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Abstract
Making new friends by measuring the proximity of people’s profile is a crucial service in mobile social networks. With the
rapid development of cloud computing, outsourcing computing and storage to the cloud is now an effective way to relieve the
heavy burden on users for managing and processing data. To prevent privacy leakage, data owners tend to encrypt their private
data before outsourcing. However, current solutions either have heavy interactions or require users to encrypt private data with
a single key. In this paper, we propose a novel cloud-assisted privacy-preserving profile-matching scheme under multiple keys
based on a proxy re-encryption scheme with additive homomorphism. Our scheme is secure under the honest-but-curious
(HBC) model given two non-colluding cloud servers.

Keywords Mobile social networks · Cloud computing · Privacy-preserving · Multiple keys

1 Introduction

Given the popularity of smart phones, mobile terminals and
other mobile devices, the use of mobile devices to access
social networks has become mainstream [1]. Some social
networks for instance, LinkedIn, Facebook and MySpace
have been very prominent and are now the preferred way
of communication for many people [2]. Mobile social net-
works (MSNs) allow mobile users to discover and interact
with potential friends. Increasingly more people are begin-
ning to pay attention to the task of looking for a potential
new friend with similar interests. Profile matching is the
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most cost-effective method of measuring the proximity to
users’ personal profiles. However, one’s personal profile
may contain sensitive information, and users do not want to
reveal their private data. In addition, current profile-matching
schemes [3–6] have high computational overhead and are not
suitable for mobile devices, which have low computational
resources.

One way to address the issue of high computational over-
head is to take advantage of cloud computing. The cloud
promises to providemassively scalable data storage and pow-
erful computation services to society at a reduced cost [7].
With the rapid development of cloud computing [8], out-
sourcing computing and storage to the cloud is an effective
way to relieve the heavy burden on users of managing and
processing data. However, trivially moving the computation
to the cloud will lead to privacy leakage [9]. To prevent pri-
vacy leakage, data owners tend to encrypt their private data
before outsourcing. However, current solutions either have
heavy interactions or require users to encrypt private data
under a single key. In this paper, we propose a novel cloud-
assisted privacy-preserving profile-matching scheme under
multiple keys based on a proxy re-encryption scheme with
additive homomorphism. The cloud environment is com-
posed of two cloud servers. Our scheme does not require
users to be online at the same time.Users only need to encrypt
their personal profiles and send them to one cloud server and
receivematching results. The two cloud servers performmost
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of the computations in our scheme, effectively reducing the
user’s computational burden and ensuring that the user’s pri-
vate information is not leaked to the clouds. Our scheme is
secure under the honest-but-curious (HBC) model assuming
that two cloud servers do not collude.

1.1 Related work

With the fast development of cloud computing, Internet of
things and smart grids, more and more data are being pro-
duced and analyzed, leading to a new big data era [10,11].
However, the risk of the data being revealed or disclosed
makes it urgent to enhance the security and privacy of users’
data. In the literature, privacy protection issues have been
studied in various fields, such as Internet of things [12,13],
online social networks [14], smart grids [15], and cloud com-
puting [16]. Negi et al. [16] proposed a modification to the
confidence based filtering method (CBF) which is investi-
gated for cloud computing environment based on correlation
pattern to mitigate distributed denial of service attacks on
cloud. In [12], Stergiou et al. combined the cloud computing
and Internet of things in order to examine the common fea-
tures, and in order to discover the benefits of their integration.

A number of research works have been conducted on
protecting a user’s privacy during the process of profile
matching. Previous work focusing on privacy-preserving
profile matching can be broadly divided into two categories.
The first approach is the coarse-grained private matching
approach. In this approach, social proximity is defined as
a set intersection or the cardinality of a set intersection of
two users’ attribute sets, [4–6,17] are coarse-grained private
matching schemes; they cannot further differentiate users
with different degrees of attributes. The other approach is
the fine-grained private matching approach. In this approach,
social proximity is defined as the dot product between two
users’ vectors, [3,18,19] are fine-grained private matching
schemes; they enable finer differentiation among users hav-
ing different degrees of interest in the same attribute.

