean and corresponding
AUC, SN, SP are given in Table 3. For each evaluationmetric
the standard deviation is also given after the ± sign. In this
table, the best results on each data set are emphasized in bold.

From Table 3, some conclusion can be drawn as follows:
Firstly, the results show that the performance of the pro-

posed method is the best on 13 of 15 datasets for G-mean,

and 8 of 15 datasets for SN. Secondly, compared with other
WELM-based, the proposed method obtains the highest test-
ing G-mean and SN except for EN-WELM over ionosphere.
Apart from Glass2, Ecoli0, Ecoli3, Wisconsin and Yeast1,
the SP of HABC-WELM increases significantly compared
to WELM, which indicates that the proposed method can
achieve better classification performance of both minority
class and majority class on most datasets. Besides the fitness
function (AUC) evolves classifierswith good performance on
both the minority and majority class compared with WELM.
In comparison with WELM, the STD of G-mean and SN
caused by the random generation of input parameters in
the proposed method has been reduced, which indicates
that the proposed method is more stable than WELM. It
can be seen that the HABC-WELM outperforms the orig-
inal ABC-WELM. As what has been pointed out by many
researchers, the solution search of ABC algorithm is good
at exploration but poor at exploitation, which may result
in premature convergence or stagnation. Therefore, incor-
porating the information of global best solution of ABC
into the solution search equation to guide the search of
new candidate solutions and exploiting the diversities of the
perturbed parameter vectors of differential evolution may
lead to better network generalization performances. Thirdly,
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compared with overBagging, underBagging, RUSBoost and
EsayEnsemble, the proposed method achieves the best G-
mean over 14 datasets and the best SN over 10 datasets.

We analyze whether the proposed method performs better
than other methods. To do so, we apply Friedman test that
ranks the algorithm in term of testing G-mean for each data
set separately. The significance level is taken as 0.05. The
null hypothesis is that all the algorithms are equivalent and so
their average ranks should be equal. P-value is the probability
of observing Friedman test statistic as extreme as, or more
extreme than, the observed value under the null hypothesis.
Small p-values casts doubt on the validity of the null hypoth-
esis. Average ranks computed for Friedman test is shown
in Table 4. The test outputs a p-value of 1.31e–14, which
indicates that the hypothesis of equivalence can be rejected
with high confidence. Hence, we continue a post-hoc test
using Nemenyi test to identify which method significantly
perform best, as suggested by Demasar [35,55].

Figure 3 plots the ten methods against average perfor-
mance ranks, where all methods are sorted according to their
ranks. The ‘*’ denotes the respective average rank of each
method and the line segment to the right of each method
represents its critical difference, which means the methods
whose ‘*’ on the right end of the line are outperformed signif-
icantly. The ‘↓’ with vertical dotted line highlight the critical
difference. The left vertical line and right vertical line is
respectively associated with the best and the worst method.
All methods right to this line perform significantly worse
than this method and all methods left to this line perform
significantly better than it. From Fig. 3, the proposed method
is significantly better than another.

5 Conclusions

In this paper, a heuristic weighted extreme learning machine
method named as HABC-WELM for imbalanced data clas-
sification was proposed, in which a hybrid ABC was used to
optimize the input weights, hidden biases of WELM and the
weight assigned to training sample. In the process of select-
ing the input weights and hidden biases, the metric applied
to evaluate all populations is designed to AUC rather than
the error between the network approximate output and the
expected output.By15datasets, it has beendemonstrated that
the AUC metric is effective, and that the proposed method
has better classification performance than the WELM, DE-
WELMand EN-WELM,ABC-WELM,WSVM, RUSBoost,
EsayEnsemble, overBagging and underBagging methods
over most datasets. The future research works will include
how to apply the proposed method to real-world imbalanced
data mining applications such as identification of protein
functional sites. Moreover, it is also interesting to extend

current HABC-WELM to multi-class datasets and some real
world applications.
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