
A reliable, TOPSIS-based multi-criteria, and hierarchical load balancing
method for computational grid

Aref M. Abdullah1 • Hesham A. Ali2 • Amira Y. Haikal2

Received: 22 March 2017 / Revised: 25 March 2018 / Accepted: 15 December 2018 / Published online: 1 January 2019
� Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Load balancing is a very important and complex problem in computational grids. In load balancing, jobs should be

effectively distributed among resources in order to minimize the average completion time and maximize the utilization of

all resources even those with low reliabilities and capacities. However, using the less reliable and slow resources implies

worse completion time, whereas always selecting the powerful and reliable resources undermines the utilization of other

resources. So, it is essential to develop an efficient load balancing method which makes a good tradeoff between these

criteria in a way that satisfies the quality of service of jobs and fairly distributes jobs between resources based on their

reliabilities and capacities. This paper proposes an efficient multicriteria load balancing method using technique for order

preference by similarity to ideal solution which treats load balancing as a multi criteria decision making problem. Also, an

effective weighting mechanism is proposed, which adaptively adjusts the weights of the considered criteria according to the

system’s current state and jobs’ characteristics. This mechanism can make an efficient tradeoff between the considered

criteria and accurately reflect the importance of each one. By simulation, the proposed method was evaluated and compared

with other approaches from the literature. In the range of examined parameters’ values, the simulation results show that

proposed method minimizes the average completion time by 8.7–15.7%, increases the throughput ratio up to 15.8–19.4%,

and maximizes the load balancing level by 7.68–20.1%.

Keywords Computational grid � Grid scheduling � Load balancing � Fault tolerance � Distributed system

1 Introduction

Grid computing is a form of distributed systems which

utilizes a large pool of computing resources to provide a

geographically distributed powerful platform that caters the

need of massively computational applications [21]. In

computational grids, uneven arrival rates of jobs and

heterogeneity of resources usually lead to a situation when

some resources are overloaded with many jobs while others

are underutilized or even idle [12, 14, 15, 38]. So, the

objective of load balancing is to dynamically balance the

workload between resources in order to enhance resource

utilization, minimize the average completion time, and

increase throughput [30].

The allocation and load balancing algorithms can be

classified as centralized, distributed, and hierarchical.

Centralized approaches suffer from limited scalability, and

are intrinsically characterized by a single point of failure

because a single entity is responsible for all allocation and

load balancing decisions [23, 29]. Distributed approaches

improve scalability and fault tolerance since all resources

are involved in decision making activities. However, it is

costly to let each resource get and maintain the dynamic

information of the whole system [24]. Also, distributed

schedulers may take conflicting decisions regarding the use

of resources [32]. In the hierarchical approaches, decision

making entities are organized in two or more hierarchical

levels. Hierarchical approaches give more efficient and

& Aref M. Abdullah

eng.aref77@gmail.com

Hesham A. Ali

h_arafat_ali@mans.edu.egp

Amira Y. Haikal

amirayh@gmail.com

1 Taiz University, Taiz, Yemen

2 Mansoura University, Al-Daqhaliya, Egypt

123

Cluster Computing (2019) 22:1085–1106
https://doi.org/10.1007/s10586-018-02888-9(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-02888-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-018-02888-9&amp;domain=pdf
https://doi.org/10.1007/s10586-018-02888-9


conflict-free schedules than do the distributed approaches.

However, they may suffer from a bit lack of scalability if

both the number of levels and the master entities are not

efficiently selected.

Although the resource allocation problem in computa-

tional grids has been intensively studied, the majority of

the previously proposed studies do not consider the load

balancing during the allocation process [13]. They always

send jobs to the most prominent resources which are cap-

able of speeding up their executions whereas the idleness

and underutilized state of the other resources are ignored.

As a result, the fittest resources are often overwhelmed

with many jobs when other resources remain idle or lightly

loaded. So, frequent job redistributions are required by

those approaches to balance the workload among resources

and thus improving the utilization of each resource.

Although the jobs redistribution process is sometimes

necessary in highly dynamic grids even though a good

allocation is drawn, making a good placement during the

allocation process will reduce the jobs’ redistribution rate.

As a result, the communication overhead will be mini-

mized and thus the overall performance of the system will

be improved.

Furthermore, most of the previously developed load

balancing approaches failed to capture the complexity of a

truly-open grid which is composed not only of dedicated

multisite clusters, but also of a huge set of non-dedicated

individual resources which can fail or leave the system at

any time. For example, those approaches do not consider

diversified reliabilities and intermittent availabilities of

resources when balancing the workload between resources.

So, applying them in such an environment cannot effi-

ciently utilize the grid resources and may make the par-

ticipation of intermittently available and fault-prone

resources worthless. More importantly, ignoring the relia-

bility of resources may lead to a situation in which the

more powerful but unreliable resources are overloaded

with jobs; or jobs are also allocated to the resources whose

expected survival times less than their time constraints. In

fact, the failures of such overloaded resources severely

affect the performance of the system because a large

number of jobs should be redistributed to other resources

(if not replicated), which implies that their completion

times will be increased. The case will be worse if those

jobs are non-checkpointable since they have to be restarted

from scratch losing all the computational work done. All of

these may prevent jobs from completing their executions

within their specified deadlines.

Unfortunately, the large variety of resources reliabilities

and capacities makes it difficult to always find resources

which are fast and highly reliable at the same time. So,

scheduling only for reliability undermines the performance

in term of throughput, resource utilization, and job

execution speed-up. Whereas, scheduling only for speeding

up the completion time can be detrimental due to the

performance ramifications of resource failures [33]. For

this reason, grid schedulers must make a good tradeoff

between resource reliability, resource utilization, and the

computational capacity of resources taking into account the

QoS of submitted jobs such as deadlines.

To solve the aforementioned problems, this paper

introduces a reliable and efficient allocation and load bal-

ancing method which considers the unique characteristics

of grid resources and jobs’ deadlines, and fairly distributes

the workload between resources in a way that ensures the

participation of all resources in jobs executions even those

that are slow and less reliable. By ‘‘fairly’’, I mean that the

workload should be distributed among resources propor-

tionally to their reliabilities and capacities so that more

powerful and reliable resources (with larger MTBFs) exe-

cute much work while slower and less reliable ones execute

less.

In fact, the fair distribution of jobs among the resources

of a grid system is beneficial in many aspects. (1) From an

economic aspect, it ensures that all the resources in the

system are utilized so that all the resource providers can

make benefits. (2) It avoids overloading resources with

jobs, thus it minimizes the execution losses of the jobs in

case of resource failures; and also reduces the communi-

cation overhead induced by retransferring the failed jobs to

new resources. (3) Allocating small and non-urgent jobs to

the slow resources as long as they can be executed there

within their time constraints saves the faster resources for

longer and urgent jobs (jobs with early deadlines). All of

these will maximize resource utilization, increase system

throughput, and satisfy the QoS of the submitted jobs.

The proposed method treats the allocation and load

balancing as a MCDM problem because of the effect of

different criteria of jobs and resources on the decision

making, when some of these criteria are conflicting to each

other. The main contributions of this paper are:

– Proposing a reliable, adaptive, multi-criteria, and hier-

archical load balancing method based on TOPSIS

technique, in which the resources are prioritized

according to the following weighted attributes

(criteria):

– Resource capacity (which is represented by the

estimated completion time of a job on the resource)

– Resource reliability

– Resource load index

– Making a good tradeoff between these criteria is also

very important to make accurate decisions and obtain a

good performance from the system’s and user’s

perspectives. So, this paper also proposes an effective

1086 Cluster Computing (2019) 22:1085–1106

123



weighting mechanism which adaptively and transpar-

ently adjusts the weights/importance of the criteria

according to job’s characteristics and the system’s

current state.

– Providing a redistribution policy which continuously

monitors and redistributes jobs between resources to

minimize their load differences.

Remainder of this paper is structured as follows: Related

work is reviewed in Sect. 2. The system model and the

proposed allocation and load balancing method are intro-

duced in detail in Sect. 3. Section 4 is dedicated to fault

tolerance and reliability model. Section 5 focuses on the

simulation setup, performance criteria, and the evaluation

results. Finally, Sect. 6 concludes the paper and presents

future directions.

2 Related work

In the literature, there are several dynamic scheduling and

load balancing algorithms proposed for computational

grids [2, 11, 13, 20, 25, 29, 34, 40, 42]. They differ in the

way they tackled the load balancing and also in what issues

and characteristics of grids they considered.

Yagoubi and Slimani [42, 43] presented a load balanc-

ing strategy for multi-cluster grids in which a cluster

consists of several sites, each connects together several

heterogeneous resources. The proposed strategy designed

to perform at three levels, namely: intra-site level, intra-

cluster level, and intra-grid level. The load information is

gathered periodically from the children resources only to

their associated managers at any level, so the number of

messages exchanged for the purpose of load balancing is

decreased, and thus the communication overhead. This

strategy is scalable and privileges local load balancing first

(within a site, then within a cluster and finally on the whole

grid). However, it does not provide any job allocation

procedure, and does not take into consideration the relia-

bilities of resources when balancing the workload between

resources.

Lu et al. [25, 26] proposed a dynamic load balancing

scheme which considers the concerns of scalability,

heterogeneity, and communication overheads. In this

scheme, a grid scheduler runs on each resource which

maintains two sets of resources: LPSeti and LNSeti. The set

LPSeti contains p resources as its partners and the set

LNSeti contains n resources as its neighbors. The scheduler

uses the set LPSeti to select a partner resource for exe-

cuting a new arriving job while the set LNSeti is used to

select a neighbor resource for offloading jobs. The selec-

tion of the candidate resources for a job allocation and

redistribution is restricted to these two sets and depends on

some parameters which must be taken carefully to get a

good performance. In this scheme, each resource appends

the load information of itself and some randomly selected

resources from its partners and neighbors to each job

transfer request; and it gets the information of other

resources with job acknowledges or completion replies.

The disadvantage of this information policy is the high

probability of sending useless information which may be a

potential source of communication overheads. That hap-

pens because the randomly selected resources do not

always belong to receiver’s neighbors or partners. This

scheme does not consider network and hardware failures,

and there is a high probability that the resources with light

load and large capacity may be overwhelmed by their

neighbors if simultaneous jobs migrations occurred due to

the lack of coordination between resources.

Balasangameshwara and Raju [2] proposed an adaptive

and performance-driven load balancing approach which

considers heterogeneity, dynamicity, and resource failure.