With the rapidly increasing ability to store and handle
personal data, the problem of protecting privacy in cloud
computing has become more important in recent years. To
achieve secure data processing in the cloud, many schemes
based on various techniques have been proposed, including
partially homomorphic encryption (PHE) [20], fully homo-
morphic encryption (FHE) [21–24] and secure multiparty
computation [25]. Fully homomorphic encryption has high
computational overhead. Although it supports homomorphic
computations over ciphertext, which are encrypted with a
single key, it is not suitable for multi-user systems. Secure
multiparty computation always requires heavy interactions
and is not suitable for outsourcing situations. Compared
with schemes employing FHE, PHEhas lower computational
overhead. To meet certain special security requirements,

many schemes based on encryption schemes with certain
properties havebeenproposed such as deduplication schemes
[20,26,27], identity-based encryption schemes [28], and
attribute-based encryption schemes [29].

Recently, secure data processing in the cloud under mul-
tiple keys has become an important area of research. López
et al. [30] proposed an FHE under multiple keys, but a large
amount of interaction between users is required during the
decryption of the final result. Liu et al. [31] presented a
distributed public-key cryptosystem with double trapdoors
(DT-PKC) to realize privacy-preserving outsourced calcu-
lation. DT-PKC is deployed to split a strong private key
into different shares. This scheme requires many interactions
between the cloud and the server, who provides the comput-
ing service. Peter et al. [32] proposed a novel technique based
on additively homomorphic encryption. They extensively
utilized the BCP cryptosystem [33], which is additively
homomorphic and offers two independent decryption mech-
anisms. However, this scheme requires heavy interactions
between servers when transforming the ciphertexts of mul-
tiple keys into a single key. In addition, an efficient and
secure data sharing framework has been proposed [34] using
homomorphic encryption and proxy re-encryption schemes.
Rong et al. [35] proposed an outsourced privacy-preserving
scalar product protocol that leverages the multiplicatively
homomorphic property of a bidirectional proxy re-encryption
scheme Wang et al. [36] proposed two privacy-preserving
schemes for outsourcing computation over ciphertexts under
multiple keys. To the best of our knowledge, there are very
few studies [35] on outsourced privacy-preserving dot prod-
uct computing under multiple keys.

1.2 Our contribution

We present a cloud-assisted privacy-preserving profile-
matching scheme under multiple keys to efficiently compute
the social proximity between two users to discover potential
friends while ensuring personal privacy. There are threemain
contributions of our scheme.

• Non-interactive for users Our scheme does not require
the friend finder and the data provider to be online simul-
taneously. Before receiving the matching result, users
only need to encrypt their personal profiles and send the
ciphertext to one cloud server.

• Efficient The clouds perform most of the computation
in our scheme, thereby effectively reducing the user’s
computational load and ensuring that the user’s personal
information is not leaked to the clouds.

• Allow user and cloud collusion Our scheme is secure
under theHBCmodel assuming that the two cloud servers
do not collude. Even if the participating parties collude
with one of the cloud servers, our scheme will still not
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reveal any private information about either the inputs,
intermediate results or final results.

1.3 Organization

The remainder of this paper is organized as follows. In
Sect. 2, we describe our system model and adversary model.
In Sect. 3, we give some preliminaries, including the addi-
tively homomorphic encryption, proxy re-encryption and
additively homomorphic proxy re-encryption schemes. Sec-
tion 4 presents the cloud-assisted privacy-preserving profile-
matching scheme. Section 5 analyses the correctness and
security of our scheme. Section 6 compares our scheme
with some known privacy-preserving profile-matching or
dot product computation schemes. Section 7 concludes this
paper.

