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Abstract
In 2011, Chris Peikert and Brent Waters proposed the concept of lossy trapdoor functions, which is an inherent and powerful
cryptographic concept. Lossy trapdoor functions can be used for simple black-box constructing CCA encryption schemes,
collision-resistent hash functions and oblivious transfer schemes. Chris Peikert and Brent Waters constructed lossy trapdoor
functions based on decisional Diffie–Hellman assumption and learning with errors problem separately, which can be gen-
eralized to all-but-one trapdoor functions. In this paper, we generalize the lossy trapdoor functions and all-but-one trapdoor
functions based on the polynomial ring separately, and we construct two types of trapdoor functions based on polynomial
learning with errors assumption, which have more throughput and efficiency.

Keywords Lattices · Lossy trapdoor functions · All-but-one trapdoor functions · Polynomial learning with errors

1 Introduction

A central goal in cryptography is to realize a variety of secu-
rity notions based on plausible and concrete computational
assumptions. The assumptions have typically been concerned
with problems from three categories: factoring large inte-
gers [1–5], computing discrete logarithms in cyclic groups
[6–8], computational problems on lattices [9–13]. In public
key cryptography, two important notions are trapdoor func-
tions (TDFs) and security under chosen ciphertext attack
(CCA security). Trapdoor functions were first realized by
the RSA function of Rivest, Shamie, and Adleman. While
CCA security has become the notion of security for public
key encryption under active attacks.

In resent years, lattices have raised as a very attractive
foundation for cryptography [14–18]. The appeal of lattice-
based primitives stems from the fact that the security can
often be based on worst-case hardness assumptions. Much
more recent research in lattice cryptography focus on ring-
based primitives such as ring-LWE [19,20].

A lattice has a typical linear structure and some compu-
tational problems about it have been proven to be NP-hard.

B Chengli Zhang
zcl0719@163.com

1 State Key Laboratory of Integrated Services Networks,
Xidian University, Xi’an 710071, People’s Republic of China

2 Computer Engineering College, Jimei University,
Xiamen 361021, People’s Republic of China

Many exciting developments in lattice-based cryptography
have occurred in the past few years, and there have been
renewed interest in lattice-based cryptography as prospects
for a real quantum computer improve. As is well known,
some lattice-based cryptosystems can be resistant to attack
by both classical and quantum computers.

Before the year of 2008, for CCA security, the main
approach in the existing literature relies on non-interactive
zero-knowledge (NIZK) proofs. Cryptosystems have been
constructed based on problems related to factoring and dis-
crete logs, but not lattices. For trapdoor functions, the state
of the art is even less satisfactory: though TDFs are widely
viewed as a general primitive, they have so far been realized
only from problems related to factoring.

In 2011, Chris Peikert and BrentWaters proposed the defi-
nition of lossy trapdoor functions based on latticewhose exis-
tence implies that of general trapdoor functions [13]. And it
can be used to develop new approaches for injective trapdoor
functions, constructing collision resistant hash functions,
oblivious transfer sch-emes, and chosen ciphertext-secure
cryptosystems. All of the above constructions are simple,
efficient, and black-box. Chris Peikert and Brent Waters
realized lossy TDFs under a variety of different number-
theoretic assumptions, including hardness of the decisional
Diffie–Hellman (DDH) problem, and the worst-case hard-
ness of standard lattice problem for quantum algorithms
(alternately, under an average-case hardness assumption for
classical algorithms). These constructions are simple and
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excellent. Unfortunately, their public function size are too
large. In special, when having n bits input, their descrip-
tion of the public key is Θ((n/logn)2) bits. The new lossy
trapdoor functions based on Demgard Jurik Encryption were
constructed by Alon Rosen and Gil Segev [21]. Such con-
struction have a short description of the public key, but the
complexity is very large. In 2012, lossy trapdoor functions
based on rounding technique andLWRassumptionwere con-
structed by Joel Alwen, which is simple [22]. But considered
the problem of LWR, large parameters are needed and the
complexity is also high.

