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Abstract
Distinguishing subsequence patterns mining aims to discover the differences between different categories of sequence
databases and to express characteristics of classes. It plays an important role in biomedicine, feature information selec-
tion, time-series classification, and other areas. The existing distinguishing subsequence patterns mining only focuses on
whether a pattern appears in a sequence, regardless of the number of occurrences of the pattern in the sequence and the
proportion of the pattern in the entire sequence database, which affects the discovery of the distinguishing patterns when there
are a large number of irrelevant occurrences. Therefore, the nonoverlapping conditional distinguishing subsequence patterns
mining algorithm is proposed. In this paper, we focus on the number of nonoverlapping occurrences that effectively reduce
the number of irrelevant or redundant occurrences, and in this way, the number of occurrences can be better grasped. At
the same time, we use a specially designed data structure, namely, a Nettree, to avoid backtracking. In addition, we use the
distinguishing patterns as classification features, and carry out classification experiments on DNA sequences and time-series
data with two classes. Extensive experimental results and comparisons demonstrate the efficiency of the proposed algorithm
and the correctness of the feature extraction.

Keywords Nonoverlapping occurrences · Distinguishing subsequence pattern · Nettree · Feature extraction

1 Introduction

Data mining, as an important means of data analysis and
information extraction [1], has received extensive attention
from researchers. As an important branch of data mining,
sequence pattern mining [2] is widely used in mining infor-
mation [3], time-series analysis and prediction [4], and other
fields [5], and has become one of the focuses of various stud-
ies. Distinguishing subsequence patterns [6] and other new
types of subsequence patterns proposed provide a new direc-
tion for sequential pattern mining. To satisfy user demand
better, a gap constraint has been introduced in traditional
sequential patternmining.Agap constraint exists in sequence
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pattern mining [7] that makes the occurrences of patterns
more flexible. The wide use of a gap constraint enhances
the expressiveness and applicability of patterns. Sequential
pattern mining with a gap constraint plays an important role
in information retrieval [8], computational biology [9], fea-
ture extraction [10], and emergencymedical recognition [11],
among others.

Distinguishing subsequence patterns mining aims to dis-
cover differences between different categories or conditions,
and has become a hotspot in the field of data mining, and
is commonly applied in real life [12], such as shareholders
determining whether to buy a stock by comparing changes in
the stock market index. By comparing the price and quality
of products, customers choose products with a high cost-
performance. In an enterprise, anHR chooses applicants who
meet the requirements by comparing their abilities.

Ji et al. [6] first proposed the concept of distinguishing
patterns and used the ConSGapMiner algorithm to solve
the problem of the minimum distinguishing pattern mining
with a gap constraint, which laid an important foundation for
future studies. Based on [6], Wang et al. [13] proposed the
concept of a density constraint, and introduced it into dis-
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Table 1 Occurrences of pattern P in sequence S

S s1 s2 s3 s4 s5
G T G T G

1st occurrence G T G · ·
2nd occurrence G T · · G

3rd occurrence G · · T G

4th occurrence · · G T G

tinguishing pattern mining to mine patterns that satisfy the
density and gap constraints. Yang et al. [14] added the top-
k concept to distinguishing pattern mining to avoid pattern
loss caused by an improper threshold. Wang et al. [15] pro-
posed a minimum distinguishing pattern mining algorithm
with a compact gap constraint without a pre-set gap con-
straint to avoid an improper threshold owing to insufficient
prior knowledge. Our previous studies showed that nonover-
lapping subsequence patterns mining with a gap constraint
can make full use of the characteristics of the elements in
the sequence. In addition, Wu et al. [16] proposed a nonover-
lapping subsequence patterns mining with a gap constraint
algorithm that balances completeness with the Apriori prop-
erty [17].

Example 1 Suppose that the sequence S = s1s2s3s4s5 =
GTGTG and pattern P = G[0, 2]T[0, 2]G are given. The
occurrences of P in S are shown in Table 1. The elements of
the same position for any two occurrences cannot be the same
in a sequence with the nonoverlapping condition. There are
thus two occurrences, 〈1,2,3〉 and 〈3,4,5〉, and the support is
2.

Suppose that a positive database D+ is {S1 = GTGTG,
S2 = GTGGTG, S3 = GGTTGGGTG}, negative database
D− is {S4 = GTATC, S5 = ACGTC}, positive support
threshold is 2, and negative support threshold is 1. A dis-
tinguishing subsequence pattern is a pattern whose support
in a positive database is greater than the positive support
threshold, whereas support in a negative database is less than
the negative support threshold, and that satisfies the gap con-
straint. Because the supports of G[0,2]T[0,2]G are 3 and 0
in D+ and D−, respectively, pattern P is a distinguishing
subsequence pattern.