2 Problem statement

2.1 Systemmodel

Figure 1 shows our system model. In our work, we denote
Alice as the friend finder, and she wants to find a friend with
similar interests from the other users in the mobile social net-
work. The cloud environment consists of two cloud servers:
cloud A (CA) and cloud B (CB). The two clouds provide
large-scale data storage and computation services to reduce
total cost. There are many users (data provider), and they
encrypt their own private profile and outsource the computa-
tion to the cloud.

Each person in the mobile social network has a profile that
is used to measure their personal preference. Every personal
profile is defined as a vector U =< u1, u2, · · · , un >. The
n represents the dimension of the vector. Every attribute cor-
responds to an interest, such as dancing and traveling, and

Fig. 1 System Model

every attribute value is an integer in [0, 10]. The attribute
value represents the degree of the interest and indicates the
level of interest, from no interest (0) to extremely high inter-
est (10). In addition, social proximity is defined as the dot
product of two users’ vectors. Taking the dot product is a pop-
ular similarity criterion [3,18]. Before profile matching, we
should normalize the dot products to have unit length. To per-
form the following encryption, every attribute value should
be integerized as a member of some mathematic group. To
ensure accuracy, we should keep H digits after the binary
point. We can multiply every attribute value of users’ vectors
by 2H and then integerize the result.

2.2 Adversary model

The adversary model considered in this paper is under the
honest-but-curious (HBC) framework [37]. In this frame-
work, all participating parties faithfully follow the scheme,
but they can collect and infer private information from the
protocol and even colludewith one of the cloud servers.How-
ever, the two cloud servers will never colludewith each other.
In the HBC model, the users perform the protocol faithfully
and do not deliberately attempt to guess the dot product by
adjusting the vector multiple times.

3 Preliminaries

3.1 Additive homomorphic

Suppose that Epk(m1) and Epk(m2) are two additively
homomorphic ciphertexts under the same public key pk. The
additively homomorphic cryptosystem has a key property.
– Homomorphic.

1). Epk(m1)Epk(m2) = Epk(m1 + m2).
2). Epk(m1)

m2 = Epk(m1 · m2).

3.2 Proxy re-encryption

Proxy re-encryption (PRE) [38] allows a semi-trusted proxy
to transform the ciphertext from Alice’s public key pkA into
a ciphertext under CB’s public key pkCB. Furthermore, a
key pair can be generated to allow the encrypted data to be
delivered in a re-encrypted form such that CB can decrypt
the data but the proxy cannot. Ultimately, the proxy learns
nothing about the corresponding plaintext.

3.3 Additive homomorphic proxy re-encryption

In this work, we adopt the ElGamal-like encryption scheme
(EL) in [34]. The EL scheme is a semantically secure
proxy re-encryption scheme under the Decisional Bilinear
Diffie-Hellman assumption [39,40], which supports additive
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homomorphism. The EL scheme is based on bilinear map-
ping and works as follows:

Suppose that G1 and G2 are two cyclic groups of prime
order q with a bilinearmap e : G1×G1 → G2. g is a genera-
tor ofG1. Themapping e has three properties. (1) Bilinearity:
For any g ∈ G1 and a, b ∈ Zq , e(ga, gb) = e(g, g)ab is
efficiently computable. (2) Non-degeneracy: e(g, g) �= 1.
(3) Computability: e can be efficiently computed. Here,
G1,G2, q, e, g and Z = e(g, g) ∈ G2 are public param-
eters.

• Key generation: Given parameters, output the public
key pka = (Za1 , ga2) and the corresponding private key

ska = (a1, a2), where a1, a2
R←− Zq .

• Re-encryptionkeygeneration:Given pkb = (Zb1 , gb2)
and ska = (a1, a2), output the proxy re-encryption key
using the private key ska and public key pkb. Specifically,
rkpka→pkb = (gb2)a1 = ga1b2 .

• Encryption: Given pka and the messagem ∈ Zq , output
Epka(m) = (β, γ ) = (gr , Zm Za1r ), where r is a random
number from Zq .