It extended the information policy proposed in [25, 26] by

incorporating the resource efficiency and also making the

job transfer request simple and small sized. However, the

high probability of sending useless information was not

addressed. To tolerate resource failures, two techniques are

used. The first is the replication in which each job is

scheduled on two resources, one is a primary and the

second is a backup, where the backup copy is activated

only if a fault occurs during its primary execution. In the

second technique, historical health indices of resources are

considered during the allocation process, and the resource

with the highest index is selected for a job execution. In

this approach, the execution cost of jobs is not considered

when redistributing the load between resources. Also,

resources with light loads and large capacities may be

overwhelmed by their neighbors drastically if simultaneous

jobs migrations occurred due to the lack of coordination.

Golmohammadi and Shahhoseini [13] proposed a cen-

tralized, economic based, and dynamic allocation method

whose aim was to balance the load between resources and

complete jobs within their time constraints. This method

treats the allocation process as a multi criteria decision

making problem. It uses the analytic hierarchy process

(AHP) technique to rank resources and then select the most

appropriate ones to execute jobs. The selection criteria

used by this method are MIPS rating (rp), resource cost

(rc), number of PEs (pe), average waiting time (wt), and

resource utilization (ru). However, the proposed method

has many drawbacks. For example, it does not consider the

communication cost and resource reliability. Also, it does

not scale for large-scale grids because of the centralized

scheme it follows and due to the many pair-wise compar-

isons which have to be done between resources with

respect to criteria.

Cluster Computing (2019) 22:1085–1106 1087

123



Subrata et al. [39] studied the suitability of using a

genetic algorithm (GA) and a tabu search algorithm (TS)

for solving the load balancing problem in grid environ-

ments. The two algorithms take into consideration the

heterogeneity and dynamicity. However, they have two

drawbacks. The first drawback appears in the extra storage

and scheduling overhead. The other drawback is that the

fault tolerance is not taken into the account.

El-zoghdy and Aljahdali [11] proposed a two-level load

balancing method for computational grids. They studied

the load balancing problem only at the steady-state mode in

which the number of jobs sent to the grid is sufficiently

large and the arrival rate of jobs does not exceed the grid

overall processing capacity. This algorithm does not take

into consideration the resource failure and the hetero-

geneity of both communication links and jobs. Also, it does

not provide any mechanism for information exchange and

load redistribution.

Santiago et al. [34] proposed a centralized, multi crite-

ria, and fuzzy-based meta-scheduler for a computational

grid consisting of a set of nodes each with several com-

putational resources. This algorithm gives option to the

slow nodes, that are often left unused, to participate in jobs’

executions. So, the nodes with more computing power

execute fewer jobs than when using the common vision of

load balancing, and thus ensuring not overloading them.

For this purpose, the scheduler selects a node based on its

factor of selection metric which is the output of a proposed

fuzzy interference system where five parameters are used

as inputs to introduce it. These parameters are: the rate of

available resources, rate of idle MIPS, length of executed

jobs, execution time of jobs, and the number of executed

jobs. Santiago et al. did not consider the transmission time

of jobs, and also ignored resource failures. They also did

not provide any mechanism for monitoring and redis-

tributing jobs between the overloaded and underloaded

resources.

Helmy et al. [15] proposed a dynamic, hierarchical, and

fuzzy-based load balancing scheme which allocates jobs

upon their arrival in a balanced manner. To accurately

estimate the load of a node or a cluster, four parameters are

used as input variables for the proposed fuzzy-based

scheme (namely; node’s ready queue length, burst time,

CPU utilization, and available resources needed to

accomplish the jobs), while the output represents the cur-

rent workload state. This scheme does not consider the

heterogeneity of resources, communication cost, and

resource reliability. It also does not provide any mechanism

to continuously redistribute jobs between the overloaded

and underloaded resources.

Suresh and Balasubramanie [40] proposed a dynamic

hierarchical load balancing algorithm for a computational

grid consisting of a finite set of resources; each with several

machines. Each machine, in turn, consists of several pro-

cessing elements (PEs). This algorithm focuses on satis-

fying the deadlines of jobs and achieving better load

balancing. A user submits their jobs to its machine which

assigns them to its corresponding PEs according to their

current loads and the capability of completing them within

their deadlines. If there is no suitable PE found for a given

job, the submission machine forwards the job to its

resource. If there is no suitable PE found at all machines

under that resource, the job is forwarded to the resource

broker at the top which then assigns it to a suitable resource

from the other resources under its control. To perform load

balancing, the resources/machines/PEs are grouped into

overloaded, normally loaded, and underloaded lists upon

the arrival of a new job. Then, the job is assigned to a node

from the underloaded list which satisfies its requirements.

The major advantage of this work is that the distribution of

job submissions between machines instead of using a

central entity which leads to a lower bottleneck. However,

its disadvantages are that the resource reliability is not

considered, and there is a high probability that some

machines/resources may be overwhelmed with jobs when

the others are lightly loaded or even remain idle.

Prez-Miguel et al.[31] proposed failure-aware schedul-

ing techniques for high-throughput computing systems.

These techniques has the same vision as our method pro-

posed in this paper since they both provide mechanisms

which match the expected completion times of jobs with

the expected survival time of nodes. In those techniques,

several nodes can contend for the execution of the same

job, and the owner node, based on a certain score, is chosen

to execute the job. The main drawbacks of those techniques

are that they do not consider the communication time

required to transfer jobs to nodes, and do not provide any

model to estimate the completion time.

Table 1 summarizes the features and limitations of the

load balancing approaches discussed in this section.

In fact, almost none of the already existing methods

consider all the characteristics of grid resources and jobs

which directly affect the performance of the load balancing

from both the system’s and user’s perspectives. Such

characteristics include: resources reliability, heterogeneity

of resources and communication links, scalability, and job

deadline, etc. Consequently, they are not capable of

effectively balancing the workload between resources in

computational grids. Also, in these methods, load balanc-

ing is achieved by always distributing the workload to

resources proportional to only their capacities while their

reliabilities are ignored. So, applying them in grids often

leads to a condition where the unreliable resources, which

have high capacities, may be overloaded with jobs when

slower but reliable resources are left unused or

underutilized.

1088 Cluster Computing (2019) 22:1085–1106

123



The proposed method in this paper tries to tackle the

limitations in the existing approaches. It considers the load

balancing issue at allocation process, and it provides a load

redistribution policy. It also addresses the concern of

heterogeneity, differences in the reliability of resources;

and focuses on satisfying both the user’s and the system’s

requirements. In the proposed method, the workload is

distributed to resources based on jobs’ characteristics,

resource reliability, resource capacity, and the system’s

current load balancing state in a way that ensures that all

resources participate in the executions of jobs even those

with slow speeds and less reliabilities.

3 Proposed method

3.1 System model

In this section, a grid organization model is firstly intro-

duced. Then, the job model and the scheduling components

used by the proposed load balancing method are discussed.

Table 2 lists the notations used throughout this paper.

3.1.1 Grid hierarchy architecture

In this paper, we used the grid model proposed in our

previous work [1]. In this model, the grid is defined as an

enormous set of dynamic, heterogeneous, and geographi-

cally-distributed computing resources which are connected

by various heterogeneous networks (including internet,

WAN, LAN, etc.). These resources are mapped into an n-

level dynamic hierarchical structure where the number of

levels is dynamically determined based on the number of

available resources. This model consists of a root level

(denoted by Ln) which includes only the top root, a leaf

level at the bottom (denoted by L1) which contains the leaf

resources, and a set of n� 2 intermediate levels in-be-

tween. The architecture of the grid model is depicted in

Fig. 1. Every resource Ri from level i along with its direct

children resources residing in level i� 1 form a cluster

Table 1 Comparison between the load balancing approaches

The approach Type Features Limitations

Yagoubi and Slimani

[42, 43]

Tree-based

Heuristic

Considers resource heterogeneity, scalability, and

communication cost

Does not provide any job allocation

procedure.

Ignores resource reliability

Lu et al. [25, 26] Neighbor-based

heuristic

Considers scalability and heterogeneity Does not take into account the reliability of

resources when balancing the workload

Balasangameshwara

and Raju [2]

Neighbor-based

heuristic

Adaptive, and scalable

Considers heterogeneity, dynamicity, and failure

tendency of resources

Execution cost is not considered

Golmohammadi and

Shahhoseini [13]

Multi criteria AHP-

based heuristic

Achieves high fairness

Considers resource heterogeneity

Not scalable.

Does not consider resource reliability and

communication cost

Subrata et al. [39] Meta-heuristic

optimization

approach

Addresses heterogeneity and dynamicity Incurs extra storage and processing

requirements

Considers fault tolerance

El-zoghdy and

Aljahdali [11]

Tree-based

heuristic

Low decision making overhead and scalable

Considers resources heterogeneity

Does not consider resource reliability and

heterogeneity

Santiago et al. [34] Multi criteria

fuzzy-based

heuristic

Considers heterogeneity, and gives option to all

resources to participate in the execution of jobs

Does not consider communication cost and

resource failure

Does not provide any redistribution policy

Helmy et al. [15] Multi criteria

fuzzy-based

heuristic

Gives option to all resources to participate in the

execution of jobs

Does not consider heterogeneity,

communication cost, and fault tolerance

Does not provide any job redistribution

policy

Suresh and

Balasubramanie

[40]

Tree-based

heuristic

Considers heterogeneity, scalability, and

communication overhead

Respects job deadline

The resource reliability is not considered

when distributing the load between

resources

Prez-Miguel et al.

[31]

Pool-based

heuristic

Considers heterogeneity and resource failure

Respects time constraints of jobs

Does not consider communication cost

Does not provide any model to estimate the

job completion time

Cluster Computing (2019) 22:1085–1106 1089

123



with Ri acting as its master. Each cluster contains up to k

resources where k is a predefined number. Furthermore,

each Ri and all resources inside the subtree rooted by itself

form a community. The master of each cluster is replicated

on one of its children to avoid a single point of failure. This

replica will take the master’s position when it fails. When a

new resource wants to participate in the grid, it queries a

predefined host called the entry host (EH) that is aware of

the current structure of the tree. EH then responds with

some information which is used by the new resource to

guide itself joining the closest cluster in term of commu-

nication latency.

In the proposed model, each resource can act as both a

computing resource (for executing the jobs submitted to it.)

and at the same time as a master/manger for the resources

in the cluster rooted by itself if any.

To help the scheduler make good decisions, information

about resources should be continuously gathered [45].