In this paper, based on extending the definition of gen-
eral lossy trapdoor functions, we proposed a new method of
constructing lossy trapdoor functions based on ring polyno-
mial LWE, and comparing with the previous lattice-based
constructions of lossy trapdoor function, our scheme has the
following advantages:

1. The larger throughput;
2. Higher velocity;
3. Extending the definition of lossy trapdoor functions

which have the wider domain and the larger applied
range;

4. Smaller function index;
5. Resisting quantum attack.

We now describe the our basic framework for constructing
our new lossy trapdoor functions and all-but-one trapdoor
functions.Firstly, we construct the basic encryption algo-
rithm which has the property of additive homomorphism
using the PLWE assumption (high efficiency because of no
using rounding algorithm). Secondly, the basic encryption
algorithm is extended to the matrix. For every element in
the matrix, calling the encryption algorithm by choosing the
same random element for the same row and choosing the
same secret key for the same column. The independence of
encryptions on elements ofmatrix enables the additive homo-
morphism property of the basic encryption algorithm to be
passed to the matrix encryption algorithm. The advantage of
cross -choice of the random elements and the secret keys is
that greatly reducing the average number of random elements
and secret keys on a single plaintext matrix in the process of
matrix encryption. Thirdly, constructing our lossy trapdoor
functions using matrix encryption algorithm. We also give
the proof of the main theorem for the lossy trapdoor func-
tions. And lastly, we give the advantage of our scheme.

2 Preliminaries

2.1 Notations

Let D be a distribution on a finite set S, d ← D denotes
choosing element by distribution D, and d ← S denotes

uniformly choosing element from S.Z[x] is polynomial ring
on integer ring. Let f (x) ∈ Z[x], then the maximum degree
of f (x) is written as ∂0 f (x) = n and Z[x]/( f (x)) denotes
the residue ring modular f (x). Zq denotes the ring modular
a integer q, Zq [x] denotes the polynomial integer ring on
Zq , and Zq [x]/( f (x)) is the residue ring modular f (x) on
Zq [x].

Let v be a vector, then ‖v‖ denotes l∞− norm of a vector
v, that is, ‖v‖ = maxi | vi |. The norm ‖ p(x) ‖ of a
polynomial p(x) denotes the norm of its coefficient vector.

LetA be an n×m matrix and B be an n×m′ matrix, then
(AB) denotes the n×(m+m′)matrix formed by concatenat-
ingA andB. Similarly, suppose thatA has dimensions n×m

and B is an n′ × m, then

(
A
B

)
is the (n + n′) × m matrix

formed by putting A on top of B. Similarly, the notations
apply to vectors. When doing matrix-vector multiplication
we usually view vectors as column vectors.

Each n − 1-th degree polynomial on Z corresponds with
an n-dimensional vector on Z. An injective function from
the set of all the n − 1-th degree polynomial on Z to the set
Zn has been constructed. Let p be the coefficient vector of
the polynomial p(x).

Let DZn ,r be an n-dimensional discrete Guassion distri-
bution, then DZn ,r becomes the distribution of the n − 1-th
degree polynomials on Z.

2.2 Lattice [9]

Wewill review some basic definitions about lattice. A lattice
in Rn is defined as the set of all integer combinations of n
linearly independent vectors. This set of vectors is known as
a basis of the lattice and the basis is not unique.

Definition 2.1 An n-dimensional lattice is the set of all inte-
ger combinations

Λ = L(B) =
{

n∑
i=1

xibi : xi ∈ Z f or 1 ≤ i ≤ n

}

of n linearly independent vectors b1, · · · ,bn in Rn .

The set of vectors b1, · · · ,bn is called a basis for the
lattice. A basis can be represented by the matrix B =
(b1, · · · ,bn) ∈ Rn×n where the basis vectors are columns of
matrix. The basis of a lattice is not unique and there is only a
difference of one unimodular matrix between the bases. Usu-
ally, we want to find the relatively short basis. L(B) denotes
the lattice generated by B. Notice that L(B) = {Bx : x ∈
Zn}, where Bx is the usual matrix-vector multiplication.