• Decryption: Given (β, γ ) and ska, the ciphertext (β, γ )

can be decrypted using ska by computing γ
e(g,β)a1

=
Zm Za1r

e(g,gr )a1 = Zm Za1r

Za1r = Zm .
• Re-encryption: Given the ciphertext (β, γ ) and
rkpka→pkb , compute β∗ = e(rkpka→pkb , β) = e(ga1b2 ,
gr ) = Za1rb2 , (β∗, γ ) = (Za1rb2 , Zm Za1r ), and output
re-encrypted ciphertext (β∗, γ ).

• Re-decryption: Given the re-encrypted ciphertext
(β∗, γ ) and skb, decrypt the re-encrypted ciphertext as

γ

β∗1/b2 = Zm Za1r

Za1r = Zm .

The EL scheme requires computing the discrete loga-
rithm of Zm in base Z to obtain the plaintext m. If the
plaintext size is less than 40 bits, it is efficient to compute
the discrete logarithm using Pollard’s kangaroo method

[41]. The time complexity of Pollard’s kangaroo method
is O(

√
M), where M is the number of possible values of

m.

4 Our construction

In thiswork,we adopt theEL scheme,which is a semantically
secure proxy re-encryption scheme with additive homomor-
phism. CB and both users in the social network jointly
generate the re-encryption keys for transforming the cipher-
text from the user’s public key into the ciphertext under the
CB’s public key. CA holds all re-encryption keys.

Let pkA denote Alice’s homomorphic public key. Sup-
pose that Alice’s vector is U =< u1, u2, · · · , un > and that
Bob’s vector is V =< v1, v2, · · · , vn >. The dot product of
the vectors U and V can be calculated by the following two
formulas:

• U ◦V = (u1 · v1 + u2 · v2 + · · · + un · vn) = ∑n
i=1 uivi

• 2
∑n

i=1 uivi = ∑n
i=1 u

2
i + ∑n

i=1 v2i − ∑n
i=1(ui − vi )

2

Intuition Users encrypt their vector with their own pub-
lic key and then outsource the encrypted data to CA.
The procedure for the data outsourcing is presented in
Fig. 2.

Alice encrypts her vector with her public key pkA and
sends the ciphertexts to CA for measuring the proximity
to Bob. The EL cryptosystem supports additive homo-
morphism. However, it can only support additive homo-
morphism under the same public key. To use the addi-
tive homomorphism, CA computes re-encrypted cipher-
texts with rkpkA→pkCB and rkpkB→pkCB . Because EL is
an additive homomorphism, the additivity over the two
ciphertexts can be performed by CA independently as fol-

Fig. 2 Protocol 1
Protocol 1 Data outsourcing

Input: a user (say, Bob) wishes to outsource his personal profile. He holds a private
vector V =< v1, v2, · · · , vn > and his own pair of public key and private key (pkB, skB)
Output: output the EpkB (V) and EpkB (

∑n
i=1 v2

i ) to CA

1: for i = 1 to n do
computes EpkB (vi)

end for

2: EpkB (V) ←< EpkB (v1), EpkB (v2) · · · EpkB (vn) >

3: Bob uploads EpkB (V) and EpkB (
∑n

i=1 v2
i ) to CA
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Protocol 2 Privacy-preserving profile matching

Input Alice: a private vector U =< u1, u2, · · · , un >, public key pkA and private key
skA
Input CA: re-encryption keys and outsourced data
Input CB: public key pkCB and private key skCB
Output Alice: U ◦ V

1: Alice sends EpkA (ui) and EpkA (
∑n

i=1 u2
i ) to CA for querying social proximity with

Bob, who is in the mobile social network
2: CA computes re-encrypted ciphertexts with rkpkA→pkCB and rkpkB→pkCB

EpkCB (ui)
rkpkA→pkCB←−−−−−−−−−− EpkA

(ui)

EpkCB (
∑n

i=1 u2
i )

rkpkA→pkCB←−−−−−−−−−− EpkA (
∑n

i=1 u2
i )

EpkCB (vi)
rkpkB→pkCB←−−−−−−−−−− EpkB (vi)