Here, each resource sends its detailed information (such as

speed, load, reliability, and baud rate) to the grid infor-

mation system (GIS) in its master. Also, it sends some

Table 2 The notations

Notation Description

CoM(i) The community i which includes all resources in the subtree rooted by the resource Ri except Ri itself

Cap(i) The capacity of Ri measured as MIPS (mega instructions per seconds)

Jlj The computational length of job j measured as MB (mega byte)

Dj Deadline of the job j

ISj The size of the input file of job j in MB

OSj The size of the output file of job j in MB

GSi The global scheduler of Ri which is responsible for scheduling jobs to remote resources/communities

LQi The local queue of Ri which contains all waiting jobs assigned to be executed on Ri

GQi The global queue of resource Ri which contains all jobs waiting to be scheduled by GSi

TD(i, j) Link transfer delay between resource Ri and Rj.

BW(i, j) The baud rate between Ri and resource Rj.

LD(i) The current load of Ri

ALD(i) The average load of resources in the cluster rooted by Ri

ChmðiÞ The child-resource m of resource Ri.

CoMCap(i) The estimated total capacity of all resources in CoM(i)

CoMALD(i) The average load of CoM(i) which is estimated as average load of time required to execute all unfinished jobs which have been

allocated to resources in CoM(i)

CT(j, c) The estimated completion time of job j on Rc

CT(j, CoM(c)) The estimated completion time of job j on community CoM(c)

ACT The actual average completion time of all jobs

Fig. 1 The proposed dynamic

n-level architecture model for

computational grid

1090 Cluster Computing (2019) 22:1085–1106

123



aggregated information about the resources in the com-

munity rooted by itself. Network Weather Service (NWS)

[41] and Globus Monitoring and Discovery System (MDS)

[8], which are two popular tools of GIS, can be utilized to

collect such information.

To be more clear, the proposed work assumes that each

computing resource contains only a single processor which

operates in a space sharing mode. This mode allows the

execution of only a job at a given time, while the other jobs

are waiting in the queue. However, the proposed model can

be easily extended to accommodate the case when the

resource contains several processors and also supports the

time sharing mode in which several jobs can be simulta-

neously executed on a single processor.

This model improves scalability since each resource

only manages and maintains the states of a limited number

of other resources. The hierarchical structure is also

important for localizing the effect of failures [3].

3.1.2 Job model

The jobs are assumed to be independent, computationally

intensive, and require no constrained order of their exe-

cutions. Jobs arrive at global schedulers with different

arrival rates, so jobs at different resources can be scheduled

in parallel. Jobs differ in their execution and data trans-

mission times. This means that each job requires a different

execution time and needs a different time to be transferred

to its allocated resource. Each job has three attributes: Job

length in MI (million instructions), the size of input and

output files expressed in MB (mega byte), and the user

deadline (Dj) [2].

3.1.3 Scheduling component

As explained above, each resource in level Li can act as a

child for its upper cluster and at the same time as a master

for a cluster at level Li � 1. Thus, it is responsible for both

execution and management duties. The scheduling part in

each resource consists of the following components as

depicted in Fig. 2:

– Local Scheduler (LS): Is responsible for sharing the

space of the resource’s CPU among all the jobs which

have been allocated to execute locally. The jobs waiting

for execution are queued in the local queue (LQ).

– Global Scheduler (GS): Is responsible for fairly

distributing the jobs queued in its global queue (GQ)

inside the cluster/communities rooted by the resource if

they can be executed there within their deadlines.

Otherwise, it redirects them to the higher level.

– Grid Information System (GIS): Its role is to maintain

the static and dynamic information about resources.

3.2 Scheduling policy

Jobs are submitted locally by grid users using their own

local resources, and only the jobs that cannot be executed

locally within their time constraints are directed to the

global scheduler (GS) in the same resource, which can be

scheduled later as follows:

– Based on a first come first served basis, the GSi of Ri

repeatedly pops jobs from the head of its global queue

(GQi). For each job, the GSi first checks if it is possible

to execute it within its deadline inside the cluster it

manages. If so, the GSi will utilize the dynamic

information of the children resources to create a list

of the candidate resources which can execute the job

within its deadline provided that the MTBF of each is

greater than the estimated completion time. This list

will then be sent to the MCDM-based scheduling and

load balancing algorithm which uses it to rank the

resources and then select the best one to execute the job

as discussed later. Finally, the job will be dispatched to

the local queue (LQ) of the selected resource where it

will actually be executed until completion if it is not

rescheduled in case of a failure.

– If there is no suitable resource found in the cluster, the

GSi will utilize the aggregated information of the

communities rooted by their children to find whether it

is possible to execute the job there within its deadline.

If so, the least-loaded community will be chosen and

the job will then be dispatched to the GQ of the child

which is the root of the chosen community. The GS

there, in turn, will first try to allocate a suitable resource

for the job inside the cluster under its control or will

forward the job down the hierarchy in the same manner

as mentioned above. These steps are iteratively

Fig. 2 The scheduling components

Cluster Computing (2019) 22:1085–1106 1091

123



repeated until finding a suitable resource which actually

executes the job.

– If the GSi at the submission resource found that the job

cannot be executed within its deadline either inside its

direct cluster or in any community rooted by their

children, it will forward the job to the GS of its master.

Upon receiving the job, the GS at the master acts

similarly by firstly trying to allocate a resource for the

job from the cluster it manages or forwarding it to the

least-loaded community out of those rooted by its

children as long as it can be executed there within its

deadline. Otherwise, the job will be forwarded again to

the higher level. These procedures will be repeated until

finding a suitable resource to execute the job or

reaching the root level. If the top root is reached and

no suitable resource is found, the job will simply be

discarded or it can be resubmitted later by the

submission resource.

Figure 3 presents the detailed flowchart of the scheduling

policy when a job j is submitted.

In contrast to other hierarchical models in which jobs

are submitted to a single entity at the top level, the pro-

posed policy distributes the job submission and decision

making activities between several entities. This distribution

will minimize the communication time incurred by jobs

transferring and thus making the proposed model more

scalable. The communication overhead will also be

decreased since the submitted jobs are tried to be scheduled

first to resources nearby to the submission resources.

3.3 Load Index and completion time estimation

Jobs are submitted in the form of gridlets. A gridlet is a

package that contains information about the job length

expressed in MI, the size of input/output files expressed in

MB, and the job deadline Dj. Unlike traditional parallel and

distributed systems [22, 37] in which nodes are always

connected via a high speed sophisticated communication

media, the input and output files in grids need to be

transferred through much slower communication links. So,

the transfer time should be considered by grid load bal-

ancing algorithms in order to select appropriate resources

to which jobs are distributed. In addition, information

about the candidate resources and communities (such as

capacity, current load, baud rate etc.) is required by the

global schedulers to calculate the expected completion

times which are also used by the allocation and load bal-

ancing algorithm to rank and prioritize the potential

resources.

In the proposed model, the resource/community capac-

ity and load, which are used to estimate the job completion

time, are calculated by the following formulas.

The LD(c) of Rc is estimated as follows:

LDðcÞ ¼ RM þ Texecc ð1Þ

where RM is the remaining time of the job being processed

on Rc and Texecc is the total execution time of all jobs

waiting in LQc which is determined as follows:

Texecc ¼
PLQlngth

n¼1 Jln

CapðcÞ ð2Þ

where LQlngth is the number of jobs in LQc, Jln is the

length of the nth job in LQc, and cap(c) is the capacity of

Rc.

The average load of the resources in the cluster rooted

by Rc is calculated by the following formula:

ALDðcÞ ¼
PnchðcÞ

d¼1 LDðchdðcÞÞ
nchðcÞ ð3Þ

where LDðchdðcÞÞ is the load of child d of Rc and nch(c) is

the number of resources in the cluster.

The average load of community CoM(c) which is rooted

by the resource Rc is estimated as follows:

CoMALDðcÞ ¼
PGQlngth

n¼1 Jln

CoMcapðcÞ þ L2cmod2
þ Avc

�
XnchðcÞ

d¼1

½LDðchdðcÞÞ þ CoMALDðchdðcÞÞ�

ð4Þ

where GQlngth is the number of jobs in the GQc of Rc, Lc
is the index of the tree level to which Rc belongs,

CoMALDðchdðcÞÞ is the average estimated load of com-

munity rooted by the child d, CoMCapc is the capacity of

the community rooted by Rc, and Avc is the averaging

coefficient of Rc which is equal to:

Avc ¼

1 if Lc ¼ 1;
1

nchðcÞ if Lc ¼ 2;

1

2� nchðcÞ if Lc [ 2:

8
>>><

>>>:

ð5Þ

Or generally as:

Avc ¼
ð22modLcÞ � 2

22modLc � ½nchðcÞ þ L2cmod2�

�
�
�
�

�
�
�
� ð6Þ

The capacity of the community (c) can be determined as:

CoMCapðcÞ ¼
XnchðcÞ

d¼1

½CapðchdðcÞÞ þ CoMCapðchdðcÞÞ�

ð7Þ

where CapðchdðcÞÞ and CoMCapðchdðcÞÞ are the capacity

of the child d of Rc and the capacity of the community

rooted by that child respectively.

1092 Cluster Computing (2019) 22:1085–1106

123



The completion time (CT) of job j can then be estimated

on the resource Rc or the community CoM(c) rooted by it

using following two functions respectively:

CTðj; cÞ ¼ Jln

CapðcÞ þ
ISj þ OSj

BWðc; jÞ þ LDðcÞ ð8Þ

CTðj;CoMðcÞÞ ¼ Jln

Avc � CoMCapðcÞ þ L2cmod2

þ ISj þ OSj

BWðc; jÞ þ CoMCapðcÞ ð9Þ

where the first terms in Eqs. (8) and (9) are the estimated

execution times of the job j on Rc and CoM(c) respectively,

and the second terms are the estimated time to transfer the

job’s related files.

It should be noted that the resource load index (LD) is a

very important factor which affects the performance of the

load balancing algorithms. It is used to measure the load of

the resources and also to classify them as overloaded,

normally loaded, and underutilized. Several load indices

have been used in distributed systems such as: CPU queue

Fig. 3 Flowchart of the scheduling policy

Cluster Computing (2019) 22:1085–1106 1093

123



length, average CPU queue length, amount of available

memory, etc. However, most of these indices are not good

indicators of resource workload in the grid due to the

heterogeneity of both jobs and resources. In such an

environment, it is essential to adjust the load measures

from different resources to make them comparable. For this

reason, the resource load index (LD), at a particular instant

of time, is defined in this paper (Eq. 1) as the total time

required to execute all unfinished jobs which have been

allocated to the resource.