Thiswill cause a loss of distinguishing patterns ifwe adopt
the density threshold method in [13]. Let us follow the same
example. In [13], the density calculation method is density =

the number of occurrences in sequence
the number of possible occurrences in sequence . G[0,2]T[0,2]G occurs
four times in S1, namely, 〈1,2,3〉, 〈1,2,5〉, 〈1,4,5〉, and 〈3,4,5〉,
and there are nine possible occurrences, 〈1,2,3〉, 〈1,2,4〉,
〈1,2,5〉, 〈1,3,4〉, 〈1,3,5〉, 〈1,4,5〉, 〈2,3,4〉, 〈2,3,5〉, and 〈3,4,5〉.
If we agree that the density threshold is 0.5, S1 cannot satisfy
the gd-support count of pattern P , which should be greater
than the threshold. In addition, S2, andS3 are also not satisfied

in this way. Continuing to assume that the positive support
threshold is 0.5, according to the calculation method sup =
the number of sequences whose density is greater than threshold in database

the number of sequences in datasbase ,
then sup(P, D+) = 0, which is less than the positive class
support threshold of 0.5, and thus P will not be a distin-
guishing pattern. It can be seen that P occurs frequently in a
positive class, and the cause of a loss of P is due to the fact
that a large number of irrelevant patterns under no-condition
have a reduced pattern density, and thus, the sequence can-
not be a gd-support count. In addition, when calculating the
support, a sequence that satisfies the density threshold is sim-
ply used as a gd-support count, weakening the relationship
between the patterns and database, and ignoring the propor-
tion of patterns in the entire database.

To solve the above problems, we conducted the following
in this study:

(1) We used a Nettree to solve distinguishing subsequence
patterns with the nonoverlapping condition to improve
the algorithm efficiency, and proposed the nonover-
lapping conditional distinguishing subsequence patterns
mining (NOCM) algorithm to reduce redundancy.

(2) We employed the average support rate, which takes the
number of occurrences in a sequence and the ratio in the
entire database into account, making the mining results
more reasonable.

(3) We designed an approach for applying distinguishing
subsequence patterns as classification features, and ver-
ified its effectiveness and efficiency on some binary
datasets.

The remainder of this paper is organized as follows. Section 2
introduces the related work. Section 3 provides a definition
of the problem and describes it through concrete examples.
Section 4 proposes the NOCM algorithm based on a Net-
tree, and illustrates the working principle of NOCM through
some examples. Section 5 shows the mining effect of NOCM
and the effect of distinguishing subsequence patterns for
sequence classification. Finally, we conclude the paper and
discuss the future work in Sect. 6.

2 Related work

Subsequence pattern mining has laid the foundation for
research in many fields and plays an important role in prac-
tical applications. For example, Zhang et al. [18] addressed
sequence pattern mining with periodic gap constraints, to
apply in mining DNA sequence. Zhang et al. [19] proposed
a method of mining frequent patterns with occupancy, which
is used in the print-area recommendation and the travel-
landscape recommendation. The two methods do not take
the classification issue into account. Li et al. [10] proposed
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an efficient algorithm for mining the closed frequent patterns
with gap constraints and applied them to the feature selection
of classification or clustering [20,21]. This research adopted
the frequent patterns as the features. However, it is difficult to
treat these features as distinguishing features. The following
researches focused on mining distinguishing patterns for the
classification issues.Wang et al. [13] proposed a newmethod
of distinguishing patternmining based on density-aware, and
used it to identify human genetic variations. Yang et al. [14]
and Wang et al. [15] also mined distinguishing subsequence
patterns.And [14] introduced top-k to reduce the output of the
patterns, while [15] adopted an idea which is without a pre-
defined gap constraint. Therefore, these methods can achieve
better performance for the classification issues. However, all
these above methods employ no-condition to find the fre-
quent patterns or the distinguishing patterns.

Our previous research showed that subsequence pattern
mining with nonoverlapping condition is a better strategy
than that with no-condition since the former method meets
the Apriori property while the latter is difficult to meet the
Apriori property [16].One of our previousworks [22] is a pat-
tern matching task which is one of the key issues of sequence
pattern mining task [16] since calculating the support of a
pattern actually is pattern matching task. In research [16],
we investigated subsequence pattern mining with nonover-
lapping condition which does not focus on feature selection.
However, this paper focuses on mining the distinguishing
patterns.

Considering that the relevance and differences of this
paper with these papers, we therefore make a comparison
of related research in Table 2.

It can be seen from Table 2 that the research work in this
paper is the closest to the research [13]. The difference is that,
research [13] focused on sequence pattern mining with no-
condition, while this paper studies sequence pattern mining
with nonoverlapping condition.