The dual of a lattice Λ in Rn , denoted Λ∨, is the lattice
given by the set of all vectors y ∈ Rn such that 〈x, y〉 ∈ Z

for all vectors x ∈ Λ.
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2.3 Trapdoor functions [13]

We recall one standard definition of a collection of injective
trapdoor functions (TDFs).

Definition 2.2 For generality, let n = n(λ) = poly(λ)

denote the input length of the trapdoor functions as a function
of the security parameter λ. A collection of injective trapdoor
functions is given by a tuple of PPT algorithms (S, F, F−1)

having the following properties:

1. Easy to sample, compute, and invert with trapdoor: S
outputs (s, t) where s is a function index and t is its
trapdoor, F(s, ·) computes an injective (deterministic)
function fs(·) over the domain {0, 1}n , and F−1(t, ·)
computes f −1

s (·).
2. Hard to invert without trapdoor: for any PPT inverter I,

the probability that I(s, fs(x)) outputs x is negligible,
where the probability is taken over the choice of (s, t) ←
S, x ← {0, 1}n , and I is randomness.

2.4 Lossy trapdoor functions [13]

Lossy trapdoor functions (lossy TDFs) is a general crypto-
graphic primitive.

Definition 2.3 Letn(λ) = poly(λ) represent the input length
of the function and k(λ) ≤ n(λ) represent the lossiness of
the collection. For convenience, define the residual leakage
as r(λ) := n(λ) − k(λ). For all the above quantities, the
dependence on λ is omitted.

A collection of (n, k)-lossy trapdoor functions is given
by a tuple of PPT algorithms (Slts f , Fltd f , F

−1
ltd f ) having the

properties below.For notational convenience, define the algo-
rithms Sinj (·) := Sltd f (·, 1) and Sloss(·) := Sltd f (·, 0).

1. Easy to sample an injective function with trapdoor: Sinj
outputs (s, t) where s is a function index and t is its
trapdoor, Fltd f (s, ·) computes an injective (determinis-
tic) function fs(·) over the domain {0, 1}n , and F−1

ltd f (t, ·)
computes f −1

s (·). If a value y is not in the imageof fs , i.e.,
if f −1

s (y) does not exist, then the behavior of F−1
ltd f (t, y)

is unspecified (because of this, the output of F−1
ltd f may

need to be checked for correctness in certain applica-
tions).

2. Easy to sample a lossy function: Sloss outputs (s,⊥)

where s is a function index, and Fltd f (s, ·) computes
a (deterministic) function fs(·) over the domain {0, 1}n
whose image has size at most 2r = 2n−k .

3. Hard to distinguish injective from lossy: the first outputs
of Sinj and Sloss are computationally indistinguishable.
More formally, let Xλ denote the distribution of s from
Sinj , and let Yλ denote the distribution of s from Sloss .
Then Xλ ≈ Yλ.

The property that an injective function is hard to invert is
implied by combination of the lossiness and indistinguisha-
bility properties.

For many lattice-based constructions, a slightly relaxed
definition of lossy trapdoor functions is considered, called
almost-always lossy TDFs. Namely, it is required that with
overwhelming probability over the randomness of Sinj , the
index s of Sinj describes an injective function fs that F

−1
ltd f

inverts correctly on all values in the image of fs . In other
words, there is a negligible probability over the choice of s
that fs(·) is not injective or that F−1

ltd f (t, ·) incorrectly com-

putes f −1
s (·) for some input. And the use of almost-always

lossy TDFs does not affect the security in some applications.

2.5 All-but-one trapdoor functions [13]

In all-but-one (ABO) trapdoor functions, each functionhas an
extra input called its branch. All of the branches are injective
trapdoor functions (having the same trapdoor value), expect
for one branchwhich is lossy. The lossy branch is specified as
a parameter to the function sampler, and the value is hidden
by the resulting function description.