3.4 TOPSIS-based allocation with load balancing
algorithm

3.4.1 TOPSIS

TOPSIS [16] is a technique for ordering preference by

similarity to an ideal solution. It is a kind of MCDM

techniques which finds out the best choice among all fea-

sible alternatives in a problem with different and maybe

conflicting criteria. The best alternative should have the

shortest euclidian distance from the positive ideal solution

(PIS) and the farthest distance from the negative ideal

solution (NIS). For instance, the PIS maximizes the benefit

and minimizes the cost, whereas the NIS minimizes the

benefit and maximizes the cost. We chose TOPSIS because

of its simplicity, flexibility, its ability to consider a non-

limited number of alternatives and criteria, and also for its

ability in identifying the best alternative quickly compared

with other MCDM techniques. These advantages make it

more suitable for the allocation and load balancing problem

in grids where several conflicting factors and criteria

should be considered when ranking the alternative resour-

ces, and then selecting the best ones to which the jobs are

distributed. TOPSIS is widely used in many fields,

including: financial performance evaluation, supplier

selection, location selection, and company evaluation

[5, 28].

3.4.2 Criteria selection

It seems preferable to send jobs to resources with more

computational capacities, however, always selecting the

same eminent resources may lead to a load imbalance since

other resources remain underutilized or even idle. Fur-

thermore, considering only the capacities of resources may

not always be enough to finish jobs faster or within their

deadlines especially in a real grid which contains resources

that exhibit different reliabilities and intermittent avail-

abilities. In fact, the completion times of jobs are affected

by the reliability status of resources and ignoring reliability

may lead to a disastrous situation in which the less reliable

resources may get overwhelmed with many jobs. The

frequent failures of such overloaded resources will cause

many jobs to be rescheduled, thus all CPU cycles spent in

their last executions will be lost. Also, a high communi-

cation overhead will be caused by resending the failed jobs

to new resources. As a result, jobs may not finish their

executions within their deadlines.

On the other hand, it is sometimes desired to also send

some jobs to the less reliable or slower resources in order to

achieve better load balancing and allow all resource pro-

viders to make benefits. This also saves the reliable and

faster resources for jobs with intensive computational

requirements and earlier deadlines.

For these reasons, a good load balancing algorithm must

consider and make a good tradeoff between all of these

conflicting objectives and factors to ensure that jobs are

fairly distributed to resources based on their capacities and

reliabilities. In other words, it must ensure that faster and

reliable resources execute more jobs, and at the same time

it gives option to worse and underutilized resources to

participate in execution. To this end, the resources in our

TOPSIS-based load balancing algorithm must be priori-

tized during the decision making for each job according to

the following weighted criteria:

– Expected completion time (CT): This criterion symbol-

izes the computational power of each resource and it is

highly related with the job deadline. CT can be

determined through calculating all the time needed to

complete the execution of the job based on Eq. 8 (i.e. it

includes the transfer time, waiting time, and expected

execution time).

– Resource reliability measured by mean time between

failures (MTBF).

– Resource load index (LD): It is defined, at an instant of

time, as the total time required to execute all unfinished

jobs which have been allocated to the resource (Eq. 1).

This criterion is chosen for ensuring that all the grid

resources will participate in the execution of jobs.

3.4.3 Calculation of criteria weights

In MCDM problems, decisions are made based on several

criteria of varying importance to decision makers. Each

criterion is assigned a weight that usually indicates its

importance relative to other criteria under consideration.

The derivation of criteria weights is an essential step to

obtain effective decisions that meets the preferences of the

decision-makers. The higher the weight value, the more

dominant the corresponding criterion becomes. The values

of weights are often normalized to the sum of 1. For n

criteria, a set of weights is defined as

w ¼ w1;w2;wj;wn;
Pn

i¼1 wn ¼ 1.

1094 Cluster Computing (2019) 22:1085–1106

123



There are several weight determination methods found

in the scheduling literature such as rating, ranking, and

pairwise comparisons [4, 13, 27]; however, they are less

efficient in term of memory utilization and time com-

plexity. Also, they do not consider both the user’s and

system’s preferences, dynamicity, and resources reliability.

So, they do not suit well for load balancing in highly

dynamic grids. Herein, we propose an efficient criteria

weighting mechanism in which the weights are adaptively

estimated for each job based on its requirements and the

system’s current state. As a result, it well reflects the

importance of each criterion.

This mechanism favors faster and more reliable

resources over slower and idler ones for jobs with early

deadlines. Under this circumstance, it increases the

importance of the CT and MTBF criteria while it decreases

the importance of the LD criterion. In contrast, for those

jobs which are short or have late deadlines, the proposed

mechanism decreases the importance of the CT and MTBF

criteria whereas it increases the importance of the LD cri-

terion. This adjustment mechanism is expected to maxi-

mize the system throughput (i.e. the number of jobs

completed within their deadlines) and improve the uti-

lization of each resource since it gives an opportunity to all

resources to execute jobs even those with low speeds or

less MTBFs. For each job, the proposed mechanism cal-

culates the weights of the used criteria as follows:

1. Calculate the arithmetic mean for the values of every

criterion l with respect to all the candidate resources

(alternatives) which can finish the job under consider-

ation within its deadline as follows.

El ¼
Pn

i¼1 CVil

n
ð10Þ

where CVil is the value of the criterion l with respect to

the alternative resource Ri, and n is the number of the

alternative resources in the candidate list. For example,

ECT ¼
Pn

i¼1
CTðj;iÞ
n

, where CT(j, i) is the estimated

completion time of the job j on Ri and Ri 2 the can-

didate resource list.

2. Find the standard deviation among the values of every

criterion with respect to all the alternative resources

using the following formula:

SDl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðCVil � ElÞ2
s

ð11Þ

For example, the SD among the values of the CT

criterion is: SDCT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðCTj;i � ECTÞ2

q

3. Finally, the weights of the used criteria, namely the

weights of the CT, MTBF, and LD criteria are

determined using the following equations respectively:

WCT ¼ SDCT

TSD
þ 1

2

ECT

Dj

� SDLD

TSD
ð12Þ

WMTBF ¼ SDMTBF

TSD
þ 1

2

ECT

Dj

� SDLD

TSD
ð13Þ

WLD ¼ SDLD

TSD
� ECT

Dj

� SDLD

TSD
ð14Þ

where TSD ¼ SDCT þ SDMTBF þ SDLD (which is used

for normalization) and Dj is the deadline of the job

under consideration.

From Eqs. 12, 13 and 14, it is noted that the weight

calculation mainly depends on the standard deviation val-

ues of the used criteria with respect to the alternative

resources. In fact, the standard deviation is a good indicator

of how spread out the values of each criterion over the

alternative resources is. So, it helps to well estimate the

system’s current state and then adjust the weights properly.

For example, the large standard deviation over the LD

criterion indicates that there is a high variation in resources

loads which certainly implies that the system is in an

imbalance state. In this case, the weight of the LD criterion

will be increased in order to give option to the underuti-

lized resources to participate in the jobs’ executions

(especially those with low capacities and less reliabilities).

The low standard deviation, on the other hand, implies that

the system is in a load balanced state. So, the LD weight

will be decreased in this case. For the CT and MTBF cri-

teria, the larger standard deviation means that there is a

high variety in the capabilities and reliabilities of the sys-

tem resources. Hence, the weight of these criteria will be

incremented accordingly to increase the probability of

selecting a powerful and reliable resource to execute the

job under consideration as fast as possible. This ensures

that the powerful and reliable resources execute more jobs

compared to others.

The average completion time to deadline ratio (ECT

Dj
) is

another important factor used by our mechanism. This ratio

is used to adjust a good tradeoff between the importance of

the LD criterion and those of the other criteria. Specifically,

the LD weight (WLD) is equal to its normalized standard

deviation over the values of the LD with respect to all

alternative resources decreased by the ratio ECT

Dj
of its nor-

malized standard deviation (Eq. 14).

When ECT is very close to the deadline of the job under

consideration (i.e. ECT

Dj
approaches to 1), which indicates

that no resources, on average, can execute the job much

earlier to its deadline, the LD weight approaches to zero.

This means that the importance of the load balancing at

that point of time is lessened. At the same time, the weights

of CT and MTBF are increased to give higher importance

Cluster Computing (2019) 22:1085–1106 1095

123



to these criteria in order to increase the probability of

allocating the job to a more reliable and faster resource.

Decreasing the LD weight in this case means that our

mechanism favors fast and reliable resources for urgent

jobs (jobs with large ECT

Dj
) over the underutilized resources

which may be slow and less reliable. On the contrarily, the

decrease in ECT

Dj
indicates that the resources, on average, can

execute the job much earlier to its deadline (non-urgent

job). In this case, there is no need to send the job to a fast

and more reliable resource as long as it can be executed

within its deadline on a resource with lower speed and less

reliability. So, the proposed mechanism increases the LD

weight in this case to give option to the underutilized

resources to be selected; and thus avoiding overwhelming

the prominent resources with non-urgent jobs (jobs with

ECT � Dj). This also saves the fast and reliable resources

for other urgent jobs. It is worth noting here that a non-

urgent job is less influenced if it is allocated to a faulty

resource since it can be restarted and finished within its

deadlines on a new resource.

3.4.4 Allocation procedure

After calculating the weights of the criteria, they will be

sent to our TOPSIS-based allocation and load balancing

algorithm along with the list of the alternative resources

which can execute the job inside the cluster within its

deadline. The TOPSIS-based algorithm will then use them

to prioritize the resources as follows.

– Step 1 Construct the decision matrix A using the values

of the alternative resources (the candidate resources)

with respect to the selected criteria, namely MTBF, LD,

and the estimated CT of the job on each resource:

where R1; . . .;Rm, are the alternative resources from which

the proposed algorithm has to choose the suitable one for

the job execution. The CT, MTBF, and LD are the criteria

with which the performance of each alternative is mea-

sured, and aij is the rating of the alternative resource Ri

with respect to the criterion lj. For example, a11 is the

estimated completion time of the job under consideration

on R1 and am3 is the load of Rm.

– Step 2 Calculate the normalized decision matrix X:

X ¼

x11 x12 x13
x21 x22 x23
: : :
: : :

xm1 xm2 xm3

2

6
6
6
6
4

3

7
7
7
7
5

Each normalized value xij is calculated as:

xij ¼
aij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 a

2
ij

q ; for i 2 f1; 2; . . .;mg and j 2 f1; 2; 3g:

ð15Þ

where m is the number of the alternative resources.

