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Abstract
Dynamic economic dispatch optimum scheduling of power plant generation is of great importance to electric utility systems, it
is difficult to solve because of its complex structure, variable parameter, nonlinear characteristics et al. Based on analysis of DE
searching mechanism, an improved differential evolution (IDE) algorithm based DE/target-to-best is presented,which adopts
an improved mutation strategy that a random vector and the previous best vector is used instead of the current vector in case
the DE algorithm may be in early maturity or decline in convergence speed.The algorithm is applied to solve the generators
dynamic load economic dispatch problems taking into account the incremental fuel cost function and the valve-point effects.
Computer simulation test shows that IDE algorithm provides better solution of less cost In the case of less generations and
outperforms GA, PSO and DE.
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1 Introduction

Dynamic load economic dispatch (here in after referred to as
DLED) refers to the planning of the load dispatch of the
online generators supply under known load dispatch in a
certain period of time. The output of the generating unit is
optimized under the condition of satisfying the system oper-
ating constraints, achieving the lowest total power generation
costs of the power system [1–3].

Because of the complex structure, variable parame-
ter,nonlinear characteristics of the unit and valve point effect
(VPE) of the consumption curve, the power system math-
ematically presents a complex programming problem with
non-linearity, high dimension, multi-constraint and difficult
dimension, and it is difficult to solve the optimal DLED
solution in theory. At present, the conventional methods
of solving include dynamic programming (DP), Lagrange
multiplier (LM), quadratic programming (QP), liner pro-
gramming (LP), etc. but thesemethods are difficult to achieve
the desired effect [3–5].

In recent years, the development of artificial intelligence
and computer technology has provided new paths and meth-
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ods for solving DED problems. Genetic algorithm (GA),
artificial neural network (ANN), ant colony optimization
(ACO), particle swarm algorithm (PSO) have achieved cer-
tain achievements in this field [4–7].

Differential evolution (DE) is a relatively new evolu-
tionary algorithm based on Swarm Intelligent (SI) random
search, which has been applied in engineering applications
such as image restoration, aerodynamic optimization design
and motor parameter identification. It has the advantages of
fast convergence, good robustness, few parameters,simple
program realization, etc. The disadvantages are that the opti-
mization process sometimes falls into early maturity, or the
convergence rate decreases [5–8].

In this paper, an improved differential evolution (IDE) is
proposed, which is applied to the power systemDLED based
on full validation of the performance of the algorithm.

2 Basic DE algorithm

DEalgorithmwasfirst proposedbyRainerStorn andKenneth
Price in 1995 to solve the Chebyshev polynomial prob-
lem. The basic strategy is: set an initial population vector,
and the difference vector of two randomly selected vectors
is used as the third vector, and then the mutation is per-
formedon the current population to produce a new individual.
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Through cross operation, we choose whether the new indi-
vidual produced by themutation is retained in the population,
recombine to produce a new generation of population, and
gradually make the population evolve to the target state of
the optimal solution. Set Xi,G as the problem vector of the
Gth generation [6–9].

The variation vector Vi,G is defined as:

Vi,G = Xr1,G + F(Xr2,G − Xr3,G) (1)

where i = 1, 2, . . . ps, ps is the population size, r1, r2 and
r3 belong to different individuals in the population.

As in the other algorithms, in order to increase the diver-
sity of the interference parameter vector, in theDE algorithm,
the cross operation is introduced, and the target vector is gen-
erated by selecting the variation vector and the source vector
in the population. The “greedy” selection pattern is usually
used, that is, if and only if the target evaluation function value
of the new individual is better, the new individual is retained
in the next generation of group, otherwise the parent individ-
ual remains in the group and once again serve as the parent
vector of the next generation.

The target vector is:

Uji,G = (U1i,G ,U2i,G , . . .UDi,G) (2)

where j = 1, 2, . . . D, D is the dimension of the problem.
The formula for each component is:

Uji,G =
{
Vji,G , if rand j (0, 1) ≤ CR ∨ j = k
X ji,G , otherwise

(3)

where CR ∈ [0, 1] is the algorithm parameter, which needs
to be determined in advance. It controls the diversity of the
population and helps the algorithm detach from the local
optimal solution. K is an integer chosen randomly from the
dimension of the problem to ensure that one digit in the oper-
ation must be crossed. rand j (0, 1) is the control parameter
randomly selected for the j th dimensional component.

3 IDE algorithm

Although the basic DE algorithm can solve the problem of
target optimization, it is easy to fall into the local optimization
and is difficult to jump out of local optimization to global
optimization. To solve the premature, we need to adopt some
strategies to strengthen the global search ability. To avoid
falling into the local optimization, that is, to maintain the
diversity of groups, we need to adopt self-adaptive mutation
method to deal with repeated individuals.