Definition 2.4 The parameters n, k, r are the same as in Def-
inition 2.3, and also let B = {Bλ}λ∈N be a collection of
sets whose elements represent the branches. Then a collec-
tion of (n, k) − all − but − one trapdoor functions with
branch collection B is given by a tuple of PPT algorithms
(Sabo,Gabo,G

−1
abo) having the following properties:

1. Sampling a trapdoor function with given lossy branch:
for any b∗ ∈ Bλ, Sabo(b∗) outputs (s, t), where s is a
function index and t is its trapdoor. For any b ∈ Bλ

distinct from b∗, Gabo(s, b, ·) computes an injective
(deterministic) function gs,b(·) over the domain {0, 1}n ,
and G−1

abo(t, b, ·) computes g−1
s,b(·). As above, the behav-

ior of G−1
abo(t, b, y) is unspecified if g−1

s,b(y) does not
exist. Additionally, Gabo(s, b∗, ·) computes a function
gs,b∗(·) over the domain {0, 1}n whose image has size at
most 2r = 2n−k .

2. Hidden lossy branch: for any b∗
0, b

∗
1 ∈ Bλ, the first output

s0 of Sabo(b∗
0) and the first output s1 of Sabo(b∗

1) are
computationally indistinguishable.

An almost-always relaxation of the ABO trapdoor func-
tions definition can be also taken into account. Specifically,
the injective, invertible, lossy properties need only hold with
overwhelming probability over the choice of the function
index s. Similarly, the use of the almost-always ABO collec-
tion does not affect security in many applications.
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2.6 The learning with errors problem [23]

The “Learning with errors” (LWE) problem is to distinguish
random linear equations, which have been perturbed by a
small amount of noise, from truly uniform ones. LWE prob-
lem has been showed to be as hard as worse-case lattice
problem and it has served as the foundation for many cryp-
tography applications.

Definition 2.5 Fix a positive integer n, integers m ≥ n and
q ≥ 2, a vector s ∈ Zn

q , and a probability distribution χ on
the interval [0, q)m . Define the following two distributions
over Zn×m

q × [0, q)m :

1. LW Em,q,χ (s) is the distribution obtained by choosing
uniform A ∈ Zn×m

q , sampling e ← χ , and outputting
(A,AT s + e mod q).

2. Um,q is the distribution obtained by choosing uniform
A ∈ Zn×m

q and uniform y ∈ [0, q)m , and outputting
(A, y).

The decisional variant of the LWE problem can be stated
informally as the problem of distinguishing between Um,q

and LW Em,q,χ (s) for a uniform s. Formally, form, q, and χ

that may depend on n (viewed now as a security parameter),
we say the LW Em,q,χ problem is hard if the following is
negligible for any probabilistic polynomial-time algorithm
D:

|Pr [s ← Zn
q; (A, y) ← LW Em,q,χ (s) : D(A, y) = 1]

−Pr [(A, y) ← Um,q : D(A, y) = 1]|.

The polynomial learning with errors (PLWE) assumption
is analogous to the learning with errors assumption. In the
PLWE assumption, we consider the rings R = Z[x]/〈 f (x)〉
and Rq = R/qR for some degree n integer polynomial
f (x) ∈ Z[x] and a prime integer q ∈ Z. And Rq =
Zq [x]/〈 f (x)〉, that is, the ring of degree n − 1 polynomi-
als with coefficients in Zq . Addition in the rings is done
component-wise in their coefficients and multiplication is
simply polynomial multiplication modular f (x). The same
as q, in the case of the ring Rq .

The element in R can be viewed as a degree n − 1
polynomial over Z. And the PLWE f ,q,χ assumption is
parameterized by the integer polynomial f (x) ∈ Z[x] of
degree n, the prime integer q ∈ Z, the error distribution χ

over R.

Definition 2.6 Let λ be a security parameter, let f (x) =
fλ(x) ∈ Z[x] be a polynomial of degree n = n(λ), let q =
q(λ) ∈ Z be a prime integer, let the ring R = Z[x]/〈 f (x)〉)
and Rq = R/qR, and let χ denote a distribution over the the
ring R.