– Step 3 The weighted normalized decision matrix V is

constructed as follows:

V ¼

v11 v12 v13
v21 v22 v23
: : :
: : :

vm1 vm2 vm3

2

6
6
6
6
4

3

7
7
7
7
5

¼

WCTx11 WMTBFx12 WLDx13
WCTx21 WMTBFx22 WLDx23

: : :
: : :

WCTxm1 WMTBFxm2 WLDxm3

2

6
6
6
6
4

3

7
7
7
7
5

where vij ¼ wj xij, wj is the weight of the criterion lj,

i 2 f1; 2; . . .;mg, and j 2 f1; 2; 3g.
– Step 4 Find the positive-ideal solution (Rþ) and the

negative-ideal solution (R�):

Rþ ¼ fðvþ1 ; vþ2 ; vþ3 Þg

¼ max
i

vijjlj 2 CB

� �

; min
i
vijjlj 2 Cc

� �� �

ð16Þ

R� ¼ fðv�1 ; v�2 ; v�3 Þg

¼ min
i
vijjlj 2 CB

� �

; max
i
vijjlj 2 Cc

� �� �

ð17Þ

where CB denotes the set of the benefit criteria (MTBF

is the only benefit criterion used in the proposed algo-

rithm) and Cc is associated with the cost criteria (i.e. the

CT and LD criteria).

– Step 5 Calculate the Euclidean distance measures for

each candidate resource, which gauge the separation

distances between the resource and each of the positive

ideal solution and the negative ideal solution using

Eqs. 18 and 19 respectively:

1096 Cluster Computing (2019) 22:1085–1106

123



Sþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

j¼1

ðvij � vþj Þ
2

v
u
u
t ð18Þ

S�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

j¼1

ðvij � v�j Þ
2

v
u
u
t ð19Þ

where i 2 f1; 2; . . .;mg.
– Step 6 Calculate the relative closeness RCþ

i to the

positive ideal solution for each alternative Ri as

follows:

RCþ
i ¼ S�i

Sþi þ S�i
ð20Þ

where 0� RCþ
i � 1. RCþ

i = 1 if Ri=R
þ and RCþ

i ¼ 0 if

Ri ¼ R�:
– Step 7 The alternative resources are ranked according to

the descending order of RCþ
i and the resource with the

maximum value of the relative closeness is chosen for

the job allocation.

3.5 Load redistribution policy

Even though a good job placement is drawn during the

allocation stage, a load redistribution is sometimes neces-

sary in computational grids to achieve better load balanc-

ing. In fact, the dynamicity and uneven job arrival rates of

resources may lead to load imbalance. So, the load redis-

tribution policy presented here attempts to minimize the

difference in the loads of the neighboring resources. The

presented redistribution policy is triggered by any master

resource (say Rm) every time it detects the emptiness of its

global queue GQ. At that time, Rm first calculates the

average load of its children ALD(m) (Eq. 3) and the aver-

age load of the community rooted by itself CoMALD(m)

(Eq. 4). Then, it creates a list of overloaded resources

which includes each child resource whose its load (LD) is

greater than ALD(m) and CoMALD(m). After that, the

master Rm sends a request to each resource in this list

which, upon receiving the request, will migrate the new

arriving jobs immediately to the GQ of Rm. Those jobs will

then be distributed by Rm according to the scheduling

policy introduced in Sect. 3.2. Finally, when Rm receives

any job from a higher level, it notifies every resource in the

list to stop sending the new arriving jobs as long as they

can be executed locally or inside the communities rooted

by themselves.

4 Fault tolerance and reliability model

The unique characteristics of truly-open computational

grids such as the extreme heterogeneity, dynamicity, and

geographically distribution of their resources make the

probability of failures much greater than the traditional

parallel and distributed systems [10]. Resource failures

occur frequently in highly dynamic computational grids

and have an adverse effect on jobs executions, and they

always violate timing deadlines and service level agree-

ment (SLA). So, the fault tolerance is essential to meet the

QoS requirements of submitted jobs [36]. In this paper, a

failure is defined to be an event that causes the resource to

transition from the uptime state (available state) to the

downtime state (unavailable state) making it invisible to

the users of the grid. The failures in the sense of this per-

spective include but are not limited to resource crashes,

shutdowns/restarts (announced or sudden), and power

outages. Network failures are out of the scope of this paper.

Fault tolerance can be categorized into reactive strategy

and proactive strategy. In the reactive strategy,the failure is

handled after it has occurred. Checkpointing is a typical

example of this strategy in which a snapshot of the job’s

state during the normal execution is periodically saved to a

stable storage. The saved snapshot will then be used upon a

failure occurrence to restart the execution of the job from

its last consistent state instead of restarting it from scratch.

In contrast, the proactive fault tolerance strategy takes

actions before dispatching jobs to resources [36]. For

example, the resource reliability is considered during the

allocation and load balancing decision making before

actually dispatching the job to the resource. The proactive

strategy will be followed in this paper.

Resource reliability, in this context, is quantified as

mean time between failures (MTBF). MTBF is a common

used measure in reliability engineering to describe the

reliability of repairable systems. MTBF of each resource

can be estimated using a statistical and historical analysis

of the events stored in the data logs of each resource.

MTBF can be approximated directly from the failure rate

of the resource as the total time during the period of

investigation divided by the number of failures encoun-

tered. However, this is a rough estimation and is not often

ideal because it does not consider the time lost during

failures. When the time of failures cannot be neglected,

MTBF is best estimated as the accumulative time of uptime

intervals (available intervals) divided by the total number

of uptime intervals. Several probability distribution models

such as the normal distribution, weibull distribution, and

log normal distribution are often used to analyze the failure

data and then predict the resource reliability. It is pointed

out by [6, 9, 17–19, 35, 44] that the uptime/availability

Cluster Computing (2019) 22:1085–1106 1097

123



intervals, from which MTBF is often calculated, are best

modeled by the weibull distribution on modern distributed

systems. On the other hand, the unavailability/down dura-

tions (from which the mean time to repair (MTTR) is

calculated) are modeled by different probability distribu-

tions. Iosup [17] reported that the log normal distributions

is a best choice for modeling the unavailability durations

while Bouguerra et al. [6] used the hyperexponential dis-

tribution to model the unavailability durations.

5 Performance evaluation

We have developed a java-based simulator for assessing

the performance of the proposed work under different

system parameters in a highly dynamic simulated compu-

tational grid. All simulations were conducted on a Toshiba-

Satellite computer with intel (R) core (TM) i3 processor M

350@2.27 GHz, 4 GB of RAM, and running windows 7

Home Premium 64-bit version. The proposed algorithm

(labeled as OurLB) is compared with the following

algorithms:

– Minimum completion time (MCT) [7]: This method

selects jobs in an arbitrary order and then assigns each

job to the resource that gives minimum expected

completion time. MCT considers the resource and job

heterogeneity. However, it does not consider the

reliability and the idleness/underutilization states of

resources, and it always selects the same prominent

resources for arriving jobs. So, there is a high

probability that some powerful resources, which may

be unreliable, are being overwhelmed with many jobs

while the other resources remain idles or underutilized.

The failures of such overloaded resources often lead to

a large loss of computation work, and also cause a high

communication overhead. This is because that many

jobs are required to be transferred from the failed

resources to new ones. We selected this algorithm

because it represents a typical algorithm for grid

scheduling and allocation methods, and it is often used

as a benchmark for grid scheduling evaluation. We also

used it to show the performance of considering only the

computational capacities of resources while ignoring

their reliability and idleness.

– User demand aware grid scheduling model with hier-

archical load balancing algorithm (labeled as UDSL)

[40]: We selected this algorithm because it represents a

typical class of hierarchical approaches, and bears

similarity to our work. This algorithm focuses on both

satisfying the user deadline and achieving better load

balancing as mentioned in Sect. 2. It also considers the

scalability and the heterogeneity of both resources and

jobs. To perform load balancing in UDSL,

resources/machines/PEs are categorized into over-

loaded, underloaded, and normally loaded lists upon

arrival of a new job. Then, the arriving job will be

allocated to a node from the underloaded list which

satisfies its QoS requirements. However, UDSL does

not consider resource reliability when distributing jobs.

5.1 Performance evaluation metrics

For evaluating the performance of the proposed work and

comparing it with the above approaches, we used the fol-

lowing performance evaluation metrics:

– Average completion time (ACT): This metric evaluates

the ability of the proposed method in minimizing the

completion time of jobs. For each job, the CT is the

time period from the point at which the job is submitted

by its user to the time when the job is completed. ACT

is calculated as:

ACTt ¼
PM

j¼1 CTj

M
ð21Þ

where t is the simulation time period, M is the number

of jobs completed during this period, and CTj is the

completion time of job j.

– Throughput ratio (TR): It is the percentage of jobs that

finished their executions within their time constraints

(deadlines). This metric is selected as a standard

performance criterion for reflecting the ability of the

proposed method in satisfying the QoS of submitted

jobs. It can be calculated as:

TRt ¼
Sj

Tj
� 100 ð22Þ

where Si is the number of jobs which are successfully

completed within their deadlines and Tj is the total

number of submitted jobs.

– Load balancing level (LBL): This metric is selected to

reflect the ability of the proposed method in maximiz-

ing resource utilization. It can be derived as follows:

Let Xi ¼ Ui �
MaxMTBF

MTBFi

ð23Þ

where MTBFi is the reliability of Ri, MaxMTBF is the

maximum MTBF of resources, N is the total number of

resources in the system, and Ui is the utilization of Ri

which is estimated as follows:

Ui ¼
busy time

busy timeþ idle time
ð24Þ

where busy time is the time during which the resource is

kept busy doing useful work.

1098 Cluster Computing (2019) 22:1085–1106

123



LBLt ¼ 1� SDX

AX

� �

� 100 ð25Þ

where AX and SDX are the average and the standard

deviation over the values of X of resources, respec-

tively. SDX and AX can be calculated according to

Eqs. 26 and 27 respectively.

SDX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

ðXi � AXÞ2
v
u
u
t ð26Þ

AX ¼
PN

i¼1 Xi

N
ð27Þ

5.2 Simulation model

Our developed simulator took into account the issues of

scalability, heterogeneity, dynamicity of computing

resources, and significant communication overhead. We

used the same simulated grid platform for all evaluated

approaches. The computational capacities of the simulated

grid resources are uniformly distributed in the range [50 to

440 MIPS]. The baud rate (bandwidth) and the link transfer

delay between resources are randomly sampled in the range

[1 to 400 MB] and the range [0.005 to 0.06 s] respectively.

To best simulate a highly dynamic grid system, the avail-

ability and unavailability durations of grid resources are

modeled using the weibull and hyperexponential

distribution models respectively. The shape and scale

parameters of the weibull model were adjusted to simulate

different MTBF for each resource. Specifically, the shape

parameter b is uniformly distributed in the range [0.31–

0.85] and the scale parameter g is randomly sampled

between [1–18] (the measurement unit is hour). Whereas,

the rate parameter li and the probability parameter pi of the

hyperexponential distribution, which are used to model the

unavailability durations, are used as suggested in [6], i.e. li
2 {0.031, 11.566, 1.322} and pi 2 {0.398, 0.305, 0.298}.