DE/target-to-best algorithm strategy variation vector Vi,G
is defined as:

Vi,G = xr1,G + F(pbestxi,G − xi,G)

+F(xr2,G − xr3,G) (4)

where pbestxi,G is the previous optimal vector, and substi-
tuting the cross vector in formula (1) with the cross vector in
formula (4) is the basic method of the IDE algorithm.

For example, a solution of the minimum value by using
DE and IDE algorithms are described as follows

DE algorithm 
Begin 

While  NE < MAXNE do 
     For each Xi do 
        Generate vector Vi according to formula (1); 

Generate target vector Ui according to formula (3); 
       Calculate fitness (minimum) according to Ui; 

NE++
         Generate the most suitable vector Xi between Xi and Ui; 
      End For 

    End While 
End 

IDE algorithm
Begin 

While  NE < MAXNE do 
     For each Xi do 
           Generate vector Vi according to formula (4); 

Generate target vector Ui according to formula (3); 
         Calculate fitness (minimum) according to Ui; 

NE++; 
        Generate the most suitable vector Xi between Xi and Ui; 
      End For 

    End While 
End  

X i− the ith vector in the population vector, Vi -the
variation vector of X i,Ui target vector, NE evolution iter-
ation variable, and the preset maximum iteration number of
MAXNE−.

To verify the excellent convergence performance of
the IDE algorithm, ten target minimization functions are
selected, including four unimodal functions ( f1 − f4) and
six multimodal functions ( f5 − f10). The program is pro-
grammed with different algorithms. The functions are shown
in Table 1 [4].

In the software parameter settings, for the IDE algorithm,
CR takes 0.55, F takes 0.3; for the DE and IDE algorithms,
the population size takes 150, MAXNE is set to 1,000,000
in the program test. Each function runs 30 times using the
two algorithms, the best deviation and standard deviation of
the ten functions are shown in Table 2. It can be seen from
Table 2 that the results of function f3 are consistent under the
two algorithms, the best deviation of function f5 using DE
algorithm is less than that of the IDE, and the other deviation
index using IDE algorithm is superior to that of the DE [10–
13].
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Table 1 Ten target to minimize
test functions

Functions xi D Global optimum

f1 =
D∑
i=1

x2i xi ∈ [− 100, 100] 30 0

f2 =
D∑
i=1

|xi | +
D∏
i=1

xi xi ∈ [− 10, 10] 30 0

f3 =
D∑
i=1

(|xi + 0.5|)2 xi ∈ [− 100, 100] 30 0

f4 =
D∑
i=1

i x4i + rand[0, 1) xi ∈ [− 1.28, 1.28] 30 0

f5 =
D∑
i=1

−xi sin
(√|xi |

)
xi ∈ [− 500, 500] 30 −12,569.5

f6 =
D∑
i=1

[x2
i −10 cos(2πxi )

+10] xi ∈ [− 5.12, 5.12] 30 0

f7 = −20 ∗ exp

(
− 0.2 ∗

√
1
n

n∑
i=1

x2i

)
−

exp

(
1
n

n∑
i=1

cos (2πxi )

)
+ 20 + e

xi ∈ [− 32, 32] 30 0

f8 = 1
4000

n∑
i=1

x2i −
n∏

i=1
cos( xi√

i
) + 1

xi ∈ [− 600, 600] 30 0

f9 = 0.1{sin2(3πx1) +
D∑
i=1

(xi − 1)2

[1 + sin2(3πxi+1)] + (xD − 1)2

[1 + sin2(2πxD)]} +
D∑
i=1

u(xi , 10, 100, 4)

xi ∈ [− 50, 50] 30 0

f10 = π
D {10 sin2(3π y1)+

D∑
i=1

(yi − 1)2[1 + sin2(3π yi+1)]
+(yD − 1)2[1 + sin2(2πxD)]}
+

D∑
i=1

u(xi , 5, 100, 4)

xi ∈ [− 50, 50] 30 0

Table 2 The test results of DE
and IDE

Functions DE IDE

Mean Std dev Mean Std dev

f1 9.8 × 10−16 4.68 × 10−15 7.70 × 10−37 6.24 × 10−37

f2 1.43 × 10−08 3.77 × 10−08 9.06 × 10−23 8.50 × 10−23

f3 0 0 0 0

f4 5.49 × 10−03 2.59 × 10−03 3.80 × 10−03 2.12 × 10−04

f5 − 5.81 × 10+03 8.58 × 10+02 − 1.26 × 10+04 0

f6 1.70 × 10+02 1.56 × 10+01 3.34 × 10+01 1.12 × 10+01

f7 6.39 × 10−09 2.37 × 10−09 5.52 × 10−15 1.91 × 10−15

f8 9.29 × 10−16 1.10 × 10−15 0 0

f9 5.86 × 10−17 2.29 × 10−17 2.99 × 10−17 0

f10 3.15 × 10−16 2.16 × 10−16 2.79 × 10−17 0

Select functions f1, f2, f4, f5 and show their evolution
process under DE and IDE algorithms, seen from Figs. 1, 2,
3 and 4, under the same number of iterations, the best fitness