EpkCB (
∑n

i=1 v2
i )

rkpkB→pkCB←−−−−−−−−−− EpkB (
∑n

i=1 v2
i )

3: CA generates random integers δi and computes the following two terms:
(i). EpkCB (ui) · EpkCB (vi)−1 = EpkCB (ui − vi)
(ii). EpkCB (ui − vi)δi = EpkCB (δi(ui − vi))

Then, CA sends EpkCB (δi(ui − vi)) to CB
4: CB decrypts EpkCB (δi(ui −vi)) and computes δi(ui −vi) ·δi(ui −vi). Next, CB sends

EpkCB (δ2i (ui − vi)2) to CA
5: CA computes

(i). EpkCB (δ2i (ui − vi)2)δ
−2
i = EpkCB ((ui − vi)2)

(ii). EpkCB (
∑n

i=1 v2
i ) · EpkCB (

∑n
i=1 u2

i ) · (EpkCB (ui − vi)2))−1 = EpkCB (2U ◦ V)

(iii). EpkCB (2U ◦ V)2
−1

= EpkCB (U ◦ V)
6: CA generates a random integer w and sends EpkCB (wU ◦ V) to CB
7: CB decrypts EpkCB (wU ◦ V), computes EpkA (wU ◦ V) and sends it to CA

8: CA computes EpkA (wU ◦V)w
−1

=EpkA (U ◦V). Finally, CA sends EpkA (U ◦V) to
Alice

9: Alice decrypts EpkA (U ◦ V) and outputs U ◦ V

(
∑n

i=1

Fig. 3 Protocol 2

lows: EpkCB(m1)EpkCB(m2) = EpkCB(m1 + m2). Because
2
∑n

i=1 uivi = ∑n
i=1 u

2
i + ∑n

i=1 v2i − ∑n
i=1(ui − vi )

2,
we need to compute the product of ciphertexts (ui − vi )

by the two cloud servers. CA sends a blinded version of
EpkCB(ui − vi ) to CB. Then, CB decrypts the ciphertexts,
performs the multiplication and encrypts the result with
pkCB. The encrypted result is sent to CA. CA computes
EpkCB(U◦V) and sends the blinded ciphertext EpkCB(wU◦V)

to CB. CB decrypts the ciphertext and encrypts it with
Alice’s public key. Then, CB sends EpkA(wU ◦ V) to
CA. CA removes the blinding value w and sends the final
result to Alice. The details of our scheme are given in
Fig. 3.

The privacy of our scheme can be further enhanced by
only letting Alice get a 1-bit matching result, i.e., a result of
whether the dot product is above or below some threshold.

We don’t present the details of the improved scheme here but
instead include them in the full version of this paper.

5 Correctness and security

5.1 Correctness

In our scheme, CA possesses EpkA(ui ), EpkB(vi ), EpkA
(
∑n

i=1 u
2
i ), EpkB(

∑n
i=1 v2i ), rkpkA→pkCB , and rkpkB→pkCB;

CB possesses skCB. Recall that CA computes re-encrypted
ciphertexts with rkpkA→pkCB and rkpkB→pkCB . Then, CA
generates random integers δi , and using additive homomor-
phism and blinding with δi , CA obtains EpkCB(δi (ui − vi )).
Then,CBdecrypts EpkCB(δi (ui−vi )) and computes the prod-
ucts (δi (ui − vi ))

2. The products are later encrypted under
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pkCB by CB. After that, CA removes the blinding value δ2i
by

EpkCB

(
δ2i (ui − vi )

2
)δ−2

i = EpkCB

(
(ui − vi )

2
)

,

and computes

EpkCB

(
(u1 − v1)

2) · EpkCB

(
(u2 − v2)

2) · · · ·
EpkCB

(
(un − vn)

2)

= EpkCB

(∑n

i=1
(ui − vi )

2
)

,

EpkCB

(∑n

i=1
v2i

)
·EpkCB

(∑n

i=1
u2i

) (
EpkCB

(∑n

i=1
(ui − vi )

2
))−1

= EpkCB

(∑n

i=1
v2i +

∑n

i=1
u2i −

∑n

i=1
(ui − vi )

2
)

= EpkCB (2U ◦ V),

and

EpkCB(2U ◦ V)2
−1 = EpkCB(U ◦ V).