The polynomial LWE assumption PLWE f ,q,χ states that
for any l = poly(λ), {(ai , ai · z + ei )}i∈[l] and {(ai , ui )}i∈[l]
are computationally indistinguishable where z is sampled
from the noise distribution χ , ai are uniform in Rq , the“error
polynomials” ei are sampled from the error distribution χ ,
and finally, the ring elements ui are uniformly random over
Rq .

When the indistinguishability is required to hold given
only l samples (for some l = poly(λ)), the assumption is
denoted by PLWE (l)

f ,q,χ .

Note that the definition of the PLWE assumption is
defined as a decisional assumption.While the search assump-
tion is defined which requires an adversary to find s ∈ Rq ,
and any polynomial number of samples (ai , ai · s + ei ). For
some range of parameters, the search and decisional assump-
tions are equivalent.

Proposition 2.7 Let f (x), q and χ be as in Definition 27. Let
t = t(λ) ∈ Z∗

q (thus t and q are relatively prime). Then for

any l = poly(λ), the PLW E (l)
f ,q,χ assumption implies that,

{(ai , ai · z + tei )}i∈[l] ≈c {(ai , ui )}i∈[l],

where ai , z, ei and ui are as in Definition 2.6.

3 New lossy trapdoor functions

Let λ be a security parameter. Let q = q(λ) be a prime inte-
ger, and t = t(λ) ∈ Z∗

q be a prime integer. Let f (x) ∈ Z[x]
be an n-th degree polynomial. Let Rq = Zq [x]/( f (x)). Let
DZn ,r be n-dimensional discreteGaussian distributionwhere
r > 0. Let χ be a distribution on ring Rq = Zq [x]/( f (x)).
In this scheme, n, f , q, χ are public parameters.

Zvika Brakerski and Vinod Vaikuntanathan construct a
full homomorphism encryption scheme based on Hermite
Normal polynomial LWE assumption [23]. In this paper, we
construct a matrix encryption scheme based on general Her-
mite Normal polynomial LWE assumption and then on this
basis lossy trapdoor functions and all-but-one trapdoor func-
tions are constructed. The message space in this paper is Rt ,
that is, codedmessages is n-th polynomial onZt .We suppose
that t2 · r · n1.5 ≤ q/2 for correctly encryption.

We now describe the our basic framework for constructing
our new lossy trapdoor functions and all-but-one trapdoor
functions.

Firstly, we construct the basic encryption algorithmwhich
has the property of additive homomorphism using the PLWE
assumption (high efficiency because of no using rounding
algorithm). The algorithm obtain the additive homomorphic
ciphertext c = (a, az + te + m) by adding a multiplication
az of a random element a and the key z and t times the error
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e to the plaintext m on Rt . Such construction can make the
decryption algorithm simple and easy to operate that is only
needed to subtract the first term of the ciphertext from the
second term and then take modular t operation.

Secondly, the basic encryption algorithm is extended to
the matrix. For every element in the matrix, calling the basic
encryption algorithm by choosing the same random element
for the same row and choosing the same secret key for the
same column. The independence of encryptions on elements
ofmatrix enables the additive homomorphismproperty of the
basic encryption algorithm to be passed to thematrix encryp-
tion algorithm. The advantage of cross -choice of the random
elements and the secret keys is that greatly reducing the aver-
age number of random elements and secret keys on a single
plaintextmatrix in the process ofmatrix encryption. Encrypt-
ing amatrixM ∈ Rh×h

t , that is, encrypting h2 elements in the
matrix, needs h random elements and h secret keys instead of
h2 random elements and h2 secret keys. In addition, the addi-
tive homomorphic property of the basic encryption algorithm
guarantees the linearity of the matrix encryption algorithm,
that is, if we obtain the ciphertext matrixC by encrypting the
plaintext M, for the vector x, we have that

xC = Ez(xM; xa, xE),

C + M′ = Ez(M + M′; a,E).

Note that, when C is the encryption ofM, then we can com-
pute that C + M′ is the encryption of M + M′ without the
secret information.