value (log) obtained by IDE algorithm is less than that of
the DE algorithm, indicating that the IDE algorithmmakes it
easier for the function to approach the target minimum value.
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Fig. 1 Mean best fitness (log) comparision of f1
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Fig. 2 Mean best fitness (log) comparision of f2
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Fig. 3 Mean best fitness (log) comparision
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Fig. 4 Mean best fitness comparision of f5

NSDE, SaDE, IDE algorithms are used for test and com-
parison, MAXNE is set to 150,000 in the program test, the
remaining software parameters are set the same as before,
the best deviation values obtained by the three algorithms
are shown in Table 3.

The results show that functions f3 and f5 obtained the
same results by the three algorithms, functions f6, f9 and
f10 obtained better results by SADE algorithm compared
with IDE algorithm, function f6 obtained better results by
NSDE algorithm compared with IDE algorithm, the other
functions obtained the best results by IDE algorithm.

4 DLED based on IDE algorithm

D The target function of the DED problem can be expressed
as

MinimizeF =
T∑
t=1

Ng∑
i=1

FC(i, t) (5)

where F is the total power generation cost of the system; Ng
is the total number of generators in the system; FC (i, t) is
the active power of the i th generator at moment t ; T is the
system operating time [13–17].

The consumption characteristics of the i th generator can
be expressed as

FC(i, t) = ai + bi Pit + ci P
2
i t + |ei

× sin
{
fi × (Pmin

i t − Pit )
}∣∣∣ (6)

where ei , fi are the specific changes of generator consump-
tion of the i th generator caused by VPE (the superimposed
pulse effect on the unit’s consumption curve resulting from
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Table 3 Results achieved by
NSDE, SaDE, IDE

Functions NSDE SaDE IDE
Mean Mean Mean

f1 7.66 × 10−16 7.40 × 10−20 2.80 × 10−57

f2 4.41 × 10−10 6.12 × 10−11 1.17 × 10−34

f3 0 0 0

f4 7.38 × 10−03 1.15 × 10−02 3.28 × 10−03

f5 − 1.26 × 10+04 − 1.26 × 10+ 04 − 1.26 × 10+04

f6 4.69 × 10−02 3.98 × 10−08 2.98 × 10+01

f7 6.52 × 10−09 8.96 × 10−11 4.87 × 10−15

f8 4.58 × 10−15 8.69 × 10−18 0

f9 5.53 × 10−17 1.15 × 10−19 2.95 × 10−17

f10 5.42 × 10−16 1.65 × 10−19 2.81 × 10−17

wire drawing phenomenon in sudden opening of turbine
intake valve) effect coefficient.

The constraints of the DED problem are:
Power balance constraint

Ng∑
i=1

P−
i t PDt − PLt = 0 (7)

where, t-1, 2,…T, PDt– the total load demand at moment t ,
PLt -the line transmission loss at moment t , all can be calcu-
lated by formula (8).

PLt =
Ng∑
i=1

Ng∑
j=1

Pit Bi j Pjt (8)

Generator operating capacity constraint

Pmin
i ≤ Pit ≤ Pmax

i (9)

where, Pmin
i represents the minimum unit output, Pmax

i rep-
resents the maximum unit output.

Constraints of unit output climbing

Pit − Pi(t−1) ≤ URi (10)

Pi(t−1) − Pi ≤ DRi (11)

whereURi is the lower limit value of the climbing constraints
for unit i , DRi is the upper limit value of the climbing con-
straints for unit i .

Based on the above unit operating constraints, the algo-
rithm steps to solve the DED problem by using the IDE
algorithm are as follows:

1© Initialization
The power generation of the ith generator t at moment t is

Pit = Pmin
i + ρ

(
Pmax
i − Pmin

i

)
(12)

where ρ[0, 1]- represents a randomly assigned factor.
The DED target function is:

Minimize F =
T∑
t=1

Ng∑
i=1

FC(Pit ) +
NC∑
Z=1

λZ |V I OLZ | (13)

To suppress the variation of grid power ratio, the modified
DLED minimum function is used, where λ is the penalty
factor, NC is the number of suppression numbers, V I OL is
the suppression amplitude.

The IDE algorithm variation vector is

V̂b,G+1 = VP,G+F×(PbestVi,G−Vi,G)+F(Vj,G−Vk,G)

(14)

where, j and k are random numbers. G represents evolution-
ary algebra.