We also generated a different job arrival rate ki for every
grid resource Ri using a poisson process. The simulation

parameters and their corresponding values are summarized

in Table 3.

5.3 Simulation results

In this subsection, our simulation results are presented and

the performance of the proposed approach is compared

with MCT and UDSL which have been discussed above.

All experiments were conducted under a system scale of

3000 resources which is large enough to represent the scale

of a typical computational grid.

5.3.1 Effect of the maximum size of cluster k

In the first experiment, we studied the effect of increasing

the maximum number of resources (k) per cluster on the

performance of the evaluated approaches. We increased

Table 3 Jobs characteristics, grid characteristics, and simulation parameters

Parameters Value

Number of resources N 3000

Job mean inter-arrival time of

resources

Exponentially distributed in the range {0.05, 20}

Processing capacity Uniformly distributed between 50 and 440 MIPS

Job length Uniform distributed between 1000 and 10,000 MB (mega instructions)

Job input size 10–140 MB (uniformly distributed )

Job output size 25–300 MB (uniformly distributed)

Number of submitted jobs by

each resource
Offset ? 2rid mod 7, where rid is the resource id

The deadline of job j It is calculated by this formula: arj?
jobsizej
mps

?y , where arj is the arrival time of job j, mps is the mean

processing capacity of the resources used, and y is the deadline dispersion parameter which is uniformly

distributed between {300, 10,000}

Transfer delay (TD(i, j)) Uniformly distributed in the range {0.005 to 0.06 s}

Bandwidth (baud rate) Uniformly distributed in the range {1 to 400 MB}

Resource availability Modeled by the weibull distribution with scale and shape parameters has been adjusted to simulate different

MTBF for each resource. Specifically, the scale parameter is randomly sampled between {1–18}, when the

shape parameters is uniformly distributed between {0.31–0.85} (the unit is h)

Resource unavailability Modeled by the hyperexponential distribution with li 2 {0.031, 11.566, 1.322} and pi 2 {0.398, 0.305,

0.298}

Cluster Computing (2019) 22:1085–1106 1099

123



k from 10 to 50 by adding ten resources at each step and

then investigated the effect on ACT, TR, and LBL.

Figure 4 reveals that ACT decreases in all different

approaches as k increases. This is because the number of

jobs that are executed locally inside their clusters increases

as k increases. In other words, the number of jobs that

traverse longer between levels searching for suitable re-

sources is decreased. This certainly minimizes the com-

munication overhead and thus improving ACT. However, it

is noted that our approach gives minimum ACT compared

to MCT and UDSL under all values of k. The improvement

obtained by our approach is attributed to the effective

distribution of workload between resources which can be

achieved by considering resource reliability, resource

capacity, and the current load balance state of system. In

fact, taking these factors into consideration minimizes jobs’

execution losses, which may be caused by resources fail-

ures, and reduces the jobs’ rescheduling time; thus

improving ACT noticeably. From Fig. 4, it can also be seen

that the performance improvements gained by MCT and

UDSL decrease as k increases in comparison with our

approach. This is because of the increase in the number of

rescheduled jobs in these two approaches. The maximum

improvements obtained by our approach over MCT and

UDSL are 8.7% and 10.58%, respectively.

Figure 5 reports throughput ratio TR for the three eval-

uated approaches under different values of k. The results

show that our approach extremely improves the perfor-

mance and gives better TR for all k compared to MCT and

UDSL. The maximum improvement ratios obtained by our

approach are 16.44% and 19.4% over UDSL and MCT

respectively. The improvement obtained by our approach

comes from the fact that the QoS of jobs, resource capacity,

and reliability are considered when making the allocation

and load balancing decisions. So, in the proposed method,

the jobs with early deadlines are likely to be allocated to

reliable and fast resources unlike the other approaches in

which those jobs may be allocated to less reliable resources

which often experience frequent failures. In UDSL and

MCT, those jobs often require to be frequently rescheduled

(maybe from scratch) and also need much time to be

transferred to new resources, so they may fail to complete

their executions within their deadlines. From Fig. 5, it is

observed that as k increases the performance improvement

ratio obtained by our approach increases compared to MCT

and UDSL.

Figure 6 shows the result of LBL for the three evaluated

approaches. It is obvious that our approach gives better

results for all values of k especially when comparing with

MCT which gives worse LBL. This is because MCT often

allocates the jobs to the prominent resources while ignoring

the idleness/underutilization state of the other resources.

UDSL can balance the workload, however, its efficiency is

lower than our approach and may result in overutilization

or underutilization of some resources because it does not

continuously monitor the workload of resources and then

redistributes jobs between the overloaded and underloaded

ones if necessary.

Table 4 shows the improvement ratios obtained by our

load balancing approach compared to the other approaches

for the three used metrics.

5.3.2 Effect with jobs deadlines span

In this experiment, we focused on analyzing the perfor-

mance when varying the distribution range of jobs’

10 15 20 25 30 35 40 45 50
460

470

480

490

500

510

520

530

540

Number of Resources in a Cluster

A
C

T 
(in

 s
ec

s)

OurLB
UDSL
MCT

Fig. 4 ACT with increasing the maximum number of resources (k) per

cluster for MCT, UDSL, and OurLB

10 15 20 25 30 35 40 45 50
60

65

70

75

80

85

90

95

Number of Resources in a Cluster

 T
R

 (%
)

OurLB
UDSL
MCT

Fig. 5 TR with increasing the maximum number of resources (k) per

cluster for MCT, UDSL, and OurLB

1100 Cluster Computing (2019) 22:1085–1106

123



deadlines. For this purpose, the deadline dispersion

parameter y in the formula arj?
jobsizej
mps

?y is distributed on

different uniform distribution intervals which are: [300,

2000], [300, 4000], [300, 6000], [300, 8000], and [300,

10,000]. More specifically, the upper bound was varied

from 2000 to 10,000 by adding 2000 at each step (which

means that the distribution width of the deadline dispersion

parameter y varies, from 1700 to 9700). The maximum

number of resources per cluster k was fixed at 40 in this

experiment when the other simulation parameters were

kept unchanged as in the former experiment.

Figure 7 illustrates the effect of varying the distribution

width of the deadline parameter y on ACT for the three

evaluated approaches. It is obvious that our approach

achieves minimum ACT compared to UDSL and MCT

under all examined distribution widths. The maximum

improvement ratios obtained by our approach are 13.2%

and 15.7% over MCT and UDSL respectively. This is

because the proposed weighting mechanism in our

approach considers the deadlines of jobs and then adap-

tively adjusts the importance of the considered criteria

during allocation and redistribution processes accordingly.

For narrow widths, which means that the majority of jobs

have early deadlines, the importance of load balancing is

often reduced whereas a higher importance is given to the

resources’ reliability and capacity. This ensures that the

jobs with early deadlines are allocated to more reliable and

powerful resources. For wider distribution widths, which

means that the number of non-urgent jobs (jobs with late

deadlines) increases, our approach increases the impor-

tance of load balancing to ensure that jobs are allocated to

underutilized resources even those with low reliability and

capacity. However, this may lead to some increase in ACT.

From Fig. 7, we can also notice that MCT is not signifi-

cantly affected by varying the distribution range of the

deadline dispersion parameter. It can also be seen that

MCT gives the worst results. This is because some fast but

unreliable resources may be overwhelmed with jobs since

MCT always ignores the load balance state and resource

reliability. In the highly dynamic grid, where the failure is

the rule, not the exception, the presence of failures in such

overloaded resources often leads to a severe effect on ACT.

This is due to the large executions losses and the additional

time spent in rescheduling the affected jobs.

Figure 8 shows the effect of increasing the distribution

width of the deadline dispersion parameter y on TR in the

three evaluated approaches. It can be noted that all

approaches improve TR under all distribution widths.

However, it is clear that our approach gives better results

compared to UDSL and MCT. In highly dynamic grids,

there is a high probability that UDSL and MCT fail to

complete the urgent jobs, which have early deadlines,

within their time constraints. This is because these

approaches do not consider the QoS of jobs and resource

reliability when allocating and distributing jobs to resour-

ces. In fact, allocating those jobs to unreliable resources

10 15 20 25 30 35 40 45 50
0.55

0.6

0.65

0.7

0.75

0.8

Number of Resources in a Cluster

LB
L 

(%
)

OurLB
UDSL
MCT

Fig. 6 LBL with increasing the maximum number of resources (k) per

cluster for MCT, UDSL, and OurLB

Table 4 Improvement ratios obtained by our approach in comparison

with UDSL and MCT when varying the cluster size

Metric OurLB–UDSL (%) OurLB–MCT (%)

ACT 8.7 10.58

TR 16.44 19.4

LBL 7.68 20.1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
430

440

450

460

470

480

490

500

510

520

A
C

T 
(in

 s
ec

)

The distribution width of the deadline dispersion parameter (y)

OurLB
UDSL
MCT

Fig. 7 ACT with increasing the uniform distribution width of the

deadline dispersion parameter y for MCT, UDSL, and OurLB

Cluster Computing (2019) 22:1085–1106 1101

123



may lead to frequent failures which cause more execution

losses and thus extra delay time is added to ACT. This is

supported by the worst results obtained by UDSL and MCT

at narrow widths where the majority of jobs have early

deadlines. On the other hand, the jobs in our approach are

distributed to resources according to their reliabilities and

capacities, so the reliable resources execute more jobs than

do the unreliable resources. Also, the jobs with early

deadlines are more likely to be allocated to more reliable

and powerful resources. As a result, the number of the jobs

which are completed within their defined deadlines are

increased. The maximum improvements obtained by our

approach are 15.8% and 18.74% over the MCT and UDSL

respectively.

In Fig. 9, the effect of varying the distribution width of

the deadline parameter y on LBL is shown. It is noted that

our approach gives better results compared to UDSL and

MCT except for USDL approach at the distribution width

of less than 3200. That is because the importance of load

balancing in our approach is adjusted adaptively according

to the system state and the jobs’ characteristics. For

example, at the distribution width of less than 3200, where

almost all of the jobs have early deadlines, our approach

reduces the importance of load balancing criterion to

ensure that the jobs are sent to the faster and more reliable

resources so that they can finish their executions within

their time constraints. On the other hand, for wider distri-

bution widths, where the number of jobs with late deadlines

increases, our approach frequently increases the impor-

tance of load balancing specifically when allocating non-

urgent jobs. Under this circumstance, our approach gives

option to less reliable and slower resources to participate in

jobs executions. From Fig. 9, it is obvious that MCT gives

the worst results. It can also be seen that the LBL obtained

by MCT was not significantly affected by increasing the

distribution width of the deadline dispersion parameter.