It is not difficult to find through Table 2 that this paper is
characterized by the mining of distinguishing subsequence
patterns with nonoverlapping condition. Such mining is of
great importance in practice. For example, the study of
[23] stipulated the order of occurrence of events, but from
the background analysis, the same event can only occur
in one event sequence at a time, but not in several differ-
ent event sequences. If there is nonoverlapping sequence
of events, there will be more significance in the practical
application.

3 Problem definition

In this section, the definitions about distinguishing subse-
quence patterns with nonoverlapping condition are presented Ta
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and several examples are given to illustrate the definitions
clearly.

Definition 1 (sequence) A sequence S with length n is
an ordered list of events, which can be denoted as S =
s1s2 . . . si . . . sn , where 1 ≤ i ≤ n and si ∈ �. Here, �

represents a set of events, where the number of events in the
set is denoted as |�|.

For example, in the DNA sequences, � is {A,T,C,G} and
|�| is 4.
Definition 2 (pattern with gap constraints) A pattern with
gap constraints can be denoted as P = p1[a1, b1]p2…
p j [a j , b j ]p j+1 . . . [am−1,bm−1]pm(1 ≤ j ≤ m), where
p j ∈ �, a j and b j are two given non-negative integers that
represent the minimal and maximal gap constraints between
p j and p j+1, respectively. The length of P is m.

Definition 3 (occurrence) If there exists a group of m inte-
gers I = 〈i1, i2,...im〉 that satisfies: 1 ≤ i1 ≤ i2 < ...
< im ≤ n, a j ≤ i j+1 − i j − 1 ≤ b j , p1 = Si1 , p2 = Si2 , ...,
pm = Sim , then I is an occurrence of pattern P in sequence
S.

Definition 4 (nonoverlapping occurrences) Let I = 〈i1, i2,
. . . im〉 and I ′ = 〈i ′1, i ′2,…i ′m〉 be two occurrences. If and only
if ∀1 ≤ j ≤ m: i j �= i ′j , I and I ′ are two nonoverlapping
occurrences.

In Example 1, I1 = 〈1, 2, 3〉 and I2 = 〈3, 4, 5〉 are two
nonoverlapping occurrences of P in sequence S4. Although
I1 and I2 both use a character at position 3, I1 and I2 are two
nonoverlapping occurrences because position 3 differs in I1
and I2.

Definition 5 (support) With the nonoverlapping condition,
the support of pattern P in sequence S is the total number of
occurrences of P in S, denoted by sup(P, S).

Definition 6 (offset occurrence) If there exists a sequence
L = 〈l1, l2,…ln〉 that satisfies 1 ≤ l1 ≤ l2 < · · · < lm ≤ n,
a ≤ l j+1 − l j − 1 ≤ b, then L is an offset occurrence of
pattern P in sequence S.

Definition 7 (nonoverlapping offset occurrences) Let L =<

l1, l2,…l j > and L ′ =< l ′1, l ′2,…l ′j > be two offset occur-
rences. If and only if ∀1 ≤ j ≤ m: l j �= l ′j when j = j ′, I
and I ′ are two nonoverlapping offset occurrences. Using
ofs(P, S) represents the number of nonoverlapping offset
occurrences of pattern P in sequence S.

Example 2 Following Example 1, occurrences not only need
to satisfy the gap constraints, they also need to ensure that
the corresponding position in the sequence of elements is the
same as the pattern, whereas the offset occurrences that only
need to satisfy the gap constraint, regardless of whether the

element at the position is the same as the pattern. Therefore,
the nonoverlapping offset occurrences of P in sequence S
are: 〈1, 2, 3〉, 〈2, 3, 4〉, and 〈3, 4, 5〉. In addition, its ofs(P, S)
is 3.

Lemma 1 Under the nonoverlapping condition, given
sequence S = s1s2 · · · sn and pattern P = p1 p2 · · · pm, the
total number of nonoverlapping offset occurrences of pattern
P in sequence S is n − m + 1.

Proof Compared with the definition of occurrence, p j can
be different with Si j . Therefore, the nonoverlapping off-
set occurrences of pattern P in S should be 〈1, 2, . . . ,m〉,
〈2, 3, . . . ,m + 1〉, 〈3, . . . ,m + 1,m + 2〉, …, 〈n − m +
1, . . . , n − 1, n〉, for a total of n − m + 1. 	

Definition 8 (support rate) The support rate of pattern P
in sequence S can be written as rate(P, S) = sup(P, S)/

ofs(P, S).