Thirdly, our lossy trapdoor functions will be constructed
by using matrix encryption algorithm.We also give the proof
of the main theorem for the lossy trapdoor functions. In
addition, we can also get the construction of our all-but-one
trapdoor functions as the special case. Take all-but-one trap-
door functions as an example to describe our procedure. For
each branch b, construct a diagonal branch matrixM whose
every diagonal element is b. For the given lossy branch b∗,
we encrypt M∗ using matrix encryption algorithm, then the
ciphertext C∗ we get is the function index and the secret
key is the trapdoor. In the GABO algorithm, we construct
the function gC∗,b whose function description is C∗, the out-
put of SABO algorithm, the branch is b, the input is x, and
the output is y = x(C + (0 b)), that is the encryption of
x(−M∗ + (0 b)). Thus in the G−1

ABO algorithm, the matrix
decryption algorithm can be used to solve inversion with the
trapdoor information.

3.1 Basic encryption algorithm

Key Generation : Generating randomly the key z ∈ Rq by
some given distribution χ .

Encryption :For anymessagem in themessage space Rt ,
choosing a uniformly in Rq and choosing e in Rq randomly

according to distribution χ . Then compute the ciphertext:

c = (a, c′) = (a, az + te + m)

where z is the key and t is an integer.
Decryption : Using the key z, we can get the planetext:

m = (c′ − az) mod t .

3.2 Matrix encryption algorithm

Let M = (mi j ) ∈ (Rt )
h×h be a planetext matrix.

Key Generation : For any j ∈ [h], choosing z j ∈ Rq

randomly according to the distribution χ . Then the vector
z = (z1, z2, · · · , zh)T is the key vector.

Encryption : For any i ∈ [h], choosing ai ∈ Rq ran-
domly according to the distribution χ and we obtain the
vector a = (a1, a2, · · · , ah)T . Construct the error matrix
E = (ei j ) ∈ (Rq)

h×h , where each ei j is chosen randomly
in Rq . Then compute c′

i j = ai z j + tei j + mi j , where

z = (z1, z2, · · · , zh)T is the key vector. and construct the
matrix C′ = (c′

i j )1≤i≤h,1≤ j≤h . Output the matrix (a,C′) as
the ciphertext matrix, that is,

Ez(M; a,E) = C = (a,C′) = (a, azT + tE + M).

Decryption : Using the key vector z = (z1, z2, · · · , zh)T ,
we can decrypt every element of the part C′ of the ciphertext
matrixC, that is, (c′

i j −ai z j ) mod t = mi j . Then we can get
the planetext matrix M.

3.3 Lossy trapdoor functions

Injective functions generation Suppose that I is an h × h
identity matrix, z = (z1, z2, · · · , zh)T is the key vector,
and the ciphertext matrix of the identity matrix I is C =
(a,C′)h×(1+h). Then Sinj (·) outputs (C, z), where C is
the function index and z = (z1, z2, · · · , zh)T is the key.

Lossy functions generation Suppose that 0 is an h × h
zero matrix, z = (z1, z2, · · · , zh)T is the key vec-
tor, and the ciphertext matrix of the zero matrix 0 is
C = (a,C′)h×(1+h). Then Sloss(·) outputs (C,⊥), where
C is the function index.

Estimation algorithm Fltd f (C, x), where C is the function
index and x ∈ (Rt )

h is the input vector. Then the output
is yT = xT · C.

Inversion algorithm For the injective function, we will com-

pute F−1
ltd f (z, y), where z is the key. Compute:

1. Denote y as 1 + h dimensional vector (y1, y2, · · · , yh,
y1+h)

T ;
2. Compute xi = (yi+1 − y1zi ) mod t , where xi is the i-th

coordinate of x (1 ≤ i ≤ h).
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Then output x = (x1, x2, · · · , xh) as the preimage of y.

Theorem 3.1 Under the polynomial LW E assumption-
Hermite Normal Form, that is, PLW E f ,q,χ , the functions
in above scheme are lossy trapdoor functions, whose leak-
age is r = (n + h) log2 q − h log2 t .