2©Selection

Vb,G+1 =
{
V̂b,G+1, ifF

(
V̂b,G+1

)
< F

(
V̂b,G

)
V̂b,G+1 − α∇�, otherwise

(15)

where, Vb,G+1 represents the selection result,∇� represents
the finite amplitude that can be calculated. The new Vb,N can
be solved by constantly correcting the replacement factor α

[0, 1] and finally satisfy:

F
(
Vb,N

)
< F

(
Vb,G+1

)
(16)

and then replace the worst individuals in the population with
Vb,N to improve the speedof rapid convergenceof the system.

3©Propagation
With the continuous evolution of the population, each

individual is gradually close to the optimal individual, the
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Table 4 Generator parameters of generators 5 buses

Unit Pmin
i MW Pmax

i MW ai MW bi $/MW ci $/MW2 ei $/h fi 1/MW URi MW/h DRi MW/h

P1 10 75 20 2.0 0.0080 100 0.0042 30 30

p2 20 125 60 1.8 0.0030 140 0.0040 30 30

p3 30 175 100 2.1 0.0012 160 0.0038 40 40

p4 40 250 120 2.0 0.0010 180 0.0037 50 50

p5 50 300 40 1.8 0.0015 200 0.0035 50 50

Table 5 Load demand for 24
hours

Time (H) Load MW Time (H) Load MW Time (H) Load MW Time (H) Load MW

1 408 7 625 13 698 19 649

2 437 8 655 14 696 20 709

3 473 9 685 15 649 21 682

4 532 10 709 16 585 22 603

5 555 11 716 17 557 23 524

6 613 12 744 18 609 24 466

difference vector generated by the mutation operation in the
algorithmwill gradually become smaller, which will weaken
the diversity of the algorithm search space to a certain extent.
Therefore, some mutation operations are necessary, so that
the mutated vector can open up new search space, so as to
improve the global optimization ability of the algorithm. The
small cross factor causes the population to produce fewer new
individuals after the cross operation, thusweakening the abil-
ity of the algorithm to develop new space. While large cross
factors cannot keep the population stable and will reduce the
stability of the algorithm.

The new individual is generated based on the previous
optimum of Vhb,G+1, the hth gene of the i th individual can
be described as:

Vhi,G+1

=

⎧⎪⎨
⎪⎩
Vhb,G+1 + δhi

(
Vhmin − ZG+1

hb

)
, if δ̃hi <

Vhb,G+1−Vhmin
Vhmax−Vhimn

Vhb,G+1 + δhi
(
Vhmax − Vhb,G+1

)
, otherwise

i = 1, . . . , NP , h = 1, . . . , n

(17)

where δ and δ̃ are two different random numbers. In order to
make the new individual join the search population and help
the system to avoid early aging, the propagation operation in
the algorithm can be controlled by making the group density
p less than the expected tolerance density ε1 in formula (18).

p =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

NP∑
i = 1
i 	= b

(
n∑

h=1
ηz

)
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

n
(
Np − 1

) < ε1 (18)

where

ηz =
{
1, if

∣∣∣ Vhi−Vhb
Vhb

∣∣∣ > ε

0, otherwise
(19)

Reproduce new individuals by this method until no better
individual is produced.

5 Computer simulation

Select five power generation units as the test system, the
generator data parameters are as shown in Table 4, the load
demand side considers the 24-hour change as shown in
Table 5. In order to illustrate the robustness of the system, the
test system takes into account the VPE effect, but eliminates
the generator limit band, the effect data can be found in the
reference [18–23].

Figure 5 is the dispatch plan of the 5 node units and the
total dynamic load obtained by IDE algorithm.

The relationship between total unit cost curve and the
number of iterations in DED problem obtained by using the
IDE algorithm, GAGA, PSOPS are as shown in Fig. 6.

From the simulation results in Fig. 6, it can be seen that
the cost of the dispatch plan of unit dynamic load obtained
by the IDE algorithm is less than that of DE, GA and PSO,
verifying the good performance of IDE algorithm in solving
the unit DLED.

6 Conclusion

DLED is one of the key technologies in power system opti-
mization and this paper proposes and validates an improved
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Fig. 5 Optimal generation schedules for 5 generators based on IDE
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Fig. 6 Cost curves of different algorithms

DE. Through a comparison test of ten typical target opti-
mization functions, compared with NSDE, SaDE and basic
DE algorithms under the same number of iterations, IDE
algorithm target function shows the best fitness. By apply-
ing IDE algorithm to power system DLED and comparing
the cost curves under different algorithms, the result of IDE
algorithm is the least cost and the convergence rate is the
fastest compared with PSO, GA and DE algorithms.
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