Definition 9 (binary classification sequence database) A
binary classification sequence database is a collection of
sequences in two mutually exclusive classes database, which
can be expressed as D = {S1, S2,…,SM , SM+1,…,SN },
where S1 · · · SM comes from the database of D+, and
SM+1 · · · SN comes from the database of D−. The num-
ber of sequences contained in the sequence database can be
denoted as |D|.
Definition 10 (nonoverlapping occurrences between multi-
ple sequences) Let D = {S1, S2,…,SM } be a multi-sequence
database, the occurrences I = 〈i1, i2,…im〉 and I ′ =
〈i ′1,i ′2,…i ′m〉 of pattern P in any two sequences S j and S j ′
can be two nonoverlapping occurrences between multiple
sequences.

Example 3 Suppose sequencedatabase D = {S1 = GTGTG,
S2 = GGTTGG}. The nonoverlapping occurrences of pat-
tern P= G[0,2]T[0,2]G in S1 are then 〈1,2,3〉 and 〈3,4,5〉,
and are 〈1,3,5〉 and 〈2,4,6〉 in S2. According to Definition 10,
the occurrence 〈1,2,3〉 in S1 and the occurrence 〈1,3,5〉 in
S2 are two nonoverlapping occurrences between multiple
sequences. Similarly, so are 〈2,3,4〉 and 〈2,4,6〉. The supports
sup(P, S1) and sup(P, S2) of pattern P = G[0, 2]T[0, 2]G
in S1 and S2, respectively, are both 2.

Definition 11 (average support rate) Let sequence database
D = {S1, S2, …, SM }, then |D| = M . The average
support rate can be denoted as r(P, D), and r (P, D) =∑n

i=1 rate(P,S)

M . Given the average support rate threshold
minsup(D), if r is not less than the given minsup(D), then
pattern P is said to be frequent.

Example 4 Continuing to example 3, the average support
rate of P in D is r(P, D) = 0.583. Supposing that the
average support rate threshold minsup(D) = 0.3, because
r > minsup(D), then P is frequent.
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Table 3 Example of sequence
database

ID Sequence Class

1 GTGTG D+
2 GTGGTG D+
3 GGTTGGGTG D+
4 GTATC D−
5 ACGTC D−

Definition 12 (nonoverlapping conditional distinguishing
subsequence pattern) Given the positive sequence database
D+ and the negative sequence database D−, the positive
average support rate threshold minsup(D+) and negative
average support rate threshold minsup(D−), gap constraints
is [a, b]. The pattern P = p1[a, b]p2 · · · [a, b]pm is the
nonoverlapping conditional distinguishing subsequence pat-
tern (NOCP) that satisfies the gap constraint if P satisfies the
following conditions:

(1) P is frequent in positive sequence database D+, that is,
r(P, D+) ≥ minsup(D+).

(2) P is not frequent in negative sequence database D−,
that is, r(P, D−) ≤ maxsup(D−).

The average support rate r is used as the threshold cri-
terion because the average support rate takes into account
the number of occurrences of patterns in each sequence and
the proportion of the entire sequence database at the same
time, and will not be affected by the number of positive and
negative sequences. Let us combine the following examples:

Example 5 Given the sequencedatabase shown inTable 3, the
positive support rate threshold is 0.5, and the negative support
rate threshold is zero. Here, P = G[0, 2]T[0, 2]G is not a dis-
tinguishing subsequence pattern when adopting the method
in [13]. Because sup(P, D+) = 0 and sup(P, D−) = 0,
sup(P, D+) is less than 0.5 and sup(P, D−) is equal to zero.
It is clearly unreasonable to state that G[0,2]T[0,2]G is not a
distinguishing subsequence pattern because G[0,2]T[0,2]G
occurs frequently in a positive sequence database, and P
occurs in a positive sequence database far more than a nega-
tive sequence database.

Using the method proposed in this paper, we first calcu-
late the support rate of the pattern in each sequence, and then
calculate the ratio in the positive and negative databases sep-
arately, that is, the average support rate, r(P, D+) = 0.532,
r(P, D−) = 0. It can be seen that the average support ratio
of P in a positive database is much larger than in a nega-
tive database. This method reduces redundant occurrences
and avoids interference with patterns of excessive possible
occurrences, and takes into account the contribution of occur-
rences in the individual sequence and the entire database.

This, therefore, makes the evaluation criteria more reason-
able.

Definition 13 (maximum prefix and maximum suffix) Given
a pattern R = r1r2 · · · rm(m ≥2), if P = r1r2 · · · rm−1,
then P is the maximum prefix sub-pattern of R. This can be
denoted as prefix(R) = P , and has R = P ∪ rm−1. If Q =
r2 · · · rm−1rm , then Q is the maximum suffix sub-pattern of
R, and is denoted as suffix(R) = Q, and R = r1 ∪ Q.