Proof Firstly, the inversion algorithm F−1
ltd f (z, y) is correct.

For the function yT = Fltd f (C, x) = xT · C, because C =
(a,C′) = (a, azT + tE + I), we have

yi+1 − y1zi = xi + t
h∑

l=1

xleli .

Then xi = (yi+1 − y1zi ) mod t and x = (x1, x2, · · · , xh)T

is the preimage of y.
Lossy functions and injective functions are indistinguish-

able,which is ensuredby the security of thematrix encryption
algorithm. For any two planetext matrices M = (mi j ) ∈
(Rt )

h×h andM′ = (m′
i j ) ∈ (Rt )

h×h , the ciphertext matrices
obtained by the matrix encryption algorithm are indistin-
guishable under the PLWE f ,qχ assumption. We will prove
that for any planetext matrix M = (mi j ) ∈ (Rt )

h×h , the
proper encryption Ez(M; a,E) and the uniform encryption
Ez(M; a,R) of M are indistinguishable where the matrix
R ← (Rq)

h×h is chosen uniformly.
Using a standard hybrid argument, firstly define the hybrid

experiments H0, H1, · · · , Hh . In the experiment Hk , the
output is the encryptedmatrix Ez(M; a,E), where the first k-
columns of “E" is chosen according to the distribution χ and
the other columns of “E" is chosen uniformly. Thus, H0 gen-
erates the uniformly encryption of the planetext matrix and
Hh generates the proper encryption of the planetext matrix.
We only need to prove that the experiments Hk−1 and Hk are
indistinguishable.

For any k ∈ [h], wewill consider the simulation algorithm
SO , where O generates samples according to the distribution
Az,tχ (z ← (Rq)

h), that is, {(ai , ai z j + tei j )}i∈[h] and j∈[h]
where the elements z j are chosen uniformly in Rq and
the elements ei j obey χ distribution, or the distribution
{(ai , ui )}i∈[h] where the elements ui are uniformly random
on Rq . For j �= k, S generates the key z j ← Rq indepen-
dently. For j = k and each i ∈ [h], S queries the oracle O
and has the samples (ai , ui ). Let a = (a1, a2, · · · , ah)T and
c′
ik = ui + mik . For the columns satisfying j < k and all
rows i ∈ [h], S chooses the error ei j ← χ independently; for
all columns satisfying j > k and all rows i ∈ [h], S chooses
the error ei j ← Rq uniformly. For all columns j ( j �= k) and
all rows i ∈ [h], let c′

i j = ai z j + tei j +mi j . Then S outputs
(a,C′).

If the sample (ai , ui ) is uniform, the output of S is sub-
jected to Hk−1 because teik is chosen uniformly. If the sample
(ai , ui ) obeys Az,tχ , the output of S is subjected to Hk .

Because PLWE (l)
f ,q,χ is hard and the Proposition 2.7, the

distribution Az,tχ and the uniform distribution are computely
indistinguishable. Then the experiments Hk−1 and Hk are
computely indistinguishable.

Nowwe consider the leakage. The cardinality of the range
is

|Rq | ×
(q
t

)h = qn
qh

th
= qn+h

th
,

and the cardinality of the domain is tnh , so the residue leakage
of the lossy trapdoor functions is

r = (n + h) log2 q − h log2 t .

Choosing n, h, t, q properly, the leakage phenomenon will
be generated. ��

3.4 Special cases

The conclusion we obtained in the above subsection is the
general case. The above schemehas the following two special
cases:

1. Let t = 2;
2. Let the input function be x ∈ (Zt )

h .

Based on the above lossy trapdoor functions, we can con-
struct new all-but-one trapdoor functions.

4 New all-but-one trapdoor functions

Let t = t(λ) be a large enough prime and Rt be a finite field.
Let B = Rt be a collection of sets whose elements represent
the branches. For any branch b ∈ B, b̄ denotes the diagonal
matrix corresponding to the branch b, that is,

b̄ =

⎛
⎜⎜⎜⎝
b 0 · · · 0
0 b · · · 0
...