This is because MCT does not consider the deadlines of

jobs when distributing them to resources.

Table 5 summarizes the performance improvements

gained by our load balancing approach in comparison with

other approaches for the three used metrics.

With respect to each performance metric and in order to

guarantee statistical correctness, each measurement was

carried out ten times each with different random seeds, and

the average of these runs was used to plot the evaluated

performance of the three approaches. The standard devia-

tion over the values of these runs, which are carried at each

measurement, are shown in Tables 6 and 7 for the exper-

iments when varying the cluster size and the distribution

with of the deadline dispersion parameter respectively.

5.3.3 The evaluation of performance gained by taking
the load balancing into consideration
at the allocation process

This experiment was carried out to investigate how the

consideration of the system load balancing state at the

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
65

70

75

80

85

90

95
TR

 (%
)

The distribution width of the deadline dispersion parameter (y)

OurLB
UDSL
MCT

Fig. 8 TR with increasing the uniform distribution width of the

deadline dispersion parameter y for MCT, UDSL, and OurLB

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.55

0.6

0.65

0.7

0.75

0.8

The distribution width od deadline dispersion parameter (y)

LB
L 

(%
)

OurLB
UDSL
MCT

Fig. 9 LBL with increasing the uniform distribution width of the

deadline dispersion parameter y for MCT, UDSL, and OurLB

Table 5 Improvement ratios obtained by our approach in comparison

with UDSL and MCT approaches when varying the range of the

deadline dispersion parameter

Metric OurLB–UDSL (%) OurLB–MCT (%)

ACT 13.2 15.7

TR 15.8 18.74

LBL 9.18 18.4

1102 Cluster Computing (2019) 22:1085–1106

123



allocation process affects the performance through reduc-

ing the communication overhead during the redistribution

process. The performance improvement was also analyzed

here in terms of ACT, TR, and LBL when varying the

maximum number of resources (k) from 10 to 50 by adding

ten resources at each step. This experiment was conducted

under the same simulation parameters which are shown in

Table 3. For a fair comparison, two adjustments of our

approach were evaluated and compared against each other.

The first adjustment (denoted as OurLB_CT) represents the

case when the load balancing is not taken into considera-

tion during the allocation process when the other adjust-

ment (denoted as OurLB_CT ? LD) represents the case

when the load balancing is taken into account. Further-

more, the two adjustments use the same load redistribution

policy which was explained in Sect. 3.5, and the reliability

criterion is neutralized in the both adjustments through

setting its weight to a very small value. The two adjust-

ments are explained as follows:

– OurLB_CT: In this adjustment, the weights of the LD

and MTBF criteria were statically adjusted to very

small values which are close to zero (0.001 for each)

while the weight of the CT criterion was set to 0.998.

This adjustment is to approximately simulate the case

when the resources are ranked at allocation or at

redistribution process only based on the CT criterion. It

is worth noting here that the load balancing state and

resource reliability are not completely ignored since

TOPSIS technique must depend on several criteria to

make a decision; however the small weights values of

their corresponding criteria (i.e. LB and MTBF)

marginalize their effects.

– OurLB_CT ? LD: This adjustment is to approximately

simulate the case when the load balancing state (the LD

criterion) is considered at the allocation process along-

side with the completion time (the CT criterion). In this

adjustment, the weight of the MTBF criterion was also

statically adjusted to a small value (0.001), which

means that the resource reliability is also marginalized;

whereas the weights of the CT and LD criteria are

adaptively determined according to the following

equations respectively:

WCT ¼ SDCT

NSD
þ ECT

Dj

� SDLD

NSD
� 0:001 ð28Þ

WLD ¼ SDLD

NSD
� ECT

Dj

� SDLD

NSD
ð29Þ

where NSD ¼ SDCT þ SDLD

Figure 10 shows the ACT in the two evaluated adjustments

when varying the maximum number of resources (k) per

cluster. Clearly, OurLB_CT ? LD gives better results

compared to OurLB_CT for all values of k. It has an

average improvement factor of 3.2% over OurLB_CT. This

is because the consideration of load balancing at the allo-

cation process avoids overloading resources with jobs, and

thus reduce the number of jobs which have to be redis-

tributed at the redistribution process to get the system

balanced. Also, the number of jobs which should be

retransferred to new resources in presence of failures will

be reduced (unlike OurLB_CT in which the powerful but

Table 6 The standard deviation of simulation runs values at each measurement when varying the cluster size (k)

k 10 20 30 40 50

ACT TR LBL ACT TR LBL ACT TR LBL ACT TR LBL ACT TR LBL

OurLB 4.3 5.2 4.3 4.3 3.1 4.8 2.9 3.86 5.1 3.9 3.86 4.2 4.07 3.96 3.6

UDSL 5.2 6.5 5.9 6.1 5.3 6.1 3.88 5.94 3.6 5.2 3.98 4.06 5.02 4.27 3.45

MCT 4.04 5.06 7.0 4.91 6.1 6.5 4.04 3.1 6.6 5.4 5.7 5.84 6.0 4.95 6.02

k is the maximum number of resources per cluster

Table 7 The standard deviation of simulation runs values when varying the distribution with of the deadline parameter (y)

U of y 1700 3700 5700 7700 9700

ACT TR LBL ACT TR LBL ACT TR LBL ACT TR LBL ACT TR LBL

OurLB 2.5 0.9 4.6 1.9 4.6 4.7 3.6 3.6 3.9 3.92 2.6 3.95 4.01 3.51 2.91

UDSL 6.3 5.2 4.5 4.0 4.9 4.02 4.06 4.3 4.0 2.2 2.98 3.73 4.19 3.82 3.92

MCT 5.3 5.7 6.3 4.82 5.7 4.99 6.8 4.1 4.4 2.9 3.3 5.4 7.5 4.14 5.2

U of y is the uniform distribution width of y

Cluster Computing (2019) 22:1085–1106 1103

123



faulty resources may be overloaded with many jobs). In

fact, the less the number of jobs required to be retrans-

ferred, the less the communication time is needed, and thus

the less ACT.

Figure 11 shows the throughput ratio TR for the two

evaluated adjustments under different values of k. From the

figure, it can be concluded that the TR that results from

applying OurLB_CT ? LD is higher than the TR results

from applying OurLB_CT across all values of

k. OurLB_CT ? LD has an average improvement factor of

7.3% over OurLB_CT. This improvement came form the

fact that the number of jobs which have to be redistributed

in OurLB_CT ? LD at the distribution process or in case

of failures are less than those in OurLB_CT as mentioned

above. This means that no additional transfer time has to be

added to the CT of most jobs, so they finish their executions

within their deadlines as expected.

Finally, the LBL for the two adjustments OurLB_CT and

OurLB_CT ? LD are depicted in Fig. 12. From the figure,

it can be observed that OurLB_CT ? LD and OurLB_CT

give comparable LBL. This is because they both used the

same redistribution policy which redistributed the jobs

among resources to get the system balanced.

Table 8 shows the performance improvement ratios

gained by OurLB_CT ? LD compared to OurLB_CT for

the three used metrics.

6 Conclusions and future work

In this paper, we have presented a reliable, adaptive, multi-

criteria TOPSIS-based, and hierarchical load balancing

method for a truly-open computational grid which is

composed of dedicated machines alongside individual and

autonomous computing resources which characterized by

their intermittent availability. The proposed method uses

the estimated completion time, resource reliability, and

resource load as criteria upon which the allocation and

distribution decisions are made. This enables fair distri-

bution of workload among resources based on their relia-

bility and capacity in a way that ensure that all resources

participate in jobs’ executions. In this method, a novel

weighting mechanism was also proposed in which the

weights of the used criteria are determined adaptively

according to jobs’ characteristics and the system’s current

state.

10 15 20 25 30 35 40 45 50
490

495

500

505

510

515

520

525

530

535

Number of Resources in a Cluster

A
C

T 
(in

 s
ec

)

OurLB−CT
OurLB−CT+LD

Fig. 10 ACT with increasing the maximum number of resources

(k) per cluster for OurLB_CT and OurLB_CT ? LD

10 15 20 25 30 35 40 45 50
65

70

75

80

85

90

Number of Resources in a Cluster

TR
 (%

)

OurLB−CT
OurLB−CT+LD

Fig. 11 TR with increasing the maximum number of resources (k) per

cluster for OurLB_CT and OurLB_CT ? LD

10 15 20 25 30 35 40 45 50
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

Number of Resources in a Cluster

LB
L 

(%
)

OurLB−C
OurLB−CT+LD

Fig. 12 LBL with increasing the maximum number of resources

(k) per cluster for OurLB_CT and OurLB_CT ? LD

1104 Cluster Computing (2019) 22:1085–1106

123



The simulation results proved that the proposed method

outperforms other approaches in the range of the examined

parameters’ values. The results proved that the proposed

method speeds up completion time, improves system

throughput and resource utilization. In future work, we

plan to propose a sophisticated prediction based model for

reliability measurement of grid resources. We also consider

jobs which have inter-process communication.

References

1. Abdullah, A.M., Ali, H.A., Haikal, A.Y.: Reliable and efficient

hierarchical organization model for computational grid. J. Paral-

lel Distrib. Comput. 104, 191–205 (2017)

2. Balasangameshwara, J., Raju, N.: Performance-driven load bal-

ancing with a primary-backup approach for computational grids

with low communication cost and replication cost. IEEE Trans.

Comput. 62(5), 990–1003 (2013)

3. Banerjee, S., Kommareddy, C., Bhattacharjee, B.: Scalable peer

finding on the internet. IEEE Glob. Telecommun. Conf. 3,
2205–2209 (2002)

4. Bansal, S., Hota, C.: Distributed scheduling on utility grids.

Romanian J. Inf. 16(4), 373–392 (2013)

5. Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M.,

Ignatius, J.: A State-of the-art survey of TOPSIS applications.