Definition 14 (prefix–suffix connectionmethod) Suppose that
pattern A = ar1r2 · · · rm−1 and B = r1r2 · · · rm−1b, from
Definition 16 we know that suffix(A) = prefix(B) = R,
and thus, A and B can be connected to generate a super-
pattern T whose length is m + 1 using the operator ⊕, and
T = A ⊕ B = aRb.

Example 6 Given pattern P = ACTA and Q = CTAC,
the maximum prefix sub-pattern and maximum suffix sub-
pattern of P are the same as CTA. Therefore, super-pattern
T = su f f i x(A) ⊕ prefix(B) = ACTAC can be generated.

4 Mining distinguishing subsequence
patterns with the nonoverlapping
condition

In this section, we introduce the special designed data struc-
ture at first. Then we present our algorithm. Finally, we
analyze the space and time complexities of our algorithm.

Under the nonoverlapping condition, there are two prob-
lems: (1) how to effectively identify the character in a
sequence that can be reused by applying a nonoverlapping
support, and (2) how to quickly prune out candidate patterns
that cannot exist to avoid calculating a large number of irrel-
evant patterns. To solve these two problems, we use a feature
of aNettree to calculate the support, that is,we allow the same
node label to appearmany times at different levels, which can
effectively identify whether characters in the sequence can
be reused. We use the pattern growth approach to minimize
the support calculation of irrelevant patterns.

Definition 15 (Nettree) A Nettree [24–26] is a type of data
structure that is similar to a tree, and consists of a root, leaf,
level, parent, child, and so on. Nevertheless, a Nettree is
clearly different from a tree data structure based on the fol-
lowing characteristics:

(1) A Nettree may have one or more roots, where n ≥ 1.
(2) Any node except a root may have more than one parent,

but all parents must appear at the same level.
(3) The same node label can appear at different levels. Node

i in the j th level can be described as nij .
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(4) There may be more than one path from one node to its
ancestor.

Definition 16 (root-leaf path) A path from a root to the ter-
mination of the leaf is called a root-leaf path.

Lemma 2 An occurrence of pattern P in sequence S can be
expressed as a root-leaf path in a Nettree.

Proof Our previous work [24] proved that each occurrence
of pattern P in sequence S can be transformed into a root-leaf
path in a Nettree, that is, each occurrence can be expressed
as a root-leaf path. 	

Lemma 3 Let A and B be two root-leaf paths that do not con-
tain any of the same nodes. The corresponding occurrences
of A and B are two nonoverlapping occurrences.

Proof A and B are < na11 , na22 , . . . , namm > and < nb11 , nb22 ,

. . . , nbmm >, respectively. For all i(1 ≤ i ≤ m), ai is not
equal to bi , because A and B do not contain the same node.
Therefore, 〈a1, a2, …, an〉 and 〈b1, b2, …, bn〉 are two
nonoverlapping occurrences. 	

Lemma 4 If a non-leaf node does not have any children, it
can be safely pruned.

Proof Supposing node nij is a non-leaf node in a Nettree

without any children, then node nij cannot reach the leaf.

Therefore, nij is an invalid node and should be pruned. After

pruning nij , we should also check whether its parent nodes
have other children. A node with no child should also be
pruned. 	


1st level

2nd level

11101 6

3 127

13

2

5 8 15

14A 5

T 4

G 43rd level

116 10A 44th level 14

Fig. 1 The corresponding Nettree of Example 7

We use the following example to illustrate how the algo-
rithm works.

Example 7 Given sequence S = s1s2s3s4s5s6s7s8s9s10s11s12
s13s14s15 = ATTCGATGCAATGAG and pattern P =
A[0, 2]T[0, 2]G[0, 2]A, the Nettree shown in Fig. 1 can be
created.

Using the Nettree in Fig. 1, we can obtain three root-leaf
paths: 〈n11, n22, n53, n64〉, 〈n61, n72, n83, n104 〉 and 〈n101 , n122 , n133 ,

n144 〉. According to Lemma 3, there are three nonoverlapping
occurrences. As can be seen from Fig. 1, node n32 has no child
and is an invalid node.Hence, n32 can be pruned by combining
with Lemma 4. As we can see, the character at position 6 are
reused in 〈n11, n22, n53, n64〉 and 〈n61, n72, n83, n104 〉 since position
6 is different in the two occurrences with nonoverlapping
condition. Namely, if a character appears at different levels
in the Nettree, then it can be reused.

An algorithm, called Support, which computes the sup-
port of P in S, sup(P, S), is shown in Algorithm 1. Because
Support is used for calculation support, in other words, it
is used for mining occurrences, we prune the invalid nodes
while mining the occurrences of P .