Then, CA obtains EpkCB(wU ◦ V) via blinding with w.
CB decrypts the ciphertext and encrypts it withAlice’s public
key. Finally, Alice removes the blinding valuew and decrypts
EpkA(U ◦ V) to yield the desired output U ◦ V.

5.2 Security

We now analyse the security of our scheme under the semi-
honest model using a real and ideal paradigm [42]. For any
adversary attacking a real protocol execution, there exists an
adversary attacking an idea execution (with a trusted party)
such that the input/output distributions of the adversary and
the participating parties in the real and ideal executions are
essentially the same.

Theorem 1 Our scheme described in Sect. 4 can securely
obtain the matching result via computations on ciphertexts
in the presence of semi-honest (non-colluding) adversaries.

Proof Our scheme involves four types of parties: Alice,
Bob, CA and CB. We construct four simulators Sim =
(SimA, SimB, SimCA, SimCB) against four types of adver-
saries (AA,AB,ACA,ACB) that corruptAlice, Bob,CA, and
CB, respectively.

SimA simulatesAA as follows: After receiving the input
of U =< u1, u2, · · · , un >, it encrypts data ui as
EpkA(ui ) and encrypts data

∑n
i=1 u

2
i as EpkA(

∑n
i=1 u

2
i ).

Then, it randomly chooses data V̂ =< v̂1, v̂2, · · · , v̂n >,
encrypts EpkA(U ◦ V̂) and sends it to AA. The view of AA

includes the input {ui}, where i ∈ [1, n], the encrypted
data {EpkA(ui ), EpkA(

∑n
i=1 u

2
i )), EpkA(U ◦ V̂)} and the

decrypted result {U ◦ V̂}. The views of AA in the real and
ideal executions are indistinguishable because of the security
of the EL scheme mentioned above.

SimB simulatesAB as follows: After receiving the input
of V =< v1, v2, · · · , vn >, it encrypts data vi as EpkB(vi )

and encrypts data
∑n

i=1 v2i as EpkB(
∑n

i=1 v2i ). Finally, it
returns EpkB(vi ) and EpkB(

∑n
i=1 v2i ) toAB and outputsAB’s

entire view. The view of AB includes input {vi}, where i ∈
[1, n], and the encrypted data {EpkB(vi ), EpkB(

∑n
i=1 v2i )}.

The views of AB in the real and ideal executions are indis-
tinguishable because of the security of the EL scheme
mentioned above.

SimCA simulates ACA as follows: It randomly chooses
numbers Û =< û1, û2, · · · , ûn >, V̂ =< v̂1, v̂2, · · · , v̂n >

and encrypts them as EpkA(ûi ), EpkB(v̂i ), EpkA(
∑n

i=1 û
2
i ),

and EpkB(
∑n

i=1 v̂2i ). It re-encrypts them as EpkCB(ûi ),
EpkCB(v̂i ), EpkCB(

∑n
i=1 û

2
i ), and EpkCB(

∑n
i=1 v̂2i ). Then, it

generates random integers δ̂i and ŵ and computes EpkCB(δ̂2i

(ui−vi )
2)δ

−2
i , EpkCB(ŵÛ ◦V̂) and EpkA(Û ◦V̂). The view of

ACA is the encrypted data. The views ofACA in the real and
ideal executions are indistinguishable because of the security
of the EL scheme mentioned above.