Expert Syst. Appl. 39(17), 13051–13069 (2012)

6. Bouguerra, M.S., Kondo, D., Martin, M.S., Trystram, D.: On the

scheduling of checkpoints in desktop grids. In: 11th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing

(CCGrid), Newport Beach, CA, pp. 305–313 (2011)

7. Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L., Maheswaran,

M., Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B., Hens-

gen, D., Freund, R.F.: A comparison of eleven static heuristics for

mapping a class of independent tasks onto heterogeneous dis-

tributed computing systems (2001)

8. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid

information services for distributed resource sharing. In: 10th

IEEE International Symposium on High-Performance Distributed

Computing (HPDC-10), pp. 181–194. IEEE Press (2001)

9. Dagnew, S.A.: Optimization of periodic maintenance using

condition monitoring techniques and operational data. PhD thesis,

University of Stavanger, Norway (2012)

10. El-Sayed, G.A., Abdullah, A.M.: Mailbox-based non blocking

minimum-process coordinated checkpointing with message log-

ging for hierarchical computational grid (MNMCCP). In: 2012

2nd International Conference on Advances in Computational

Tools for Engineering Applications (ACTEA), pp. 86–90 (2012)

11. El-Zoghdy, S.F.: A Two-level load balancing policy for grid

computing. In: International Conference on Multimedia Com-

puting and Systems (ICMCS), pp. 617– 622 (2012)

12. El-Zoghdy, S.F.: An intelligent AntNet-based algorithm for load

balancing in grid computing. Int. J. Comput. Technol. 11(9),
2975–2986 (2013)

13. Golmohammadi, R., Shahhoseini, H.S.: Load balancing in local

computational grids within resource allocation process. Res.

J. Appl. Sci. Eng. Technol. 4(21), 4546–4551 (2012)

14. Goswami, S., Das, A.: Resource prioritization technique in

computational grid environment. In: Proceedings of the Second

International Conference on Computer and Communication

Technologies, Advances in Intelligent Systems and Computing,

pp. 765–772 (2016)

15. Helmy, T., Al-jamimi, H., Ahmed, B., Loqman, H.: Fuzzy logic

based scheme for load balancing in grid services. J. Softw. Eng.

Appl. 5, 149–156 (2012)

16. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making:

Methods and Application, vol. 186. Springer, New York (1981)

17. Iosup, A., Jan, M., Sonmez, O., Epema, D.H.J.: On the dynamic

resource availability in grids. In: 8th IEEE/ACM International

Conference on Grid Computing, Austin, TX, pp. 26–33 (2007)

18. Javadi, B., Kondo, D., Vincent, J.M., Anderson, D.P.: Discov-

ering statistical models of availability in large distributed sys-

tems: an empirical study of SETI@home. Measurement 22(11),
1896–1903 (2011)

19. Javadi, B., Kondo, D., Iosup, A., Epema, D.: The failure trace

archive: enabling the comparison of failure measurements and

models of distributed systems. J. Parallel Distrib. Comput. 73(8),
1208–1223 (2013)

20. Kumar, D., Chitaranjan, P.: An improved approach for load

balancing among heterogeneous resources in computational grids.

Eng. Comput. 31(4), 825–839 (2014)

21. Li, K.: Optimal load distribution in nondedicated heterogeneous

cluster and grid computing environments. J. Syst. Arch. 54,
111–123 (2008)

22. Li, T., Ren, Y., Yu, D., Jin, S.: Resources-conscious asyn-

chronous high-speed data transfer in multicore systems: design,

optimizations, and evaluation. In: IEEE International Parallel and

Distributed Processing Symposium, pp. 1097–1106 (2015)

23. Lu, K.: Decentralized load balancing in heterogeneous compu-

tational grids. PhD thesis, University of Sydney, Australia (2007)

24. Lu, K., Subrata, R., Zomaya, A.Y.: An efficient load balancing

algorithm for heterogeneous grid systems considering desirability

of grid sites. In: The 25th IEEE International Performance,

Computing, and Communications Conference (IPCCC),

pp. 311–320 (2006)

25. Lu, K., Subrata, R., Zomaya, A.Y.: Towards decentralized load

balancing in a computational grid environment. In: GPC’06

Proceedings of the First International Conference on Advances in

Grid and Pervasive Computing, vol. 3947, pp. 466–477 (2006)

26. Lu, K., Subrata, R., Zomaya, A.Y.: On the performance-driven

load distribution for heterogeneous computational grids. J. Com-

put. Syst. Sci. 73, 1191–1206 (2007)

27. Mohanty, D.R., Mishra, S.K.: A data-driven approach for option

pricing algorithm. In: Proceedings of the Second International

Conference on Computer and Communication Technologies,

Advances in Intelligent Systems and Computing, vol. 380,

pp. 163–170 (2016)

28. Onder, E., Dag, S.: Combining analytical hierarchy process and

TOPSIS approaches for supplier selection in a cable company.

J. Bus. Econ. Finance 2(2), 56–74 (2013)

29. Patel, D.K., Tripathy, D., Tripathy, C.: An improved load-bal-

ancing mechanism based on deadline failure recovery on gridsim.

Eng. Comput. 32(2), 173–188 (2016)

30. Patel, D.K., Tripathy, D., Tripathy, C.: Survey of load balancing

techniques for grid. J. Netw. Comput. Appl. 65(C), 103–119

(2016)

31. Pérez-Miguel, C., Mendiburu, A., Miguel-Alonso, J.: Competi-

tion-based failure-aware scheduling for high-throughput com-

puting systems on peer-to-peer networks. Clust. Comput. 18(3),
1229–1249 (2015)

Table 8 Improvement ratios

obtained by OurLB_CT ? LD

in comparison with OurLB_CT

when varying cluster size (k)

Metric OurLB_CT (%)

ACT 3.2

TR 7.3

LBL 0.15

Cluster Computing (2019) 22:1085–1106 1105

123



32. Righi, R.D.R.: MigBSP: a new approach for processes

rescheduling management on bulk synchronous parallel applica-

tions. PhD thesis, Universidade Federal Do Rio Grande Do Sul

(2009)

33. Rood, B.: Grid resource availability prediction-based scheduling

and task replication. PhD thesis, State University of New York at

Binghamton, Binghamton (2011)

34. Santiago, A.J.S., Yuste, A.J., Expósito, J.E.M., Galán, S.G.,

Prado, R.P.D.: A multi-criteria meta-fuzzy-scheduler for inde-

pendent tasks in grid computing. Comput. Inform. 30, 1201–1223
(2011)

35. Schroeder, B., Gibson, G.A.: A large-scale study of failures in

high-performance computing systems. IEEE Trans. Dependable

Secure Comput. 7(4), 337–350 (2010)

36. Singh, S., Bawa, R.K.: Proactive fault tolerance algorithm for job

scheduling in computational grid. Int. J. Grid Distrib. Comput.

9(3), 135–144 (2016)

37. Snchez, J.M.: Global behavior modeling: a new approach to grid

autonomic management. PhD thesis, Boston, MA (2010)

38. Soundarabai, P.B., A, S.R., Sahai, R.K., J, T., Venugopal, K.R.,

Patnaik, L.M.: Comparative study on load balancing techniques

in distributed systems. Int. J. Inf. Technol. Knowl. Manag. 6(1),
53–60 (2012)

39. Subrata, R., Zomaya, A.Y., Landfeldt, B.: Artificial life tech-

niques for load balancing in computational grids. Comput. Syst.

Sci. 23(8), 1176–1190 (2007)

40. Suresh, P., Balasubramanie, P.: User demand aware grid

scheduling model with hierarchical load balancing. Math. Probl.

Eng. 2013, 8 (2013)

41. Wolski, R., Spring, T., Hayes, J.: The network weather service: a

distributed resource performance forecasting service for meta-

computing. Future Gener. Comput. Syst. 15(5–6), 757–768

(1999)

42. Yagoubi, B., Slimani, Y.: Dynamic load balancing strategy for

grid computing. World Acad. Sci. Eng. Technol. 19, 90–95

(2006)

43. Yagoubi, B., Slimani, Y.: Task load balancing strategy for grid

computing. J. Comput. Sci. 3(3), 186–194 (2007)

44. Zhang, Y., Mandal, A., Koelbel, C., Cooper, K., Hill, C.: Com-

bined fault tolerance and scheduling techniques for workflow

applications on computational grids. In: 9th IEEE/ACM Inter-

national Symposium on Cluster Computing and the Grid,

Shanghai, pp. 244–251 (2009)

45. Zhu, Y., Ni, L.M.: A survey on grid scheduling systems (2013)

Aref M. Abdullah is a Ph.D.

student at Mansoura University,

Egypt. He received a B.Sc. in

Computer Engineering from

University of Technology, Iraq,

in 2001. He received an M.Sc.

in Electrical Engineering from

Assiut University, Egypt, in

2013. His areas of interest

include networking administra-

tion, resource management, job

scheduling and load balancing

in traditional distributed sys-

tems, grid computing and in

cloud computing.

Hesham A. Ali is a Professor in

Computer Eng. and Sys. and an

associate Professor in Info. Sys.

and computer Eng. He received

a B.Sc. in Electronics Eng., and

M.Sc. and Ph.D. in Computer

Eng. and Control from the Fac.

of Engineering, Mansoura

Univ., in 1986,1991 and 1997,

respectively. He is a founder

member of the IEEE SMC

Society Technical Committee

on Enterprise Information Sys-

tems (EIS). He has many book

chapters published by interna-

tional press and about 150 published papers in international (conf. and

journal). He has served as a reviewer for many high quality journals,

including Journal of Engineering Mansoura University. His interests

are in the areas of network security, mobile agent, network man-

agement, search engine, pattern recognition, distributed databases,

and performance analysis.

Amira Y. Haikal is an associate

Professor in Computers Eng.

and Control Sys. Dept. at Fac-

ulty of Engineering, Mansoura

University. She received a B.Sc.

in Electronics Eng., and M.Sc.

and Ph.D. in Computers Eng.

and Control from the Fac. of

Engineering, Mansoura Univ.,

in 1998, 2001 and 2007,

respectively. Her interests are in

the areas of machine learning,

artificial intelligence, optimiza-

tion, grid computing and cloud

computing.

1106 Cluster Computing (2019) 22:1085–1106

123


	A reliable, TOPSIS-based multi-criteria, and hierarchical load balancing method for computational grid
	Abstract
	Introduction
	Related work
	Proposed method
	System model
	Grid hierarchy architecture
	Job model
	Scheduling component

	Scheduling policy
	Load Index and completion time estimation
	TOPSIS-based allocation with load balancing algorithm
	TOPSIS
	Criteria selection
	Calculation of criteria weights
	Allocation procedure

	Load redistribution policy

	Fault tolerance and reliability model
	Performance evaluation
	Performance evaluation metrics
	Simulation model
	Simulation results
	Effect of the maximum size of cluster k
	Effect with jobs deadlines span
	The evaluation of performance gained by taking the load balancing into consideration at the allocation process


	Conclusions and future work
	References