123



Cluster Computing (2019) 22:S5905–S5917 S5911

TheNOCMalgorithmfirst scans a sequence at a particular
time to generate the event set �. It then generates candidate
patterns in positive database using the prefix-suffix connec-
tion method on the basis of �, and uses Nettree to calculate
the support. Based on the nature of the Nettree, it is known
that the number of levels in the Nettree is equal to the length
of the patterns, and a complete path from the root to the leaf
represents an occurrence of P in the sequencewith the root to
the leaf satisfying the gap constraint. Frequent patterns gener-
ated in the positive database are used as the candidate patterns
of the negative mining, and the distinguishing sequence pat-
terns are finally generated.

Theorem 1 During the process of frequent pattern mining,
if pattern P is infrequent, then any of its super patterns is
infrequent.

Proof Mining in a positive database is the mining of fre-
quent patterns of the nonoverlapping condition. Suppose that
sup(P) is the support of pattern P ,minsup(D) is the average
support rate threshold. If P is infrequent, namely, sup(P) <

minsup(D), then when element e is added to pattern P , the
generated super pattern (eP or Pe) occurrences cannot be
more than the original pattern P , and must be less than or
equal to the occurrences of the original model. 	


The following example illustrates the principle of the
NOCM algorithm.

Example 8 Wemine the distinguishing subsequence patterns
with the nonoverlapping condition in sequence database D
shown in Table 3 and the selected parameters are the gap

constraint = [0,2],minsup(D+) = 0.25, andmaxsup(D−) =
0.1.

First, we compute the average support rate for the pat-
terns in �. We know that r(A, D+) = 0.22 is less than
minsup(D+). According to Theorem 1, all super patterns of
“A” are also infrequent, thereby pruning “A” and its super pat-
terns. Since r(T, D+) = 0.37 is greater than minsup(D+),
pattern “T” which is stored is a frequent pattern in positive
class. Similarly, we prune pattern “C” and its super patterns,
and store pattern “G” since r(C, D+) and r(G, D+) are 0
and 0.63, respectively. Then we can generate the candidate
patterns in positive class {TG, TT, GG, GT} with length
of 2 by “T” and “G”. We know that r(TG, D+) = 0.40,
r(TT, D+) = 0.20, r(GG, D+) = 0.56, and r(GT, D+) =
0.44. Therefore, pattern “TT” and its supper patterns are
pruned since r(TT, D+) is less than minsup(D+). Repeat
this process until there is no new frequent pattern in positive
class generated. After that, we compute the support rate for
these negative candidate patterns. The pattern will be a dis-
tinguishing subsequence pattern if its average support rate is
less than maxsup(D−). Here, r(G, D−) and r(T, D−) are
0.2 and 0.3 separately which are more than maxsup(D−),
so they are not distinguishing patterns. Both r(TG, D−)
and r(GG, D−) are 0 which are less than maxsup(D−),
thus “TG” and “GG” are distinguishing patterns. Using this
method, we find eight distinguishing patterns: “GG”, “TG”,
“GGG”, “GGT”, “GTG”, “TGG”, “GGTG” and “GTGG”.

We describe the detailed procedures of the NOCM algo-
rithm in Algorithm 2 which employs the Apriori property to
prune candidate patterns in D+.
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Algorithm 3 is proposed to generate candidate patterns in
positive class.

Theorem 2 Letm, n,w, l pos , lneg andr be themaximal length
of a pattern, themaximal length of a sequence in the database
SDB, b−a+1 (where a and b are the minimal and maximal
gap constraint), the number of the positive class candidate
patterns, the number of the negative class candidate patterns,
and the size of �, respectively. Then the space complexity of
NOCM is O(m × (n × w + l pos)) in the worst case and
O(m × (n × w/r/r + l pos)) in the average case.

Proof The maximal length of candidate and mined pattern
is O(m). The space complexity of frequent and candidate
patterns in positive class is O(m×l pos).Algorithm 1 employs
a Nettree to calculate the support of a pattern in a sequence.
In the worst case, the Nettree has no more than m levels,
each level has no more than n nodes, and each node has
no more than w children. Thus it can be concluded that the
space and time complexities of creating a Nettree are both
O(m×n×w). So the space complexity of NOCMmined in
positive class is O(m× (n×w+l pos)) in the worst case. The
space complexity of mined patterns in negative class which
is O(m × lneg) can be neglected compared with the space
complexity of frequent patterns in positive class since lneg is
less than l pos . Therefore, the space complexity of NOCM is
O(m × (n × w + l pos)). In addition, each level has no more
than n/r nodes and each node has nomore thanw/r children
in the average case. Hence, the space complexity of NOCM
is O(m × (n × w/r/r + l pos)) in the average case. 	