SimCB simulates ACB as follows: It randomly chooses
numbers m̂i and encrypts them as EpkCB(m̂i ). Then, it
computes m̂i · m̂i and encrypts m̂i · m̂i with CB’s pub-
lic key. Then, it randomly chooses a number ŝ, encrypts
it as EpkCB(ŝ) and encrypts ŝ with Alice’s public key.
Finally, it returns {EpkCB(m̂1), EpkCB(m̂2), . . . , EpkCB(m̂n),
m̂1, m̂2, . . . , m̂n , EpkCB(m̂2

1), EpkCB(m̂2
2), . . . , EpkCB(m̂2

n),
EpkCB(ŝ), EpkA(ŝ)} to ACB. ACB is able to decrypt the
ciphertexts with its private key, but the decrypted mes-
sages are all blinded. Because of the random numbers, the
decrypted messages are randomly distributed. The view of
ACB is also the encrypted data and blinded data. Security in
the real world can be guaranteed by the security of the EL
scheme. The views of ACB in the real and ideal executions
are indistinguishable.

For the case of a user colludingwithCAorCB, the security
can be proven in a similar manner. 	


6 Comparison

We compare our new scheme with some known privacy-
preserving profile-matching schemes in Table 1. In [3,5,43],
multiple rounds of interactions between users are required to
perform the profile matching, which causes high communi-
cation and computation cost for users. Our scheme does not
require users to be online at the same time. Users only need
to encrypt their personal profiles and send them to one cloud
server and receive matching results. The two cloud servers
perform most of the computations in our scheme, effectively
reducing the user’s computational burden and ensuring that
the user’s private information is not leaked to the clouds.
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Table 1 Comparison of our scheme with some known privacy-preserving profile-matching schemes

Scheme Our scheme Zhang et al.’s scheme [3] Dong et al.’s scheme [43] Zhang et al.’s scheme [5]

Non-interactive for users Yes No No No

Fine-grained private matching Yes Yes Yes No

Table 2 The comparison of
interaction quantities

Scheme Our scheme Sheng et al.’s
scheme [44] and
Vaidya et al.’s
scheme [45]

PTKb [32] OPPSP* [35]

S2S interactions in Re-Enc 0 N/ A n 0

S2S interactions in dot product
computing

n N/ A n 2n − 2

Support multi-key Yes No Yes Yes

The n represents the dimension of the vector
S2S server to server, Re-Enc. re-encryption, N/ A not applicable

The comparison of interaction quantities among some
known privacy- preserving schemes for dot product cal-
culation is shown in Table 2. [35,44,45] were constructed
to achieve secure dot product computation. [32] was con-
structed to achieve secure addition and multiplication under
multi-key. Because schemes [44,45] do not use multiple
servers, there is no interaction between servers. Goethals
et al. [46] showed that two of the private scalar product
protocols, one of which [45] adopting the matrix multipli-
cation operation was proved to be insecure. The approach of
[31] differs from [32] in the sense that [31] randomly sep-
arates the strong trapdoor into two shares, and distributes
the shares to two different servers. Only when both servers
work together can the ciphertext be successfully decrypted.
This decreases the risk of privacy leakage caused by single
point attack. Current solutions for privacy-preserving profile
matching either have heavy interactions or require users to
encrypt private data under one key. In our scheme, the com-
putation is non-interactive to users, and the scheme is secure
under the honest-but-curious model, assuming that the two
cloud servers do not collude. Furthermore, our scheme is
collusion resistant, i.e., collusion between a user and a cloud
server will not reveal any privacy information.

7 Conclusion

In this paper, we propose a novel cloud-assisted privacy-
preserving profile-matching scheme under multiple keys
based on a proxy re-encryption scheme with additive homo-
morphism. Current solutions either have heavy interactions
or require users to encrypt private data under one key. In our
scheme, the computation is non-interactive to users. Users
only need to encrypt their personal profiles and send them to

one cloud server and receivematching results. In addition, the
two cloud servers perform most of the computations, effec-
tively reducing the user’s computational burden and ensuring
that the user’s private information is not leaked to the clouds.
Furthermore, our scheme is proven secure under the honest-
but-curious model, assuming that the two cloud servers do
not collude. Even if participating parties collude with one of
the cloud servers, our scheme will still not reveal any user’s
private information.
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