...
. . .

...

0 0 · · · b

⎞
⎟⎟⎟⎠ .

The concrete construction of all-but-one trapdoor func-
tions {Sabo,Gabo,G

−1
abo} as follows:

– Sabo generates all-but-one trapdoor functions:
Choose b∗ ∈ B randomly as the lossy branch and call the
matrix encryption algorithm to encrypt the matrixM∗ =
−b∗, we can obtain the matrix C∗ = Ez(M∗; a,E), and
then output the matrix index C∗ and the trapdoor infor-
mation z;
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– Estimation algorithm Gabo:
Input the branch b ∈ B and the function index C∗,
Gabo(C∗; b, ·) outputs a function g(C∗,b)(·) : Rh

t →
Rh+1
q , where x ∈ (Rt )

h is the input vector and

yT = g(C∗,b)(x) = xT · (C∗ + (0 b))

is the output vector, where 0 denotes h-dimensional zero
vector;

– Inversive algorithm G−1
abo:

Input the branch b ∈ B and the trapdoor information
(z, b∗). G−1

abo outputs the function g−1
(C∗,b)(·) : Rh+1

q →
Rh
t . For y ∈ Rh+1

q , decrypt y by decryption algo-
rithm with the key z and then y′ can be obtained.
That is, y is denoted as h + 1-dimensional vector
(y1, y2, · · · , yh, yh+1)

T and we compute y′
i = (yi+1 −

y1zi ) mod t(1 ≤ i ≤ h). So we can get the vec-
tor y′ = (y′

1, y
′
2, · · · , y′

h)
T . We can compute xi =

y′
i · (b − b∗)−1 mod t , and then x = (x1, x2, · · · , xh)T

is obtained. Thus

g−1
(C∗,b)(y) = x, y ∈ Rh+1

q .

Theorem 4.1 Under the polynomial LWE assumption-
Hermite Normal Form, the functions in above scheme is
(n, k)-all-but-one trapdoor functions, whose branch set is
Rt and the leakage is r = (n + h) log2 q − h log2 t .

The proof of this theorem is similar to that of the theo-
rem 3.1.

5 Conclusions

In this paper,we proposed a newmethod of constructing lossy
trapdoor functions and all-but-one trapdoor functions based
on the polynomial learning with errors assumption. And our
schemes have the following advantages compared with the
previous lattice-based constructions of lossy trapdoor func-
tions:

Our schemes have small function index parameters as
shown in Table 1. In the scheme of [13], if the input needs k
bits, the function index will need 2k2 log q1 bits and the key
needs k log q1 bits. While in our scheme, if the input needs
nh log t bits, the function index will need h(h+1)n log q bits
and the key needs nh log q bits. Easy to find that choosing h
and t properly, then the needed bits of the function index and
key corresponding to average single input bit is smaller than
that of the scheme in [13].

Our schemes have high speed of estimation and inversion
by choosing the parameters properly as shown in Table 2.
And they use the ring operation, thus they are realized with
high speed. Moreover, our schemes have smaller complexity

Table 1 The comparison on function index parameters

(Bits) Function index Key

[PW11] (input k ) 2k2 log q1 k log q1
Ours(input nh log t) h(h + 1)n log q nh log q

Table 2 The comparison on rounding complexity

Runding complexity

[PW11] O(n2ω(1))

Our scheme 0

Table 3 The comparison on throughput

Throughput TDs input

[PW11] log p bits n bits

Our scheme n log t bits nh log t bits

and the higher efficiency. The rounding complexity of the
scheme in [13] is O(n2ω(1)). While our scheme did not use
counting technology, the rounding complexity of our scheme
is zero.

Our functions have large throughput as shown in Table 3.
The throughput of the base encryption algorithm in [13] is
log p bits and the trapdoor function input has n bits, while
those in our schemes are n log t bits and nh log t bits respec-
tively, where Rt is the plaintext space.
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