Theorem 3 The time complexity of NOCM is O(m×m×n×
w×l pos) in theworst case andO(m×m×n×w×l pos/r/r/r)
in the average case, where m, n, w, l pos , and r are given
above.

Proof The complexity of Algorithm 3 is O(l pos× log l pos)
since it employs binary search. We know that the time com-
plexity of creating Nettrees is O(m×n×w) from the above
theorem and the nonoverlapping occurrences are no more
than n. Apparently, the depth of the Nettree is m. According

to Lemma 4, in the (m − 1)th level we may prune w nodes
at most since each node has at most w parents. Similarly, at

most 2 × w nodes in the (m − 2)th level could be pruned.
Thus, there are O(m×m×w) nodes could be deleted atmost.
Therefore, the time complexity of lines 5 to 12 in NOCM is
O(m × n × w + m × m × n × w) = O(m × m × n × w).
There are l pos candidate patterns in positive class, so the
time complexity is O((n×m × n× w + logl pos)× l pos) =
O(n×m×n×w×l pos) in the worst case. Similarly, the time
complexity of computing negative candidate patterns which
is O(n×m × n×w × lneg) can be neglected compared with
O(n×m×n×w×l pos) since lneg is less than l pos . Hence, the
complexity of NOCM is O(n×m×n×w×l pos). Moreover,
as mentioned in the space complexity, the time complexity
of NOCM is O(m×m×n×w× l pos/r/r/r) in the average
case. 	


5 Experimental results and analysis

In this section, we will demonstrate the correctness and
efficiency of our algorithm with extensive experiments. All
experiments were conducted on a computer with an Intel(R)
Core(TM) i5-3210M 2.50 GHz CPU and 8.0 GB of RAM
running the 64-bit version of Windows 7. VC++ 6.0 was
used in the development of all algorithms applied, includ-
ing NOCM and NOSEP. The data used in the experiments
are DNA sequences and time-series data. The real DNA
sequences were extracted from http://dbtss.hgc.jp/, and orig-
inal time-series data can be obtained from www.cs.ucr.edu/
~eamonn/time_series_data/.

5.1 Efficiency

We conducted several experiments on five groups of time-
series data and a set of DNA sequences. NOCM is compared
with NOSEP based on the number of patterns and the run-
ning time. Each group of experiments uses the same length
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Fig. 2 Number of patterns
mined using the two algorithms

constraint. Because NOSEP mines frequent patterns, for all
sequences under a single class, only the minimum average
support threshold minsup needs to be set. NOCM needs to
set the positive average support rate threshold minsup(D+)
and negative maximum support rate thresholdmaxsup(D−).
To unify the standard and make the experiment comparable,
it is necessary to keep minsup and minsup(D+) consistent.

Figure 2 shows the number of patterns mined using
NOSEP and NOCM with gap constraint [0,2], using the
threshold of each parameter shown in Table 4.

From Fig. 2, we can see that the number of distinguishing
patterns is generally much less than the number of frequent
patterns. In addition, with a decrease in minsup(D+), the
number of distinguishing patterns gradually increases. For
WormsTwoClass, NOSEP mines 99 frequent patterns when
minsup is 0.01, whereas NOCM mines eight distinguishing
patterns at the corresponding threshold. Under a condition
in which the parameter setting is reasonable, the number of
patterns mined by NOCM is less than NOSEP. Thus, redun-
dant patterns can be effectively reduced, and the secondary
selection of features in the sequence classification is avoided.

It is possible for the number of distinguishing patterns
to be greater than or equal to the number of frequent

patterns under certain threshold conditions. For dataset
inp100 in Fig. 2, NOCM mines eight distinguishing pat-
terns, whereas NOSEP mines nine frequent patterns when
minsup/minsup(D+) is 0.12 and maxsup(D−) is 0.1. This
is due to patterns appearing in a positive class far more fre-
quently than in a negative class when the difference between
the positive and negative classes is obvious, and thus its sup-
port will be averaged in frequent pattern mining, leading to
a frequent decrease in support. Thus, the pattern cannot be a
frequent pattern. However, it is precisely in line with a dis-
tinguishing pattern, resulting in the above phenomenon. In
most cases, NOCM can be very good at finding significant
distinguishing patterns.

Figure 3 shows the running time of NOSEP and NOCM
with a gap constraint of [0, 2], and the threshold parameters
shown in Table 4.

From Fig. 3, we can see that NOCM is fast when the gap
constraint and minsup/minsup(D+) are the same, and takes
far less time than NOSEP. As minsup(D+) increases, the
time required for mining becomes increasingly shorter. This
illustrates that the speed of NOCM has a significant advan-
tage owing to the use of a Nettree, which avoids backtracking
in the mining process and reduces the time consumption.

Table 4 Threshold parameter
table used in the comparison
experiment

Dataset len1 gap1 minsup len2 gap2 minsup(D+) maxsup(D-)

BirdChicken 1–15 [0,2] 0.033 1–15 [0,2] 0.033 0.03

BeetleFly 1–15 [0,2] 0.015 1–15 [0,2] 0.015 0.01

Earthquake 1–15 [0,2] 0.055 1–15 [0,2] 0.055 0.05

Gun_Point 1–15 [0,2] 0.03 1–15 [0,2] 0.03 0.02

WormsTwoClass 1–15 [0,2] 0.01 1–15 [0,2] 0.01 0.009

inp100 1–15 [0,2] 0.12 1–15 [0,2] 0.12 0.1

len1 and gap1 are the length and gap constraints of NOSEP respectively, and len2 and gap2 are the length and
gap constraints of NOCM
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Fig. 3 Running time for two
algorithms

Table 5 Corresponding number of features of different feature extraction approaches

Dataset Extraction approach len gap minsup(D+) maxsup(D−) Number of features

inp100 NOSEP 1–15 [0,2] 0.12 – 8

NOCM 1–15 [0,2] 0.12 0.1 8

BirdChicken NOSEP 1–15 [0,2] 0.033 – 45

NOCM 1–15 [0,2] 0.033 0.03 10

BeetleFly NOSEP 1–15 [0,2] 0.015 – 34

NOCM 1–15 [0,2] 0.015 0.01 11

Earthquake NOSEP 1–15 [0,2] 0.03 – 148

NOCM 1–15 [0,2] 0.03 0.015 13

Gun_Point NOSEP 1–15 [0,2] 0.07 – 14

NOCM 1–15 [0,2] 0.07 0.06 9

WormsTwoClass NOSEP 1–15 [0,2] 0.012 – 66

NOCM 1–15 [0,2] 0.012 0.011 7

– indicates that this threshold does not need to be set

5.2 Classification effect

A distinguishing subsequence pattern can show well how
things change under the different classes or conditions, and
focuses on the differences in different datasets. Therefore, in
this paper, we propose a feature extraction approach based on
a distinguishing subsequence pattern. Breaking from a single
situation of frequent patterns as the classification features
[27–29], a new direction for feature extraction is provided.

The number of features used in the experiment and the
corresponding feature extraction thresholds are shown in
Table 5.

To verify the classification effect, we use the K-NN
classifier to conduct experiments on a binary classification
sequence database and compare it with the frequent patterns
as features. The classification effect is evaluated based on
the training and prediction accuracies, shown in Figs. 4 and

5, respectively. Clearly, the feature extraction approach with
NOCM obtains a better classification effect and has a higher
accuracy in different datasets. In general, the accuracy of its
classification is better than feature extraction with NOSEP.

It can be seen from Figs. 4 and 5 that the classification
accuracy of the two feature extraction approaches is basically
the same, but training accuracy and prediction accuracy have
significantly improved with choosing distinguishing subse-
quence patterns as classification features. For example, from
the BeetleFly dataset in Figs. 4 and 5, we can know that the
training accuracy of the two feature extraction methods of
NOSEP and NOCM is 95.0 and 100.0% respectively, and the
prediction accuracy is 70.0 and 95.0% respectively. Mean-
while, combined with Table 5, we can see that NOCM only
used 11 features, whereas NOSEP used 34 features. Exper-
imental results on each data set show that a relatively small
number of distinguishing subsequence patterns can be used
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Fig. 4 Comparison of the
classification accuracy in
training sets

Fig. 5 Comparison of the
classification accuracy in testing
sets

to achieve higher accuracy. Therefore, NOCM which can
find the most distinguishing patterns is an effective feature
extraction than the competitive method.

6 Conclusion

Existing distinguishing subsequence patterns mining algo-
rithms pay less attention to the sequences in a database,
and if long sequences appear in a database, or if the num-
ber of positive and negative sequences is not equal, the
mining result will be unreasonable. In view of this prob-
lem, an effective distinguishing mining algorithm with the
nonoverlapping condition, called NOCM, was proposed in
this paper. NOCM not only can reduce redundant patterns,

it can also pay attention to the proportion of patterns in each
sequence and the entire database. This prevents the number
or length of the sequences to have impact on the patterns, and
makes distinguishing subsequence patterns more significant
and reasonable. We also proposed a new feature extraction
approach that employs nonoverlapping distinguishing sub-
sequence patterns as features of a sequence classification.
Extensive experimental results demonstrate the efficiency of
NOCM, and a good classification effect was shown on a stan-
dard binary classification database.

As future work, more effective mining algorithm could be
studied and better pattern mining method for feature extrac-
tion could be investigated, so as to improve the performance
of classification.
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